
Composition and undesired web service execution
effects

Peter Bartalos and Mária Bieliková
Institute of Informatics and Software Engineering, Faculty of Informatics

and Information Technologies, Slovak University of Technology in Bratislava
{bartalos,bielik}@fiit.stuba.sk

Abstract—Automatic dynamic web service composition is
showing to be an effective way how to deal with the dynamic
character of the web services and business environment, while
providing a mechanism supplying varying user goals. This
paper briefly introduces the undesired service execution effects
influencing the service composition and achievement of the user
goal. We discuss a solution eliminating the undesired effects and
show how it fits into the overall service composition process.

I. INTRODUCTION

Web service composition [1], [2], [3], [4] is a process
of arranging several web services into workflows to provide
a utility, which is not offered by any single service. To
supply varying user goals, dynamic composition is necessary.
In this case a lot of automation is in demand to handle
the variability effectively. A lot of work had already been
done in the field of automation of service composition. The
automation brought additional requirements to the whole life-
cycle of services and the composition approaches. On the other
side, it provides features which are impossible to achieve in
manual manner. There are several areas where web services
and service composition are applied [5], [6].

The automatic dynamic web service composition problem
is defined as follows: given a query describing the goal
and providing some inputs, design a workflow (depicting the
data- and control- flow) from available services, such that
its execution produces the required goal. Even that there
are plenty of composition approaches, each based on various
methods, the automatic composition can be generalized to the
following steps:

1) Design of abstract composite service: during this step we
identify which services could be potentially chained, i.e.
which service produces some results required by another
services, or in the goal. Here, we consider each service
with the same interface definition as one. At this point,
it is neglected how many implementations exist, or at
how many places is one implementation deployed. Only
the functional properties of services are important.

2) Finding the best candidate service: at this step, for each
service in the abstract composition, we look for the best
candidate service which is used during the execution.
The word best in this case means that the selected
service has better attributes, which the user is interested
in, than any other candidate service. These attributes
relate to the non-functional properties of services.

3) Execution of the final composition: to definitely achieve
the satisfaction of the user goal, the composite service
is executed to produce the required results.

Note that the presented steps of automatic composition
of services do not fit all over. In some approaches, the
steps may interleave, or the overall process shows slightly
differences. Beside this, concrete works usually deal only with
sub-problems related to some parts of the whole process. This
paper focuses on problems which may occur due undesired
web service execution effects. These cause that the user goal
is not satisfied, or unwanted side-effects are made. We discuss
a usage of counterpart services to avoid execution of services
which do not led to the desired results.

II. UNDESIRED SERVICE EXECUTION EFFECTS

Web services allow invocation of a remote software system,
available through the web, using standard protocols. In gen-
eral, there is no limitation to what kind of process is encapsu-
lated in the web service. It can be a very simple procedure, but
also a very complex business process. It can expose a part of a
software system, which is this way accessible to the web users.
Web services present a certain level of unpredictability related
to the result of their execution. These affect the fulfillment of
the user desires, according the web service. It is caused by the
following issues:

• execution errors,
• unpredictable output values,
• unpredictable post-conditions.
The execution of a web service may fail due several

technical reasons on the service provider, or customer side,
or the communication link. These errors are usually fatal and
make the service invocation unsuccessful. The execution errors
are undesired for the user. Web services produce data of such
type as defined in its description. However, the actual value
is not known. In some cases, the value of the outputs may
affect the user satisfaction. This is true also regarding the
post-conditions. They may define several alternatives. It is not
known, which particular alternative condition, will hold after
the service execution. Since the user may be interested only
in some of them, it is again not guarantied that the service
will satisfy the user needs. Moreover, in some situations, the
execution may cause world-altering side effects, which are
undesired by the user and require some kind of compensation.



The web service composition is based on the service de-
scriptions, i.e. information known when the service is de-
ployed. However, as we just discussed, these information
are (naturally) not enough. Based on these, we can find a
composition having a potential to fulfill the user goal, but
we cannot be sure that it will do so. When looking for a
service realizing a particular task in the composite service,
the composition should find all services having the potential
to accomplish the required task. This means that each ser-
vice producing the required outputs and whose post-condition
includes a goal condition, should be candidates to realize a
given task. The selection of the best candidate service usually
requires additional information, which are not known from
the service description. The execution of the service could be
required to acquire them.

