SGCCS: A Graphical Language for Real-Time
Systems*

David Safrdnek

Department of Computer Science, Faculty of Informatics
Masaryk University Brno, Czech Republic
xsafranl1@fi.muni.cz

Abstract. We present a graphical language SGCCS as a language for
modeling of discrete real-time systems. SGCCS can be viewed as a graph-
ical version of the synchronous Calculus of Communicating Systems
(SCCS). A specification in SGCCS contains both graphical and visual
components. We give an overview of basic concepts of SGCCS giving an
example of specification in SGCCS. Further, we show briefly how the
formal semantics of SGCCS is developed.

1 Introduction

In [2], a graphical language for specification of interaction among concurrent het-
erogeneous components GCCS was presented. We implemented a simple editor
for this language ([4]) with support for translation of a graphical model into the
Calculus of Communicating Systems (CCS [9]).

Due to our participation on a current project of a formal design of a hardware
IPv6 router 7], we have been motivated to extend our graphical editor to support
real-time design. It lead us to extend semantics of GCCS to deal with time. We
adapted the notion of the synchronous extension of CCS (SCCS, [9]). The result
is called SGCCS.

In this paper, we would like to present SGCCS briefly as a graphical for-
malism for formal visual component-based modeling of systems, for which time
plays critical role. We assume time being discrete and global. All components are
observed as performing their actions in time-slots. Any time-slot can be seen as
a list of actions to be fired simultaneously at a discrete tick of the global clock.

It is worth noting that there are two different notions of synchrony in our
language. First one is the concept of synchronous communication of components
in the sense of instantaneous handshake or multicast interaction among them,
and the second one is the concept of time-slots we have mentioned above.

2 Related work

There exist some graphical formalisms for modeling of real-time systems. One
of them is the language GCSR [1], which is based on the idea of executing inter-

* This work has been partially supported by the Grant Agency of Czech Republic
grant No. 201/00/1023.

Maria Bielikovéd (Ed.): SOFSEM 2002 Student Research Forum, pp. 47-52, 2002.

48 David Safrdnek

leaved actions asynchronously. There is also a large group of graphical formalisms
based on the notion of Statecharts, e.g., its extension Timed Statecharts [8]. An-
other well-known graphical formalism are Petri-Nets and their extensions. In
general, in contrast to SGCCS, we cannot easily distinguish between the inter-
action and the behavioral level of specification in these formalisms. Interaction
aspects are closely related with behavioral aspects and cannot be simply sepa-
rated. In other words, these formalisms cannot be simply used as an interaction
“umbrella” for components with their behavior specified in different formalisms.

3 Overview of Synchronous GCCS

The action structure of SGCCS is the same as in Synchronous CCS. The no-
tion of particle and composite actions is used. Particle actions are the smallest
distinguishable action elements. By composing particles using the operation of
product we get composite actions. In a particular time-slot, the system can per-
form a composite action. Thus, particle actions are not atomic in the sense of
being performed exclusively, they are fired simultaneously with other particles
which together form the complete composite action performed in the current
time-slot. We denote the composite action « containing the particles a, b, ¢ using
the dot-notation: a = a.b.c.

As in GCCS, systems in SGCCS are graphically specified at two levels — the
process level and the network level (the hierarchy of networks). At the process
level, the behavior of components is specified using transition diagrams with
edges labeled with input and output actions. An example of a process level
specification is showed in the right part of Fig. 1.

orts .
buses - /pf\\ - NOT: iwgou
“ el N
N\ in1(0) in1(0) in2(0) in2(1)
‘ e o e o

in(1).out(0)
out(0)

out(0) .
A N D + in1(0).in2(0).out(0)

out(1)
out(1)

in1(0).in2(1).out(0) in1(1).in2(0).out(0)

N -

.
sub—components

in1(1).in2(1).out(1)

Fig. 1. The network and the process level of SGCCS

SGCCS: A Graphical Language for Real-Time Systems 49

Interaction among components is specified at the network level using so called
nets. An example of a net is in the left part of Fig. 1. Components are included
in a net as boxes, which represent interfaces with places for communication —
so called ports (black points in Fig. 1). Each port is labeled with the name of
some action exporting it to the environment of the component. We consider
ports as bi-directional, what means that both input and output actions can flow
through them. The synchronous model allows to signal arbitrarily many actions
simultaneously in a particular time-slot via ports of a particular component (e.g.,
in1(0),4n2(0) and out(0) of the AND component in Fig. 1).

