
Software Developer Activity as a Source for Identifying

Hidden Source Code Dependencies

Martin Konôpka, Mária Bieliková

Slovak University of Technology,

Faculty of Informatics and Information Technologies,

Ilkovičova 2, 842 16 Bratislava, Slovakia

{martin_konopka, maria.bielikova}@stuba.sk

Abstract. Connections between source code components are important to know

in the whole software life. Traditionally, we use syntactic analysis to identify

source code dependencies which may not be sufficient in cases of dynamically

typed programming languages, loosely coupled components or when multiple

programming languages are combined. We aim at using developer activity as a

source for identifying implicit source code dependencies, to enrich or supplement

explicitly stated dependencies in the source code. We propose a method for iden-

tification of implicit dependencies from activity logs in IDE, mainly of switching

between source code files in addition to usually used logs of copy-pasting code

fragments and commits. We experimentally evaluated our method using data of

students’ activity working on five projects. We compared implicit dependencies

with explicit ones including manual evaluation of their significance. Our results

show that implicit dependencies based on developer activity partially reflect ex-

plicit dependencies and so may supplement them in cases of their unavailability.

In addition, implicit dependencies extend existing dependency graph with new

significant connections applicable in software development and maintenance.

Keywords: software component, dependency, source code, developer activity,

dependency graph, implicit dependency, implicit feedback

1 Introduction

Source code dependencies traditionally reflect explicit statements in the source code

and are identified with syntactic analysis of source code contents. As a dependency we

understand oriented connection between two source code components of selected gran-

ularity, namely instance or type reference, inheritance relationship or call reference.

Identified dependencies are used to form a dependency matrix or an oriented graph

of interconnected software components to study organization and hierarchy of software

components and their attributes [7]. Dependencies are also sourced for identifying prob-

lematic places, possibly code smells and complexity of the web of software compo-

nents, which is important for maintenance activities on evolving software in particular.

Source code dependencies allow software developers to learn about how the existing

source code works and how it is composed, e.g., how it will be affected by an introduced

change or how much effort will be required for refactoring. Both adding new function-

ality and changing existing functionality require developers to know about the depend-

encies before making a change in the source code.

Traditional approaches use a syntactic analysis for identifying source code depend-

encies. Other approach is to employ developer activity as a source for identifying source

code dependencies, but mostly logs of copy-pasting code fragments and commits to

identify hidden dependencies in source code are used. We propose a method for iden-

tification of source code dependencies that extends existing works with utilizing data

of developer’s navigation in source code space (logs of switching between source code

components). Based on the source for identification, we distinguish identified source

code dependencies as implicit, i.e., identified from developer activity as an implicit

feedback related to the source code, in addition to the traditional explicit dependencies

reflecting explicit statements in the source code. With our method we broaden the space

of known source code dependencies, thus extending a dependency graph with new

edges relevant for the development or other evaluations of the source code.

For the identification of the implicit source code dependencies we use developer

activity recorded in an integrated development environment (IDE) and commit logs

from a revision control system (RCS) [14]. Our work is inspired by the research project

PerConIK – Personalized Conveying of Information and Knowledge (per-

conik.fiit.stuba.sk) [2] with its goal to bring new software metrics based on evaluating

data of developer activity and context of software development. Infrastructure of this

project [3] provides us with data collected in software house and university environ-

ment (student team projects), which we use for evaluation of our method.

2 Related Work

Software product and its source code result from software developer activity. This mo-

tivates current research to look for how software attributes (mostly maintainability) [4]

are affected by activities performed during the development together with the context

which developers had resided in. Developers are often disrupted at work, switch be-

tween multiple tasks or take over another developer’s task. Because of that, various

tools for navigation in the source code were proposed, notably dependency graph of

software components [7] and task-related tools, e.g., for source code and developer

recommendation [1], [6], [13].

We may infer programming sessions [6] from developer activity monitored during

the software development and use them to describe tasks which developers had worked

on with task contexts [1], [15], i.e., source code artifacts relevant to the currently solved

task by developer. Developers visit places in the source code related to the task more

often during the work on that particular task [4], [8]. From the recorded data we may

then reconstruct what the developer was working on [6], [13] or what particular devel-

oper specializes in [11].

