Effective QoS aware web service composition in
dynamic environment

Peter Bartalos and Maria Bielikova

Abstract Nowadays, several web services composition approaches, each consider-
ing various aspects of the composition problem, are known. Consequently, a lot of
attention shifts to the performance issues of web service composition. This paper
presents an effective QoS aware composition approach. Our work focuses to its per-
formance, which is studied also in dynamically changing environment, where new
services are deployed, some services are removed, or the QoS characteristics change
in time. We analyze the impact of the need to manage these changes to the sojourn
of the composition query in the system. The experiments show that the proposed
composition system is handling these changes effectively and the sojourn time is
not significantly affected.

1 Introduction

Web service composition [8] is a process of arranging several web services into
workflows. The aim is to bring a utility, which cannot be provided by a single ser-
vice. Its automation showed to be a challenging task. The research of service com-
position in last years tends to focus on issues related to QoS [3, 5, 6, 9, 13, 15], pre-
/post-conditions [4, 6, 12], user constraints and preferences (e.g. soft constraints)
[2, 10, 14], consideration of complex dependencies between services [7, 16].
Several approaches deal with performance and scalability issues of the compo-
sition process [3, 5, 6, 9, 12]. These use effective data structures created during
preprocessing to speed up the composition. As it is true for the web in general, also
web services change in time. New services are deployed, some of them are removed.
Moreover, the non-functional properties of services may change frequently. The aim

Peter Bartalos and Maria Bielikova

Institute of Informatics and Software Engineering, Faculty of Informatics and Information Tech-
nologies, Slovak University of Technology in Bratislava, Ilkovicova 3, 842 16 Bratislava, Slovakia
e-mail: {bartalos, bielik}@fiit.stuba.sk



2 Peter Bartalos and Maria Bielikova

is to find a composite service with the best global QoS characteristic, computed
from the QoS attributes of single services based on aggregation rules [3, 13, 15].
The composition system must flexibly react to these changes. The solution should
reflect the current situation in the service environment. If the changes are not man-
aged, it may happen that the designed composition does not use the right services,
it includes services which are already not executable, or it is not optimal from QoS
point of view. Hence, we do not achieve the satisfaction of the user goal based on
which the composition is realized. On the other side, the dynamic changes of ser-
vices require updating the data structures of the composition system, before we start
new composition. Thus, the dynamic changes affect the composition time. To avoid
too much delay, the updates must be realized quickly. In this paper we deal with the
performance and scalability of service composition operating in dynamic environ-
ment. We present our designed algorithms, which were already used in our previous
work and extended to more effectively manage the dynamic changes.

2 Related work

Several approaches automating the web service composition had already been pro-
posed. They showed to be useful when looking for a composition aware of pre-/post-
conditions, QoS and satisfying the user constraints, preferences. Promising results
were achieved also regarding the performance. There are approaches able to com-
pose services in acceptable time, even if the number of services in the registry rises
to some ten thousands. However, only little attention had been given to the research
of approaches handling the dynamic changes in the service environment.

As we studied approaches in [5, 9, 12], we found out that there are some issues
appearing in each of them. First, they use pre-processing during which effective
data structures are created. These represent the services and the interconnections
between them. Another similarity is in the base of the composition process. It is
a forward search, starting with the concepts describing the inputs provided in the
query (at semantic level). The set of these provided concepts is then incrementally
extended. In each iteration, concepts associated with outputs of services having pro-
vided inputs are appended. An input is provided if it is associated with a concept,
already included in the set of provided concepts. This continues in iterations until
all concepts required in the user query are not provided and new concept can be
appended. During the iterations, also an acyclic graph of services, depicting all pos-
sible solutions of the composition problem, is built. After all required concepts are
produced, to remove redundant services, a backward search is performed, starting
with services directly producing the outputs required in the user query.