As is depicted in Fig. 1, components are connected by ports to so called buses
(half-ellipses). Buses export actions involved on these ports to be observed by the
environment outside of the net under the buses’ names. Therefore, the actions
in(0) and in(1) of the component NOT in Fig. 1 can be seen as in1(0) and inl1(1)
by the environment. Therefore there are ports related with these actions in the
interface of the top-most net. The environment can be specified by another net,
so called higher level net. The current net is embedded into the higher level net
as one of its components. This creates the hierarchy of nets, which can be viewed
as a tree. In the root of such a tree there is the top-most net. This tree structure
goes with the modularity, refinement, and using of reusable components features
in design using SGCCS.

4 Two models of synchronization

Buses can also model synchronization. By the term synchronization we mean
handshake between two components. Due to the concept of synchronous firing
of actions, all handshakes desired in a particular point of time are sensed to be
performed in the same time-slot. In general, we can distinguish between two kinds
of synchronization. Firstly, we can strictly require synchronization to take place
in the current time-slot, we call this non-delayed synchronization. This is useful
for example for modeling of logical circuits as can be seen in Fig. 1 (described
later). Secondly, we can leave the components, which cannot synchronize in the
current time-slot, to wait until synchronization will be possible. We call this kind
of synchronization delayed synchronization. The example of using this model of
interaction is shown in Fig. 2 (also described later in this section).

Synchronization is modeled in SGCCS using the construct of synchronous
buses denoted by half-ellipses. An example of a system which applies the con-
cept of non-delayed synchronization is in Fig. 1. Components NOT and AND,
interconnected by buses m(0) and m(1), run synchronously in parallel. When-
ever NOT performs out(0) or out(1) (i.e., it is in each time-slot), AND must be
able to perform in2(0) or in2(1) in the same time-slot. Otherwise, both com-
ponents would be deadlocked. System in Fig. 1 models behavior of the logical
circuit having the function of the common and-operation taking one of its inputs
inverted.

An example of delayed synchronization is in Fig. 2. It is a model of a two-cell
queue. Important role has the 1-action in the diagram of the process CELL which

50 David Safrdnek

stands for possible waiting before firing in. The right CELL can wait until the
left one has a value on its out port. This behavior extends to the whole queue,
because it is modeled by replication of the process CELL. The concept of delayed
synchronization allows one to model asynchronous (buffered) communication in
SGCCS. This feature is built in the network level of SGCCS and represented by
the construct of asynchronous buses.

CELL: in
in® in® CELL @5 \——® CELL eout @out 9@0
out

Fig. 2. An example of delayed synchronization

In general, arbitrarily many components can be connected by their ports
to any bus. All possible handshakes are performed in one time-slot leading to
an internal action. If two components can synchronize with two other compo-
nents, then the non-deterministic choice of particular simultaneous synchroniza-
tion pairs is applied. It is important to note, that the maximal set of all possible
synchronization pairs is fired in one time-slot.

5 Developing the formal semantics of SGCCS

In [5], we presented formal definition of SGCCS. In general, a calculus of terms
representing visual constructs of SGCCS is developed there. Semantics of these
terms is defined via their mapping to SCCS expressions. Due to the lack of
space, here we only show by example how the SCCS expression representing the
semantics of the SGCCS net in Fig. 2 is derived. For general definition of SGCCS
semantics we refer the reader to the cited paper.

First of all, we recall some basics of SCCS (see [9] for details). The paral-
lel composition operator “|” known from CCS is replaced with the synchronous
product operator “x”. We will also use the standard relabeling operator, and
the restriction operator “\\R”, where R is set of names of the restricted parti-
cles. The prefix operator “:” and the choice operator “+” will be sensed also in
standard ways. The internal action is denoted as “1”. Delayed d-actions and the
idling process 1 are defined by the following expressions:

1=1:1, 5aﬁ1:5a+a:1

d-action is correctly defined as the SCCS process which idles, then possibly
performs the action, and after that idles forever.

SGCCS: A Graphical Language for Real-Time Systems 51

The process layer of the buffer example in Fig. 2 is simple. It contains only
one process CELL expressed in SCCS in the following manner:

CELL £ 5in - ouf : CELL

We will express the net containing two copies of the CELL process as components
using the product operator. The visible actions at the top-most level are those in
and out actions, which belong to the free port in of the left CELL component, and
out of the right CELL component. Ports connected to the bus are invisible. We
will express the bus! as the synchronous product of two separate SCCS processes.
The top-most net BUF is then expressed using the following definition:

BUF £ (CELL[m/out] x CELL[m/in])\\{m}

New added action m is used to connect the correct components. These actions
are not observable at the level of the top-most net, i.e., they are restricted. In
other words, the relabeling and restriction operators define the semantics of the
synchronous bus.

