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Abstract. Recurrent neural networks are frequently used in cogniiience

community for modeling linguistic structures. More or l@g®nsive training pro-
cess is usually performed but several works showed thatinet recurrent net-
works initialized with small weights can be also succes$giused for this type of
tasks. In this work we demonstrate that the state space iaegim of untrained

recurrent neural network can be significantly improved bgasing appropriate
input representations. We experimentally support thigonain several linguistic
time series.

1 Introduction

Many commonly used real-world data with time structure carekpressed as a se-
quence of symbols from finite alphabet like symbolic timeieserSince their emer-
gence, neural networks were applied to symbolic time senedysis. Especially popu-
lar is to use connectionist models for processing of comialeguage structures.

Recurrent neural networks (RNNs) are frequently appliedrazessing symbolic
sequences. Elman’s simple recurrent network (SRN) [1] ésrttost frequently used
architecture. Common algorithms usually used for RNN trgjrare based on gradient
minimization of the output error. Several advanced apgreadave been proposed,
especially popular are methods based on the Kalman filtratio

But thorough training process may not be necessary. In [2hawe studied the
dynamics of untrained recurrent network randomly iniiel with small weights. We
have shown that for some tasks the contractive dynamicsabf auecurrent network
is sufficient and the structural organization of the statecepcan be used to create
prediction machines having comparable performance taotighly trained SRNs. We
have shown and explained strong correspondence betwekmafrediction machines
and a class of Markov models — variable length Markov modélsvMs) [3]. On the
other side carefully trained RNNs can usually achieve ficantly better performance.

A lot of attention is now being focused on connectionist med®own under the
name “reservoir computing”. The most prominent examplehese approaches is a
recurrent neural network architecture called an echo setiwork (ESN). ESNs were
successfully applied in multiple sequence processingstpikand recently several au-
thors have also used ESNs for language modeling. In [5] ESSlwgad to the next
symbol prediction task on the “Little Red Riding Hood” faitale. In [6] authors stud-
ied performance of ESN and SRN in modeling natural-likdiaidl languages. Authors



claim that ESN show similar predictive performance to SRiyesior to Markov mod-
els of various orders (n-grams). In [7, 8] authors also useN<$to process natural-like
languages but in the context of studying systematicityt ithdefined as the ability to
process novel sometimes even ungrammatical sentences.

In [9] we have studied the state space organization of thérrest neural network
before and after training on three artificial languages. W that the dynamics of
the trained network is still based on the fixed point attresstbut these attractors do
not correspond to the symbols representing the words agisabe of the untrained
network. Instead attractors correspond to the word cakegienabling the network to
better manage its state space. This behavior was achievtehyaining process by
setting input weights sourced from the inputs of the samegeay to the similar values.

Input representations, i.e. weights spreading infornmatiom active input neuron
are usually randomly initialized in models based on the remtive dynamics such as
ESNSs. In this work we study and evaluate word co-occurrenethod of initialization
of input weights on two models based on random contractivanhcs: Neural predic-
tion machines (NPMs) and echo state networks (ESNs). We ammtheir predictive
performance on two linguistic datasets and elaborate uppoitance of input repre-
sentations on the state space organization in these m@leth. an enhanced ESNs
were already studied in [10, 11], but in the context of theggalization and systematic-
ity. Following [10] we denote models with enhanced inpuresgntations by the “plus”
sign.

2 Neural Prediction Machines

Techniques frequently used in RNN state space analysislastezation of the re-
current units activities and attributing meaningful infation to the extracted clusters.
Neural prediction machines [2] are models using clustetgaeted from RNN state
space as predictive contexts. The symbol just presentdetndtwork corresponds to
some cluster if and only if the RNN state belongs to this eusthe next symbol prob-
ability of a symbola € A for a clustere is calculated by relating the number of times
(counterN¢) when symbok follows a symbol driving the RNN to a given cluster
with the number of times the RNN state belongs to the clus@r, . , N?). The next
symbol probability distributions are smoothed by applyiraplace correction param-
eter~y, hence probability of predicting symbalwhen in clusterc can be calculated
as:

P(a,c) . v+ N
Pnpu (G|C) P(C) ’}/A i ZbeA Ng . (1)

We set the Laplace correction parametéo the value ofd—!. This can be seen as
if we initialized counters to the valugprior to counting any symbol occurrences thus
attributing some probabilities also to symbols not pregettie training sequence. The
more important the context, the less smoothing is perforr@adthe other hand, the
probability distribution of rare (statistically less conging) context is smoothed more
heavily.




