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Abstract—A management of software development process
is a crucial part of the software engineering, from which the
success of software projects is dependent. This management
mostly relays upon quality and freshness of software metrics,
especially empirical software metrics. But empirical software
metrics are sensitive to source code modifications and also to
developers’ activities. In this paper we proposed approach for
a maintenance of empirical metadata stored in information
tags. The approach covers main maintenance actions – creat-
ing missing, repairing invalidated and removing unrepairable
information tags. The maintenance is provided via tagging rules
executed after matching predefined templates in a stream of
developers’ actions. We also introduces a set of information tags
for supporting software development process and we describe
their utilization in teaching a subject Team project.
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I. INTRODUCTION

Analysing and understanding history of a software project
development is important for project managers and de-
velopers. They spend a lot of time by an analysis why
some events have occurred and by proposing processes with
goals to prevent negative events and also to repeat positive
ones. Managers and developers often find this activity more
important than forecasting next project evolution [3]. During
this activity they utilize software metrics based on source
code (e.g., LLOC) and behaviour of developers (empirical
software metrics – software metrics derived from observa-
tions of developers’ activities). Nowadays, especially code-
based software metrics are often used. It is because of a
number of approaches and availability of source code, which
allows calculation of metrics in the time, when they are
required. But even if we calculate code-based metrics across
change-sets (commits) we have still only static information
about source code with results of development decisions and
we are not able to find an answer to the “Why” questions –
Why is the source code erroneous? Why was the project’s
time-plan exceeded? ...

These questions can be answered after a consideration in
a wider context which can be brought by empirical software
metrics. For example empirical software metrics give to us
information as:

• Cooperation of developers during problem solving;
• Used information or knowledge sources (e.g. web-

pages that has been read by a developer);
• Disturbing impacts (e.g. received emails, freezing up of

a computer due to background processes).

Even though empirical software metrics are not widely
used. Most of software project managers used only basic
information from systems for development aid (e.g. plan
fulfilment from issue tracking systems, productivity exported
from source control systems) or in occasional cases col-
laboration of developers extracted from discussions (e.g.
discussions in issue tracking systems [13]). This is caused
by three problems [7]:

• Collecting of empirical data are time and resource
expensive – many data are collected manually by devel-
opers (e.g. an information about a problem consulting
with another developer);

• Quality of collected data – manually collected data are
often erroneous and developers forgets to store some
events;

• Usability of empirical data – there are lack of empirical
software metrics and tools for their interpreting and
analysis.

Partial solutions of these problems had been proposed
by several systems that tried to collect empirical data via
tools installed on developers machines [7], [19] or automatic
watching collaboration of developers and moving around a
software house by Bluetooth transmitters and watching tools
installed on developers’ cellphones [4]. Advantages of these
approaches is non-disturbing collecting data. But they do
not directly interconnect collected empirical data with source
code and also they proposed only limited tools for empirical
data analysis (at most they contain a framework, in which
third-party tools can be executed).

The solution of the problem of lack of metrics and
utilities can lay in utilizing approaches and methods from
web engineering that analyse and use empirical data (e.g.
keyword-based search query sequences and web-page visits
for results recommendation [10]). If we look on the infor-
mation space of a software house as on a “spider-web”
of software artefacts, in which relations between artefacts



are their dependencies at different levels of an abstraction,
we can modify and reuse web engineering methods and
approaches in a domain of software houses (e.g. for an
enhancement of search in source code [11] or for iden-
tification of developers’ tasks in their commits [9]). We
utilize this principle in the project PerConIK1 (Personalized
Conveying of Information and Knowledge) which is focused
on a support of enterprise applications development in a
software house via empirical software metrics and their
application in software development processes [2]. In the
project PerConIK we collect empirical data via software
tools and extensions for integrated development environ-
ments (Microsoft Visual Studio 2012 and Eclipse) and web
browsers (Mozilla Firefox and Google Chrome) installed in
developers’ working environments, that collect developers
activities as open/add/edit source code file, copy/paste and
visited web-pages and biometric information (e.g. intensity
of mouse clicks).