Semantics of asynchronous buses is defined using a special SCCS process. The
general case is rather technical, for that reason we give here only the simplified
version. Imagine the bus in Fig. 2 is an asynchronous bus. For that case, the
behavior of the bus is expressed by the following definition:

(6b1 x by : BUS) + (8by x by : BUS)
(5b2 X bl : BUS) + (5b2 X b1 : BUS)

The top-most net BUF is then expressed using the following synchronous
product:

df
BUS—+

BUF £ (CELL[mq /out] x BUS[m1 /b1, ma/bs] x CELL[mg/in])\\{m1, ma}

Using this concept we also solve carefully possible name conflicts (i.e., ports
and buses of the same name in the same network). The hierarchy of specification
in our language is semantically based on the concept of abstraction in SCCS. Due
to this property together with the independency of components, the reusability
of component definitions is possible. This results into a language suitable for the
modular component-based design.

6 Conclusion and future work

We presented a graphical formalism SGCCS for visual specification of discrete
real-time systems. This language adds the notion of synchronous non-interleaved
actions (so called composite actions) to the GCCS coordination language [2].
Unlike the asynchronous GCCS, two different types of buses are distinguished in

1 To simplify the explanation, we considered the bus as the unlabeled bus here. In
general, there are two sorts of buses considering labeling (see [5] for details).

52 David Safrdnek

SGCCS, with respect to its synchrony. Using this two constructs one can model
both delayed and non-delayed synchronization. We believe that this universality
property could be useful for more complex systems which combine both software
and hardware components.

The main advantage of SGCCS is that it is exogenous, which allows modeling
of coordination of components without any detail knowledge about their behav-
ior. This allows abstraction and application of the top-down methodology during
the design phase. Concepts such this one are common in the component-based
design [6].

We are currently working on the synchronous extension of the graphical editor
[4]. Thus, analogously to the editor for GCCS, we aim to transform a model rep-
resented graphically in SGCCS into SCCS according to the definition of SGCCS
semantics we have presented in [5]. Hence, one will be for example able to apply
the p-calculus model checking and equivalence checking to that model using the
Concurrency Workbench tool [3].

Considering future work, we are going to add the value-passing feature to our
language, i.e., we aim to develop a type system for messages that can be sent
through particular ports and buses. Another future extension of SGCCS is to
incorporate some other graphical formalisms to the process level of our language,
i.e. Petri-Nets, which allow modeling of non-interleaving, and Statecharts, which
has the feature of hierarchical modeling at the behavioral level. Other types of
buses could be also added to our formalism to support instantaneous broadcast
communication, message passing via finite buffers or any other coordination
mechanisms which are possible to be modeled in SCCS.

References

1. H. Ben-Abdallah. PARAGON: A Paradigm for the Specification, Verification, and
Testing of Real-Time Systems. In IEEE Aerospace Conference, 1997.

2. R. Cleaveland, X. Du, and S. A. Smolka. GCCS: A Graphical Coordination Lan-
guage for System Specification. In Proceedings of Fourth International Conference
on Coordination Models and Languages. LNCS, Springer Verlag, 2000.

3. R. Cleaveland and S. Sims. The NCSU Concurrency Workbench. In Computer-
Aided Verification (CAV ’96), page 394. LNCS 1102, Springer-Verlag, 1996.

4. D. Safrdnek. Graphical specification of concurrent systems (in czech). Master’s
thesis, Masaryk University, Brno, 2001.

5. David Safranek. SGCCS: A Graphical Language for Real-Time Coordination. In
Proceedings of International Workshop on Foundations of Coordination Languages
and Software Architectures, volume 68.3. LNCS, 2002.

6. George T. Heineman and William T. Councill. Component-Based Software Engi-
neering: Putting the Pieces Together. Addison Wesley, 2001.

7. Jifi Barnat, Tom&s Brézdil, Pavel Kréal, Vojtéch Rehék, and David Safranek. Model
checking in IPv6 Hardware Router Design. Tech. Report 08, CESNET, July 2002.

8. Y. Kesten and A. Pnueli. Timed and hybrid statecharts and their textual represen-
tation. In Formal Techniques in Real Time and Fault Tolerant Systems. Springer-
Verlag, 1991.

9. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

