The CMA Evolution Strategy: A Tutorial

Nikolaus Hansen

January 18, 2009

Contents

Nomenclature

0

Preliminaries

0.1 Eigendecomposition of a Positive Definite Matrix
0.2 The Multivariate Normal Distribution
0.3 Randomized Black Box Optimization
0.4 Hessian and Covariance Matrices v v v v v v v v ..

Basic Equation: Sampling
Selection and Recombination: Moving the Mean

Adapting the Covariance Matrix

3.1 Estimating the Covariance Matrix From Scratch

3.2 Rank-p-Update L

3.3 Rank-One-Update
3.3.1 ADifferent Viewpoint
3.3.2 Cumulation: Utilizing the EvolutionPath

3.4 Combining Rank-y-Update and Cumulation

Step-Size Control
Discussion

Algorithm Summary: The CMA-ES
A.1 Implementational Concerns

MATLAB Source Code

Reformulation of Learning Parameter c..

[%)

NN 0B W

16

20

24
26

29

31

Nomenclature

We adopt the usual vector notation, where bold letters, v, are column vectors, capital bold
letters, A, are matrices, and a transpose is denoted by vT. A list of used abbreviations and
symbols is given in alphabetical order.

Abbreviations

CMA Covariance Matrix Adaptation
EMNA Estimation of Multivariate Normal Algorithm
ES Evolution Strategy

(1/ g1, wy, A)-ES, Evolution Strategy with . parents, with recombination of all x4 parents,
either Intermediate or Weighted, and A offspring.

RHS Right Hand Side.

Greek symbols

A > 2, population size, sample size, number of offspring, see (5).
1 < X parent number, number of selected search points in the population, see (6).

Leov, parameter for weighting between rank-one and rank-p update, see (27).

Hoff = (- wf) - 1/||w||?, the variance effective selection mass, see (8).

o) € Ry, step-size.

Latin symbols
B € R", an orthogonal matrix. Columns of B are eigenvectors of C' with unit length and
correspond to the diagonal elements of D.
C(9) € R™*" covariance matrix at generation g.
c;;, diagonal elements of C'.

c. < 1, learning rate for cumulation for the rank-one update of the covariance matrix, see
(22) and (42), and Table 1.

Ccov < 1, learning rate for the covariance matrix update, see (14), (26), (27), and (43), and
Table 1.

co < 1, learning rate for the cumulation for the step-size control, see (28) and (40), and
Table 1.

D € R", a diagonal matrix. The diagonal elements of D are square roots of eigenvalues of
C and correspond to the respective columns of B.

d; > 0, diagonal elements of diagonal matrix D, d? are eigenvalues of C.
ds ~ 1, damping parameter for step-size update, see (29), (34), and (41).
E Expectation value

f:R* - R,z — f(x), objective function (fitness function) to be minimized.

fsphere 1 R" = Ryz = ||a]|* = aTa = 307, 2.

g € Ny, generation counter, iteration number.

I € R™*", Identity matrix, unity matrix.

m(9) € R”, mean value of the search distribution at generation g.
n € N, search space dimension, see f.

N (0,T), multivariate normal distribution with zero mean and unity covariance matrix. A
vector distributed according to A (0,I) has independent, (0, 1)-normally distributed
components.

N(m,C) ~ m + N(0,C), multivariate normal distribution with mean m € R™ and
covariance matrix C' € R™*™. The matrix C' is symmetric and positive definite.

p € R", evolution path, a sequence of successive (normalized) steps, the strategy takes over
a number of generations.

w;, where ¢ = 1, ..., u, recombination weights, see (6).

:J:Ef 1 ¢ R, k-th offspring/individual from generation g + 1. We also refer to (91, as

search point, or object parameters/variables, commonly used synonyms are candidate
solution, or design variables.

acgf’/\ﬂ), i-th best individual out of m(1g+1), e ,a:g\gH), see (5). The index 7 : A denotes the
index of the i-th ranked individual and f(a:f;rl)) < f(méf’;l)) <. < f(mf\gjl))
where f is the objective function to be minimized.

y U = (2 _ m9) /5@ corresponding to z;, = m + oyy.

0 Preliminaries

This tutorial introduces the CMA Evolution Strategy (ES), where CMA stands for Covariance
Matrix Adaptation. The CMA-ES is a stochastic method for real-parameter (continuous do-
main) optimization of non-linear, non-convex functions (see also Section 0.3 below).! We try
to motivate and derive the algorithm from intuitive concepts and from requirements of non-
linear, non-convex search in continuous domain. In order to refer to the described algorithm,
also cite [8]. For finding a concise algorithm description go directly to Appendix A. The
respective Matlab source code is given in Appendix B.

Before we start to introduce the algorithm in Sect. 1, a few required fundamentals are
summed up.

'While CMA variants for multi-objective optimization and elitistic variants have been proposed, this tutorial is
solely dedicated to single objective optimization and to non-elitistic truncation selection, also referred to as comma-
selection.

0.1 Eigendecomposition of a Positive Definite Matrix

A symmetric, positive definite matrix, C' € R™*™, is characterized in that for all z € R™\{0}
holds TC«x > 0. The matrix C has an orthonormal basis of eigenvectors, B = [by, ..., b,],
with corresponding eigenvalues, d7, . .., d% > 0.

That means for each b; holds

Cb; = dib; . (0
The important message from (1) is that eigenvectors are not rotated by C'. This feature
uniquely distinguishes eigenvectors. Because we assume the orthogonal eigenvectors to be

of unit length, b7 b; = 6;; = { Loifi=

T o . .
0 otherwise ° and B™ B = I (obviously this means

B~! = BY, and it follows BBT = I). An basis of eigenvectors is practical, because
for any v € R™ we can find coefficients «;, such that v = ZZ a;b;, and then we have
C’U = ZZ d?albl

The eigendecomposition of C' obeys
C = BD?’B" | 2)
where

B is an orthogonal matrix, BT B = BB™ = I. Columns of B form an orthonormal basis
of eigenvectors.

D? = DD = diag(ds,...,d,)* = diag(d?,...,d?) is a diagonal matrix with eigenvalues
of C' as diagonal elements.

D = diag(ds, ..., d,) is adiagonal matrix with square roots of eigenvalues of C' as diagonal
elements.

The matrix decomposition (2) is unique, apart from signs of columns of B and permutations
of columns in B and D? respectively, given all eigenvalues are different.’
Given the eigendecomposition (2), the inverse C~! can be computed via

c' = (BD*B")"
= BT

From (2) we naturally define

C: = BDB" 3)
and therefore
BD'BT

1 1
B di — ...,— | BT
lag(dl, ,dn)

9
Il

2Given m eigenvalues are equal, any orthonormal basis of their m-dimensional subspace can be used as column
vectors. For m > 1 there are infinitely many such bases.

N(O, 021)

N(0,C)

Figure 1: Ellipsoids depicting one-o lines of equal density of six different normal distribu-
tions, where 0 € R, D is a diagonal matrix, and C is a positive definite full covariance
matrix. Thin lines depict possible objective function contour lines

0.2 The Multivariate Normal Distribution

A multivariate normal distribution, N/ (m, C), has a unimodal, “bell-shaped” density, where
the top of the bell (the modal value) corresponds to the distribution mean, m. The distribution
N (m, C) is uniquely determined by its mean m € R™ and its symmetric and positive definite
covariance matrix C € R"*"™. Covariance (positive definite) matrices have an appealing
geometrical interpretation: they can be uniquely identified with the (hyper-)ellipsoid {x €
R™ |£TC~1z = 1}, as shown in Fig. 1. The ellipsoid is a surface of equal density of the
distribution. The principal axes of the ellipsoid correspond to the eigenvectors of C, the
squared axes lengths correspond to the eigenvalues. The eigendecomposition is denoted by
C = B (D)’ BT (see Sect.0.1). If D = o1, where ¢ € R, and I denotes the identity
matrix, C = %I and the ellipsoid is isotropic (Fig. 1, left). If B = I, then C = D?is a
diagonal matrix and the ellipsoid is axis parallel oriented (middle). In the coordinate system
given by the columns of B, the distribution A/ (0, C) is always uncorrelated.
The normal distribution A/ (m, C') can be written in different ways.