In [12] the authors present a Prolog based, pre-/post-condition aware composition
approach. It does not consider the QoS of services. The aim of pre-processing in
this approach is to convert the service descriptions into Prolog terms. The semantic
relations (e.g. subsumption) are also pre-processed. The built-in indexing scheme
facilitates fast composition. The authors deal also with incremental updates required



Effective QoS aware web service composition in dynamic environment 3

when adding a new service. They results show that managing an update requires
much more time, than the composition (e.g. 1 vs. 18 msec).

An effective, QoS aware composition approach is presented in [9]. It is based on
modified dynamic programming, and a data structure having three parts. The first
represents services, the second concepts, the third the mapping of the concepts to
service parameters. The composition is effective due a filtering utilized to reduce the
search space. The pruning removes services i) which have no inputs (thus cannot be
executed), and ii) are not optimal from QoS point of view. During forward chaining,
when adding new concepts into the set of provided concepts, the aggregated QoS
values of services are updated to find the optimal value. Also the provided concepts
are related to an optimal QoS value, calculated based on the optimal aggregated QoS
value of services which are producing it.

In [5] we had presented a composition approach dealing with performance and
scalability issues. The difference between our approach and [9] seems to be minor
from the algorithm point of view. Due poor description of the algorithm in [9], we
are not able to exactly state the difference. However, it is clear that in [9] different
data structures are used to express the services, and their relation to other services
and concepts. Moreover, our work deals also with pre-/post-conditions, just as [12].
These aspects of our composition system are described in [4, 6].

3 Service composition process

The aim of our composition approach presented in [4] was to select usable services.
The service is usable if all its inputs are provided thus can be executed. The in-
puts are provided in the user query, or as an output of another usable service. To
select usable services, forward chaining is realized. During it, we also select the
best provider for each input of all services, considering QoS. This process becomes
a high computation demanding task as the number of services, their inputs, and
number of input providers rises. The complexity of the computation is also strongly
dependent on the interconnections between the services.

To speed up the select usable services process, we propose search space restric-
tion. Its aim is the selection of unusable services. A service is unusable, if at least
one its input is not provided in the user query, neither as output of ancestor services.
The process lies on identification of such services, for which there is at least one
input not provided by any available service, i.e. the only case when it is usable is
if the respective input is provided in the user query. These services are identified
during preprocessing. We call them user data dependent services.

The selection of (un)usable service is done by marking a service. The marks are:
UNDEC if it is undecided if the service is unusable, USAB if the service is usable,
UNUSAB if the service is unusable, UDD if the service is user data dependent,
UDDPROYV fif the service is UDD and all dependent inputs are provided in the query.

A lot of our work had been redesigning the effective data structures used in [4, 5],
to be quickly modifiable when the service environment changes. In the following,



4 Peter Bartalos and Maria Bielikova

we present an overview of the data structures to be able to understand the algorithms
introduced later. The most important are:

- AllServices: a collection of all available services.

- ConceptProviders: a collection, where an element is a key-value pair of 1) con-
cept and ii) list of services having an output associated with concept.

- ConceptConsumers: a collection, where an element is a key-value pair of 1)
concept and ii) list of services having an input associated with concept.

- InputDependents: the same as ConceptConsumers, but contains only services
marked with UDD.

- UserDataDependents: a collection of services marked with UDD.

- SuperConcepts: a collection, where an element is a key-value pair of i) concept
and ii) list of concepts (transitively) subsumed by concept.

A service is represented as a complex data structure having several attributes.
Its aim is to store information about service’s properties and interconnections to
ancestor, and successor services. The main attributes are:

- usability: stores the mark of the service as presented before.

- unprovidedInputs: the number of unprovided user data dependent inputs.

- inputs: list of concepts associated with the inputs.

- inputProviders: for each input, it stores a list of services providing it.

- bestQoSProviders: for each input, it stores a reference to a service which pro-
vides it and has the best QoS.

- successors: list of successor services.

