
Finite-State Reber Automaton andthe Recurrent Neural Networks Trainedin Supervised and Unsupervised MannerMichal �Cer�nansk�y and Lubica Be�nu�skov�aDepartment of Computer Science and Engineering, FEI Slovak Technical University,Ilkovi�cova 3, 812 19 Bratislava 1, Slovakiafcernansky, benusg@dcs.elf.stuba.sk, http://www.dcs.elf.stuba.sk/�benusAbstract. We investigate the evolution of performance of �nite-contextpredictive models built upon the recurrent activations of the two typesof recurrent neural networks (RNNs), which are trained on strings gen-erated according to the Reber grammar. The �rst type is a 2nd-orderversion of the Elman simple RNN trained to perform the next-symbolprediction in a supervised manner. The second RNN is an interestingunsupervised alternative, e.g. the 2nd-order RNN trained by the Bienen-stock, Cooper and Munro (BCM) rule [3]. The BCM learning rule seemsto fail to organize the RNN state space so as to represent the states ofthe Reber automaton. However, both RNNs behave as nonlinear iterationfunction systems (IFSs) and for a large enough number of quantizationcenters, they give an optimal prediction performance.1 IntroductionState-vector clustering serves as the standard mechanism for the extraction of�nite-state automata from RNNs [4] as well as for the extraction of predictivemodels in case of complex symbolic sequences [8]. It was shown, that whentrained via the real time recurrent learning (RTRL), RNNs organize their statespace so that close recurrent activation vectors correspond to histories of sym-bols yielding similar next-symbol distributions. Incidentally, by means of thetheory of IFSs, Kolen [6] demonstrated that randomly initialized RNNs displaya surprising amount of clustering before training .We investigate the 2nd-order Elman RNN trained to perform the next-symbolprediction and the 2nd-order RNN trained by an unsupervised BCM rule (BCMRNN) [1]. Recently, we found that the latter type of RNN gives comparable pre-dictive performance on the chaotic time series as the former one [9]. This time,both RNNs are trained on strings generated according to the Reber grammar(Fig. 1a). It was already shown that the Elman SRN can learn the Reber au-tomaton perfectly [4]. In this work, we observe the evolution of performance ofpredictive models built upon the activation of the recurrent layer in both typesof RNNs during training as a function of the amount of training and the numberof quantization centers in the recurrent state space.
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Fig. 1. (a) The Reber automaton. We start with B, and move from one node to thenext. If there are two paths we can take, e.g. after B we can take either T or P, wechoose one with equal probability, and so on for every node, except for the end node#5. All the Reber states are uniquely determined by each pair of symbols in the Reberstring. (b) The 2nd-order recurrent BCM neural network with lateral inhibition2 The 2nd-Order BCM RNN With Lateral InhibitionFirst, let us consider one isolated BCM neuron, i, with the output activity ci(t) =�(Pj wij(t)dj(t)), where � denotes the sigmoid activation function and dj(t)is the jth input component. Then, according to the BCM theory [3], the jthsynaptic weight changes asdwij(t)dt = �� @Li(t)@wij(t) = ��i(t)dj(t) ; (1)where � is the learning speed and �i(t) = ci(t)[ci(t)��i(t)] is the synaptic modi-�cation function [2]. When the neuronal activity ci(t) > �i(t), all active synapsespotentiate (provided dj > 0). On the other hand, when 0 < ci(t) < �i(t), allactive synapses weaken. The variable �i(t) is the moving synaptic modi�cationthreshold de�ned as in neuro-computational models [2]�i(t) = E[c2i (t)] = 1� Z t�1 c2i (t0)e� t�t0� dt0 ; (2)where � is the averaging period. Sliding of �i guarantees the upper boundednessof synaptic weights without placing arti�cial constraints on them. The quantityLi(t) is the loss function to be minimized [1], i.e.Li(t) = �n13c3i (t)� 14E[c2i (t)] c2i (t)o : (3)However, the output of the ith neuron in the 2nd-order BCM RNN with theso-called feedforward lateral inhibition of constant strength � between each pairof neurons (Fig. 1b) is [1]ci(t+ 1) = �nXj;k hwijk(t)� �X� 6=iw�jk(t)idj(t)ck(t)o : (4)



Reber Grammar and RNNs 3Synaptic weights wijk are updated at each time step t, i.e. after each presentationof a consecutive symbol in the temporal sequence. Weight changes are derivedby means of the gradient descent minimization of the total loss function L(t) =PLi(t) [1] yielding a more complicated rule than (1), namelydwijk(t+ 1)dt = �� @L(t+ 1)@wijk(t) = �hX� ��(t+ 1)@c�(t+ 1)@wijk(t) i : (5)3 Normalized Negative Log-LikelihoodWe evaluate the performance or quality of predictive modelsMs extracted fromthe RNNs by means of normalized negative log-likelihood [7]. The predictivemodels based on internal state vectors are constructed as follows. After eachtraining epoch, all synaptic weights are �xed and stored. Next, sliding throughthe training sequence, for each symbol in Strain, using these weights, we recordthe recurrent activations c(t+1) = fci(t + 1)g. This creates an activation se-quence Sacttrain for each network. Then we perform a vector quantization on Sacttrainfor N quantization centers. In our predictive models, the quantization centersare identi�ed with predictive states. To calculate the state-conditional probabil-ities, we associate with each center A counters, one for each symbol from theinput alphabet A. Sliding through the recurrent activations' sequence, Sacttrain,the closest center C is found for the current activation vector. Next, we identifythe next symbol snext in Strain. For the center C, the counter associated withsnext is raised by one. After seeing the whole training sequence Strain, for eachquantization center (prediction state) C, we normalize the counters to calculatethe conditional next-symbol probabilities PM(�jC).On the test sequence Stest = s1s2:::st:::sm, the next-symbol probabilitiesare determined as follows: for each t = 1; 2; :::;m � 1, given the network statec(t) = fci(t)g, the symbol st 2 Stest drives the network to a new recurrentactivation vector c(t+1) = fci(t + 1)g. We �nd the quantization center Ct+1closest to c(t+1). The next-symbol probabilities are PM(st+1jCt+1).For each modelM, we evaluated its performance by means of the normalizednegative log-likelihood NNL [7] on the test sequence Stest:NNLM(Stest) = �Pm�1t=1 logA PM(st+1jCt)m� 1 ; (5)where the base of the logarithm is the number of symbols A in the alphabet A.The higher are the next correct-symbol probabilities the smaller is NNL, withNNL = 0 corresponding to the 100% correct next-symbol prediction.The metric in vector quantization and nearest-center detection is Euclidean.We use the hierarchical vector quantization inspired by [5]. The �rst activationvector becomes the �rst quantization center. Given a certain number of centers,we iteratively �nd the corresponding maximal cluster radius . For every internalstate vector in turn, we �nd the closest center. If their distance is less than ,the vector belongs to the center. Otherwise, this vector becomes a new center.