There are multiple sources and types of data that we can gather when monitoring

developers during the processes of software development [14], for example: source

code files and their contents from source code repositories [13]; development tasks

from issue tracking systems; developer activity in an IDE [1], [3], [7]; developer activ-

ity outside of an IDE, in operating system or even events in real life.

It is important to not affect monitored developers during their activities [8], being it

a similar problem of gathering implicit feedback on the Web [2]. Several issues arise

in the design and development of the infrastructure for a system for gathering men-

tioned data of developer activity together – scalability and efficient processing online

among them. One of the already proposed solutions is developed within the project

PerConIK – Personalized Conveying of Information and Knowledge which considers

software repository as a web of software components and applies “webification” of

software development [2], [3], i.e., employing methods and techniques from Web en-

gineering to identify new information about software development and propose new

software metrics.

Traditional source code metrics rely on a syntactic analysis of source code, omitting

the information from development process. Basic example is the lines of code metric

which evaluates the size of source code but not the time spent working on the measured

source code. Similarly, traditional dependency graph of software components is created

with identified references of source code components [7], helping developers with soft-

ware development and maintenance. Authors in [17] also successfully applied network

algorithms on identified dependencies to predict problems in software design.

Dependencies identified with syntactic analysis of source code are explicit since they

reflect explicit statements in the source code [7]. We identify following main problems

of the explicit dependencies and of their identification:

 Explicit dependencies do not capture cross-language connections in source code, e.g.

in Web projects developed in combination of HTML and C# language.

 Explicit dependencies do not capture connections with configuration files, schema

template files or runtime dependencies.

 Syntactic analysis of source code is not trivial or even possible for dynamically typed

languages, e.g., JavaScript, Ruby.

 Explicit dependencies do not reflect sources of solutions in source code, developer’s

inspiration and places required to check when particular component is changed.

We see possibilities of employing developer activity as a source for identification of

source code dependencies, inspired by the task context approaches [1], [6], [13]. Source

code does not contain information about the developer’s intents, inspirations and deci-

sions for implemented solutions, what may suitably extend existing dependency graph.

Moreover, because developer activity is not language-dependent, we may identify de-

pendencies across different programming languages and also dependencies with con-

figuration files or others which are currently not covered by explicit dependencies.

3 Implicit Source Code Dependencies

Software developer interacts with source code components during the development and

maintenance, and so implicitly reveals task-related dependencies hidden in the source

code. Selected example situations are:

 Developer studies existing code and navigates between dependent components,

switches between them to understand implemented logic (navigation paths) [8].

 Developer implements functionality consisting of multiple components in parallel.

 Developer copy-pastes a code fragment from existing component – further changes

of the original implementation may lead to inconsistency in source code [4].

 Developer configures source code components by creating or maintaining external

configuration files.

In all these situations developer’s navigation and activity performed in the source code

implicitly reveals dependent components. When we do not take into account contents

of source code files, developer activity also reveals dependencies on configuration files

or on components implemented in different programming language. The idea behind

the implicit dependencies is similar to the identification of task contexts, i.e., the devel-

oper works with software components that are related with each other for the task com-

pletion, and is based on empirical observations of developer activity from two sources

– activities recorded in an IDE, e.g., custom extension for Microsoft Visual Studio or

Eclipse [3], and commit history in a RCS, e.g., Microsoft Team Foundation Server or

Git [12]. We chose to use these low-level logs of activities with source code compo-

nents from all available types of logs [14] provided by the project PerConIK [2]:

 navigation in the source code in an IDE – open, close and switch-to a source code

file – time-related activities resulting in a change of currently opened file;

 copy-paste code fragment between two source code files; and

 commit (or check-in) of a collection of source code files to a RCS.

Although we do not force choice of the granularity for source code components (e.g.,

line of code, method, class or library), but for our experiments and implementation we

consider source code files as components.

Our method (see Fig. 1) consists of steps for converting raw logs of developer activ-

ity in an IDE and from a RCS to the format used by our method, continued by the

identification of implicit dependencies, their weighting and validation and finally con-

struction of a dependency graph.