Consider a service realizing a hotel reservation as follows.
Taking a hotel identifier, a defined time interval, and credit
card information, it creates a reservation of the hotel for the
specified time period and returns a reservation confirmation
including the information regarding the room price and other
details. The reservation could also fail, for example because
there is no free room for the required time period. In this case
the service returns a notification about the failure. These two
alternatives are precisely described in the post-condition of the
service, depicting two alternatives of the execution result.

When looking for a hotel reservation service, our example
service should be one candidate. However, the service cannot
guarantee that it will successfully make a hotel reservation.
This depends on the actual hotel occupation rate. This fact
is known in the reality, but the service requestor is unable to
realize it, until the service invocation takes place. In the case
when the reservation cannot be realized, the invocation of the
service is not useful. A positive issue is that the execution of
the service at least did not make any undesired changes of the
world. Sometimes, this is not true.

Consider a situation that it is possible to reserve a hotel for a
desired term, but we have additional requirement that the hotel
price is no more than 500 e. Our example service is again
capable to achieve this goal. However, in the case that the hotel
price exceeds 500 e, the user goal is not fulfilled. Moreover,
in this case, the execution of the service has an undesired,
world-altering effect, because it made a hotel reservation, and
charged money from the credit card. If we know that the price
of the hotel exceeds 500 e, we would rather try to find another
hotel and do not invoke the service with the expensive hotel.
The key point is how could we know the price of the hotel
ahead of service execution time. The price, or the availability
of the hotel can be seen as critical information, based on which
it is decided if it is, or is not desired to invoke the given
service.

If the only way to get the hotel price is to invoke the hotel
reservation service, we have to deal with undesired, world-
altering effects. In some cases these can be eliminated by
executing a kind of undo operation. On the other side, some
service executions are non-reversible and cause permanent
effects.

Similar problems as just discussed were already being
addressed [7], [8], [9], [10]. These works deal with web
services transactions. Transactional behavior of web services
is required to be able to manage the execution of multiple
interrelated services, composed together to realize a complex
task. If any of these services cannot complete the desired
sub-task, the whole task fails. In this case, it is desired
to leave the world in a state as before the execution of a
transactional web service composition, i.e. as we never done
it. To achieve this, similar behavior as presented in database
management systems regarding transactions is required. To
undo some actions, compensation must be supported also in
the case of web services and their compositions. The problem
is that not all services support compensation. Moreover, even if
compensation is possible, rolling back a previously completed
transaction could be expensive, or ineffective.

An approach, trying to minimize the need of transaction
cancelation, or compensation is presented in [7], [8]. These
works use a concept of tentative holding in web service
composition. This concept had been implemented in a tentative
hold protocol1. Its aim is the exchange of information across
businesses prior to an actual transaction. The exchange of
information tends to prevent the need of transaction cancela-
tion, which can occur in dynamic business environment. The
business parties make tentative commitments related to terms
of an interaction (e.g. price, quantity). The protocol allows
multiple clients to place holds on the same items (e.g. hotel
reservation). Thus the hold is non-blocking. Whenever one
client completes for example the purchase, the other clients
receive notifications that their holds on the same item are no
longer valid. Based on these notifications, the other clients
know that they cannot finish the purchase. This allows them
to try to accomplish the user goal an alternative way and there
is no need of transaction compensation.

In [7], three phases of business transactions are described:
• Pre-transaction phase. During this phase the critical

information are exchanged between partners.
• Main-transaction phase. In this phase, the main business

process execution takes place.
• Post-transaction phase. This phase is responsible for

observing the agreements and terms specified during the
execution between the transacting parties.

Splitting the transaction into phases has important conse-
quences. Taking our example, we first exchange the infor-
mation about the hotel price. Based on this information, we
decide if it is desired to continue with the reservation process.
The decision is based on the user satisfaction degree with the
hotel price. This way we can avoid undesired effects, and it is
not needed to deal with undoing them, i.e. no compensation
operation is required. This preemptive approach is much more
feasible in the case of web service compositions realizing
certain business processes.

The realization of preemptive service composition, aiming to
avoid execution of services not producing the desired results,

1http://www.w3.org/TR/tenthold-1/



should be supported in several points:

• service design,
• world-altering effects identification,
• critical information identification,
• critical information exchange.