3 Echo State Networks

Echo state network is formed of one huge recurrent layer csegh of hundreds or
even thousands sparsely interconnected units. Input anagre:t connections initial-
ized randomly with small weights and are not modified in tlaéing phase. Only out-
put weights are trained usually using simple linear regoesSimple and fast training
is the most appealing feature of ESNs.

Experiments with ESNs were done in similar way as describ§td]. Output units
had linear activation function, recursive least squareewsed to train the network.
Whenu(t) is an input vector at time stefp activations of internal units were updated
according to

x(t) = fuia (W™ u(t) + W-x(t — 1) + WPk y (¢ — 1)) (2)

where f is the internal unit’s activation functio’V, Wi and WPa<k gre hidden-
hidden, input-hidden, and output-hidden connections'rives, respectively. Activa-
tions of output units are calculated as

y(t) = four (WU - [u(t), x(8), y(t - 1)]) , 3)

whereWet is hidden-output and output-output connections’ matrix.

The next symbol probabilities(t) in time stept were calculated from activities on
output units. First activities smaller than specified miaiwvalueo,,;,, were set ta,,;,
and then probabilities were estimated by normalizing oLapivities:

” ) Omin if Oz(t) < Omin
0i(t) = {oi(t) otherwise  ’ @
o 0i(t)
p(t) - Zéj(t)’ (5)

J
whereo; (¢) is the activity of the output unitin timet. o.,;, was set td.001 throughout
all experiments.

4 Extracting Input Representations

An enhancement of ESN denoted as ESN+ was proposed in [18jisimodification
of ESN input weights were not initialized randomly but sieplord co-occurrence
statistics was used [13]. The value of each input welm’j’; was set to the ratio:

oy N+ NG
=N NG NO) ©

whereN (i, 7) is the number of times symbéknd; occur next to each other aid is
the length of training sequence.

Since dimensions of matric®&and W™ are usually different remaining elements
of Win were set to zeros [10]. In our work we have slightly modifieis #pproach
and we initialized input weights 8/ = Trand . R, whereT*2"d js transformation
matrix created with small random values frgm0.01,0.01). Better results than with
original method were achieved.



5 Datasets

The first dataset we used was the so called “Elman’s Gramr&&) [14]. In [6] ESN's
ability to learn grammatical structures was studied udimglanguage. Dataset alphabet
Ais composed 24 words including end-of-string marker. Thming set was composed
of 10000 sentences (55273 symbols) and the test set of indeptly generated 10000
sentences (54966 symbols). The entropy estimated on tisetds H = 0.534.

Language generated by complex stochastic context-freargea (CG§ was used
in experiments with models using self-organization [15ta@mar was inspired by
child-directed sentences with added recursive structiites language vocabulary was
composed of 72 words including the end-of-string markenilarly to [15] the training
set was composed of 5000 randomly generated sequence$(®098ols) and the test
set comprises 10000 randomly generated sequences (628&iblsy. The estimated
entropy is H = 0.398.

6 Experimentsand Results

The predictive performance was evaluated using normalisgghtive log-likelihood
(NNL). NNL was calculated as:

T T
1 1
NNL = _T E 1Og|A| Pt(st) ~ _T E E Gt(a) 1Og|A| Pt(a), (7)
t=1 t=1acA

where the base of the logarithm is the alphabet szes; is the symbol in the test set

in time stept. P;(a) stands for the probability of predicting symhoin the time steg
andGy(a) is the ground true probability for symbalin time stept. NNL can be seen

as the compression ratio, NNL 06f5 means that original sequence can be compressed
to the half of its original size. Language entrofycan be estimated as:

T
=33 Gula) g Gul), (8)

t=1acA

and can be seen as the best achievable NNL of a perfect model.

We tested ESNs with reservoirs of different sizes. Othesup@ters such as spectral
radius, the sparsity of input and hidden weights, and inpigth range are of much less
importance when processing symbolic sequences. For ESMawvilp results for spec-
tral radius of 0.98. The probability of existence of inputigle was 1.0 and their values
were choosen randomly (uniform distribution) from intdr§#d.0, 1.0). We found out
that the probabilityp,.. of existence of recurrent weight (determining sparsityhef t
recurrent weight matrix) has very little influence on ESNfpenmance. To ensure full
connectivity for small networks and a reasonable computdtme for large networks
we setp,.. = min(1,10/n), wheren is the number of reservoir units.

