Limited Assignment Number Search Algorithm*

Kamil Vermitovsky and Hana Rudova

Faculty of Informatics, Masaryk University
Botanicka 68a, Brno 602 00, Czech Republic
{xvermir,hanka}@fi.muni.cz

Abstract. A nonsystematic iterative search algorithm for hard or over-
constrained problems is proposed. This linear time complexity algorithm
seeks a (partial) assignment of the problem variables. One step of the
algorithm is a special incomplete version of chronological backtracking
with constraint propagation. Subsequent searches try to improve the last
computed partial assignment. This is done by developing variable and
value heuristics based on the results of previous iterations. The algorithm
was applied to solve random problems and a large scale timetabling prob-
lem from Purdue University.

1 Introduction

Many search trees arising in practical applications are too large to explore ex-
haustively. A solution can be found by searching only a small part of the space by
following carefully tuned heuristics which guide the search toward the regions of
space which are likely to contain solutions. For many problems, this may lead di-
rectly to a solution. There is a variety of search algorithms available, e.g., limited
discrepancy search [3], backjumping [2], or local search with constraint propaga-
tion [4]. Our intent is devoted to the problems where it is difficult or impossible
to find a solution. The heuristics may not be good enough or/and the problem
may be over-constrained. We propose a linear time iterative search algorithm
which can be used in this case. This algorithm was defined as an approach to
solve a large scale timetabling problem from Purdue University [5].

The search directed by this algorithm is incomplete (i.e., overall search tree
is not explored) and does not necessarily find a complete solution (i.e., only
a partial assignment may be found). The aim is simply to assign most of the
problem variables. The algorithm also develops its own variable and value or-
dering heuristics iteratively. They can be used together with the heuristics we
have already developed for the problem to improve the current solution. The
heuristics that are constructed can be influenced after each iteration by a user
who can direct continuation of the search. Another possibility is to relax the
constraints in the problem and continue with the relaxed problem in subsequent
iterations.

* This work is partially supported by the Grant Agency of Czech Republic under
the contract 201/01/0942 and by Purdue University. We would also like to thank to
the Supercomputer Center Brno where the experiments with random problems were
accomplished.

Maria Bielikovéd (Ed.): SOFSEM 2002 Student Research Forum, pp. 53-58, 2002.



54 Kamil Vefmifovsky and Hana Rudova

2 Description of LAN Search

The limited assignment number (LAN) search algorithm is based on backtracking
with constraint propagation [2]. The aim is to always find a solution (though not
necessarily a complete one) of a constraint satisfaction problem [6].

The object of a constraint satisfaction problem is to find an assignment of
values to given variables from domains which satisfy the given conditions (con-
straints). Such a problem is over-constrained if it is not possible to satisfy all con-
straints. While classical backtracking would explore the overall solution space,
constraint propagation can efficiently prune it. At each step, an uninstantiated
variable is chosen and a value is assigned to it (called labeling). Each value assign-
ment is propagated through the constraints into the domains of other variables.

For each variable, the LAN search algorithm maintains a count of how many
times a value has been assigned to it. A [imit is set on this count. If the limit is
exceeded, the variable is left unassigned and the search continues with the other
variables. A labeling of unassigned variables is not processed even during back-
tracking. As a result of this search, a partial assignment of variables is obtained
together with the set of the remaining unassigned variables. The limit ensures
the finiteness of the search.

The result of this search is used in the subsequent iterations. The LAN search
develops the following variable and value ordering heuristics based on the results
of the former iteration:

— values of variables successfully assigned in the previous iteration are tried
first during the following iteration —once a suitable value for the variable
has been found it remains a promising assignment for this variable;

— each variable left unassigned in the previous iteration gives values to be
tried last (those values that were tried unsuccessfully) — the suitable value
will probably be among those values not tried in the last iteration;

— any variable unassigned in the previous iteration is labelled first —it may
be difficult to assign a value to the variable, therefore it should be given
preference in labeling.

In the first iteration of the algorithm, we can use either problem-specific or
standard heuristics (initial heuristics) like first-fail [6]. In each of the following
iterations, heuristics based on the previous iteration are used primarily. Any ties
are broken by using the initial heuristics. The user may also manually mod-
ify the results after each iteration to influence the behavior of the developed
heuristics or relax the constraints to eliminate contradictory requirements.