N(@m,C) ~ m+N(0,C)
~ m+CiIN(0,1)
~ m+ BD BTN (0,1)

—_————
~ MO0,I)

~ m+ BDN(0,I) , “
———

~N(0,D2)

where “~” denotes equality in distribution, and C 3 = BDBY. The last row can be well
interpreted, from right to left

N(0,TI) produces an spherical (isotropic) distribution as in Fig. 1, left.

Initialize distribution parameters (%)

[For generation g = 0,1,2,...
Sample)\ independent points from distribution P (a:|0(9)) — X1,..., L)
Evalutate the sample x1,...,x on f
Update parameters 80911 = Fp(09) (a1, f(x1)),..., (x5, f(x))))
break, if termination criterion met

Figure 2: Randomized black box search. f : R™ — R is the objective function

D scales the spherical distribution within the coordinate axes as in Fig. 1, middle. DA(0,1) ~
N (O, D2) has n independent components. The matrix D can be interpreted as (indi-
vidual) step-size matrix and its diagonal entries are the standard deviations of the com-
ponents.

B defines a new orientation for the ellipsoid, where the new principal axes of the ellipsoid

correspond to the columns of B. Note that B has ”22_ % degrees of freedom.

Equation (4) is useful to compute N (m, C) distributed vectors, because A/ (0,I) is a vector
of independent (0, 1)-normally distributed numbers that can easily be realized on a computer.

0.3 Randomized Black Box Optimization

We consider the black box search scenario, where we want to minimize an objective function
(or cost function or fitness function)

f: R"—=R
z— f(z) .

The objective is to find one or more search points (candidate solutions), € R", with a func-
tion value, f(x), as small as possible. We do not state the objective of searching for a global
optimum, as this is often neither feasible nor relevant in practice. Black box optimization
refers to the situation, where function values of evaluated search points are the only accessible
information on f.> The search points to be evaluated can be freely chosen. We define the
search costs as the number of executed function evaluations, in other words the amount of
information we needed to aquire from f*. Any performance measure must consider the search
costs fogether with the achieved objective function value.’

A randomized black box search algorithm is outlined in Fig. 2. In the CMA Evolution
Strategy the search distribution, P, is a multivariate normal distribution. Given all variances
and covariances, the normal distribution has the largest entropy of all distributions in R™.

3Knowledge about the underlying optimization problem might well enter the composition of f and the chosen
problem encoding.

4Also f is sometimes denoted as cost function, but it should not to be confused with the search costs.

SA performance measure can be obtained from a number of trials as, for example, the mean number of function
evaluations to reach a given function value, or the median best function value obtained after a given number of
function evaluations.

Furthermore, coordinate directions are not distinguished in any way. Both makes the normal
distribution a particularly attractive candidate for randomized search.

Randomized search algorithms are regarded to be robust in a rugged search landscape,
which can comprise discontinuities, (sharp) ridges, or local optima. The covariance matrix
adaptation (CMA) in particular is designed to tackle, additionally, ill-conditioned and non-
separable® problems.

0.4 Hessian and Covariance Matrices

We consider the convex-quadratic objective function fz : — %scTH x, where the Hessian
matrix H € R™*™ is a positive definite matrix. Given a search distribution N (m, C), there is
a close relation between H and C': Setting C = H ~! on fy is equivalent to optimizing the
isotropic function fsphere(€) = %wT:c = % > x? (where H = I) with C = L7 That is, on
convex-quadratic objective functions, setting the covariance matrix of the search distribution
to the inverse Hessian matrix is equivalent to rescaling the ellipsoid function into a spherical
one. Consequently, we assume that the optimal covariance matrix equals to the inverse Hessian
matrix, up to a constant factor.® Furthermore, choosing a covariance matrix or choosing a
respective affine linear transformation of the search space (i.e. of @) is equivalent [7], because
for any full rank n x n-matrix A we find a positive definite Hessian such that (Az)T Az =
;e AT Az = o H.

Consequently, the objective of covariance matrix adaptation is to approximate the inverse
Hessian matrix, similar to a quasi-Newton method. More general, the objective is to suit the
search distribution to the contour lines of the objective function f. In Fig. 1 the solid-line
distribution in the right figure follows the objective function contours most suitably, and it is
easy to foresee that it will aid to approach the optimum the most.

The condition number of a positive definite matrix A is defined via the Euclidean norm:
cond(A) def Al x | A="]|, where || A]| = sup;— | Az||. For a positive definite (Hessian
or covariance) matrix A holds ||A| = Amax and cond(A) = f\‘;—?": > 1, where A\ax and
Amin are the largest and smallest eigenvalue of A.

1 Basic Equation: Sampling

In the CMA Evolution Strategy, a population of new search points (individuals, offspring) is
generated by sampling a multivariate normal distribution.” The basic equation for sampling

the search points, for generation number g = 0, 1,2, ..., reads'®
:c,(cgﬂ) ~ m9 4 U(Q)N(O, C(g)) fork=1,...,\ 5)

6 An n-dimensional separable problem can be solved by solving n 1-dimensional problems separately, which is a
far easier task.

7 Also the initial mean value 71 has to be transformed accordingly.

8Even though there is good intuition and strong empirical evidence for this statement, a rigorous proof is missing.

“Recall that, given all (co-)variances, the normal distribution has the largest entropy of all distributions in R™.

10Framed equations belong to the final algorithm of a CMA Evolution Strategy.

where

~ denotes the same distribution on the left and right side.

N, C (g)) is a multivariate normal distribution with zero mean and covariance matrix C (9),
see Sect. 0.2. It holds m(?) + o(@WA(0,C9) ~ N (m'9), (¢09)2C9).

w,(cg T ¢ R", k-th offspring (individual, search point) from generation g + 1.

m(9 € R™, mean value of the search distribution at generation g.

a9 e R, “overall” standard deviation, step-size, at generation g.

. . . 2 .
C9) e R™*" covariance matrix at generation g. Up to the scalar factor @’ CW¥ is the
covariance matrix of the search distribution.

A > 2, population size, sample size, number of offspring.

To define the complete iteration step, the remaining question is, how to calculate (911,
CtD) and o9+ for the next generation g + 1. The next three sections will answer
these questions, respectively. An algorithm summary with all parameter settings and MAT-
LAB source code is given in Appendix A and B, respectively.

2 Selection and Recombination: Moving the Mean

The new mean m(9+1) of the search distribution is a weighted average of selected points

from the sample wggﬂ), . mE\gH):
m
mt) = 3, gl ()
i=1
m
Zwi = 1’ w12U)222wu>0 (7)
=1

where

<)\ is the parent population size, i.e. the number of selected points.

wi=1.... € R4, positive weight coefficients for recombination. For w;—.. , =1 /i, Equation
(6) calculates the mean value of y selected points.

2% i-th best individual out of (™. .., 2{"™" from (5). The index i : A denotes the

index of the i-th ranked individual and f(z\%™) < f@¥Y) < ... < f2Y),
where f is the objective function to be minimized.