4 �Cer�nansk�y and Be�nu�skov�a4 Experiments and ResultsWe trained the networks on randomly generated strings, starting with the \B".The activations of recurrent neurons were reset to the same small random valuesat the beginning of each string. Before training and after each 10� 103 symbolswe evaluated the quality of the next-symbol prediction by means of NNL. For theNNL calculation we used the test set of the length 20� 103 symbols consistingof newly generated strings. The input of both networks and output of the ElmanRNN had the dimension of 6 with the one-hot encoding of symbols. \E" is equallycoded as \B". The values of parameters of the 2nd-order BCM RNN were set to:the number of (recurrent) neurons n = 8 or 12, � = 100 iterations, � = 0:001,� = 1=n, � = 0:4 for the unipolar `0-1' sigmoid. The values of parameters of the2nd-order RNN were set to: n = 6 or 8, � = 0:03, momentum = 0.03, and � = 1for the unipolar `0-1' sigmoid. The initial (reset) activations of recurrent neuronsand initial weights were randomly generated from a uniform distribution over[�0:5; 0:5], for both RNNs.
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a. Elman - 6 neurons
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c. RBCM - 8 neurons
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d. RBCM - 12 neurons
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Fig. 2. NNL results for the next-symbol prediction of the Elman RNN for (a) 6 and (b)8 recurrent neurons, and of the BCM RNN for (c) 8 and (d) 12 recurrent neurons. NNLat time 0 expresses the prediction performance of an untrained \na��ve" network. Lengthof training set means the total number of symbols over all training strings. Center countmeans the number of quantization centers in the hierarchical vector quantization. Thelowest NNL matches the theoretically calculated NNL for the occurence of symbols inReber strings, e.g. 0.331.



Reber Grammar and RNNs 5In Fig. 2, we present NNLs of the next-symbol prediction on the test Re-ber strings for both types of RNNs, as they evolve during training for di�erentnumbers of quantization centers. All presented values are averages over 5 dif-ferent runs. The standard deviations (not shown) may reach up to 20% of thecorresponding means.5 DiscussionOne can show that the Elman RNN behaves as a kind of nonlinear IFS consistingof a sequence of transformations that map the state space represented by acti-vations of recurrent neurons into separate subspaces of the state space [6]. Eachnext state of an RNN, represented by the recurrent activations, is mostly deter-mined by the last performed transformation, e.g. by the last presented symbol(input). Within the subspace belonging to the last transformation, the networkstate is determined by the last previous transformation, and thus by the lastprevious symbol (input). In this way, the RNN \theoretically" codes an in�nitetime window to the past, e.g. its current state uniquelly represents the history ofinputs. The more distant the input is in the past the less it determines the cur-rent RNN state. It turns out, that two subsequences with the common suÆx willcorrespond to the two states that are close to each other in the state space. Thelonger the common suÆx the smaller the distance between the correspondingstates in the state space.All the Reber states are uniquely determined by each pair of symbols inthe Reber string. There are 20 of these pairs including the \SE" and \VE"pairs. Thus, even in the \na��ve" untrained RNN, the 20 quantization centersobtained by means of the hierarchical clusterization described above, correspondto the RNN states determined by the last 2 symbols. It means that there is aunique mapping between the automaton states and the RNN states and theprediction model gives the minimal possible NNL, in this case 0.331 (Fig. 2). Inan untrained case, the individual states (recurrent activities) evoked by the lasttwo symbols are well separated in the state space. Given more than 20 (e.g. 25or 30) quantization centers, these recurrent activities can become split, due tothe third last input. Therefore, the quality of the next-symbol prediction doesnot get worse.The Elman RNN is trained by RTRL, thus the weights are updated aftereach symbol in turn. The errors that backpropagate from the output layer causethe weights to modify in such a way that the recurrent activities which ought tobelong to the same automaton state get closer to each other step by step. Theyget closer, thus reecting the probability that the continuation of the sequencewill be the same. This movement may cause a temporary disturbance of thecoding based on the last pair of symbols as we can observe for the large numberof quantization centers (Fig. 2a, b).After the training, the network state reects not only the history of inputsbut, which is perhaps more important, also the probability of a certain continu-ation. Each network state belongs to a certain automaton state. It can be shown
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