3.1 Restricting the search space

The select unusable services process performs as presented in Alg. 1. It can be
started only after we select services having all inputs provided in the user query and
mark them as USAB. This is the part of Alg. 2 at lines 1 to 12. Then, the process starts
evaluating which services can be marked with UDDPROV (lines 1 to 6). For each
provided input in the user query, we get the list of services from InputDependents,
requiring the respective provided input. For each service in the list, we decrement
the number of unprovided user data dependent inputs. If this number is zero, the
service is potentially usable. We cannot be sure because it may have other inputs
which do not rely on provision in the user query. This is evaluated later.

Next, we decide which user data dependent services are not usable (lines 7 to 9).
We traverse UserDataDependents and if the respective service is not usable, either
has not provided all user data dependent inputs, it is marked with UNUSAB. Then,
we create a list of services still having undecided usability (lines 10 to 12).

Up to now, we know which user data dependent services are unusable. The
(un)usability of these services influences also their successors. If there is a ser-
vice having some input for which all providers were marked with UNUSAB, it is
unusable too. In the rest, we evaluate this (lines 13 to 25).



Effective QoS aware web service composition in dynamic environment 5

Algorithm 1 Find unusable services: Input: provided inputs

1: for all provided input do

2 list = InputDependents.get(provided input);
3 for all service in list do

4: decrement service.unprovidedInputs;

S: if service.unprovidedInputs == 0 then
6: service.usability = UDDPROV;

7: for all service in UserDataDependents do

8 if service.usability # USAB AND service.usability # UDDPROV then
9: service.usability = UNUSAB;
10: for all service in AllServices do
11: if service.usability == UNDEC then

12: toProcess.add(service);

13: while is service to process do

14: for all service in toProcess which is undecided do

15: for all input in service.inputs do

16: isUnprovidedInput = true;

17: if input provided in user query then

18: isUnprovidedInput = false;

19: else

20: providers = service.inputProviders of input;
21: for all provider in providers do

22: if provider.usability # UNUSAB then
23: isUnprovidedInput = false;

24: if isUnprovidedInput == true then

25: service.usability = UNUSAB;

While there is a potential service which may be marked unusable, we traverse
services from foProcess. For each input of the respective service, we check if it
is for sure unprovided, which a default assumption is. If it is provided in the user
query, then isUnprovidedInput is false. If it is not, we traverse all the input provider
services. If there is at least one which is not unusable, then isUnprovidedInput is
false. This case does not mean that the input is provided, we just cannot be sure
that it is not. If we are sure that the service has at least one unprovided input, i.e.
isUnprovidedInput was not changed to false, it is unusable. If we mark some service
as unusable, the evaluation starts again. The reason is that the found unusable service
affects its successors, which may thus become unusable too.

After the select unusable services process finishes, several services were marked
as unusable. These cannot be used in the composition. Thus, we restricted the search
space and we will not waste time during the composition with several unusable
services. Note that we did not find all unusable services. We found each unusable
service which is user data dependent, or it is a (indirect) successor of it.



6 Peter Bartalos and Maria Bielikova

3.2 Discovering usable services

The select usable services process has two phases, see Alg. 2. First, we select ser-
vices having all inputs provided in the user query. Second, we realize forward chain-
ing to find other usable services. The first phase starts by collecting services which
have some inputs provided in the user query (lines 2, 3). Then, for each potential
service we check if it has provided all inputs (lines 5 to 12). If so, the service is
marked as USAB and put in toProcess.

The second phase (lines 13 to 30) performs in a loop for all services in foProcess.
For a respective service, we check if there is some provider of its inputs (lines 15
to 24). During this, we select the provider having the best QoS at the moment. If
the service has provided all inputs, it is marked with USAB and we recalculate its
aggregated QoS based on the best QoS providers. Then, for all its successors, we
check if their usability is undecided or if the service can improve the aggregated
QoS of the respective successor. If so, the successor is processed too.