Equation (6) implements truncation selection by choosing i1 < A out of \ offspring points.
Assigning different weights w; must also be interpreted as a selection mechanism. Equation
(6) implements weighted intermediate recombination by taking ;1 > 1 individuals into account

for a weighted average.
-1
||w||1)2 1 2
of = = = (Y wi @®)
pef (||w||2 w3 Z

The measure
1=

will be repeatedly used in the following and can be paraphrased as variance effective selection
mass. From the definition of w; in (7) we derive 1 < peg < p, and peg = p for equal
recombination weights, i.e. w; = 1/p forall ¢ = 1...pu. Usually, peg ~ A/4 indicates a
reasonable setting of w;. A typical setting could be w; oc p — i+ 1, and p = A/2.

3 Adapting the Covariance Matrix

In this section, the update of the covariance matrix, C, is derived. We will start out estimating
the covariance matrix from a single population of one generation (Sect. 3.1). For small pop-
ulations this estimation is unreliable and an adaptation procedure has to be invented (rank-p-
update, Sect. 3.2). In the limit case only a single point can be used to update (adapt) the covari-
ance matrix at each generation (rank-one-update, Sect. 3.3). The adaptation can be enhanced
by exploiting dependencies between successive steps applying cumulation (Sect. 3.3.2). Fi-
nally we combine the rank-y and rank-one updating methods (Sect. 3.4).

3.1 Estimating the Covariance Matrix From Scratch

For the moment we assume that the population contains enough information to reliably es-
timate a covariance matrix from the population.!! For the sake of convenience we assume
o9 =1 (see (5)) in this section. For 6(9) # 1 the formulae hold except for a constant factor.

We can (re-)estimate the original covariance matrix C9) using the sampled population
from (5), mgg o wE\g +1), via the empirical covariance matrix

T

A A A
1 1 1
(g+1) _ (g+1) + (9+1) q+1 - (a+1)
Cefnp =31 E T, i\ E x; x; -3 E . 9
i=1 j=1 j=1

The empirical covariance matrix Cé%f;) is an unbiased estimator of C(9): assuming the

(g+1)
7

[C (o) | C (9)] C9). Consider now a slightly different approach to get an estimator for
C9).

¥ . A, to be random variables (rather than a realized sample), we have that

ey = 1 i (2 — @) (a+) —)" (10)

o re-estimate the covariance matrix, C, from a A/ (0, I) distributed sample such that cond(C) < 10 a sample
size A > 4n is needed, as can be observed in numerical experiments.

Also the matrix C' (9+1) is an unbiased estimator of C (9). The remarkable difference between
(9) and (10) is the reference mean value. For C’emp it is the mean of the actually realized

sample. For C’E\QH it is the frue mean value, m(9), of the sampled distribution (see (5)).

Therefore, the estimators Cé?nzl and C} 9+ can be interpreted dlfferently while C’eﬂf;l

estimates the distribution variance within the sampled points, C’E\ﬁ estimates variances of

(g+1)

sampled steps, T, —m9,

A minor difference between (9) and (10) is the different normalizations ﬁ versus %,
necessary to get an unbiased estimator in both cases. In (9) one degree of freedom is
already taken by the inner summand. In order to get a maximum likelihood estimator in

both cases % must be used.

Equation (10) re-estimates the original covariance matrix. To “estimate” a “better” co-
variance matrix (10) is modified and the same, weighted selection mechanism as in (6) is used

1.
Zwi(5 m®@) (25 —m©) (11

The matrix C&ﬁl)is an estimator for the distribution of selected steps, just as C&Hl) is an

estimator of the original distribution of steps before selection. Sampling from Cf;ﬁl) tends to
reproduce selected, i.e. successful steps, giving a justification for what a “better” covariance
matrix means.

Following [8], we compare (11) with the Estimation of Multivariate Normal Algorithm
EMNA gi0ba1 [16, 17]. The covariance matrix in EMNA g;044: reads, similar to (9),

RS T
Cgﬁli})Aqlobal = ; Z (mgfl;l) - m(g+1)) (xg:g;q) - m(g+1)) ’ (12)
1=1

where m 9t = 1 - xig;) . Similarly, applying the so-called Cross- Entropy method

I
. . (g+1)
to continuous domain optimization [19] yields the covariance matrix -5 Cpyy Agtobal’

i.e. the unbiased empirical covariance matrix of the y best points. In both cases the subtle,
but most important difference to (11) is, again, the choice of the reference mean value.'?
Equation (12) estimates the variance within the selected population while (11) estimates
selected steps. Equation (12) reveals always smaller variances than (11), because its ref-
erence mean value is the minimizer for the variances. Moreover, in most conceivable
selection situations (12) decreases the variances compared to C' (9),

Figure 3 demonstrates the estimation results on a linear objective function for A = 150,

= 50, and w; = 1/u. Equation (11) geometrically increases the expected variance
in direction of the gradient (where the selection takes place, here the diagonal), given
ordinary settings for parent number p and recombination weights wy, ..., w,. Equation
(12) always decreases the variance in gradient direction geometrically fast! Therefore, (12)
is highly susceptible to premature convergence, in particular with small parent populations,
where the population cannot be expected to bracket the optimum at any time. However,
for large values of p in large populations with large initial variances, the impact of the
different reference mean value can become marginal.

12Taking a weighted sum, Z _1Wj ..., instead of the mean, % ?:1 ..., is an appealing, but less important,

difference.

10

CE;g+1)

‘ ‘:,; C (g+1)

EMNA jiobal

sampling estimation new distribution

Figure 3: Estimation of the covariance matrix on fiipear(€) = — Zfil x; to be minimized.
Contour lines (dotted) indicate that the strategy should move toward the upper right corner.
Above: estimation of Cffﬂ) according to (11), where w; = 1/u. Below: estimation of
Cgﬂgl\jlhlil)Agzobaz according to (12). Left: sample of A = 150 A/ (0, I) distributed points. Middle:
the 1 = 50 selected points (dots) determining the entries for the estimation equation (solid
straight lines). Right: search distribution of the next generation (solid ellipsoids). Given w; =
1/p, estimation via Cff 1 increases the expected variance in gradient direction for all p <
;\ /2, while estimation via C’gﬁé&global decreases this variance for any ;1 < A geometrically
ast

In order to ensure with (5), (6), and (11), that C,(f] +1) is a reliable estimator, the variance
effective selection mass peg (cf. (8)) must be large enough: getting condition numbers (cf.
Sect. 0.4) smaller than ten for Cﬁg) on fsphere(®) = Z?zl 22, requires jieg ~ 10n. The next

step is to circumvent this restriction on fie.

3.2 Rank-pu-Update

To achieve fast search (opposite to more robust or more global search), e.g. competitive per-
formance on fgphere, the population size A must be small. Because pesr =~ A/4 also e must
be small and we may assume, e.g., pteg < 1 + Inn. Then, it is not possible to get a reliable
estimator for a good covariance matrix from (11). As a remedy, information from previous
generations is used additionally. For example, after a sufficient number of generations, the

11

mean of the estimated covariance matrices from all generations,

g

1 1 .
Cclt+l) — C+1) 13
g+1 ; o2 (13

becomes a reliable estimator for the selected steps. To make C' ,(f) from different generations
comparable, the different ¢(*) are incorporated. (Assuming o) = 1, (13) resembles the
covariance matrix from the Estimation of Multivariate Normal Algorithm EMNA; [17].)

In (13), all generation steps have the same weight. To assign recent generations a higher
weight, exponential smoothing is introduced. Choosing C'(?) = I to be the unity matrix and a
learning rate 0 < ccoy < 1, then C (9+1) reads

COD = (1= Coy)CD + oy i
(C) c 0(9)2 I
. (g+1) (g+1)T
= (1 - CCOV)C(g) + Ceov Z wj yzg)\ yi:gA 14
=1

where

Ccov < 1 learning rate for updating the covariance matrix. For c.., = 1, no prior information
is retained and C9t1) —= ﬁC,&g D For ccov = 0, no learning takes place and

Coth) = C0) Here, ceoy ~ min(1, peg /n?) is a reasonably choice.

