
Feed-forward Echo State Networks
Michal Čerňanský

Faculty of Informatics and Information Technologies
Slovak University of Technology
Ilkovičova 3, 812 19 Bratislava
E-mail: cernansky@fiit.stuba.sk

Matej Makula
Faculty of Informatics and Information Technologies

Slovak University of Technology
Ilkovičova 3, 812 19 Bratislava

E-mail: makula@fiit.stuba.sk

Abstract— New method for modeling nonlinear systems called
the echo state networks (ESNs) has been proposed recently [5].
ESNs make use of the dynamics created by huge randomly
created layer of recurrent units. Dynamical behavior of untrained
recurrent networks was already explained in the literature and
models using this behavior were studied [6], [9]. They are based
on the fact that the activities of the recurrent layer of the
recurrent network randomly initialized with small weights reflect
history of the inputs presented to the network. Knowing how the
recurrent layer stores the information and understanding the
state dynamics of recurrent neural networks we propose modified
ESN architecture. The only ”true” recurrent connections are
backward connection from output to recurrent units and the
reservoir is built only by ”forwardly” connected recurrent units.
We show that this simplified version of the ESNs can also be
successful in modeling nonlinear systems.

I. INTRODUCTION

The key part of recurrent neural networks (RNNs) perfor-
mance is encoded in activities of recurrent units (network
state) and their variations in time (network dynamics). It is
well-known fact that recurrent neural networks have universal
approximation capability, although development of desired
dynamics in training might be sometimes difficult or even
unfeasible task. On the other hand recent studies show that
sometimes instead of complicated RNN weights adaptation,
it might be beneficial to leave network dynamics randomly
initialized.

It has been known for some time that when RNN is
used to process symbolic sequences, activations of recurrent
units show considerable amount of information about input
sequence prior to training [1], [6]. It was experimentally
shown that RNNs initialized with small weights are inherently
biased towards Markov models [9], [10]. This phenomenom
is refered as Markovian architectural bias of RNNs. When
dealing with problems, where this Markovian representation
is useful, initial network dynamics can be left unchanged
and only transformation of state to desired output has to be
carried out. This can be performed either by simple neural
network layer or by other advanced method, e.g. by prediction
model [7], [8]. One interesting and promising approach based
on these principles is the Echo state network (ESN), where
untrained ”huge” randomly initialized RNN is fed by real-
valued input sequence.

Major advantage of this ’unusual’ approach is the elim-
ination of the recursive dependencies between weights in

adjustment process, i.e. problem when even small weight
change in one step can have huge impact on network ac-
tivities in other steps. Thus, instead of complicated training
of the whole network, only the output layer (or the prediction
model) is adjusted to produce desired output from the inherent
’Markovian’ dynamics.

The next section shortly reviews the ESNs and the idea
of echo states is explained. To clarify the dynamics of the
ESN, in the third section we recapitulate the notion of the
architectural bias property of recurrent neural networks. In
the fourth section we propose simple modification to the
ESN called ”feed-forward” ESN (FF-ESN), where the input
sequence history is used explicitly by choosing feed-forward
topology of the dynamical reservoir. The concept of the
architectural bias or echo states is emphasized by removing
recurrent connections and we hope the resulting model will be
easier to study and further modifications to meet task-specific
requirements will be possible. Preliminary experimental results
are shown and conclusions are formulated in the last sections.

II. ECHO STATE NETWORKS

Echo state networks represent a new powerful approach
in recurrent neural network research [2], [3], [4]. Instead of
difficult learning process, ESNs utilize Markovian architectural
bias of untrained RNN to reflect history of seen inputs - here
referred to as echo state property. More precisely, the recurrent
layer of a large RNN is interpreted as a rich ”reservoir” of
complex dynamics. Output units are used to extract interesting
features from this dynamics, thus only network-output con-
nections are modified during learning process. A significant
advantage of this approach is that simple linear regression
algorithms can be used for adjusting output weights.

Fig. 1. The simple ESN architecture. Dashed arrows indicate connections
that are possible but not required [2].

