
An Approach for Community Cutting?

György Frivolt and Mária Bieliková

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies

Slovak University of Technology in Bratislava
Ilkovičova 3, 842 16 Bratislava, Slovakia

frivolt@fiit.stuba.sk, bielik@fiit.stuba.sk

Abstract. Informational networks and networks created based on social
interactions possess high complexity. Yet the networks can be decoupled
into sets of vertices, communities, more interconnected among each other
then by other vertices of the network. For mining internal structure of in-
formational and social networks approach for finding community around
a seed of vertices is described. Most of existing clustering approaches
intend to identify all communities in the network, our goal is to identify
the community around a vertex or a set of vertices. We give also short
overview of tools for network analysis and their functionalities is given.

1 Introduction

Massive networks can be observed from various aspects of the world. Nowadays
more massive networks have measurable and analysable form: informational net-
works such as the Web, networks of social interactions as phone call, SMS or
email communication can be captured. We give overview of operations, repre-
sentations and tools for modelling graphs. The intention is to build a basis for
further development of a software tool for analysing massive graphs. We also in-
troduce an approach for finding community around a set of vertices, which should
perform better than other approaches mining all communities in the network.

Those networks that are interesting for research usually perform huge number
of vertices and edges. The amount of data forces us to think about how to
tackle spatial and computational complexity. Often the data does not fit in
the system memory. Just for a glance: the crawls of a search engine has to
process around 200 million web pages and 2 billion hyperlinks [4, page 10], the
number of communications in a phone network can scale as 50 million for a
month. Scalability is perhaps the most obvious problem spot one can notice
when implementing and testing a tool for network analysis.

? This work has been partially supported by the Scientific Grant Agency of the Min-
istry of Education of Slovak Republic grant No. VG1/ 0162/03, and by Science and
Technology Assistance Agency under the contract No. APVT-20-007104.

2 Network Analysis Tools

Projects for massive network analysis and visualisation are being developed (Pa-
jek [1], JUNG, InFlow, DyNet, Cyram NetMiner). These tools mostly provide
functions such as ranking vertices according to their importance, centrality mea-
surements, clustering and visualisation of the network and other functionalities.

We consider network representations as list of vectors: for every vertex a
list of its neighbour vertices is defined; matrix representation: the adjacency
matrix serves a good representation as useful operations can be performed on the
adjacency matrix (computing co-citation matrix, importance ranking algorithms,
like PageRank, HITS). However as most of networks being analysed are sparse,
storing network as a matrix can cause too expensive space consumption. We find
external storage of the network to a relational database as the simplest and most
effective solution currently. Edges are defined as relations, containing edge head,
tail and edge attributes.

The initial networks are usually objects for manipulations. These network
manipulations result in changed networks, which are further analysed and should
serve a basis for making decisions for the user or should present a list of results
which helps navigation in the network. The following list of operations were
chosen as the most interesting from our point of view.

Clustering Identification of clusters/community structures in the network. The
input of the clustering operation is a graph and generates a list of clusters
containing vertices, and a hierarchy of clusters.

Shrinking Shrinking sets of vertices to one vertex, for instance shrinking iden-
tified clusters to vertices.

Filtering Operations for filtering out edges and vertices with given criteria.
Co-citation network Operation over the adjacency matrix: ET E.
Ranking Implementation of vertex/edge importance ranking, such as centrality

measurements [2], PageRank [6] or HITS [3]

These operations generate a new network from the original one. We distin-
guish two modes for this process. In generate-mode a new graph is produced,
which is completely independent of the originally processed. Generation of a
graph from the source graph causes computational effort when it is executed,
but every operation is done on the produced graph afterwards. For wrap-mode
the graph manipulation decorates the graph under processing, every operation
on the wrapper graph delegated to the data of the wrapped graph and does
not create physically any graph. The produced graph is kind of a view of the
processed graph. This mode causes small effort when it is executed, but a lit-
tle more computation when the wrapper graph is processed. Also the spatial
demands of this operation should be much smaller, as no graph is generated.

Shrinking, clustering and generation of cluster hierarchy are operations of
global decomposition. Local decompositions are cutting out a part of the graph
(for instance vertices of a component) or shrinking all but one cluster produces
a context of the left alone cluster. Fig. 1 shows an illustration of the decompo-
sitions.

Fig. 1. Illustration of transforming graphs to other forms.