ESN+ seemed to be more sensitive to parameter settings.GalaBsep,.. was
increased t@,.. = min(1,50/n) and for CG dataset it was setld). Also the spectral

8 Generously provided by Igor Farka3



a) Elman’s Grammar - ESNs b) Elman’s Grammar - NPMs
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Fig. 1. Predictive performance of ESNs (left) and NPMs (right) on (&p) and CG (bottom).

radius of ESN+ for CG dataset was changed to the val@e5oResults are presented
in Fig. 1a and Fig. 1c. ESN+ significantly outperforms ESN elod

NPM models with context count varying from 1 to 1000 wereddstNPM-U was
built over untrained and NPM-T was built over trained reeatrpart of SRN with 16
hidden units. The model with modified input representatisrdenoted as NPM-U+.
We present mean and standard deviations of 10 simulatiofigrpeed with the same
parameters. NPM-T was build over SRNs carefully trainedgiialman filtration [16].

Not surprisingly NPM-Ts performed significantly better thBIPM-Us. Careful
adaptation process affected the RNN state space orgamzatiough adaptation of
both input and recurrent weights and the trained SRNs (orefsdaliilt over the trained
SRNSs) outperform other models. But improvement of NPM-U-eroMPM-U is also
visible (mostly the case of EG dataset). Results of NPM nmeoaled presented in Fig. 1b
and Fig. 1d.

7 Discussion and Conclusion

Results reveal an improvement of predictive performande3is and NPM-Us can be
achieved by creating proper input representations. Fdr BG& and CG datasets ESN+
and NPM-U+ models performed significantly better than theunterparts consistently
for all numbers of predictive contexts. Welch modificatidruapaired Student’s t-test
was used to evaluate statistical significance and almosbatiparisons proved to be
significant ap = 0.05 and great majority of comparisons of models with contexttou
above 10 proved to be significantzat= 0.001. In the following we attempt to analyze



state space representations of studied models to justfsetipreliminary results. We
start by showing the impact of proper input representatigndsualizing input weights
initialized by different methods used in this paper (Fig. 2)

a) random weights (ESN & NPM-U) b) Bullinaria & Levy "ratios" (NPM-U+)
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c) Linear transformation of "ratios" (ESN+) d) trained weights (NPM-T)
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Fig. 2. Input representations of words from EG dataset createdrnaomly; b) Bullinaria & Levi
"ratios” as used in [10]; c) linear transformation of "ratfaised in this work; d) by RNN training.

Standard ESN and NPM-U are built over untrained network,retirgout weights
are chosen randomly (Fig. 2a). In the case of ESN+ and NPMdJaccurrence statis-
tics according to Bulinaria & Levy [13] is used (Fig. 2b). $hiesults in similar input
vectors for words from the same grammatical category (eatksvand lives, john and
mary, boy and girl, etc.). In the case of ESN+ we apply lineangformation to scale
down input weight values (Fig. 2¢). Similar representatdbmput words can be also
seenin NPM-T, i.e. NPM built over network trained by extethéf@alman filter (Fig. 2d).

However, even when input representations in ESN+, NPM-UWHNIAM-T are iden-
tical, predictive performance of NPM-T is superior. To azal impact of input repre-
sentation on the network state space organization moréphgeve locate and analyze
fixed point in each model used in this paper. There were tlygaeal configurations of
fixed points as shown in Fig. 3.
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Fig. 3. Distance of fixed points in the network dynamics: a) ESN antYINF, b) ESN+ and NPM-
U+ c) NPM-T. Several input words in NPM-T employ multiple fikpoint in their dynamics (e.g.
dynamics of wordgohn andmary is composed of two attractors and one unstable saddle.)

The contractive dynamics of ESN and NPM-U models is simpligh\iked input,
activities of hidden units converge to a single attractixedipoint in the network state
space. Different input codes of words frarh serve as bias which pushes attractive
points in different directions. If input codes are initiad randomly, distances between
attractors are random (Fig. 3a). When co-occurrence titatis used, similar input
vectors push attractive fixed points in the same directibmdans that the positions
of attractors are still random, but now they are clusteredting similar input words
(Fig. 3b).

Finally, analysis of NPM-T revealed that the dynamics of emidng trained net-
works was not based on single attractive points. In Fig. 3tadyics of several input
words is composed of two attractors and one saddle combin@ig. john, mary, girls,
boys, etc.). Adaptation of both input and recurrent weigltisvs network to change
contractive character of network dynamics and thus outperbther models.

In this work we build on results found in [9], where SRNs agki better pre-
dictive performance by creating proper input represematiduring training process.
Here we studied performance of models using contractivauhycs of untrained recur-
rent networks with inputs representations extracted frardvweo-occurrence statistics
as described in [13]. Extraction method may not be optimdl@more extensive study
should be performed. Nevertheless models with extractad irepresentations perform
significantly better then their counterparts with randouinrepresentations. Similar
results but in the context of systematicity study were aeden [10, 11].
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