Algorithm 2 Discover usable services: Input: provided inputs

1: for all provided input do

2 services = ConceptConsumers.get(provided input);
3 potentialServices.putAll(services);

4 inConceptsMap.put(provided input);

5: for all service in potentialServices do

6 alllnputProvided = true;

7 for all input of service do

8 if inConceptsMap.contains(input) == false then

9: alllnputProvided = false;
10: if alllnputProvided == true then
11: service.usability = USAB;
12: toProcess.add(service);
13: while toProcess.size > 0 do
14: service = toProcess.first;
15: alllnputProvided = true;
16: for all input in service.inputs do
17: inProvided = false;
18: providers = service.inputProviders of input;
19: for all provider in providers do
20: if provider.usability == USAB then
21: inProvided = true;
22: update best QoS provider;
23: if inProvided == false then
24: alllnputProvided = false;
25: if alllnputProvided == true then
26: service.usability = USAB;
27: update aggregated QoS;
28: for all successor in service.successors do
29: if successor.usability == UNDEC OR service improves aggregated QoS of successor
then

30: toProcess.add(successor);




Effective QoS aware web service composition in dynamic environment 7

4 Dynamic aspects of service composition

Our composition system can be seen as a queuing system with different type of re-
quests [1]. It works as depicted in Fig. 1. When the system starts, it initializes its
data structures based on currently available services. After, it is waiting for update
requests, or user queries (1). These are collected in queues and processed regarding
the first in first out rule. The updates are managed with higher, non-preemptive pri-
ority, i.e. the composition is not interrupted if an update request arrives. If an update
request arrives (2), i.e. new service is available, some service become unavailable,
or the QoS characteristics of some service had changed, we update the affected data
structures. When all the changes are managed (3), the system is ready to process
new user query. If a new query has already been received, the system processes it
immediately (4). Otherwise, it goes to waiting state (5). Here, it again waits for an
update request, or composition query (6). The composition is followed by the reini-
tialization (7). After, we manage update requests, if some had arrived (8). If not, we
process a new user query for composition (9), or go to waiting state (10).

2)

3)

Composing m' Reinitializing Updating )

Fig. 1 Composition system life cycle.

The change of service QoS characteristics are managed in constant time, inde-
pendently on the size of the service repository. It requires only changing the val-
ues of the QoS attributes in the object representing the corresponding service. The
updates required because some service is made (un)available are divided into two
cases. Adding a new service requires creating a new object representing it and dis-
covering its interconnections with other objects. When the service is removed per-
manently, we have to remove the interconnections with other objects. The temporal
removing of the service is possible, too. This is useful if we expect that it will be
made available again. The temporal removing of the service is done in constant time,
by setting a flag depicting the (un)availability of the service. To make such a service
available again, we only have to set a flag once again. The adding of a new service,
and permanent removal of some service are more complicated. They depend on the
overall set of services available in the service repository, and their interconnection.

The adding of a new service starts with adding a service into AllServices, see
Alg. 3. Then, we discover the interconnections with ancestor services (lines 2 to
10). For each input, we determine the services providing it. If there is no input
provider, we add the service to UserDataDependents, and InputDependents. Oth-
erwise, we add it to the list of successors of each provider. Finally, we add it to
services requiring the given input.



8 Peter Bartalos and Maria Bielikova

Algorithm 3 Add service: Input: service

1: AllServices.add(service);
2: for all input in service.inputs do
3: providers = ConceptProviders.get(input);

4: if providers is empty then
5: UserDataDependents.add(service);
6: InputDependents.get(input).add(service);
7 else
8: for all provider in providers do
9: provider.successors.add(service);
10: InputConsumers.get(input).add(service);

11: for all output in service.outputs do
12: outputSuperConcepts = SuperConcepts.get(output);

13: for all superConcept in outputSuperConcepts do
14: allOutputSuperconcepts.put(superConcept);

15: for all superConcept in allOutputSuperConcepts do
16: ConceptProviders.get(superConcept).add(service);
17: consumers = ConceptConsumers.get(superConcept);
18: for all consumer in consumers do

19: service.successors.add(consumer);