Y = @ = m) /o),

This covariance matrix update is called rank-p-update [| 1], because the sum of outer products
in (14) is of rank min(u, n) (with probability one). Note that this sum can even consist of a
single term, if ;1 = 1.

The number 1/c.,y is the backward time horizon that contains roughly 63% of the overall
weight.

Because (14) expands to the weighted sum

L

o®?

g
C(g+l> = (1 - Ccov)g+lc(0) + Ccov Z (1 - Ccov)g_l

=0

cith o as)

the backward time horizon, Ag, where about 63% of the overall weight is summed up, is
defined by

g9
; 1
— I ~1—= .
Ceov > (1 ceov) 0.63 ~ 1 — (16)
i=g+1—Ag
Resolving the sum yields

(1= ceo)™ » % , a7
and resolving for Ag, using the Taylor approximation for In, yields
1
Ag ~ (18)
CCOV

That is, approximately 37% of the information in C9*1) is older than 1 /Ceov generations,
and, according to (17), the original weight is reduced by a factor of 0.37 after approxi-
mately 1/ Ceov generations. 3

The choice of c,y is crucial. Small values lead to slow learning, too large values lead to
a failure, because the covariance matrix degenerates. Fortunately, a good setting seems to
be largely independent of the function to be optimized.'* A first order approximation for a
good choice is Ceoy R flefr/ n?2. Therefore, the characteristic time horizon for (14) is roughly
n2/ Heft -

Even for the learning rate c.,, = 1, adapting the covariance matrix cannot be accom-
plished within one generation. The effect of the original sample distribution does not vanish
until a sufficient number of generations. Assuming fixed search costs (number of function
evaluations), a small population size \ allows a larger number of generations and therefore
usually leads to a faster adaptation of the covariance matrix.

3.3 Rank-One-Update

In Section 3.1 we estimated the complete covariance matrix from scratch, using all selected
steps from a single generation. We now take precisely the opposite viewpoint. We will re-
peatedly update the covariance matrix in the generation sequence using a single selected step
only. First, this perspective will give a justification of the adaptation rule (14). Second, we
will introduce the so-called evolution path that is finally used for a rank-one update of the
covariance matrix.

3.3.1 A Different Viewpoint

We consider a specific method to produce n-dimensional normal distributions with zero mean.
Let the vectors y1, . .., Y4, € R", go > n, spanR™ and let A/(0, 1) denote independent (0, 1)-
normally distributed random numbers, then

go
NO Dy +-+ N0, yy, ~ N[0, yiy! (19)
=1

is a normally distributed random vector with zero mean and covariance matrix Y 2°, y;y7 .
The random vector (19) is generated by adding “line-distributions™ A/ (0, 1) y;. The singu-
lar distribution A/(0,1) y; ~ N(0,y,;y}) generates the vector y; with maximum likelihood
considering all normal distributions with zero mean.

The line distribution that generates a vector y with the maximum likelihood must “live” on
aline that includes v, and therefore the distribution must obey A(0, 1)oy ~ N(0, c2yyT).
Any other line distribution with zero mean cannot generate y at all. Choosing o reduces to
choosing the maximum likelihood of ||y|| for the one-dimensional gaussian A(0, o2|y]||?),
whichis o = 1.

13This can be shown more easily, because (1 — ccov)? = expln(l — ccov)? = exp(gIn(l — ceov)) ~
exp(—gccov) for small ceov, and for g & 1/ccov we get immediately (1 — ceov)? & exp(—1).
14We use the sphere model fsphere(®) = >, :nf to empirically find a good setting for the parameter ccov,

dependent on n and pegr. The found setting was applicable to any non-noisy objective function we tried so far.

13

N(0,C©) N(0,cM) N (0,Cc®)

Figure 4: Change of the distribution according to the covariance matrix update (20). Left:
vectors e; and ey, and C(©) = T = ejel + esed. Middle: vectors 0.91 e;, 0.91 ey, and
0.41y; (the coefficients deduce from c.oy = 0.17), and C™M) = (1 — ceoy) T + Ceov Y197,

where y; = (102‘?29). The distribution ellipsoid is elongated into the direction of y;, and

therefore increases the likelihood of y;. Right: C' @) = (1 = ceov) C @ 4 Ceov ygyg, where
0.97

y2 = (75)-

The covariance matrix yyT has rank one, its only eigenvectors are Ry\o x y with
eigenvalue |ly||?. Using equation (19), any normal distribution can be realized if y; are
chosen appropriately. For example, (19) resembles (4) with m = 0, using the orthogonal
eigenvectors y; = di;b;, fori = 1,...,n, where b; are the columns of B. In general, the
vectors y; need not to be eigenvectors of the covariance matrix (and usually are not).

Considering (19) and a slight simplification of (14), we try to gain insight into the adapta-

tion rule for the covariance matrix. Let the sum in (14) consist of a single summand only (e.g.
m(%l+1) —m(9)
)

p=1),and let y,41 =
reads

. Then, the rank-one update for the covariance matrix

C(ngl) = (1 - CCOV)C(Q) + Ceov yg+1yg+1T (20)

The right summand is of rank one and adds the maximum likelihood term for y4 into the
covariance matrix C'(9). Therefore the probability to generate Yg+1 in the next generation
increases.

An example of the first two iteration steps of (20) is shown in Figure 4. The distribution
N{(0,C™) tends to reproduce y; with a larger probability than the initial distribution A0, I);
the distribution AV(0, C?)) tends to reproduce y with a larger probability than N(0, C(})),
and so forth. When yi,...,y, denote the formerly selected, favorable steps, N(O, C(g))
tends to reproduce these steps. The process leads to an alignment of the search distribution
N(0,C9) to the distribution of the selected steps. If both distributions become alike, as
under random selection, in expectation no further change of the covariance matrix takes place

[6].

14

3.3.2 Cumulation: Utilizing the Evolution Path

We have used the selected steps, yl(.:g;rl) = (wgzg)\ﬂ) —m(9)) /59, to update the covariance

matrix in (14) and (20). Because yy' = —y(—y)T, the sign of the steps is irrelevant for
the update of the covariance matrix — that is, the sign information is not used for calculating
C9+1) To exploit the sign information, the so-called evolution path is introduced [12, 14].

We call a sequence of successive steps, the strategy takes over a number of generations,
an evolution path. An evolution path can be expressed by a sum of consecutive steps. This
summation is referred to as cumulation. To construct an evolution path, the step-size o is
disregarded. For example, an evolution path of three steps of the distribution mean 1m can be
constructed by the sum

mtD) — @ (@) _ne—1) g (a—1) _ g (9-2)

) L D) @D

In practice, to construct the evolution path, p. € R", we use exponential smoothing as in (14),
and start with pﬁo) =0.b

matD) _ (@
pUTY = (1 — c)pl? + \/ce(2 — co) et o) 22

where

pgg) € R™, evolution path at generation g.

¢. < 1. Again, 1/c. is the backward time horizon of the evolution path p. that contains
roughly 63% of the overall weight (compare derivation of (18)). A time horizon between
v/n and n is reasonable.

The factor y/c.(2 — ¢.) e is a normalization constant for p.. For ¢, = 1 and peg = 1, the
factor reduces to one, and p¢) = (w§g;rl) —m(9)) /59,

The factor \/cc(2 — cc)pest is chosen, such that
pUtY ~ N (0,0) 3)

if (9+1)
(9) z - m'
¢ g'(g)

To derive (23) from (24) and (22) remark that

~N(0,C) foralli=1,...,p . (24)

n
(1-c)+ Ve —c) =1 and Y wilNi(0,C) ~ N(©,C) . (25
i=1 eff
The (rank-one) update of the covariance matrix C'9) via the evolution path pgg U reads [12]
CUH = (1 = e0y) O + coquplIpr D (26)

3Tn the final algorithm (22) is still slightly modified, compare (42).