Filtering of logs for
identification

Logs of activity in
IDE and RCS

Identification of
implicit

dependencies

Weighting and
validation

Dependency graph
construction

Graph with
implicit

dependencies

Fig. 1. Overview of method for identification of implicit source code dependencies.

3.1 Identification of Implicit Dependencies

We define source code dependencies as oriented connections between pairs of software

components. Dependencies are weighted according to their significance and, consider-

ing software evolution, are valid for the particular time. Let S be the set of source code

components of the selected granularity, then the space of dependencies in the source

code is D=S × S × T × R in the time T with the weights R. Note that the explicit de-

pendencies are valid in time while explicit statements are present in the source code.

Based on the types of activity logs used for identification of the implicit dependen-

cies we define three specialized types of implicit dependencies Dimp ⊆ D:

 time-related implicit dependencies Dimp,time,

 content-related implicit dependencies Dimp,content,

 commit-related implicit dependencies Dimp,commit.

The most common activity performed by developer during the development is the nav-

igation in the source code space. Ttime-related activities with source code components

in an IDE are described with the tuples (source, target, operation, timestamp) contain-

ing the source and the target component of the operation, type of performed operation

(e.g., open, close or switch-to file) and timestamp when the activity occurred. We re-

construct developer activity from these logs to create time-related implicit dependen-

cies dimp,time (1) between the software components s1 and s2, which occurred at the time

t, when developer spent time span in the target component (the time window property)

before making next operation. The weight w is determined by the weighting function

using the time window property.

 𝑑𝑖𝑚𝑝,𝑡𝑖𝑚𝑒 = (𝑠1, 𝑠2, 𝑡, 𝑤, 𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤) (1)

Content-related activities of copying and pasting code are described with the tuples

(target, code operation, content, timestamp), containing the target component where

the code operation was performed (copy, cut or paste) with the code content, and when

the operation happened. Final copy-paste operation is logged with at least two actions,

i.e., copying the code from the source code component X and pasting it into the source

code component Y. Because of that we reconstruct the clipboard stack to identify con-

tent-related implicit dependencies dimp,content (2) where the content property contains the

copy-pasted code fragment and may be used for determining the weight w.

 𝑑𝑖𝑚𝑝,𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = (𝑠1, 𝑠2, 𝑡, 𝑤, 𝑐𝑜𝑛𝑡𝑒𝑛𝑡) (2)

The last type of implicit dependencies are identified from commit operations. Devel-

opers tend to submit changes in a collection of source code components as a solution

for the particular task, thus the changed components are implicitly connected with each

other. For each pair of the changed components (s1, s2) in the same commit we create

dependency dimp,commit (3) with total count of all committed components and weight w.

 𝑑𝑖𝑚𝑝,𝑐𝑜𝑚𝑚𝑖𝑡 = (𝑠1, 𝑠2, 𝑡, 𝑤, 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡) (3)

3.2 Weighting of Implicit Dependencies

Each specialized type of implicit dependency extends general Dimp with extra property,

being it time window, content or count. We use these properties to determine the sig-

nificance of dependencies with the weighting function weight differently for each spe-

cialized type (4), ranging from insignificant to fully significant dependency.

 𝑤𝑒𝑖𝑔ℎ𝑡 ∶ 𝐷𝑖𝑚𝑝 → 〈0,1〉 (4)

Time-related implicit dependencies are weighted according to the time spent in the vis-

ited component, i.e., significance of visiting (opening, switching-to) that component for

the developer. The weighting function may be specified for the particular implementa-

tion. In our case we chose the weighting function to be as shown in Fig. 2. To eliminate

mistakes in developer’s navigation in source code space, the dependency becomes fully

significant after the selected threshold a. But after the threshold b the dependency is

becoming irrelevant (the threshold c). After experiments we chose the thresholds to be

a = 10 seconds, b = 10 minutes and c = 15 minutes for our method.

Fig. 2. The weighting function for time-related implicit dependencies dimp,time with threshold

parameters a, b and c.

Content-related implicit dependencies are identified from the copy-paste operations,

thus their significance may correspond to the amount of the code copied or its contents.

However, for simplicity we chose to weight every dimp,content with constant of 1.

Commit-related implicit dependencies are weighted to the total count of committed

components, as in (5), to promote smaller, fine-grained, commits solving single tasks.