There are two cases when the LAN search does not help and all variables
remain unassigned. It may fail as a consequence of the initial constraint propa-
gation prior to labeling. Here the user should relax some constraints and restart
the algorithm. The search may also fail if the domain of a variable is emptied
before its limit is exceeded and, it is the first variable or all of its preceding
variables have already exceeded the limit. In this case, the algorithm can be
restarted without these variables. A detailed analysis of such situations will be
the subject of our future work.



Limited Assignment Number Search Algorithm 55

The current assignment limit is set to the maximal domain size d of any
labelled variable. As each of n variables can be tried d times, one iteration of the
LAN search is of linear complexity O(dn).

The pseudo-code of the algorithm can be found in Appendix A.

3 Description of Experimental Problems

The random placement problem (RPP) seeks to place a set of rectangles (called
objects) of different sizes into a larger rectangle (placement area) in such a way
that no objects overlap and all object borders are parallel to the border of
the placement area. In addition, each object is defined by a set of allowable
axial coordinates for the object’s bottom-left corner, zero being the bottom-left
corner of the placement area. The ratio between the size of the placement area
and the total area of all objects is called the filled area ratio. The higher the
filled area ratio is, the more constrained the problem is.

We have proposed the RPP because it allows us to generate various in-
stances of the problem similar to the timetabling problem we are looking to solve.
The objects correspond to courses to be timetabled — the x-coordinates to differ-
ent times, the y-coordinates to different classrooms. For example, a course with
three time units corresponds to an object with dimensions 3x1 (course should be
taught in one classroom only). Each course can be placed only in a classroom of
sufficient capacity — each object will have a randomly generated lower y-bound.

The timetabling problem from Purdue University (TPPU) consists of time-
tabling approximately 750 classes attended by 30,000 students into 41 large
lecture rooms with capacities up to 474 students. The classes are taught several
times a week resulting in 1,600 meetings (objects in RPP) to be timetabled.
The space covered by all meetings fills approximately 85 % of the total avail-
able space (filled area ratio). Special meeting patterns defined for each class
direct possible time and location placement. Classroom allocation must respect
instructional requirements and preferences of faculty. All instructors may have
specific time requirements and preferences for each class. A major objective is
to minimize the number of potential student course conflicts. A full description
of the problem together with the presented results can be found in [5].

4 Empirical Results

The problem solvers were implemented in the CLP(FD) library of SICStus Pro-
log [1] version 3.9.1. Results presented were accomplished under Linux on a PC
with an AMD Athlon 850 MHz processor with 128 MB of memory.

We have generated 7 sets of RPPs each of 50 problems and 200 objects distin-
guished by the filled area ratio (see the Table 1). The average lower bound (34 %),
object sizes and placement area size were chosen to correspond to the TPPU and
to meet the required filled area ratio. The problems in the last two sets are over-
constrained, but this may also be true for other problems with the filled area



56 Kamil Vefmifovsky and Hana Rudova

Table 1. Description of the generated random placement problems

Problem set number 1 2 3 4 5 6 7

Filled area ratio (%) 80 85 90 95 100 105 110

Placement area 40x14 38x14 35x14 36x13 35x13 33x13 33x12
Objects 2x1  3x1 4x1 6x1

Occurrences of objects (%) 80.4 16.6 2.6 04

ratio “close” to 100 %. The initial variable ordering applied was first-fail, val-
ues in the domain were explored in ascending order in the first iteration. Each
problem was solved using 25 iterations. Each iteration took in average 10-60
seconds. The average percentage of assigned variables after each iteration for
each of the seven sets of problems is shown in Fig. 1. The complete assignment
of variables was found for 32, 21, and 4 problems with the filled area ratio 80,
85, and 90 %, resp. No problem was completely solved in the data sets with the
higher filled area ratio. Problems solvable by LAN search were also tested by
backtracking and limited discrepancy search (LDS) applying our initial value
and variable ordering heuristics. No problem was solved within 10 hours time
limit by backtracking and LDS (with up to 3 allowed discrepancies).