15

An empirically validated choice for the learning rate in (26) is Ccov = 2/ n2. For ¢, = 1 and
u = 1, Equations (26), (20), and (14) are identical.

Using the evolution path for the update of C' is a significant improvement of (14) for
small e, because correlations between consecutive steps are exploited. The leading signs of
steps, and the dependencies between consecutive steps play a significant role for the resulting
evolution path p£9 D For ¢ =~ 3/n the number of function evaluations needed to adapt a
nearly optimal covariance matrix on cigar-like objective functions becomes O(n).

As a last step, we combine (14) and (26).

3.4 Combining Rank-/-Update and Cumulation

The final CMA update of the covariance matrix combines (14) and (26), where i, deter-
mines their relative weighting.

CUt) = (1-coy)C@ + Leov pgngl)pgngl)T-i- Ceov (1 _)
Ueov S ———r Hecov
rank-one update
& 1)\ T
X sz yﬁzqf : <ZUEZQ>\+)) @7)
i=1
rank-y update

where
Leov > 1. Choosing ficoy = [eff 1S MOSt appropriate.

Ceov ~ min(:ucov7 Meff n2)/n2‘

g = @ = ml9) /o),

Equation (27) reduces to (14) for pioy — 00 and to (26) for peov = 1. The equation combines
the advantages of (14) and (26). On the one hand, the information within the population of
one generation is used efficiently by the rank-; update. On the other hand, information of
correlations between generations is exploited by using the evolution path for the rank-one
update. The former is important in large populations, the latter is in particular important in
small populations.

4 Step-Size Control

The covariance matrix adaptation, introduced in the last section, does not explicitly control the
“overall scale” of the distribution, the step-size. The covariance matrix adaptation increases
the scale only in one direction for each selected step, and it decreases the scale only implicitly
by fading out old information via the factor 1 —c.,. Less informally, we can state two specific
reasons to introduce a step-size control in addition to the adaptation rule (27) for C'(9).

16

Figure 5: Three evolution paths of respectively six steps from different selection situations
(idealized). The lengths of the single steps are all comparable. The length of the evolution
paths (sum of steps) is remarkably different and is exploited for step-size control

1. The optimal overall step length cannot be well approximated by (27), in particular if
Left 1S chosen larger than one.

For example, on fophere(x) = 3.1, 7, the optimal step-size o equals approxi-

mately 4 1/ fsphere () /1, given CY9 ~Tand peg = p < n [3, 18]. This depen-
dency on p cannot be realized by (14), and is also not well approximated by (27).

2. The largest reliable learning rate for the covariance matrix update in (27) is too slow to
achieve competitive change rates for the overall step length.

To achieve optimal performance on fsphere With an Evolution Strategy, the overall
step length must decrease by a factor of approximately exp(0.202) ~ 1.22 within
n function evaluations, as can be derived from progress formulas [3, p.229]. That
is, the time horizon for the step length change must be proportional to n or shorter.
From the learning rate ccov in (27) follows that the adaptation is too slow to perform
competitive on fsphere Whenever peg << n. This can be validated by simulations
even for moderate dimensions, say, n > 10 and small pes, say, peg < 1+ Inn.

To control the step-size o(9) we utilize an evolution path, i.e. a sum of successive steps (see
page 15). The method can be applied independently of the covariance matrix update and is
denoted as cumulative path length control, cuamulative step-size control, or cumulative step
length adaptation (CSA). The length of an evolution path is exploited, based on the following
reasoning (compare also Fig. 5).

e Whenever the evolution path is short, single steps cancel each other out (Fig. 5, left).
Loosely speaking, they are anti-correlated. If steps annihilate each other, the step-size
should be decreased.

e Whenever the evolution path is long, the single steps are pointing to similar directions
(Fig. 5, right). Loosely speaking, they are correlated. Because the steps are similar, the
same distance can be covered by fewer but longer steps into the same directions. In the

17

limit case, where consecutive steps have identical direction, they can be replaced by an
enlarged single step. Consequently, the step-size should be increased.

e Subsuming, in the desired situation the steps are (approximately) perpendicular in ex-
pectation and therefore uncorrelated (Fig. 5, middle).

To decide whether the evolution path is “long” or “short”, we compare the length of the path
with its expected length under random selection.'® Under random selection consecutive steps
are independent and therefore uncorrelated (we just realized that “uncorrelated” steps are the
desired situation). If selection biases the evolution path to be longer then expected, o is in-
creased, and, vice versa, if selection biases the evolution path to be shorter than expected, o is
decreased. In the ideal situation, selection does not bias the length of the evolution path and
the length equals its expected length under random selection.

In practice, to construct the evolution path, p,, the same techniques as in (22) are applied.
In contrast to (22), a conjugate evolution path is constructed, because the expected length
of the evolution path p. from (22) depends on its direction (compare (23)). Initialized with

pE,O) = 0, the conjugate evolution path reads

(g+1) — m(9)

_1
z(ngrl) = (1 - Ca)pz(rg) + V 60(2 - Co)/teff C(g) : 9)
o

(28)

where

p((,g) € R™ is the conjugate evolution path at generation g.

¢s < 1. Again, 1/c¢, is the backward time horizon of the evolution path (compare (18)). For
small pof, a time horizon between +/n and n is reasonable.

¢y (2 — ¢o) lhefr 1S @ normalization constant, see (22).

_1 _

cw 2 ¥ Bp) 1B(9)T, where C9) = B(9) (D(Q))2 B®" isan eigendecompo-
sition of C'9), where B(9) is an orthonormal basis of eigenvectors, and the diagonal
elements of the diagonal matrix D) are square roots of the corresponding positive
eigenvalues (cf. Sect. 0.1).

_1 _1
For C9) = I, we have C9) " 2 = T and (28) replicates (22). The transformation C'(9) 2
re-scales the step m(9+1) — m(9) within the coordinate system given by B(9).

)—1

_1
The single factors of the transformation C9)” 2= B(@ D@ ™" Bl)" can be explained

as follows (from right to left):

T .

B rotates the space such that the columns of B (@) e the principle axes of the
distribution A(0,C (g)), rotate into the coordinate axes. Elements of the resulting
vector relate to projections onto the corresponding eigenvectors.

D@ applies a (re-)scaling such that all axes become equally sized.

(

16Random selection means that the index i : A (compare (6)) is independent of the value of a:i:g;_l) for all i =
1,...,hegi: A=1.

18

B9 rotates the result back into the original coordinate system. This last transforma-
tion ensures that the principal axes of the distribution are not rotated by the overall
transformation and directions of consecutive steps are comparable.

Consequently, the transformation C'9) ™ 2 makes the expected length of pf,g +1) independent of

its direction, and for any sequence of realized covariance matrices Cégz)oAl 5 we have under

random selection pY™") ~ A(0,T), given p&) ~ A(0,1) [6].

(9+1)

To update o(9), we “compare” ||ps’ " || with its expected length E[|A/(0,T) ||, that is

Ino@th = Ingl9

T (1RSI
+ vy eI -EwWenl) e

where

d, ~ 1, damping parameter, scales the change magnitude of In ¢(9). The factor ¢, /d, /E||N(0,1) ||
is based on in-depth investigations of the algorithm [6].

EIN(0,1) || = v2T(2E)/I(2) =~ \/n + O(1/n), expectation of the Euclidean norm of a
N (0,1) distributed random vector.