The lower the count of changed components in a commit, the more dependent they are

together and contrariwise.

 𝑤𝑒𝑖𝑔ℎ𝑡(𝑑𝑖𝑚𝑝,𝑐𝑜𝑚𝑚𝑖𝑡) =
1

𝑐𝑜𝑢𝑛𝑡
 (5)

3.3 Validation of Implicit Dependencies

Even though changes in the source code invoke changes of its explicit dependencies,

we are not able to similarly validate implicit dependencies over time. To model their

relevance we validate them to the selected time using a forgetting function [9]. Devel-

oper interacts with the source code components mostly based on the task they currently

solve, thus when the contents change over time or the task is finished, the developer’s

interactions lose their significance. Because of that the definition for validation func-

tions of implicit dependencies Dimp (6) is similar to of explicit dependencies Dexp (7).

 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝑖𝑚𝑝 ∶ 𝐷𝑖𝑚𝑝 × 𝑇 → 〈0, 1〉 (6)

 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝑒𝑥𝑝 ∶ 𝐷𝑒𝑥𝑝 × 𝑇 → {0, 1} (7)

Explicit dependencies are valid or not according to existence of explicit statements to

the selected time, hence the validity selected to 0 or 1. Implicit dependencies are valid

according to the forgetting function to the selected time t (8), which we chose to use

from [16] with parameters set to a = 1 and b = 0.08:

 𝑦 = 𝑎𝑒(−𝑏√𝑡) (8)

3.4 Dependency Graph

After the identification of implicit dependencies, we extend existing dependency graph

G(V,E) of V for the vertices of software components (source code files), and E for edges

of aggregated dependencies. We differentiate between explicit and implicit edges in the

graph because of differences in their meaning, i.e., E = Eexp ∪ Eimp:

 Explicit dependencies represent statements in the source code, e.g., references, call

hierarchy, inheritance.

 Implicit dependencies represent how developers interacted with source code during

the development, e.g., their inspirations.

Both explicit and implicit edges of dependency graph are weighted with sum of weights

of aggregated explicit or implicit dependencies of the corresponding type (9), possibly

validated to the selected time. Resulting weight of implicit edge represents significance

of aggregated implicit dependencies over time with single value.

 𝑤𝑒𝑖𝑔ℎ𝑡(𝑒𝑖𝑚𝑝,𝑠1,𝑠2
) = ∑ 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦(𝑑𝑖𝑚𝑝)𝑤𝑑𝑖𝑚𝑝∈𝐷𝑖𝑚𝑝,𝑠1,𝑠2

 (9)

4 Evaluation

We propose implicit source code dependencies to be mainly applied during the pro-

cesses of development and maintenance. To evaluate contribution of implicit depend-

encies we performed two experiments to show that:

 implicit dependencies reflect explicit dependencies of components which developer

worked on during the task,

 implicit dependencies enrich dependency graph with new significant connections

usable during the maintenance.

The PerConIK project is developed in cooperation with a medium sized software com-

pany. Before deploying our method in real work environment, we opted for evaluating

it using data of five on-going student software projects provided also by the PerConIK

project. These projects were developed by students of master courses Software Engi-

neering or Information Systems. All projects were developed in C#/.NET and other

Microsoft technologies in time span of one academic year:

 Project A – development of a web/desktop application by 3 developers,

 Project B – development of class libraries by 1 developer,

 Project C – development of class libraries by 1 developer,

 Project D – development of a web/desktop application by the team of 7 developers,

 Project E – development of a web application by the team of 7 developers.

Table 1 shows total numbers of activity logs from these projects, total number of ex-

plicit edges in their dependency graphs and also results of the selected source code

metrics – lines of code, maintainability index and cyclomatic complexity. In our eval-

uation we use source code files for components used in the method. Because all the

evaluated projects were developed using Microsoft technologies, we employed the

Code Map functionality of Microsoft Visual Studio to identify explicit dependencies

using the built-in reference recognition and the Code Metrics to evaluate other metrics.

