
Improving the State Space Organization of Untrained
Recurrent Networks

Michal Čerňanský1, Matej Makula1, andĽubica Beňušková2

1 Faculty of Informatics and Information Technologies, STU Bratislava, Slovakia
2 Department of Computer Science, University of Otago, Dunedin, New Zealand
{cernansky,makula}@fiit.stuba.sk, lubica@cs.otago.ac.nz

Abstract. Recurrent neural networks are frequently used in cognitivescience
community for modeling linguistic structures. More or lessintensive training pro-
cess is usually performed but several works showed that untrained recurrent net-
works initialized with small weights can be also successfully used for this type of
tasks. In this work we demonstrate that the state space organization of untrained
recurrent neural network can be significantly improved by choosing appropriate
input representations. We experimentally support this notion on several linguistic
time series.

1 Introduction

Many commonly used real-world data with time structure can be expressed as a se-
quence of symbols from finite alphabet like symbolic time series. Since their emer-
gence, neural networks were applied to symbolic time seriesanalysis. Especially popu-
lar is to use connectionist models for processing of complexlanguage structures.

Recurrent neural networks (RNNs) are frequently applied toprocessing symbolic
sequences. Elman’s simple recurrent network (SRN) [1] is the most frequently used
architecture. Common algorithms usually used for RNN training are based on gradient
minimization of the output error. Several advanced approaches have been proposed,
especially popular are methods based on the Kalman filtration.

But thorough training process may not be necessary. In [2] wehave studied the
dynamics of untrained recurrent network randomly initialized with small weights. We
have shown that for some tasks the contractive dynamics of such a recurrent network
is sufficient and the structural organization of the state space can be used to create
prediction machines having comparable performance to thoroughly trained SRNs. We
have shown and explained strong correspondence between such a prediction machines
and a class of Markov models – variable length Markov models (VLMMs) [3]. On the
other side carefully trained RNNs can usually achieve significantly better performance.

A lot of attention is now being focused on connectionist models known under the
name “reservoir computing”. The most prominent example of these approaches is a
recurrent neural network architecture called an echo statenetwork (ESN). ESNs were
successfully applied in multiple sequence processing tasks [4] and recently several au-
thors have also used ESNs for language modeling. In [5] ESN was used to the next
symbol prediction task on the “Little Red Riding Hood” fairytale. In [6] authors stud-
ied performance of ESN and SRN in modeling natural-like artificial languages. Authors

claim that ESN show similar predictive performance to SRN, superior to Markov mod-
els of various orders (n-grams). In [7, 8] authors also used ESNs to process natural-like
languages but in the context of studying systematicity, that is defined as the ability to
process novel sometimes even ungrammatical sentences.

In [9] we have studied the state space organization of the recurrent neural network
before and after training on three artificial languages. We found that the dynamics of
the trained network is still based on the fixed point attractors, but these attractors do
not correspond to the symbols representing the words as is the case of the untrained
network. Instead attractors correspond to the word categories enabling the network to
better manage its state space. This behavior was achieved bythe training process by
setting input weights sourced from the inputs of the same category to the similar values.

Input representations, i.e. weights spreading information from active input neuron
are usually randomly initialized in models based on the contractive dynamics such as
ESNs. In this work we study and evaluate word co-occurrence method of initialization
of input weights on two models based on random contractive dynamics: Neural predic-
tion machines (NPMs) and echo state networks (ESNs). We compare their predictive
performance on two linguistic datasets and elaborate upon importance of input repre-
sentations on the state space organization in these models.Such an enhanced ESNs
were already studied in [10, 11], but in the context of the generalization and systematic-
ity. Following [10] we denote models with enhanced input representations by the “plus”
sign.

2 Neural Prediction Machines

Techniques frequently used in RNN state space analysis are clusterization of the re-
current units activities and attributing meaningful information to the extracted clusters.
Neural prediction machines [2] are models using clusters extracted from RNN state
space as predictive contexts. The symbol just presented to the network corresponds to
some cluster if and only if the RNN state belongs to this cluster. The next symbol prob-
ability of a symbola ∈ A for a clusterc is calculated by relating the number of times
(counterNa

c) when symbola follows a symbol driving the RNN to a given clusterc
with the number of times the RNN state belongs to the clusterc (

∑

b∈A N b
c). The next

symbol probability distributions are smoothed by applyingLaplace correction param-
eterγ, hence probability of predicting symbola when in clusterc can be calculated
as:

PNPM (a|c) =
P (a, c)

P (c)

.
=

γ + Na
c

γA +
∑

b∈A N b
c

. (1)

We set the Laplace correction parameterγ to the value ofA−1. This can be seen as
if we initialized counters to the valueγ prior to counting any symbol occurrences thus
attributing some probabilities also to symbols not presentin the training sequence. The
more important the context, the less smoothing is performed. On the other hand, the
probability distribution of rare (statistically less convincing) context is smoothed more
heavily.