For ||p5,g+1)|| = E[|N(0,1)|| the second summand in (29) is zero, and o(9) is unchanged,

while o) is increased for [p&*"|| > E|A(0,1) |, and o(%) is decreased for [pt*| <
E[NV(0,T) |.
(9+1)”2

Alternatively, we might use the squared norm ||ps
expected value n [2]. In this case (29) would read

in (29) and compare with its

lnoe@tY = Ing@ 4 dc;n (HpggnLl)H? 7n)
o
(g+1)) 2
1na‘9)+;c;’<|p”n ” —1> : (30)

This update will presumable lead to faster step-size increments and slower step-size decre-
ments.

The step-size change is unbiased on the log scale, because E[ln oloth) ‘0(9) } =Inoc®
for pf,gﬂ) ~ N(0,I). The role of unbiasedness is discussed in Sect. 5. Equations (28)

and (29) cause successive steps of the distribution mean m(9) to be approximately C @~
conjugate.

. . -1 .
In order to show that successive steps are approximately C (o) -conjugate first we re-

mark that (28) and (29) adapt o such that the length of pE,gH) equals approximately

. 2 T
E[N(0,T)|. Starting from (E|A'(0,T)[)* ~ [p¥*V|" = pi*V plt?

1
RHSTRHS of (28) and assuming that the expected squared length of C'9 ™ ? (m (9+1) —
m)) is unchanged by selection (unlike its direction) we get

1
pOTCOTE () _ @y x| 31)

19

and T
(C@)%pg)) ¢t (m@) —m@) 0 . (32)

T L
Given 1/ccov > 1 and (31) we assume also p¥Y " C@ ™2 (mt) — m9)) ~ 0 and
derive

(m(g> _ m(g—l))T o (m(‘”” _ m(g)) ~0 . 33)

That is, the steps taken by the distribution mean become approximately C' (9~ 1-conjugate.

Because o9 > 0, (29) is equivalent to
(9+1)
(9+1) _ () o [lps |
o =c9Yexp| —| ==+ —-1 (34)
(«za (EIIN(OJ) [

The length of the evolution path is an intuitive and empirically well validated goodness
measure for the overall step length. For p.g > 1 it is the best measure to our knowledge.
Nevertheless, it fails to adapt nearly optimal step-sizes on very noisy objective functions [4].

5 Discussion

The CMA-ES is an attractive option for non-linear optimization, if “classical” search meth-
ods, e.g. quasi-Newton methods (BFGS) and/or conjugate gradient methods, fail due to a
non-convex or rugged search landscape (e.g. sharp bends, discontinuities, outliers, noise, and
local optima). Learning the covariance matrix in the CMA-ES is analogous to learning the
inverse Hessian matrix in a quasi-Newton method. In the end, any convex-quadratic (ellip-
soid) objective function is transformed into the spherical function fsphere. This can improve
the performance on ill-conditioned and/or non-separable problems by orders of magnitude.

The CMA-ES overcomes typical problems that are often associated with evolutionary al-
gorithms.

1. Poor performance on badly scaled and/or highly non-separable objective functions.
Equation (27) adapts the search distribution to badly scaled and non-separable prob-
lems.

2. The inherent need to use large population sizes. A typical, however intricate to diagnose
reason for the failure of population based search algorithms is the degeneration of the
population into a subspace. This is usually prevented by non-adaptive components in
the algorithm and/or by a large population size (considerably larger than the problem
dimension). In the CMA-ES, the population size can be freely chosen, because the
learning rate c.. in (27) prevents the degeneration even for small population sizes, e.g.
A = 9. Small population sizes usually lead to faster convergence, large population sizes
help to avoid local optima.

3. Premature convergence of the population. Step-size control in (34) prevents the pop-
ulation to converge prematurely. It does not prevent the search to end up in a local
optimum.

20

Therefore, the CMA-ES is highly competitive on a considerable number of test functions
[6, 9, 11, 13, 14] and was successfully applied to many real world problems.!” Finally we
discuss a few basic design principles that were applied in the previous sections.

Change rates We refer to a change rate as the expected parameter change per sampled
search point, given a certain selection situation. To achieve competitive performance on a
wide range of objective functions, the possible change rates of the adaptive parameters need
to be adjusted carefully. The CMA-ES separately controls change rates for the mean value of
the distribution, m, the covariance matrix, C, and the step-size, o.

e The change rate for the mean value m, given a fixed sample distribution, is determined
by the parent number and the recombination weights. The larger pig, the smaller is the
possible change rate of /. Similar holds for most evolutionary algorithms.

e The change rate of the covariance matrix C' is explicitly controlled by the learning rate
Ccov and therefore detached from parent number and population size. The learning rate
reflects the model complexity. In evolutionary algorithms, the explicit control of change
rates of covariances, independent from the population size, is a rare feature.

e The change rate of the step-size o is explicitly controlled by the damping parameter d,,
and is in particular independent from the change rate of C'. The time constant 1/c, < n
ensures a sufficiently fast change of the overall step length in particular with small
population sizes.

Invariance Invariance properties of a search algorithm denote identical behavior on a set, or
a class of objective functions. Invariance is an important property of the CMA-ES.'® Trans-
lation invariance should be taken for granted in continuous domain optimization. Translation
invariance means that the search behavior on the function — f(x + a), z©0 = p—aq,
is independent of @ € R™. Further invariances, e.g. to certain linear transformations of the
search space, are highly desirable: they imply uniform performance on classes of functions
and therefore allow for generalization of empirical results. The CMA-ES exhibits the follow-
ing invariances.

e Invariance to order preserving (i.e. strictly monotonic) transformations of the objective
function value. The algorithm only depends on the ranking of function values.

e Invariance to angle preserving (rigid) transformations of the search space (rotation, re-
flection, and translation) if the initial search point is transformed accordingly.

e Scale invariance if the initial scaling, e.g. (0, and the initial search point, m©, are
chosen accordingly.

e Invariance to a scaling of variables if the initial diagonal covariance matrix C'(?), and
the initial search point, m(® | are chosen accordingly.

7For a list of published applications see http://www.lri.fr/~hansen/cmaapplications.pdf
18Special acknowledgments to Ivan Santibéfiez-Koref for pointing this out to me.

21

http://www.lri.fr/~hansen/cmaapplications.pdf

e Invariance to any invertible linear transformation of the search space, A, if the initial

covariance matrix C(® = A~1 (A~1) ", andif the initial search point, m(© are trans-
formed accordingly.

Invariance should be a fundamental design criterion for any search algorithm. Together with
the ability to efficiently adapt the invariance governing parameters, invariance is a key to
competitive performance.

Stationarity An important design criterion for a stochastic search procedure is unbiasedness
of variations of object and strategy parameters [5, 14]. Consider random selection, e.g. the
objective function f(a) = rand to be independent of . The population mean is unbiased if its
expected value remains unchanged in the next generation, that is E [m(g +1) ’ m9) } =ml9),
For the population mean, stationarity under random selection is a rather intuitive concept.
In the CMA-ES, stationarity is respected for all parameters in the basic equation (5). The
distribution mean m, the covariance matrix C, and In o are unbiased. Unbiasedness of In o
does not imply that ¢ is unbiased. Actually, under random selection, E [0(9“) | a9] > 0(9),
compare (29)."

For distribution variances (or step-sizes) a bias toward increase or decrease entails the
danger of divergence or premature convergence, respectively, whenever the selection pressure
is low. Nevertheless, on noisy problems a properly controlled bias towards increase might be
appropriate even on the log scale.

Acknowledgments

The author wishes to gratefully thank Anne Auger, Christian Igel, Stefan Kern, and Fabrice
Marchal for the many valuable comments on the manuscript.

References

[1] Auger A, Hansen N. A restart CMA evolution strategy with increasing population size.
In Proceedings of the IEEE Congress on Evolutionary Computation, 2005.