4.1 Reflection of Explicit Dependencies

We expect that implicit dependencies reflect explicit ones based on the existence of the

developer’s task context. We compared existing explicit dependencies of evaluated pro-

jects with identified implicit dependencies by comparing the Eexp and Eimp sets of de-

pendency graphs. Table 2 shows total numbers of identified implicit edges in depend-

ency graphs constrained by threshold for edge weights ranging from 0 to 3, when con-

sidering only edges between the files that appear in the explicit dependency graphs.

Table 1. Results of the source code metrics for the software projects used for our evaluation,

total numbers of explicit edges in their dependency graphs and numbers of activity logs rec-

orded in 1 year of their development (LOC – lines of code, MI – maintainability index, CC –

cyclomatic complexity).

Project LOC MI CC |𝑬𝒆𝒙𝒑|
No. of

activity logs

A 2,402 82 1,285 232 15,215

B 4,384 74 2,164 274 8,584

C 4,993 81 3,213 528 24,213

D 5,342 81 1,839 270 55,877

E 3,721 81 1,779 189 48,717

Table 2. Total numbers of edges for identified implicit dependencies in dependency graphs for

the evaluated software projects with the same vertices set.

Project
|𝑬𝒊𝒎𝒑| for thresholds

0 1 2 3

A 640 423 200 124

B 507 339 141 88

C 792 524 224 124

D 797 556 285 201

E 755 464 246 164

For evaluating the overlap of implicit and explicit edges we used weight thresholds

of 1 and 2 to filter out less significant implicit edges. Higher values may have been also

used but not for the dataset of size of ours. Table 3 shows how much of the identified

implicit edges are explicit as well and how many explicit edges were identified with

implicit edges (last column). We found out that up to 54% of all the identified implicit

dependencies are common with explicit dependencies. We also analyzed whether the

rest of the implicit dependencies are significant or not (see section 4.2).

Table 3. Overlaps of implicit and explicit edges in dependency graphs with selected thresholds

to filter out less significant implicit edges.

Project
𝑬𝒊𝒎𝒑

threshold
|𝑬𝒆𝒙𝒑 ∩ 𝑬𝒊𝒎𝒑|

|𝑬𝒆𝒙𝒑 ∩ 𝑬𝒊𝒎𝒑|

|𝑬𝒊𝒎𝒑|

|𝑬𝒆𝒙𝒑 ∩ 𝑬𝒊𝒎𝒑|

|𝑬𝒆𝒙𝒑|

A
1 173 40.90% 74.57%

2 108 54.00% 46.55%

B
1 140 41.30% 51.09%

2 70 49.65% 25.55%

C
1 210 40.08% 39.77%

2 120 53.57% 22,73%

D
1 191 34.35% 70.74%

2 123 43.16% 45.56%

E
1 149 32.11% 78.84%

2 108 43.90% 57.14%

Secondly, identified implicit dependencies overlapped up to 78.84% of explicit depend-

encies between files included in the space of implicit dependencies. That means that

we are able to partially compensate inability of identification of explicit dependencies

in cases where source code analysis is not possible but monitoring of developer activity

is. Such example is usage of multiple programming language in the same software pro-

ject, e.g., when simply combining HTML, JavaScript and CSS.

4.2 Significance of Implicit Dependencies

For the second experiment we expected that implicit dependencies provide new and

significant information about connected software components, e.g., when particular

component in a source code file relies on settings in a configuration file or when com-

ponents are loosely coupled. Our task was to discuss identified implicit dependencies

with the developers and decide whether they reflect connections in source code usable

in the maintenance or not. As a significant connection of source code files, i.e., signif-

icant implicit dependency, we understood: If the components in the source code file A

are changed, the contents of the file B should be checked or changed as well.

We were able to perform this experiment on the first four projects only and we chose

to validate implicit dependencies with the weight threshold of 2. We chose this thresh-

old to evaluate as most of the implicit edges as possible while still keeping the number

of edges relatively low and the experiment bearable for developers. Developers manu-

ally checked each dependency and decided its significance, hence evaluating all the

identified edges would have been too difficult. In this experiment the counts of implicit

edges were higher than in the first experiment because we also evaluated dependencies

between files which were not included in the explicit dependency graphs, e.g.,

webpages, configuration files, etc. To simplify the evaluation process, we generated

dependency graphs in DGML format (for Microsoft Visual Studio) with implicit edges

only, excluding the explicit ones. Developers were able to switch between the graph

and the file, thus ensure in their decision of keeping or removing the dependency from

the graph. In the end we compared the results with the original files. We achieved pre-

cision of more than 75% for the evaluated projects (Table 4).