20: for all successor in service.successors do

21: for all input in successor.inputs do

22: if allOutputSuperConcepts.contains(input) then
23: successor.inputProviders.add(service);

24: InputDependents.get(input).remove(successor);
25: if UserDataDependents.contains(successor) then
26: if successor has not unprovided inputs then

27: UserDataDependents.remove(successor);

In the next, we create a collection of distinct concepts subsumed by some service
outputs (lines 11 to 14). For each such superConcept, we add the service to a list of
its providers (line 16). Each service for which service produces input data is added to
its successors (lines 17 to 19). Finally, for each successor we add service to providers
of all inputs produced by it (line 23). During this, we check if the successor is in
UserDataDependents. If it is, and the service provides an input, which was the only
unprovided input, the successor is removed from UserDataDependents.

The permanent removal of the services is a revert operation to adding a new
service. It deletes the interconnections to other services, and the references of the
object representing it, from each data structure. Due a straightforwardness of the
process and a lack of space, we omit its detailed description.

5 Evaluation

The evaluation of our approach is split into evaluation of i) times required to
add/remove services, compose services, and reinitialize the system, ii) behavior of
the system due continuing query arrival, without or with dynamic changes in the



Effective QoS aware web service composition in dynamic environment 9

service registry. All experiments had been realized using a Java implementation of
our composition system. The computations had been running on a machine with two
64-bit Quad-Core AMD Opteron(tm) 8354 2.2Ghz processors with 64GB RAM.

The experiments were realized using data sets generated by a third party tool
(http ://ws—-challenge.georgetown.edu/wsc09/software .html) used to create data sets
for Web services Challenge 2009 [11]. We generated test sets consisting from 10 000
to 100 000 services. For each test set, the solution requires at least 50 services to
compose. The number of concepts in the ontology is from 30 000 to 190 000. To
allow comparison with others, the data sets are available at http: //semco. fiit.stuba.
sk/compositiontestsets.

In Tab. 1 and Fig. 2 we see how the complexity of the service set (e.g. its size)
affects the time required to i) add a new service (as depicted in Alg. 3), ii) perma-
nently remove a service, iii) compose services, and iv) reinitialize the system after
composition. In our experiment we measured the time of adding 1 000 services into
a repository, and permanent removing of the same services. As we see, removing a
service is more time demanding. This is because the removal requires more traversal
of data structures, to find the position of the service’s object reference. The compo-
sition and update times do not necessary rise as the number of services rises. This
is because they are strongly affected also by the interconnections of services, and
QoS parameters. The reinitialization time is linearly dependent on the number of
all services and the number of user data dependent services. In our experiments, it
reached maximum of 53% of the composition time, 33% in average.

Table 1 Operation times.

[Web services|Add|Remove|Reinitialization| Composition|

10000  [0.84| 1.68 1.86 4.95
20000 [0.92] 2.84 4.46 14.8
30 000 1.02| 4.82 10.2 46.3
40 000 1.53| 7.88 13.8 35.9
50 000 1.13| 5.81 19.6 37.3
60000 (2.12| 10.3 25.6 93.6
70 000 1.39 9.11 27.1 88.0
80 000 1.48| 13.3 29.5 64.3
90 000 1.86 9.46 30.0 271.8
100000 |1.89| 12.0 51.1 152.4

In the next we present experimental results considering a composition system
as presented in section 4. We measured the sojourn time, and the queue size. The
sojourn time is a time between the generation of the update request, or user query
and the end of its processing. We assume that the arrivals of both the update requests
and user queries are continuous, independent, and occur according to a Poisson
process. Hence, the interarrival times follow exponential distribution. Since there is
no real application, we cannot evaluate these assumptions. Due this, we present also
results where the interarrival times follow uniform distribution, to see the effect of
different distribution on the measured parameters.



10 Peter Bartalos and Maria Bielikova

~A- add
% - remove

-& reinitialization
—o— composition

g _-—a--—u"
13 |
gm] ‘‘‘‘‘‘‘‘ ~ -7 v
=
A A

4 5 6 . 7 8
Number of services ’

Fig. 2 Add/remove, reinitialization, and composition time.