The solution of the TPPU was implemented with the help of a new soft
constraints solver. Experiments with standard backtracking did not lead to a so-
lution after 10 hours of run time (too many failed computations were repeated
exploring parts of search tree with no solution). The LAN search algorithm was

Fig. 1. Average percentage of assigned variables

100 T T T

Assigned variables (%)

70 1 1 1 1
5 10 15 20 25

Iteration number




Limited Assignment Number Search Algorithm 57

able to find solution with 99.6 % of classes assigned. This solution was found
in 5 iteration steps where the number of unassigned classes was 19, 15, 10, 5,
and 3, respectively. Subsequent iterations made no further improvement. One
iteration took 2-3 minutes. Let us take a look at a short summary of the other
results (for details see [5]). The final solution was able to satisfy 98.1 % of the
student requirements from course pre-enrollment, 79.7 % of classes were assigned
at the preferred times while 4.0 % classes must be taught at discouraged times.
A secondary requirement on selection of preferred classroom was satisfied up
to 49.0 %.

5 Conclusion and Future Work

We have proposed an incomplete, iterative search algorithm with linear time
complexity computing a (partial) assignment of variables. It is suitable for over-
constrained problems or hard problems where other search algorithms have not
succeeded. For such problems, it is important to compute at least a partial
solution, as a complete solution may not exist, or may be difficult to find.

Our algorithm was verified for random problems and for a large scale time-
tabling problem. Amount of assigned variables increases with the iteration num-
ber. The more constrained the problem was, the less complete solution was
found. At the same time, it is clear that it is not possible to assign all variables
for many problems (at least 9% of the variables could not be assigned for the
most constrained problem). Neither backtracking nor LDS were able to solve the
problems solvable by LAN search. In the real timetabling problem from Purdue
University, we were able to assign almost all classes and also achieve very good
results in the optimizations.

Currently we are improving the heuristics to reflect all previous iterations,
not just the last one. For each variable, we would like to maintain the number
of iterations where it was unassigned and use this information during following
iterations. As a part of our future research, we would like to compare the LAN
search with more algorithms and test it on other types of problems. Future work
will also focus on analysis of a suitable value for the assignment limit and the
number of iterations. The dependence of the algorithm on the initial heuristics
will be explored. We would like to extend the algorithm towards problems where
all variables remain unassigned.

References

1. Mats Carlsson, Greger Ottosson, and Bjérn Carlson. An open-ended finite domain
constraint solver. In Programming Languages: Implementations, Logics, and Pro-
gramming. Springer-Verlag LNCS 1292, 1997.

2. Rina Dechter and Daniel Frost. Backjump-based backtracking for constraint satis-
faction problems. Artificial Intelligence, 136(2):147-188, 2002.

3. William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. In
Chris S. Mellish, editor, Proceedings of the Fourteenth International Joint Confer-
ence on Artificial Intelligence, pages 607-615. Morgan Kaufmann, 1995.



58 Kamil Vefmifovsky and Hana Rudova

4. Narendra Jussien and Olivier Lhomme. Local search with constraint propagation
and conflict-based heuristics. Artificial Intelligence, 139(1):21-45, 2002.

5. Hana Rudova and Keith Murray. University course timetabling with soft constraints.
In Edmund Burke and Patrick De Causmaecker, editors, PATAT 2002 — Proceedings
of the 4th international conference on the Practice And Theory of Automated Time-
tabling, pages 73-89, 2002.

6. Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
1989.

A LAN Search Algorithm

The function LAN_Search implements one iteration of the algorithm. It should
be called with the list of Variables to be labelled and the assignment limit,
the parameters Unassigned and Constraint should be set to ). Lists of Assigned
and Unassigned variables are returned as a result. The functions select_var and
select_val represent the variable and value ordering heuristics.

function LAN Search(Variables, Unassigned, Constraint, Limit)
if Constraint # () then
Success < propagate(Constraint, Variables)
if Success = fail then
return (fail, Unassigned)
Instantiated <« instantiated variables from Variables
RestVars « Variables — Instantiated
if RestVars = () then /* no variables left for labeling =/
move instantiated variables from Unassigned into Instantiated /* some
variables from Unassigned could have got assigned due to propagation */
return (Instantiated, Unassigned)
X « select_var(RestVars)
if current assignment number of X < Limit then
increase current assignment number of X by 1
Value « select_val(X)
(Assigned, Unassigned) «—
do_labeling(RestVars, X = Value, Unassigned, Limit)
if Assigned = fail then
(Assigned, Unassigned) «—
do_labeling(RestVars — Unassigned, X # Value, Unassigned, Limit)
else
/* maz assignment limit exceeded, skip the variable x/
(Assigned, Unassigned) «—
do_labeling(RestVars — {X}, 0, Unassigned U {X}, Limit)
if Assigned = fail then
return (fail, Unassigned)
else
return (Instantiated U Assigned, Unassigned)
end