Clustering massive networks, consisting of even more million vertices can
show up as too complex problem to solve. For instance Newman-Girvan edge-
removal algorithm takes O(mn2) [5], other algorithms based on hierarchical per-
forming worse separation of communities need O(n2) time for computation in
case of sparse graph. Even this may be unfeasible for networks with more million
vertices.

3 A community-cutting approach

We propose an algorithm for finding community containing an initial seed of
vertices. As our intention is not to classify all vertices to communities, we need
to traverse a smaller part of the network. We call this approach as community-
cutting.

Our approach is a modified breath-first search algorithm (alg. 1). Whereas
the BFS prioritises the vertices based on the distance from the seed vertices,
varying priorities set as the proportion of the number of neighbours already
cut-out and the total number of adjacent vertices are used.

The priorities are updated based of eq.1:

priority =
|Nk ∩ C|
|Nk| (1)

where Nk is the number of neighbours of vertex k and C is the of vertices assigned
to the community.

Algorithm 1: Community-cutting algorithm

Data: graph G(V, E), seed of initial vertices S, maximum number of vertices to
cut L

Result: set of cut-out vertices C
C = S;1

list = S;2

while list is not empty and |C| < L do3

v = pop(list);4

add v to C;5

forall neighbours k of v do6

if k not in C then7

if k in list then8

re-rank k in list with priority: |Nk∩C|
|Nk| ;9

else10

add k to list with priority: 1
|Nk| ;11

return C;12

Algorithm traversing through the whole network visits O(n+m) vertices and
edges. Visiting a new vertex takes O(log n) time for updating the priority using
Fibonacci-heap in the worst case. Therefore the whole algorithm takes generally
O(m + n log n) time.

We used a network of mobile communications of one month period acquired
from a mobile operator. The analysed data set is not a public collection. The
communication consisted of more types including calls, SMS, FAX, GPRS and
MMS. This is a huge network of more than 57 million edges, well capturing social
interactions. We considered the network as oriented. During the testing problem
with vertices of very high degree (higher than 100.000) was noticed. For tackling
the problem vertices with degree higher than 1000 were filter out and not visited
during the community cutting.

Fig.2 shows the priorities of vertices assigned to the community during run-
ning of alg.1. Priority of a vertex gives what proportion of its incoming neigh-
bours is already assigned to the community and the total number of incoming
edges. If the priorities are low, perhaps the algorithm reached the borders of a
cluster of vertices and it is approaching to a neighbour cluster. Fig.2 shows a
wavering evolution of the priorities.

Fig. 2. Priorities of the vertices during the network traversal. The left and the right
diagram illustrates the community cutting of 100 and 350 vertices respectively. The
initial seed consisted of one vertex in both cases. The highest the priority is, the more
neighbours of the vertex has been already assigned to the community.

4 Conclusions and future work

We presented briefly functionalities usually implemented by tools for massive
graph analysis. An algorithm for cutting out a part of the graph was proposed.
This algorithm is necessary for finding a portion of the graph based on the given
initial seed, which can be further processed in the memory.

Further improvement of the algorithm consist in changing the condition for
finalisation of the traverse. Setting a minimal threshold of the vertex priority
to be processed perhaps yield tighter or wider communities depending on the
threshold. As it was shown on fig. 2 the priorities can decrease to low values,
signing that the new vertex was surrounded by few vertices already included to
the community. We believe that introducing threshold could result better defined
community.

We intend to test the approach on theoretical such as random networks or
small world model; and real networks, as Web and Wikipedia. We hope that
our approach can be useful for finding surrounding topics in Wikipedia and
the community including the topic, helping the user navigation. Fig. 3 shows
visualised clusters in Wikipedia.

We believe that approaches for finding community only around a seed of
vertices, not visiting all vertices of the network are useful for their lower time
consumption and applicability on huge networks.

References

1. Pajek, February 2005. http://vlado.fmf.uni-lj.si/pub/networks/pajek.

Fig. 3. Visualised part of Slovak Wikipedia. The picture shows that similar topics are
referenced by and refers to hub topics such as Medicine (2) or Psychology (8).

2. Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of Mathemat-
ical Sociology, 25:163–177, 2001.

3. Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of
the ACM, 46:604–632, September 1999.

4. Mark E. J. Newman. The structure and function of complex networks. Physical
Review Letters, March 2003. cond-mat/0303516.

5. Mark E. J. Newman and Michelle Girvan. Finding and evaluating community struc-
ture in networks. Physical Review Letters, 2004. cond-mat/026113.

6. Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. Standford Digital Libraries, Technolo-
gies Project, 1998.