[2] Arnold DV, Beyer HG. Performance analysis of evolutionary optimization with cumu-
lative step length adaptation. IEEE Transactions on Automatic Control, 49(4):617-622,
2004.

[3] Beyer HG. The Theory of Evolution Strategies. Springer, Berlin, 2001.

[4] Beyer HG, Arnold DV. Qualms regarding the optimality of cumulative path length con-
trol in CSA/CMA-evolution strategies. Evolutionary Computation, 11(1):19-28, 2003.

[5] Beyer HG, Deb K. On self-adaptive features in real-parameter evolutionary algorithms.
IEEE Transactions on Evolutionary Computation, 5(3):250-270, 2001.

19 Alternatively, if (34) would be designed to be unbiased for o9+ this would imply that
E[ln ol9+1) |U<9)] <In U(9>, to our opinion a less desirable variant.

22

(6]

(7]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]

Hansen N. Verallgemeinerte individuelle Schrittweitenregelung in der Evolutionsstrate-
gie. Mensch und Buch Verlag, Berlin, 1998.

Hansen N. Invariance, self-adaptation and correlated mutations in evolution strategies.
In Schoenauer M, Deb K, Rudolph G, Yao X, Lutton E, Merelo JJ, Schwefel HP, editors,
Farallel Problem Solving from Nature - PPSN VI, pages 355-364. Springer, 2000.

Hansen N. The CMA evolution strategy: a comparing review. In Lozano JA, Larranaga P,
Inza I, and Bengoetxea E, editors, Towards a new evolutionary computation. Advances
on estimation of distribution algorithms, pages 75—102. Springer, 2006.

Hansen N, Kern S. Evaluating the CMA evolution strategy on multimodal test functions.
In Xin Yao et al., editors, Parallel Problem Solving from Nature - PPSN VIII, pages
282-291. Springer, 2004.

Hansen N, Niederberger SPN, Guzzella L, Koumoutsakos P. A method for handling un-
certainty in evolutionary optimization with an application to feedback control of com-
bustion. IEEE Transactions on Evolutionary Computation, 2009.

Hansen N, Miiller SD, Koumoutsakos P. Reducing the time complexity of the deran-
domized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary
Computation, 11(1):1-18, 2003.

Hansen N, Ostermeier A. Adapting arbitrary normal mutation distributions in evolution
strategies: The covariance matrix adaptation. In Proceedings of the 1996 IEEE Confer-
ence on Evolutionary Computation (ICEC ’96), pages 312-317, 1996.

Hansen N, Ostermeier A. Convergence properties of evolution strategies with the deran-
domized covariance matrix adaptation: The (u/ 17, A\)-CMA-ES. In Proceedings of the
5th European Congresson Intelligent Techniques and Soft Computing, pages 650—654,
1997.

Hansen N, Ostermeier A. Completely derandomized self-adaptation in evolution strate-
gies. Evolutionary Computation, 9(2):159-195, 2001.

Kern S, Miiller SD, Hansen N, Biiche D, Ocenasek J, Koumoutsakos P. Learning proba-
bility distributions in continuous evolutionary algorithms — a comparative review. Natu-
ral Computing, 3:77-112, 2004.

Larrafiaga P. A review on estimation of distribution algorithms. In P. Larrafiaga and J. A.
Lozano, editors, Estimation of Distribution Algorithms, pages 80-90. Kluwer Academic
Publishers, 2002.

Larrafiaga P, Lozano JA, Bengoetxea E. Estimation of distribution algorithms based
on multivariate normal and Gaussian networks. Technical report, Dept. of Computer
Science and Atrtificial Intelligence, University of the Basque Country, 2001. KZAA-IK-
1-01.

Rechenberg 1. Evolutionsstrategie *94. Frommann-Holzboog, Stuttgart, Germany, 1994.

Rubenstein RY, Kroese DP. The Cross-Entropy Method: a unified approach to combina-
torial optimization, Monte-Carlo simulation, and machine learning. Springer, 2004.

23

A Algorithm Summary: The (1/pw, A\)-CMA-ES

Figure 6 outlines the complete algorithm, summarizing (5), (6), (22), (27), (28), and (34).
Used symbols are:

yr ~ N(0,C), for k = 1,...,), are realizations from a multivariate normal distribution
with zero mean and covariance matrix C'.

B, D result from an eigendecomposition of the covariance matrix C with C = BD*B™ =
BDDBY (cf. Sect. 0.1). Columns of B are an orthonormal basis of eigenvectors. Di-
agonal elements of the diagonal matrix D are square roots of the corresponding positive
eigenvalues. While (36) can certainly be implemented using a Cholesky decomposition
of C' the eigendecomposition is needed to compute (40) correctly.

xr € R?, fork =1,..., . Sample of A search points.
(Y),, = DH_ | w; yi.x, step of the distribution mean disregarding step-size o.
Yix = (x;n —m) /o, see ;.\ below.
x;.n € R™, i-th best point out of &1, ..., x) from (37). The index 7 : A denotes the index of
the i-th ranked point, that is f(x1.)) < f(@2.2) < -+ < f(@an).
o2

Loft = (im1 Wi) -1 is the variance effective selection mass, see (8). It holds 1 < peg < p.

c: BD BT, see B, D above. The matrix D can be inverted by inverting its diag-

onal elements. From the definitions we find that C~ > (¥) = B(z), with (z) =
Zﬁ;l Wi Zj: -

EIN(0.L) [= V2T (*31)/T(5) = Vi (1 = 47 + 1,2)-

. {1 if\/%<(l.4+%ﬂ)a‘fv(0,l)“

0 otherwise
number. The Heaviside function h,, stalls the update of p. in (42) if ||p.|| is large.
This prevents a too fast increase of axes of C' in a linear surrounding, i.e. when the
step-size is far too small. This is useful when the initial step-size is chosen far too small
or when the objective function changes in time.

, where g is the generation

d(hs) = (1 — hg)ee(2 — ¢.) < 11is of minor relevance. In the (unusual) case of h, = 0, it
substitutes for the second summand from (42) in (43).

Default Parameters The (external) strategy parameters are A, i, Wi=1...u> Cos Aos Cos Phcovs
and ccoy. Default strategy parameters values are given in Table 1. An in-depth discussion of
most parameters is given in [[4]. The default parameters of (46)-(49) are in particular chosen
to be a robust setting and therefore, to our experience, applicable to a wide range of functions
to be optimized. We do not recomment to change this setting. In contrast, the population size

24

Set parameters

Set parameters A, (i, Wi—1...u, Cos Aoy Ces fhcov,> ANd Ceoy to their default values according

to Table 1.

Initialization

Set evolution paths p, = 0, p. = 0, covariance matrix C = I, and g = 0.

Choose distribution mean m € R™ and step-size ¢ € R, problem dependent.!

Until termination criterion met, g — g + 1

Sample new population of search points, for k = 1,..., A
zr ~ N(0,I) (35)
yr = BDz, ~N(0,0C) (36)
T, = m4toy, ~ N(m,aQC) (37)
Selection and recombination
Iz 7
¥y = Zwi y;.n Wwhere Zwi =1, w; >0 (38)
i=1 i=1
o
mo— m+o(y), =Y Wiy (39)
i=1
Step-size control
Pr = (1= Co)Po + /o2 = colpier C7% (y),, (40)
Co Po |l
g — 0><exp(< -1 41
de \E[IN(0,T) ||
Covariance matrix adaptation
Pc (1 - Cc)pc + ha V CC(2 - Cc)ﬂeff <y>w (42)
CCOV
C «— (1-cow)C+— (pCpCT + (5(hU)C)
1\ &
+ Ccov <1 - /14> Zwi yi:)\yg:)\ (43)
Ccov i=1
I The optimum should presumably be within the initial cube m + 30(1,...,1)T. If the optimum is ex-

pected to be in the initial search interval [a, b]”™ we may choose the initial search point, 7m, uniformly randomly

in [a,b]™, and ¢ = 0.3(b — a). Different search intervals As; for different variables can be reflected by a

different initialization of C, in that the diagonal elements of C obey c¢;; = (Asi)g. Remark that the As;

should not disagree by several orders of magnitude. Otherwise a scaling of the variables should be applied.