3 Echo State Networks

Echo state network is formed of one huge recurrent layer composed of hundreds or
even thousands sparsely interconnected units. Input and recurrent connections initial-
ized randomly with small weights and are not modified in the training phase. Only out-
put weights are trained usually using simple linear regression. Simple and fast training
is the most appealing feature of ESNs.

Experiments with ESNs were done in similar way as described in [12]. Output units
had linear activation function, recursive least squares were used to train the network.
Whenu(t) is an input vector at time stept, activations of internal units were updated
according to

x(t) = fhid

(

Win · u(t) + W · x(t − 1) + Wback · y(t − 1)
)

, (2)

wheref is the internal unit’s activation function,W, Win andWback are hidden-
hidden, input-hidden, and output-hidden connections’ matrices, respectively. Activa-
tions of output units are calculated as

y(t) = fout

(

Wout · [u(t),x(t),y(t − 1)]
)

, (3)

whereWout is hidden-output and output-output connections’ matrix.
The next symbol probabilitiesp(t) in time stept were calculated from activities on

output units. First activities smaller than specified minimal valueomin were set toomin

and then probabilities were estimated by normalizing output acivities:

ôi(t) =

{

omin if oi(t) < omin

oi(t) otherwise
, (4)

p(t) =
ôi(t)

∑

j

ôj(t)
, (5)

whereoi(t) is the activity of the output uniti in timet. omin was set to0.001 throughout
all experiments.

4 Extracting Input Representations

An enhancement of ESN denoted as ESN+ was proposed in [10]. Inthis modification
of ESN input weights were not initialized randomly but simple word co-occurrence
statistics was used [13]. The value of each input weightW in

i,j was set to the ratio:

Ri,j = N ·
N(i, j) + N(j, i)

N(i) · N(j)
(6)

whereN(i, j) is the number of times symboli andj occur next to each other andN is
the length of training sequence.

Since dimensions of matricesR andWin are usually different remaining elements
of Win were set to zeros [10]. In our work we have slightly modified this approach
and we initialized input weights asWin = Trand · R, whereTrand is transformation
matrix created with small random values from(−0.01, 0.01). Better results than with
original method were achieved.

5 Datasets

The first dataset we used was the so called “Elman’s Grammar” (EG) [14]. In [6] ESN’s
ability to learn grammatical structures was studied using this language. Dataset alphabet
A is composed 24 words including end-of-string marker. The training set was composed
of 10000 sentences (55273 symbols) and the test set of independently generated 10000
sentences (54966 symbols). The entropy estimated on the test set is H = 0.534.

Language generated by complex stochastic context-free grammar (CG)3 was used
in experiments with models using self-organization [15]. Grammar was inspired by
child-directed sentences with added recursive structures. The language vocabulary was
composed of 72 words including the end-of-string marker. Similarly to [15] the training
set was composed of 5000 randomly generated sequences (30985 symbols) and the test
set comprises 10000 randomly generated sequences (62387 symbols). The estimated
entropy is H = 0.398.

6 Experiments and Results

The predictive performance was evaluated using normalizednegative log-likelihood
(NNL). NNL was calculated as:

NNL = −
1

T

T
∑

t=1

log|A| Pt(st) ≈ −
1

T

T
∑

t=1

∑

a∈A

Gt(a) log|A| Pt(a), (7)

where the base of the logarithm is the alphabet size|A|, st is the symbol in the test set
in time stept. Pt(a) stands for the probability of predicting symbola in the time stept
andGt(a) is the ground true probability for symbola in time stept. NNL can be seen
as the compression ratio, NNL of0.5 means that original sequence can be compressed
to the half of its original size. Language entropyH can be estimated as:

H =
1

T

T
∑

t=1

∑

a∈A

Gt(a) log|A| Gt(a), (8)

and can be seen as the best achievable NNL of a perfect model.
We tested ESNs with reservoirs of different sizes. Other parameters such as spectral

radius, the sparsity of input and hidden weights, and input weigth range are of much less
importance when processing symbolic sequences. For ESN we provide results for spec-
tral radius of 0.98. The probability of existence of input weight was 1.0 and their values
were choosen randomly (uniform distribution) from interval (-1.0, 1.0). We found out
that the probabilityprec of existence of recurrent weight (determining sparsity of the
recurrent weight matrix) has very little influence on ESN performance. To ensure full
connectivity for small networks and a reasonable computation time for large networks
we setprec = min(1, 10/n), wheren is the number of reservoir units.