Web service composition aims at combining existing ser-
vices in such a way that the execution of the composite service
produces the required results. The single web services are
atomic and cannot be changed on the demand of the actual
composition. As far as we know, there is no methodology,
describing how should be designed the web services aimed
to be automatically composed. It is quite obvious that the
design of the web service significantly affects the ability to
use it during service composition. Taking our hotel reservation
example, it is much suitable to split the whole process into
several web service operations. The very important point is
to provide separate operations, which can be used to get the
information about the possible reservations. This should be
realized without a need of booking a hotel. If the services
are designed to provide a properly atomic functionality, the
automatic composition can bring significant advantages. These
arise from the ability to effectively select the best service
candidate for each user. During this, the current situation
regarding the service environment and the user context are
considered.

A proper design of single services can ease the solving of
the problem as proposed in our example. The basic principle
is to provide a way how critical information could be obtained
by the service requestor, without the need to execute a world-
altering service. Already during the design time, it should
be identified if the service produces a world-altering effect
and based on which information could it be decided, if this
effect is desired. Consecutively, the access to the critical
information must be supplied. This may be realized in several
ways. The most feasible way is by developing web services,
which stand as counterparts to the main service, realizing the
business process, with world-altering effects. Note that there
may be multiple critical information related to one service.
Thus, multiple counterpart services could be related to one
world-altering service. Considering our example, there must
be services which may be used to obtain information about
the hotel availability, its price, and other information about
the hotel reservation conditions, see Fig. 1. The crucial issue
is that the counterpart services can be invoked to provide
the information about the same business entity (e.g. hotel
reservation), which is affected by the main service, realizing
the actual business activity. For example, if we get the hotel
price for the specified conditions (e.g. time period, room type),
the same price will hold if we make a reservation with the
same condition specification.

To allow preemptive service composition, the counterpart
interrelationships between services must be explicitly stated
in the service descriptions. Afterward, the composition is
enhanced based on the following principle. If a world-altering
service is required in the composition, the critical informa-

Hotel

reservation

Business service Counterpart services

Hotel

availability

Hotel price

Hotel

location

hotel ID,

check-in,

check-out,

cc-info

price

availability

hotel ID,

check-in,

check-out

hotel ID

location

reservation

detail

hotel ID,

check-in,

check-out

Fig. 1. Counterpart services to a business service.

tion is exchanged first, by invoking the counterpart services.
By invoking the counterpart services, we gather information
determining the ability of a particular service to satisfy our
needs and are able to evaluate the level of satisfaction. Based
on this, if we realize that the service cannot fulfill our needs,
we do not consider it any further. From the suiting services,
we choose the one fulfilling our needs the best.

The overall service composition, incorporating the methods
solving different parts of the composition problem, should
follow the following steps, see Fig. 2:

1) Abstract composition design: search a composition, con-
sisting from abstract services, based on the functional
requirements.

2) Find concrete services: for each task in the abstract
service composition, find all concrete services fulfilling
the given task.

3) Gather information: gather all information necessary
to evaluate the degree of user goal satisfaction by the
possible service compositions. This includes invocation
of counterpart services to exchange critical information.
No service with world-altering effect is executed.

4) Select optimal concrete services: Based on the informa-
tion about the concrete services, gathered in the previous
step, or known from service descriptions (SLA), select
the optimal concrete services bringing the maximal
user goal satisfaction. During optimization, the non-
functional properties of services are considered. This
includes the QoS characteristics and user preferences.
At this step, the user preferences from the query, or
from a user model are took into account. The actual



Abstract

composition

Concrete

services

selection

Information

gathering
Optimisation Execution

Tentative

holds

Fig. 2. Web service composition steps.

user context should be considered too. Multiple criteria
decision making and constraint satisfaction techniques
are used here to get the best possible solution, taking
into account all the known requirements.

5) Tentative hold: when it is known which business re-
sources bring the maximal user satisfaction and which
services should be used to exploit them, place holds for
each resource.

6) Execute composition: If no notification is received stat-
ing that some holds of resources are no longer valid,
execute the concrete services in the required order. If
some service permanently fails to execute, or some
holds for any resource are no longer valid, update the
selection of concrete services. During this, optimize
the composition based on the current situation. If the
problem requires changing an already executed part of
the composition, transaction mechanisms are used to
recover from the undesired state. If it is required, go
back to previous steps to adapt the composition.