Table 4. Evaluation of significance of implicit dependencies with the weight threshold of 2.

Project
No. of implicit dependencies

Precision
Original Significant

A 180 138 76.67%

B 112 103 91.96%

C 257 203 78.99%

D 634 576 90.85%

During the experiment we led discussion with the participated developers and received

positive feedback for ability to identify dependencies between loosely coupled compo-

nents across layers of the Model-View-Controller pattern. Even more, developers re-

minded reasons why the files were dependent during their work with them.

We highly appreciate the ability to identify dependencies just from logs of switching

between source code files in the IDE. This is important when looking for dependencies

on configuration files, schema template files or dynamically resolved dependencies. As

an example, these situations were correctly identified with our method from developer

activity in the IDE (for Web projects in ASP.NET MVC):

 Dependencies between C# classes and the XML configuration files, e.g., key-value

settings, database connection strings, web service definitions.

 The View layer components (HTML webpages) displaying contents of the Model

layer components (C#), e.g., webpage displaying data of a data class in table view.

 Dependencies between the View layer components (HTML webpages) on the Con-

troller layer components (C#), e.g., when linking to a controller action.

 Dependencies between JavaScript source code files and C# files.

 Correct pairings of the View layer (HTML webpages) with its code-behind (C#).

 Transitive dependencies on class inheritance hierarchies through class interfaces.

5 Conclusion

Knowledge about dependencies of software components is utilized mostly during the

development and maintenance processes, helping software developers with navigation

and study of the existing source code. However, identification of explicit dependencies

does not provide information about all connections in the source code. Moreover, in

case of dynamically typed languages, it is sometimes even impossible to identify de-

pendencies at all. Because of that we proposed the identification of implicit dependen-

cies from developer activity to enrich existing dependency graph with new significant

edges, or to supplement explicit dependencies in case of their unavailability.

For the evaluation of our method we used data gathered in the course of student

(team) software projects. While we see natural difference between behavior of students

and professional developers (work habits and schedule, experience), the evaluated pro-

jects were of relatively large size considering school projects and served as a basis for

next step in our research, which aims at evaluating our method in real work environ-

ment. In our first experiment we showed overlap of both explicit and implicit edges in

dependency graphs, thus possibilities of supplementing explicit dependencies with im-

plicit ones. In our second experiment we attempted to manually evaluate significance

of identified implicit dependencies. We achieved positive results, with correctly iden-

tifying hidden dependencies in the source code, and also cross-language dependencies.

Achieved results allowed us to deploy our monitoring infrastructure to a medium

size software company. The infrastructure is aimed at recording implicit feedback of

software developers and annotating source code with information tags created manually

by the developers (during code reviews) or automatically based on source code analysis

and developer activity analysis [3]. In June 2014 we have started to record activity data

from two teams of total 25 developers working on web information systems develop-

ment in this software company. Just before the deployment of our developed infrastruc-

ture within the PerConIK project for recording implicit feedback of software developers

we tested the infrastructure extensively.

First impression of developers on the dependencies enriched by implicit dependen-

cies was very positive including examples of such dependencies identified even by hand

in existing software repositories. While the straightforward application of implicit de-

pendencies is to visualize them in the form of a graph, we discussed our method with

professional software developers and received valuable feedback to simply provide pri-

oritized list of software components to be checked for the selected component upon

developer’s request. We plan to continue in experimental evaluation with dataset based

on professional developers’ work.

Acknowledgment. This work was partially supported by grants No. VG 1/0752/14 and

it is the partial result of the Research and Development Operational Programme for the

project Research of methods for acquisition, analysis and personalized conveying of

information and knowledge, ITMS 26240220039, co-funded by the ERDF.