Fig. 3 and 4 present the dependency between the mean interarrival time and so-
journ time, and mean queue size, for data sets with 20 000 up to 100 000 services.
As we see, there is a significant difference between the results when different dis-
tributions are used. In the case of exponential, the standard deviation of the results
is higher. Moreover, it presents rising tendency as the complexity of the data set,
and the sojourn time rises. Similar observations are present also regarding the mean
queue size. The system tends to be in stable state when the mean interarrival time
is more than a double of the composition time. In this case, the mean queue size
(measured after the request is put in it, i.e. it cannot be less than 1) is less than 2.
Adequately, the sojourn time is less than a double of the composition time.

10 10 o
+ 20000 XXX§>< =
) A 40000 + & Kx X g o
@ X 80000 t X o
9] O 100 000 A o o 0
é x g o -
© 107} 10°L x % o x o 5
£ oo x X% i 0 %8
= u} A o K DQ%D )
c og N X x O_Hx
= [Eﬂ + X x
= E X x u}
=) f;, X oM K x 0
=2 *EL
Q0% % s % wh § A & N -
c
g % M@%@i@%@@ &
2 SHE N
= s
1 1 L L
100

N
o

150 200 250 300

360 0 50 L0 _ )
Mean interarrival time (msec)

5‘0 160 l 0 . 260 250
Mean interarrival time (msec)

Fig. 3 Sojourn time: uniform distribution at left, exponential distribution at right.

Fig. 5 presents the effect of the dynamic changes in the service environment.
We had been simulating arrival of requests to add a new, or permanently remove
a service, for various interarrival times with exponential distribution. We used the
test set with 20 000 services. The experiments show that the sojourn time is not
significantly enlarged, even if the update requests are frequent. We had dramatically
decreased the interarrival time of update requests, from 1 000 to 10 msec. Even in
this case, we observed only a little delay in composition. The mean composition
query queue size remained low and the stability of the system was not upset.



Effective QoS aware web service composition in dynamic environment 11

3

10

20 000
40 000
80 000 +
100 000 +

i

OxP>+

Mean queue size

% i~ A\
L0 150 250 ( 150 250
Mean interarrival time (msec) Mean interarrival time (msec)

Fig. 4 Queue size: uniform distribution at left, exponential distribution at right.

,_.
S
-

S

* & 1000
S O 100
I * * 10 *
1] *
£ )
~ N
o 10°} ‘®10°} * ¥
£ o %)
= g o
c g
5 o * 53
<]
S & 5 St e
g v = P
@ P
= @5@;&@ 000w &6 B0
10" . o

0 ) _26 20 e 3‘0 100 % 20 0 T 60 g Floo
Composition query mean interarrival time (msec) Composition query mean interarrival time (msec)

Fig. 5 Effect of dynamic changes in the service environment.

6 Conclusions

This paper presents a QoS aware composition approach focusing on efficiency, and
scalability in dynamically changing service environment. We adapted our previ-
ous approach to effectively handle the update requirements. The previous approach
proved to be fast as it was successful at Web services Challenge 2009, a world com-
petition aimed at well performing service composition [11].

Our composition system manages the updates in much shorter time than com-
position queries (about one order of magnitude). We have investigated its behavior
when simulating continual arrival of user queries collected in queues. Our experi-
ments show that if the mean interarrival time of composition queries is more than a
double of composition time, the sojourn time is not significantly higher. When the
queries arrive more frequently, the sojourn time rises dramatically. Since our com-
position system manages effectively the update requests, these do not significantly
affect the sojourn time. We have made also a simulation model of our composition
system. It is an effective tool to analyze its behavior, without the need of running it.

Our future work is to study the behavior of the composition system regarding
new simulation scenarios, such as arrival of batches of update requirements. We will
study what are the bottlenecks of the composition system, and what modifications



12

Peter Bartalos and Maria Bielikova

could overcome them. Our assumption is that for example parallel processing of
user queries significantly reduces the sojourn time. We will use also a simulation
model of our composition system, to analyze what modifications are useful.