The network includes input, hidden and output ”classical”
sigmoid units (Fig. 1). The reservoir of the ESN dynamics is
represented by hidden layer with partially connected hidden
units. Main and essential condition for successful using of
the ESNs is the ”echo state” property of their state space.
In general, the network state is required to be an ”echo”
of the input history. If this condition is met, only network
output weights adaptation is sufficient to obtain RNN with
high performance. However, for large and rich reservoir of
dynamics, hundreds of hidden units are needed. When u(t+1)
is an input vector at time step t+1, activations of internal units
are updated according to

x(t + 1) = f
(
Win · u(t + 1) + W · x(t) + Wback · y(t)

)

(1)
where f is the internal unit’s activation function, W, Win and
Wback are hidden-hidden, input-hidden, and output-hidden
connections’ matrices, respectively. Activations of utput units
are calculated as

y(t + 1) = f
(
Wout · [u(t + 1),x(t + 1),y(t)]

)
(2)

where Wout is hidden-output and output-output connections’
matrix.

Echo state property means that for each internal unit xi there
exists an echo function ei such that the current state can be
written as xi(t) = ei(u(t), u(t− 1), . . .) [2]. The recent input
presented to the network has more influence to the network
state than an older input, the input influence gradually fades
out. So the same input signal history u(t), u(t−1), will drive
the network to the same state xi(t) in time t regardless the
network initial state. To make the idea of the echo states even
more clear we recapitulate the concept of the architectural bias
in the next section.

III. ARCHITECTURAL BIAS

Recurrent units of recurrent networks show considerable
amount of structural differentiation [9], [10] before learning.
It means, that even in an untrained - randomly initialized
recurrent neural network activities of recurrent neurons can be
grouped in clusters [6]. This phenomenon can be explained by
means of the Iterated Function System theory. IFS theory was
originally developed by Barnsley (Fractals Everywhere 1988)
as a method of describing the limit behavior of systems of
transformations.

An iterated function system is a finite set of contraction
transformations

Ω = {ωi|ωi : X −→ X, i ≤ n} (3)

Limit behavior of a single transformation is a single point
in the space. Limit set over the union of transformations can
be extremely complex with recursive structures. This limit
behavior of composite mapping is called the IFS attractor. An
example of an IFS is set of these three transformations over
state space X = [0, 1]2:

ωa(x, y) = (0.5x + 0.5, 0.5y)
ωb(x, y) = (0.5x, 0.5y + 0.5)
ωc(x, y) = (0.5x, 0.5y)

(4)

Limit behavior of the composition of these three transforma-
tions is a complex set representation known as the Sierpinski
triangle (Fig. 2).

Fig. 2. Sierpinski triange created by infinite number of the union of
transformations described by eq. 4

Behavior of recurrent networks in symbolic processing can
be explained by IFS theory. For example the dynamics of
simple RNN can be expressed by equation

x(t + 1) = f
(
Win · u(t + 1) + W · x(t)

)
, (5)

where f stands for activation function. W and Win are
matrices with recurrent and input weights respectively. Having
finite input alphabet this dynamics can be rewritten to

x(t + 1) = f (Vi · x(t)) . (6)

For each input vector i from the input alphabet A =
{a1, . . . , an} corresponding weight matrix Vi can be found.
Both approaches for calculation of the next activations of
recurrent units (state) x(t + 1) are identical. When an input
symbol appears, corresponding weight matrix Vi is applied to
the current state x(t). In other words, IFS transformations are
represented by weight matrices Vi and specific input vector
selects, which transformation is applied to the current state.

The next IFS is a modification of the previous one. The
fourth transformation was added, its attractor is the top right-
hand corner of state space:

ωa(x, y) = (0.5x + 0.5, 0.5y)
ωb(x, y) = (0.5x, 0.5y + 0.5)
ωc(x, y) = (0.5x, 0.5y)
ωd(x, y) = (0.5x + 0.5, 0.5y + 0.5)

(7)

Single transformation shrinks the entire image into one-
forth sized copy of the original. A position of a point is

Fig. 3. Regions of points with common IFS address prefixes.

mostly determined by the last performed transformation. This
last performed transformation corresponds to the last symbol
presented to the network. Next input symbol will release
corresponding transformation and again, whole state space
is mapped into a specific subspace. But its position within
subspace is determined by the second last transformation. With
an infinite precision, current point in the state space reflects
all performed transformations, i.e. its position is determined
by all input symbols. This notion is illustrated in Fig. 3.