We store developer-oriented empirical data and software
metrics in form of information tags [15] that are directly
related to software artefacts. But empirical data are error
prone, while their validity can be affected by various sources.
The first of all is instability of source code during devel-
opment process. But validity of information tags can be
affected by other empirical data as activities of developers
or time, too. In this paper we describe basics of informa-
tion tags and their dependencies (Section 2) and basics of
proposed approaches for maintenance of empirical software
metrics anchored to software artefacts via information tags
with first evaluations (Section 3). Proposed methods in
these sections address problems of collecting and quality
of empirical data. In Section 4 we present real utilization
of information tags in software development process with a
set of used information tags via which we present example
of utilization of empirical data. The last section concludes
the paper’s contributions and discuss possibilities of a future
work.

II. CONCEPT OF INFORMATION TAGS

The concept of information tags is based on simplicity
of conventional tags used in folksonomies as forms of a
lightweight ontology [5]. Folksonomies utilize tags (key-
words) as basic entities of an object’s description. In our
manner, an information tag is not only a simple keyword
assigned to an object but it is a structured information which
has been assigned to the object for a specific, defined reason
(we can say, that information tags map structured data to
their resources, tagged objects, with semantic relations). This
categorize information tags to scope of descriptive metadata
(based on NISO classification [14]) that are defined by
triples of a type, an anchoring and a body [2].

1http://perconik.fiit.stuba.sk

Information tags can have different nature which is de-
pendent on their sources (a creator and source data) and
consumer (software systems or users). Thus we classify
information tags as follows:

• Machine information tags – information tags that are
created by software systems. Machine information tags
can be more precisely classified to:

– Content-based information tags – information tags
directly inferred from a tagged content, i.e. code-
base software metrics;

– User activity information tags – information tags
inferred from users’ activity over tagged resources,
i.e. empirical software metrics. These information
tags are important because they can be used for
a detection of hardly obtainable information as
popular or frequently visited source code;

– Aggregating information tags – information tags
inferred from another information tags, e.g. an
average ranking of a source code. These informa-
tion tags simplify information stored in multiple
information tags so they can be directly used as
analytical results for developers and managers. Ag-
gregating information tags can additionally contain
partial results that are used by multiple software
systems or tools that directly enhance performance
of computation (e.g. both tools for searching in
source code and tools for ranking of developers use
average source code ranking. They do not have to
process all ranking information tags and calculate
average rankings, but they can directly read an
aggregating information tag with pre-calculated
average ranking);

• User information tags – information tags that are
created by users. Even though user information tags
are not created so frequently as machine information
tags created by software systems, these user infor-
mation tags contain users’ knowledge and opinions
about content. Examples of users’ information tags are
rankings, formal tags or structured annotations created
by fulfilling of predefined forms.

Information tags are closely related to resources at two
levels of an abstraction. The lowest level is anchoring, which
exactly identifies tagged source code artefact. So anchoring
is directly dependent from structure and syntax of source
code and no empirical events or modifications of source
code semantics have any influence to anchoring. We have
solved problem of anchoring dependency by proposition of
the robust location descriptor for source code which provide
acceptable accuracy and can be interpreted in real time [16].
This descriptor gives us a possibility to anchor information
tags to words (commands) of source code.

Higher level of relation between information tags and
source code is provided via bodies of information tags.



Bodies contain main knowledge or information about tagged
source code, so they can be affected not only by structure
of tagged source code, but their validity is dependent on
semantic of source code and empirical events (e.g. de-
velopers’ activities) too. It depends on information tags’
types and sources, which of structural, semantic or empirical
properties of source code affects validity of information tags
(see Table I). Content-based information tags are inferred
directly from structure and/or semantic of source code and
they have no empirical dependencies. On the other side,
information tags based on user activity are closely dependent
on empirical data. In case of aggregating information tags,
these dependencies are inherited from information tags that
are aggregated.