Acknowledgements This work was supported by the Scientific Grant Agency of SR, grant No.
VG1/0508/09 and it is a partial result of the Research & Development Operational Program for the
project Support of Center of Excellence for Smart Technologies, Systems and Services II, ITMS
25240120029, co-funded by ERDF.

References

10.

11.

12.

13.

14.

15.

16.

. 1. Adan and J. Resing.: Queueing Theory. Eindhoven University of Technology, 180 pages,

2002. nttp://www.win.tue.nl/37Eiadan/queueing.pdf, downloaded in April, 2010.

. S. Agarwal and S. Lamparter.: User preference based automated selection of web service

compositions. In Proc. of Int. Conf. on Service-Oriented Computing 2005, Workshop on
Dynamic Web Processes, 1-12. 2005.

. M. Alrifai, T. Risse, P. Dolog, and W. Nejdl.: A scalable approach for qos-based web service

selection. In Proc. of Int. Conf. on Service-Oriented Computing 2008 Workshops, 190-199.
Springer, 2009.

. P. Bartalos and M. Bielikova.: Fast and scalable semantic web service composition approach

considering complex pre/postconditions. In Proc. of the 2009 IEEE Congress on Services,
Int. Workshop on Web Service Composition and Adaptation, 414-421. IEEE CS, 2009.

. P. Bartalos and M. Bielikova.: Semantic web service composition framework based on paral-

lel processing. In Proc. of Int. Conf. on E-Commerce Technology, 495-498. IEEE CS, 2009.

. P. Bartalos and M. Bielikova.: QoS Aware Semantic Web Service Composition Approach

Considering Pre/Postconditions. In Proc. of Int. Conf. on Web Services. IEEE CS, 2010.
Accepted.

. P. Bertoli, R. Kazhamiakin, M. Paolucci, M. Pistore, H. Raik, and M. Wagner.: Control flow

requirements for automated service composition. In Proc. of Int. Conf. on Web Services,
17-24. IEEE CS, 2009.

. Dustdar, S., Schreiner, W.: A survey on web services composition. In Int. J. of Web and Grid

Services, (2005), 1(1):1-30.

. Z. Huang, W. Jiang, S. Hu, and Z. Liu.: Effective pruning algorithm for qos-aware service

composition. In Proc. of Int. Conf. on E-Commerce Technology, 519-522. IEEE CS, 2009.
E. Karakoc and P. Senkul.: Composing semantic web services under constraints. In Expert
Systems with Applications, (2009), 36(8):11021-11029.

S. Kona, A. Bansal, M. B. Blake, S. Bleul, and T. Weise.: Wsc-2009: A quality of service-
oriented web services challenge. In Proc. of Int. Conf. on E-Commerce Technology, 487-490.
IEEE CS, 2009.

S. Kona, A. Bansal, and G. Gupta.: Automatic composition of semantic web services. In
Proc. of Int. Conf. on Web Services, pages 150-158. IEEE CS, 2007.

F. Lécué and N. Mehandjiev.: Towards scalability of quality driven semantic web service
composition. In Proc. of Int. Conf. on Web Services, 469-476. IEEE CS, 2009.

N. Lin, U. Kuter, and E. Sirin.: Web service composition with user preferences. In Proc. of
European Semantic Web Conf., 629-643. Springer, 2008.

Rosenberg, F., Celikovic, P., Michlmayr, A., Leitner, P., Dustdar, S.: An End-to-End Ap-
proach for QoS-Aware Service Composition. In Proc. of Int. Enterprise Distributed Object
Computing Conf., 151-160. IEEE, 2009.

H. Q. Yu and S. Reiff-Marganiec.: A backwards composition context based service selection
approach for service composition. In Proc. of Int. Conf. on Services Computing, 419—426.
IEEE CS, 2009.