The most critical phase of the overall composition pro-
cess is the execution. One reason is that the former steps
could be realized relatively quickly. Thus, the changes in the
environment are not expected and the final composition is
the best considering the current situation, i.e. if it could be
executed immediately, then the user satisfaction is guaranteed.
However, the execution of some services may be a long-
running process. Hence, several changes may happen in the
environment. The changes have different character and require
different management. If the change causes that a service
selected to be a part of the final composition is no longer
available, or does already not guarantee the required non-
functional properties, this service should be replaced with
another one. In the case of tremendous changes in the service
environment, e.g. services with new functionality are deployed,
it is desired to perform again the abstract composition design.

III. CONCLUSION

Automatic dynamic web service composition is showing to
be an effective way how to deal with the dynamic character
of the web service, and business environment, while providing
a mechanism capable to supply varying user goals. Several
research results concerning different aspects of the overall
problem had been proposed, and they present promising re-
sults. In some specific scenarios, the current results make the
composition practically applicable.

To exploit more potential of the service composition, several
problems remain to be solved. More attention should be given

to those issues which are not related to the actual arrangement
of services into a composite one. The whole life-cycle of
web services and their composition should be covered. More
interest is required to the design of web services. The design
decisions significantly affect the further possibility to compose
the developed services. Semantic annotation of web services
is also a subject of further research. Methodologies and tools
should be developed to support this process. It should be
analyzed if the description focusing on the I/O and pre-
/post-conditions is sufficient. One potential area to enhance
the annotations is to provide information about which world-
altering effects may be caused by the service, and identification
of the critical information. These together with a precise
design of business services and counterpart services could help
improving the composition to achieve higher user satisfaction.

ACKNOWLEDGMENT

This work was supported by the Scientific Grant Agency of
SR, grant No. VG1/0508/09 and it is a partial result of the
Research & Development Operational Program for the project
Support of Center of Excellence for Smart Technologies,
Systems and Services II, ITMS 26240120029, co-funded by
ERDF.

REFERENCES

[1] S. Dustdar and W. Schreiner, “A survey on web services composition,”
IJWGS, vol. 1, no. 1, pp. 1–30, 2005.

[2] P. Bartalos and M. Bielikova, “QoS aware semantic web service com-
position approach considering pre/postconditions,” in Int. Conf. on Web
Services 2010. IEEE CS, 2010, pp. 345–352.

[3] ——, “Effective QoS aware web service composition in dynamic
environment,” in Int. Conf. on Information Systems Development 2010.
Springer, 2010.

[4] S. Kona, A. Bansal, M. B. Blake, and G. Gupta, “Generalized semantics-
based service composition,” in ICWS ’08: Proc. of the 2008 IEEE Int.
Conf. on Web Services. IEEE CS, 2008, pp. 219–227.

[5] P. Bednar, K. Furdik, M. Paralic, T. Sabol, and M. Skokan, “Semantic
integration of government services - the access-egov approach,” in IIMC
’08: EChallenges e-2008, 2008.

[6] M. Sarnovsky and M. Paralic, “Text mining workflows construction with
support of ontologies,” in SAMI ’08: 6th Int. Symposium on Applied
Machine Intelligence and Informatics, 2008, pp. 173–177.

[7] M. P. Papazoglou, “Web services and business transactions,” World Wide
Web, vol. 6, no. 1, pp. 49–91, 2003.

[8] B. Limthanmaphon and Y. Zhang, “Web service composition transac-
tion management,” in ADC ’04: Proceedings of the 15th Australasian
database conference. Darlinghurst, Australia: Australian Computer
Society, Inc., 2004, pp. 171–179.

[9] J. E. Haddad, M. Manouvrier, and M. Rukoz, “Tqos: Transactional and
qos-aware selection algorithm for automatic web service composition,”
IEEE Transactions on Services Computing, vol. 99, no. PrePrints, pp.
73–85, 2010.

[10] B. A. Schmit and S. Dustdar, “Towards transactional web services,” in
CECW ’05: Proceedings of the Seventh IEEE International Conference
on E-Commerce Technology Workshops. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 12–20.