User information tags have special position. User infor-
mation tags are mainly dependent on the structure and the
semantic of source code, because developers tag source code
with their opinion on source code and they do not know any
empirical data about source code (they do not know who and
how interacts with the code). But their tags are indirectly
dependent on empirical data, too. This is caused by human
factor – developers tag source code with their individual
knowledge in some context (previous activity, tiredness, etc.)

III. EMPIRICAL METADATA MAINTENANCE

All information tags are closely related to source code (all
information tag classes needs at least minimal knowledge
about source code semantic – see Table I) and it seems
to be necessary to analyse source code for maintenance
information tags. On the other side, all information tags
for up to content-based information tags are dependent on
empirical data and also source code is created in some con-
text (definable by empirical data) which influences source
code properties. Therefore it should be possible to substitute
structural and semantic source code properties by a set of
empirical data and information tag maintenance can be based
almost only on empirical data collected during development
process.

A. Creating, Repairing and Removing Information Tags

Main goal of information tags maintenance is to keep
information tag space valid and consistent. Simply, similar
source code artefacts should be described by similar sets of
information tags. To fulfil these requirements, the mainte-
nance has to provide following maintenance actions [2]:

• Create missing information tags;
• Repair invalidated information tags;
• Remove unrepairable information tags.
Based on aforementioned analysis of information tag

dependencies we can identify three data sources that directly
influence validity and consistency of information tag space
– source code, developer-oriented empirical data and other
information tags. Following these sources we can also define
events that execute process of information tags maintenance:

Table I
DEPENDENCIES OF INFORMATION TAGS CLASSES ON STRUCTURAL AND

SEMANTIC PROPERTIES OF SOURCE CODE AND EMPIRICAL DATA
(DEVELOPERS’ ACTIVITY) RELATED TO SOURCE CODE.

Information tags Structure p. Semantic p. Empirical data
Content-based X X
User activity X X
Aggregating X X X

User X X (X)

• Commit – when developers finished editing source
code, they publish change-sets over source codes by
commits so information tags with code-based software
metrics can be recalculated;

• Receiving empirical data – every time when empirical
data are received, processes that calculate empirical
software metrics should be executed;

• Modification in information tags space – aggregating
information tags aggregate data from other information
tags, so each modification in information tags space
(adding new, editing or removing old information tag)
can lead to recalculating aggregated information which
use modified information tags’ data;

• Time – some information tags are time dependent and
contrary they are created when aforementioned events
does not arrive, e.g. information tags that identify
source code which has not been used for long time.

Therefore, executing maintenance actions can be event-
oriented whereby it should be enough to watch stream of
aforementioned events and to wait for a match of a template
of an event sequence which indicates, that an information tag
should be created. The main contribution of this idea is that
we do not have to store and reprocess all data collected from
developers’ working environments, but it is enough to store
only data from time window which is necessary for matching
event sequence template. As a result, software systems that
create information tags do not have to deal with problem of
big data analysis via querying a repository of all collected
empirical data.

We implemented this idea in a proposition of a tagger [17]
based on processing linked stream data [18]. An employing
linked stream data gives us possibility to utilize advantages
of linked data inference with a combination of simple
specification of event sequence templates in a SPARQL-like
language. The proposed tagger contains four main parts (see
Figure 1):

• Repository of tagging rules – the tagger maintains
information tags based on tagging rules that have
specified stream queries and tagging actions (each rule
has one query and one tagging action). Stream queries
are used for matching sequences of events in the stream
and selecting queried data. Following of a positive
evaluation of queries, tagging actions uses queried data
and create new information tags;



• Linked stream data generator – data collected from de-
velopers’ working environments (source code change-
sets and empirical data) and data about modifications in
information tags space are not directly received in form
of linked data and they have to be transformed from
structured objects to RDF graphs (used by Linked Data
initiative [6]) and streamed out to Linked stream data
processor. This task is provided by Linked stream data
generator, which periodically connects to a source code
repository, an empirical data collector and the reposi-
tory of information tags and reads new unprocessed
data. After that it transforms these data to RDF graphs
and streams them out;

• Linked stream data processor – received linked stream
data are processed by a processor which has registered
tagging actions’ queries. A processing linked stream
data deals with many challenges that are mainly related
to dynamicity of data stream (e.g. establishing a size
of a time window, in which are queries processed)
and optimization of queries [12]. Because the main
contribution of our approach is not in linked stream
data processing but in an employing of developer-
oriented empirical data in software development, we
do not propose our own linked stream processor but we
process linked stream data via C-SPARQL engine [1].