ESN+ seemed to be more sensitive to parameter settings. For EG datasetprec was
increased toprec = min(1, 50/n) and for CG dataset it was set to1.0. Also the spectral

3 Generously provided by Igor Farkaš

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

 1 10 100 1000

N
N

L

Unit Count

a) Elman’s Grammar - ESNs

ESN
ESN+

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

 1 10 100 1000

N
N

L

Context Count

b) Elman’s Grammar - NPMs

NPM-U
NPM-U+

NPM-T

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

 1 10 100 1000

N
N

L

Unit Count

c) Complex Grammar - ESNs

ESN
ESN+

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

 1 10 100 1000

N
N

L

Context Count

d) Complex Grammar - NPMs

NPM-U
NPM-U+

NPM-T

Fig. 1. Predictive performance of ESNs (left) and NPMs (right) on EG(top) and CG (bottom).

radius of ESN+ for CG dataset was changed to the value of0.5. Results are presented
in Fig. 1a and Fig. 1c. ESN+ significantly outperforms ESN model.

NPM models with context count varying from 1 to 1000 were tested. NPM-U was
built over untrained and NPM-T was built over trained recurrent part of SRN with 16
hidden units. The model with modified input representationsis denoted as NPM-U+.
We present mean and standard deviations of 10 simulations performed with the same
parameters. NPM-T was build over SRNs carefully trained using Kalman filtration [16].

Not surprisingly NPM-Ts performed significantly better then NPM-Us. Careful
adaptation process affected the RNN state space organization through adaptation of
both input and recurrent weights and the trained SRNs (or models built over the trained
SRNs) outperform other models. But improvement of NPM-U+ over NPM-U is also
visible (mostly the case of EG dataset). Results of NPM models are presented in Fig. 1b
and Fig. 1d.

7 Discussion and Conclusion

Results reveal an improvement of predictive performance ofESNs and NPM-Us can be
achieved by creating proper input representations. For both EG and CG datasets ESN+
and NPM-U+ models performed significantly better than theircounterparts consistently
for all numbers of predictive contexts. Welch modification of unpaired Student’s t-test
was used to evaluate statistical significance and almost allcomparisons proved to be
significant atp = 0.05 and great majority of comparisons of models with context count
above 10 proved to be significant atp = 0.001. In the following we attempt to analyze

state space representations of studied models to justify these preliminary results. We
start by showing the impact of proper input representationsby visualizing input weights
initialized by different methods used in this paper (Fig. 2).

5 10 15 20 25 30
.

who
john

mary
walk
live

walks
lives
boy
girl
cat

dog
boys
girls
cats

dogs
see

hear
feed

chase
sees

hears
feeds

chases

hidden unit

in
pu

t u
ni

t

a) random weights (ESN & NPM−U)

5 10 15 20 25 30
.

who
john

mary
walk
live

walks
lives
boy
girl
cat

dog
boys
girls
cats

dogs
see

hear
feed

chase
sees

hears
feeds

chases

hidden unit

in
pu

t u
ni

t

b) Bullinaria & Levy "ratios" (NPM−U+)

5 10 15 20 25 30
.

who
john

mary
walk
live

walks
lives
boy
girl
cat

dog
boys
girls
cats

dogs
see

hear
feed

chase
sees

hears
feeds

chases

hidden unit

in
pu

t u
ni

t

c) Linear transformation of "ratios" (ESN+)

2 4 6 8 10 12 14 16
.

who
john

mary
walk
live

walks
lives
boy
girl
cat

dog
boys
girls
cats

dogs
see

hear
feed

chase
sees

hears
feeds

chases

hidden unit

in
pu

t u
ni

t
d) trained weights (NPM−T)

Fig. 2. Input representations of words from EG dataset created: a) randomly; b) Bullinaria & Levi
”ratios” as used in [10]; c) linear transformation of ”ratios” used in this work; d) by RNN training.

Standard ESN and NPM-U are built over untrained network, where input weights
are chosen randomly (Fig. 2a). In the case of ESN+ and NPM-U+ co-occurrence statis-
tics according to Bulinaria & Levy [13] is used (Fig. 2b). This results in similar input
vectors for words from the same grammatical category (e.g. walks and lives, john and
mary, boy and girl, etc.). In the case of ESN+ we apply linear transformation to scale
down input weight values (Fig. 2c). Similar representationof input words can be also
seen in NPM-T, i.e. NPM built over network trained by extended Kalman filter (Fig. 2d).

However, even when input representations in ESN+, NPM-U+ and NPM-T are iden-
tical, predictive performance of NPM-T is superior. To analyze impact of input repre-
sentation on the network state space organization more precisely we locate and analyze
fixed point in each model used in this paper. There were three typical configurations of
fixed points as shown in Fig. 3.