References

1. Antunes, B., Cordeiro, J., Gomez, P.: An Approach to Context-based Recommendation in

Software Development. In: Proc. of the 6th ACM Conf. on Recommendation Systems,

pp. 171-178. ACM (2012)

2. Bieliková, M., Návrat, P., Chudá, D., Polášek, I., Barla, M., Tvarožek, J., Tvarožek, M.:

Webification of Software Development: General Outline and the Case of Enterprise Appli-

cation Development. In: AWERProcedia Information Technology and Computer Science,

Vol. 3: 3rd World Conf. on Information Technology, pp. 1157-1162 (2013)

3. Bieliková, M., Polášek, I., Barla, M., Kuric, E., Rástočný, K., Tvarožek, J., Lacko, P.: Plat-

form Independent Software Development Monitoring: Design of an Architecture. In: Proc.

of 40th Int. Conf. on Current Threads in Theory and Practice of Computer Society,

LNCS 8327, pp. 126-137. Springer-Verlag (2014)

4. Bird, C., Nagappan, N., Gall, H., et al.: Putting It All Together: Using Socio-technical Net-

works to Predict Failures. In: 20th Int. Symposium on Software Reliability Engineering,

pp. 109-119. IEEE CS Press (2009)

5. Boehm, B.W., Brown, J.R., Lipow, M.: Quantitative Evaluation of Software Quality. In:

Proc. of the 2nd Int. Conf. on Program Comprehension, pp. 592-605. IEEE CS Press (1976)

6. Coman, I.D., Sillitti, A.: Automated Identification of Tasks in Development Sessions. In:

Proc. of 16th IEEE Int. Conf. on Program Comprehension, pp. 212-217. IEEE CS Press

(2008)

7. Counsell, S., Hassoun, Y., Loizou, G., et al.: Common Refactorings, a Dependency Graph

and Some Code Smells: An Empirical Study of Java OSS. In: Proc. of the ACM/IEEE Int.

Symp. on Empirical Software Engineering, pp. 288-296. ACM (2006)

8. DeLine, R., Czerwinski, M., Robertson, G.: Easing Program Comprehension by Sharing

Navigation Data. In: Proc. of the 2005 IEEE Symp. on Visual Languages and Human-Cen-

tric Computing, pp. 241-248. IEEE CS Press (2005)

9. Ebbinghaus, H.: Memory: A Contribution to Experimental Psychology, transl.: Ruger, H.A.,

Bussenius, C.E. New York: Teachers College (1885/1913)

10. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach.

2nd Edition, PWS Pub. Co., Boston, MA, USA (1998)

11. Fritz, T., Murphy, G.C., Hill, E.: Does a Programmer’s Activity Indicate Knowledge of

Code?. In: Proc. of 6th Joint Meeting of the European Software Eng. Conf. and the ACM

SIGSOFT Symp. on The Foundations of Software Eng., pp. 341-350. ACM (2007)

12. Kalliamvakou, E., Gousios, G., Spinellis, D., et al.: Measuring Developer Contribution from

Software Repository Data. In: Proc. of the 4th Mediterranean Conf. on Information Systems,

pp. 600-611. Greece (2008)

13. Kersten, M., Murphy, G.C.: Using Task Context to Improve Programmer Productivity. In:

Proc. of 14th ACM SIGSOFT Int. Symp. on Foundations of Software Eng., pp. 1-11. ACM

(2006)

14. Polášek, I., Ruttkay-Nedecký, I., Ruttkay-Nedecký, P., Tóth, T., Černík, A., Dušek, P.: In-

formation and Knowledge within Software Projects and Their Graphical Representation for

Collaborative Programming. In: Acta Polytechnica Hungarica, vol. 10, no. 2, pp. 173-192.

ISSN: 1785-8860 (2013)

15. Robillard, M.P., Murphy, G.C.: Automatically Inferring Concern Code from Program In-

vestigation Activities. In: Proc. of 18th IEEE Int. Conf. on Automated Software Engineer-

ing, pp. 225-234. IEEE CS Press (2003)

16. White, K.G.: Forgetting Functions. In: Animal Learning & Behavior, Vol. 29, No. 3,

pp. 193-207. Springer-Verlag (2001)

17. Zimmermann, T., Nagappan, N.: Predicting Defects Using Network Analysis on Depend-

ency Graphs. In: Proc. of 30th Int. Conf. on Software Engineering, pp. 531-540,

ACM (2008)