• Tagging actions executor – queries’ results (selected
data) are collected by a tagging action executor, which
loads tagging actions of tagging rules, whose queries
has been evaluated successfully, attaches queries’ re-
sults to tagging actions and executes them. As a result
tagging actions create and add new information tags to
information tags repository.

Possibilities of the tagger are limited only by expres-
siveness of tagging rules and his performance (amount of
RDF triples that can be processed by the tagger). We
proposed tagging rules as C-SPARQL query/action pairs. C-
SPARQL query can define time dependencies and templates
of watched events so we should be able to catch all necessary
event sequences. The action part of the rule specifies type of
maintenance activity (add, repair and remove) and identifies
maintained information tags by one of:

• Information tag template – a template of an informa-
tion tag that is maintained. Information tags’ attributes
can be expressed by literal values, parameters of C-
SPARQL query or simple expressions;

• Executable code – code which is executed for informa-
tion tag maintenance. This code has possibility to pro-
vide more complex computations as simple expressions
in information tag templates. Results of these actions
are lists of maintained information tags.

To evaluate the tagger’s performance we deployed his
prototype in the project PerConIK. We do not have finished
complete evaluation yet, but in current setup the tagger daily
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Figure 1. The tagger’s data flow. Linked stream data generator collects
new change-sets, empirical data and modifications in information tags space
and it transforms them to linked stream data that are consumed by Linked
stream data processor, which processes tagging rules’ queries. Results of
queries are processed by tagging actions in Tagging actions executor, that
create new information tags.

processes around 11,000 events from 10 developers trans-
formed to more than 100,000 RDF triples. To process these
events the generator needs around 300MB RAM. These
results are promising but we do not have evaluated time
necessary to process standard C-SPARQL queries defined
in tagging rules.

We also performed preliminary performance evaluation.
For this evaluation we have registered C-SPARQL query
which selects objects that consist of five RDF triples and
the query has been configured for 2s window. During
the evaluation we repeatedly posted 500,000 RDF triples
(100,000 objects) to Linked stream data processor and we
measured response time of the processor (it means, that we
measured milliseconds from sending an object’s RDF triplets
to receiving information tags generated from the object).
Because of we have 2s window, we should ideally obtain
1s response time in an average (2s for the first object of
the window and 0s for the last object in the window). In
out testing environment (with 2x2.8GHz CPU), we reached
this value (with 100ms tolerance), when we generated up
to 300 triples per second (see Figure 2). This result proxi-
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Figure 2. Response times of the tagger’s testing environment in seconds
per number of generated triplets. Ideal average value is 1 second.

mately correspondents up to 800 developers. It seems to be
unsatisfactory result, but by the analysis of partial results
we find out, that our bottleneck was caused by overhead of
testing sandbox (the logger and the stream generator), that
consumed more than 75% of resources. In planned release
set-up, the stream generator and the processor do not share
their resources. In addition each tagging rule is independent,
so we are able to parallelize rules over multiple stream
processors which can be deployed on cluster.

IV. IMPLEMENTATION OF INFORMATION TAGS IN
SOFTWARE DEVELOPMENT PROCESS

We proposed the set of information tags for support of
a software development process that covers all information
tags classes:

• Content-based information tags
– Smell – we collects smells from SonarQube’s2

analysis and attach them to source code files. This
way we can easily reuse existing methods and
tools of source code analysis and we do not lost
currently used information.