The key difference between the ESN and the simple IFS
model is the huge and randomly interconnected recurrent
layer serving as the ESN reservoir and the real-valued input
sequence in the case of the ESN. Nevertheless the principle
remains the same and is formulated through the definition of
the echo states - activities of internal units reflect the history
of the inputs presented to the network with the most recent
input having the biggest impact.

IV. SIMPLIFIED ”FEED-FORWARD” ESN MODEL

As already mentioned, the proper preparation of the reser-
voir plays the key role in the ESN training. Usually multiple
trials are needed to find appropriate parameters for ideal ESN
setup. To help us to understand, how do the ESNs achieve good
performance in dynamical modeling by using activities found
in the reservoir and possibly improve and facilitate reservoir
creation we propose simplified ESN architecture called ”feed-
forward” ESN (FF-ESN).

Taking into account the architectural bias principles behind
the ESN echo states, the network output can be seen as simple
nonlinear function of the input history with finite length since
the influence of inputs fades out exponentially in time and
inputs presented in earlier time steps can be ignored. By
removing recurrent connections we propose modified model
with the reservoir of units connected in a feed-forward manner.
Units in a reservoir can be indexed and their activities depend
only on activities of units with smaller indices. No cycles are
present in the graph with nodes representing units and edges
representing connections. FF-ESN is shown in the Fig. 4a.

Please note, that although we call this network as ”feed-
forward” ESN, all connections are still recurrent ones because
units are fed by activities from previous time steps. But this
network can be easily transformed into regular feed-forward
network by the process identical to the RNN unfolding in time

Fig. 4. (a) Modified ”feed-forward” ESN architecture. (b) Feed-forwad ESN
unfolded in time into regular feed-forward network.

when using backpropagation through time learning algorithm
(see Fig. 4b).

We have used exactly the same training process as is
commonly used in training regular ESNs. The only difference
is how a recurrent weight matrix is generated. Initial values
for biases, recurrent and backward weights falls to the same
ranges as described for regular ESNs. Recurrent weight matrix
is rescaled to the required spectral radius λ and the matrix is
then made lower triangular by keeping only elements below
diagonal. To force the ESN to keep longer history of inputs
in activities every unit i was connected to the previous one
i − 1 through the weight wi,i−1 of chosen constant value, in
our experiments we used the value of spectral radius λ.

V. EXPERIMENTAL RESULTS

First, we compared FF-ESN with common ESN on simple
sinusoid time series y(n) = 1/2sin7(n/5) with exactly the
same parameters and under the same conditions as in [2]. λ
for FF-ESN was set to the value of 0.88. For both network
architectures 10 simulation runs resulted in the same averaged
MSEtrain ≈ 10−10 and MSEtest ≈ 10−10.

Fig. 5. Generation of periodic discrete sequence (”House of the Rising Sun”
[2]) by FF-ESN. The first 500 samples are ”teacher forced” and then the
network was let to run freely. Original sequence vs. generated one (dotted
line) is shown in the top plot, absolute error is shown bellow.

The next simple experiment consisted in training the net-
work to cycle through periodic attractor corresponding to the

discrete sequence (”House of the Rising Sun” [2]). λ parameter
for FF-ESN was set to the value of 0.908. The noise of
10−3 helped to stabilize the solution in the same way as in
regular ESN. Yet again, similar resulting performance of 10
simulation runs was obtained by the FF-ESN and for the ESN,
MSEtrain ≈ 10−8 and MSEtest ≈ 10−7. Generated and
correct output together with the absolute prediction error is
shown in the Fig. 5.

Finally, we have tested FF-ESN on the Mackey-Glass (MG)
prediction task. Time series was shifted by -1 and tanh
function was applied in the same way as described in [5].

Fig. 6. Modeling Mackey-Glass time series by FF-ESN. The first 500 samples
are taken from the initial ”teacher forced” sequence.

We used networks with the reservoir of 1000 units with 1%
connectivity. Input and recurrent weights were chosen from
(-1.0, 1.0), recurrent weight matrix was then rescaled to the
spectral radius of 0.8 for ESN and 0.9 for FF-ESN. Each unit
in the reservoir has bias weight chosen from (-0.2, 0.2). The
noise of 10−10 was added to the input sequence to increase
the stability of the trained network.