00.511.522.53

boy
cat
dog
girl
john
mary
john *
mary *
boys *
cats *
dogs *
girls *
boys
cats
dogs
girls
boys
cats
dogs
girls
john
mary
.
who
chase
chases
feeds
hears
sees
lives
walks
feed
hear
see
live
walk

c) NPM−T

0.50.60.70.80.9

feed
girl
dogs
boys
.
chases
hears
cats
lives
dog
girls
hear
live
boy
chase
feeds
walk
cat
sees
mary
walks
who
see
john

a) ESN and NPM−U

00.511.5

girl
cat
boy
dog
john
mary
boys
girls
cats
dogs
.
chases
feeds
hears
sees
lives
walks
who
chase
feed
hear
see
live
walk

b) ESN+ and NPM−U+

Fig. 3. Distance of fixed points in the network dynamics: a) ESN and NPM-U; b) ESN+ and NPM-
U+ c) NPM-T. Several input words in NPM-T employ multiple fixed point in their dynamics (e.g.
dynamics of wordsjohn andmary is composed of two attractors and one unstable saddle.)

The contractive dynamics of ESN and NPM-U models is simple. With fixed input,
activities of hidden units converge to a single attractive fixed point in the network state
space. Different input codes of words fromA serve as bias which pushes attractive
points in different directions. If input codes are initialized randomly, distances between
attractors are random (Fig. 3a). When co-occurrence statistics is used, similar input
vectors push attractive fixed points in the same direction. It means that the positions
of attractors are still random, but now they are clustered according similar input words
(Fig. 3b).

Finally, analysis of NPM-T revealed that the dynamics of underlying trained net-
works was not based on single attractive points. In Fig. 3c dynamics of several input
words is composed of two attractors and one saddle combination (e.g. john, mary, girls,
boys, etc.). Adaptation of both input and recurrent weightsallows network to change
contractive character of network dynamics and thus outperform other models.

In this work we build on results found in [9], where SRNs achieved better pre-
dictive performance by creating proper input representations during training process.
Here we studied performance of models using contractive dynamics of untrained recur-
rent networks with inputs representations extracted from word co-occurrence statistics
as described in [13]. Extraction method may not be optimal and more extensive study
should be performed. Nevertheless models with extracted input representations perform
significantly better then their counterparts with random input representations. Similar
results but in the context of systematicity study were achieved in [10, 11].

Acknowledgments. This work was supported by the grants Vega 1/0848/08 and Vega
1/0822/08.

References

1. Elman, J.L.: Finding structure in time. Cognitive Science 14(2) (1990) 179–211
2. Tiňo, P.,Čerňanský, M., Beňušková,̌L.: Markovian architectural bias of recurrent neural

networks. IEEE Transactions on Neural Networks15(1) (2004) 6–15
3. Ron, D., Singer, Y., Tishby, N.: The power of amnesia. Machine Learning25 (1996) 117–149
4. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy

in wireless communication. Science304(5667) (2004) 78–80
5. Jaeger, H.: Short term memory in echo state networks. Technical Report GMD 152, German

National Research Center for Information Technology (2001)
6. Tong, M.H., Bickett, A.D., Christiansen, E.M., Cottrell, G.W.: Learning grammatical struc-

ture with Echo State Networks. Neural Networks20 (2007) 424–432
7. Frank, S.L.: Strong systematicity in sentence processing by an Echo State Network. In

Kollias, S., Stafylopatis, A., Duch, W., Oja, E., eds.: Artificial Neural Networks – ICANN
2006, Part I, Lecture Notes in Computer Science. Volume 4131. Berlin: Springer (2006)
505–514

8. Frank, S.L.: Learn more by training less: systematicity in sentence processing by recurrent
networks. Connection Science18 (2006) 287–302

9. Čerňanský, M., Makula, M., Beňušková,Ľ.: Organization of the state space of a simple
recurrent neural network before and after training on recursive linguistic structures. Neural
Networks20 (2007) 236–244

10. S. L. Frank, M.Čerňanský: Generalization and systematicity in echo state networks. In:
Proceedings of the 30th Cognitive Science Conference, Washington DC, USA. (2008) 733–
738

11. S. L. Frank, H. Jacobsson: Sentence processing in echo state networks: a qualitative analysis
by finite state machine extraction. Submitted to Journal of Algorithms (2008)

12. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks.
Technical Report GMD 148, German National Research Center for Information Technology
(2001)

13. Bullinaria, J.A., Levy, J.P.: Extracting semantic representations from word co-occurrence
statistics: a computational study. Behavior Research Methods39 (2007) 510–526

14. Elman, J.: Distributed representations, simple recurrent networks, and grammatical structure.
Machine Learning7 (1991) 195–225

15. Farkaš, I., Crocker, M.: Recurrent networks and natural language: exploiting self-
organization. In: Proceedings of the 28th Cognitive Science Conference, Vancouver, Canada.
(2006) 1275–1280

16. Čerňanský, M., Beňušková,̌L.: Simple recurrent network trained by RTRL and extended
Kalman filter algorithms. Neural Network World13(3) (2003) 223–234