• User activity information tags
– Implicit dependency – information tags that con-

tains references to source code files on that source
code files are implicitly dependent. We calculate
these implicit dependencies from developers’ in-
teraction with files. E.g. if developers often switch
view from a file F1 to a file F2, than we can say
that the file F1 is implicitly dependent from the file
F2. These dependencies are especially important in
dynamic programming languages like JavaScript.
The original method of building implicit depen-
dencies is described in [8].

– Author – tagged parts of source code with authors,
developers that authored or edited the code (with
precision to lines).

• Aggregating information tags

2http://www.sonarqube.org/

– Facet – information tags that aggregate selected
information from other information tags with goal
to support faceted search of source code. E.g.
information tag aggregates all authors from lines of
a source code file to one attribute AuthorFacet as
a set of authors, what allows fast search operations
with authors of the file.

• User information tags – we proposed a set of user
information tags from analysis of developers’ com-
ments in source code files with goal to support code
review process and motivate developers to create these
information tags.

– ToDo – a part of a source code should be imple-
mented;

– Fix me – tagged source code contains a bug which
has to be fixed;

– Nice to have – tagged source code will be up-
dated/reimplemented;

– To be done – a work on the source code is in the
progress;

– Sample – tagged source code is the ideal solution
of the problem and should be used as the sample
code for similar problems;

– Review request – the source code should be re-
viewed;

– Refactor – the source code has to be refactored;
– Code review – tagged source code contains a

coding violation.
To competition employing information tags in software

development we developed system CodeReview3. The sys-
tem is focused to source code review, while it supports
standard features of code review systems like browsing
source code from git or requesting code review. In addition
it supports direct tagging source code with aforementioned
user information tags with precision to words (see Figure 3),
interpreting machine information tags for users and faceted
searching source code.

We employ the CodeReview system in teaching process
of the subject Team project in which team of six or seven
students develop software systems for one school year. We
do not have final results yet, but we observed increased qual-
ity of source code and faster acquiring of team management
skills than in teams from previous years.

V. CONCLUSIONS AND FUTURE WORK

In the paper we presented concept, definition and classifi-
cation of information tags and our approach for maintenance
of empirical software metrics stored in information tags. The
proposed approach has potential to solve the problem of
collecting and processing empirical software metrics at real
time, what is necessary for full-featured employing empirical
software metrics in software development process. We have

3https://perconik.fiit.stuba.sk/codereview



Figure 3. Example of information tags in system CodeReview. There is ToDo information tag in the line 259. This tag has been written by developer
during authoring source code. These code-written information tags are parsed after committing source code in to a repository. Information tag in line 278
is created by a reviewer in the system CodeReview during review process.

not performed final evaluation of the approach yet. But
we have successfully implemented and deployed the first
prototype of the infrastructure already and we started with
collecting empirical data and their processing to information
tags. We also successfully implement information tags in
teaching process. These facts suppose our assumption, that
proposed approach is a solution for employing empirical
software metrics in software houses.

The proposed tagger for information tag maintenance
provide automatic information tags maintenance, but it needs
manually defined tagging rules. This will be enough if we
have complete control over information tag space, but the
information tag space has been proposed to simplify sharing
information among software systems [2]. Therefore third
party software systems are still able to add, remove or mod-
ify information tags. In addition we have to maintain infor-
mation tags created by users, too. To fulfill this requirement
we are proposing approach for automatic learning tagging
rules based on analysis of developers’ activity streams and
changes in information tag space. The approach is based on
process discovery techniques [20]. This solution does not
analyse modifications of information tags but it gets new
versions as combination of adding new information tags and
removing old information tags. We associate information
tags to streams of events about developers’ activities and
analyse these streams by process discovery techniques. We

hope, that this approach allows us to discover substantial
software development processes that change properties of
source code stored in information tags. To prove feasibility
of this idea, we simplify process discovery to identification
of processes that lead to bugs in source code. In this setup we
achieve promising preliminary results with precision above
70% and recall above 65%.
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