Training and testing was done in the same way as in [5].
The length of the training sequence was 3000, the first 1000
reservoir activities were thrown away and the remaining 2000
activities were used for the Wout calculation. Then the trained
network was used to generate following 3000 steps. Generated
and correct MG output together with the absolute prediction
error is shown in the Fig. 6. The average training error was
MSEtrain = 1.79 · 10−14 for FF-ESN and MSEtrain =
3.17·10−14 for ESN. We also calculated normalized root mean
square error for the 84 step prediction over 10 trials

NRMSE84 = (
10∑

i=1

(d(+84) − y(+84))2/(10σ2))1/2, (8)

where d stands for the desired correct MG output and y
is the network prediction. Resulting normalized root mean
square error was NRMSE84 = 4.73 · 10−4 for FF-ESN and
NRMSE84 = 1.84 · 10−4 for ESN.

Although very similar results were obtained by using FF-
ESN, this architecture is more sensitive to the network initial-
ization parameters. The existence of connections between unit

i− 1 and unit i seems to be crucial for proper function of the
FF-ESN, since this connections guarantee sufficient FF-ESN
memory capacity.

VI. CONCLUSIONS

We showed that by simply done nonlinear combination of
past activities we can create prediction machines with very
high accuracy comparable to the ESNs, sufficient for the long
and precise sequence generation. Since no ”real” recurrent
connections exist between units (FF-ESN can be transformed
into regular feed-forward network), the network output is
purely a function of finite sequence history. In regular ESN that
meet ”echo-state” property activity xi of dynamical reservoir
unit can be expressed as xi(t) = ei(u(t), u(t− 1), . . .) where
ei is the ”echo function” of indefinitely long history of input
signal. On the other hand the activity of FF-ESN reservoir unit
xi can be exactly expressed as a function of finite history of
input values xi(t) = ei(u(t), u(t−1), . . . , u(t−N)), where N
is the number of units in the reservoir, as can be seen in Fig.
4b. This straightforward functional relation can be attractive
for deeper study of the echo-state property.

In the proposed model, the dependencies between units are
clear and methods adjusting dynamical reservoir by adding
or removing units can be studied. For example, since units
with higher indices express richer dynamics, reservoir could
be iteratively scaled by adding or removing unit with the high-
est index. Also developing other deterministic approaches to
create dynamical reservoir expressing rich and useful behavior
can be subject of further research.

ACKNOWLEDGMENT

This work was supported by the grant APVT-20-030204.

REFERENCES

[1] M.H. Christiansen and N. Chater. Toward a connectionist model of
recursion in human linguistic performance. Cognitive Science, 23:417–
437, 1999.

[2] H. Jaeger. The ”echo state” approach to analysing and training recurrent
neural networks. Technical Report GMD Report 148, German National
Research Center for Information Technology, 2001.

[3] H. Jaeger. Short term memory in echo state networks. Technical Report
GMD Report 152, German National Research Center for Information
Technology, 2001.

[4] H. Jaeger. Adaptive nonlinear system identification with echo state
networks. In Proceedings of NIPS 02, 2002.

[5] H. Jaeger and H. Haas. Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless communication. Science,
304(5667):78–80, 2004.

[6] J. F. Kolen. The origin of clusters in recurrent neural network state
space. In Proceedings from the Sixteenth Annual Conference of the
Cognitive Science Society, pages 508–513. Hillsdale, NJ: Lawrence
Erlbaum Associates, 1994.

[7] P. Tiňo. Spatial representation of symbolic sequences through iterative
function system. IEEE Transactions on Systems, Man, and Cybernetics
Part A: Systems and Humans, 29(4):386–392, 1999.

[8] P. Tiňo and G. Dorffner. Recurrent neural networks with iterated function
systems dynamics. In International ICSC/IFAC Symposium on Neural
Computation, 1998.

[9] P. Tiňo, M. Čerňanský, and L. Beňušková. Markovian architectural bias
of recurrent neural networks. IEEE Transactions on Neural Networks,
15(1):6–15, 2004.

[10] P. Tiňo and M. Čerňanský and L. Beňušková. Markovian architectural
bias of recurrent neural networks. In P. Sinčák et al., editor, Intelligent
Technologies – Theory and applications, pages 17–23. IOS Press, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