Figure 6: The (u/pw, A)-CMA Evolution Strategy. Symbols: see text

25

Table 1: Default Strategy Parameters, where poq = ﬁ > land Y ! w; = 1, taken
i=1 7

from [9], where w] = In(ps + 1) — Iné was used

Selection and Recombination:

A
A=4+|3nn]|, p=I[], M/:§ (44)
w;) / : _
Wi = =z -, w;=In(p' +0.5) —Ini for i=1,...,pu, (45)
j=11j
Step-size control:
e 2 effl — 1
o= MM T2 o max [0, (JET T) e, (46)
n+ e + 3 n+1
Covariance matrix adaptation:
4
¢ = 47
= (47)
Hecov = Heff (48)
]. 2]. 2/Lcov - 1
Ceoy=—""—"""-—-—+(1- > min(l,) (49)
Hcov (?’L + \/5)2 < Heov (TL + 2)2 + Lhcov

A in (44) can be increased.”’ If the A-dependent default values for y and w; are used, the
population size A has a significant influence on the global search performance [9]. Increasing
A usually improves the global search capability and the robustness of the CMA-ES, at the
price of a reduced convergence speed. The convergence speed decrease at most linearly with
A. Independent restarts with increasing population size [1], automated or manually conducted,
are an appropriate policy to perform well on most problems.

A.1 Implementational Concerns
We discuss a few implementational concerns.

Multivariate normal distribution: Let the vector z ~ N'(0,I) have independent, (0,1)-
normally distributed components that can easily be sampled on a computer. To generate
a random vector y ~ N(0,C) for (36), we set y = BDz (see above symbol de-
scriptions of B and D and Sects. 0.1 and 0.2, and compare lines 52-53 and 83-84
in the source code below). Given y, = BDz; and C~2 = BD BT we have
Cc—3 (y),, = B> !, w; z;:x (compare (40) and lines 61 and 64 in the source code
below).

Strategy internal numerical effort: In practice, the re-calculation of B and D needs to be
done not until max(1, [1/(10ncey)]) generations. For reasonable c.., values, this

20Decreasing X is not recommended. Too small values regularly have strong adverse effects on the performance.

26

reduces the numerical effort due to the eigendecomposition from O(n?) to O(n?) per
generated search point, that is the effort of a matrix vector multiplication.

On a Pentium 4, 2.5 GHz processor the overall strategy internal time consumption is
roughly 3 x (n + 5)? x 1078 seconds per function evaluation [15].

Remark that it is not sufficient to compute a Cholesky decomposition of C, because
then (40) cannot be computed correctly.

Termination criteria: In general, the algorithm should be stopped whenever it becomes a
waste of CPU-time to continue, and it would be better to restart (eventually with in-
creased population size [1]) or to reconsidering the encoding and/or objective function
formulation. We recommend the following termination criteria [!] that are mostly re-
lated to numerical stability:

e NoEffectAxis: stop if adding a 0.1-standard deviation vector in any principal
axis direction of C' does not change m.?!

NoEffectCoord: stop if adding 0.2-standard deviations in any single coordi-
nate does not change m (i.e. m; equals m; + 0.2 o¢; ; for any 7).

EqualFunValues: stop if the range of the best objective function values of the
last 10 + [30n/A] generations is zero.

ConditionCov: stop if the condition number of the covariance matrix exceeds
10%4,

TolXUp: stop if ¢ x max(diag(D)) increased by more than 10%. This usually
indicates a far too small initial o, or divergent behavior.

Two other useful termination criteria should be considered problem dependent:

e TolFun: stop if the range of the best objective function values of the last 10 +
[30n/A] generations and all function values of the recent generation is below
TolFun. Choosing TolFun depends on the problem, while 10712 is a conserva-
tive first guess.

e TolX: stop if the standard deviation of the normal distribution is smaller than in
all coordinates and op. is smaller than To1X in all components. By default we
set To1X to 1072 times the initial o.

Flat fitness: In the case of equal function values for several individuals in the population, it
is feasible to increase the step-size (see lines 92-96 in the source code below). This
method can interfere with the termination criterion TolFun. In practice, observation
of a flat fitness should be rather a termination criterion and consequently lead to a re-
consideration of the objective function formulation.

Boundaries and Constraints: The handling of boundaries and constraints is probem depen-
dent.

2More formally, we terminate if 7 equals to m + 0.1 od;;b;, where 5 = (g mod n) + 1, and dfi and b; are
respectively the i-th eigenvalue and eigenvector of C, with ||b;|| = 1.

27

1. If the optimal solution is not close to the infeasible domain, a simple and sufficient
way to handle any type of boundaries and constraints is re-sampling any infeasible
solution until it become feasible. One might also choose the set the fitness as

fﬁtness(a’) = fmax + « ||33 - wfeasible” 5 (50)

where fi,ax 1s larger than the worst fitness in the feasible population (in case of
minization) and Zfeasible 1S a constant feasible point, preferably in the middle of
the feasible domain.

2. Otherwise, if a repair mechanism is available (as for box-constraints) we evaluate
the objective function on a repaired search point, Trepaired, and add a penalty
depending on the distance to the repaired solution.

fﬁtncss(w) = f(wrcpaircd) + a ||m - $rcpaircdH2 . (51)

The repaired solution is disregarded afterwards.

In case of box-boundaries, Zycpaired 1 set to the feasible solution with the smallest
distance || — Zyepaired||- In other words, components that are infeasible in x are
set to the (closest) boundary value in Z;cpaired. A similar boundary handling with
a component-wise adaptive « is described in [10].

Otherwise, when no repair mechanism is available, the fitness of the infeasible
search point & might similarly compute to

fﬁtncss(m) = foffsct +a Z nc1/>0 X Ci(x)z (52)

where, w.L.o.g., the (non-linear) constraints ¢; : R — R, & +— ¢;(x) are satisfied
for ¢;(x) < 0, and the indicator function 1., equals to one for ¢;(x) > 0,
zero otherwise, and fogset = mediang f (xx) equals to the median function value
of the feasible points in the same generation. This approach has not yet been
experimentally evaluated by the author.

In either case of (51) and (52), « should be chosen such that the differences in f and the
differences in the second summand have a similar magnitude.

28

B MATLAB Source Code

function xmin=purecmaes
CMA-ES: Evolution Strategy with Covariance Matrix Adaptation for
nonlinear function minimization.

o° o

o

This code is an excerpt from cmaes.m and implements the key parts
of the algorithm. It is intendend to be used for READING and
UNDERSTANDING the basic flow and all details of the CMA xalgorithmx.
Computational efficiency is sometimes disregarded.

o

o

0 J oUW N
ol°

o

9
10 § Initialization - -
11
12 % User defined input parameters (need to be edited)
13 strfitnessfct = ’felli’; % name of objective/fitness function

o°

14 N = 10; number of objective variables/problem dimension
15 xmean = rand(N,1); objective variables initial point
16 sigma = 0.5; coordinate wise standard deviation (step-size)

17 stopfitness = le-10; % stop if fitness < stopfitness (minimization)

o

o

18 stopeval = 1e3xN"2; % stop after stopeval number of function evaluations

19

20 % Strategy parameter setting: Selection

21 lambda = 4+floor(3xlog(N)); % population size, offspring number

22 mup = (lambda-1)/2; % lambda=12; mu=3; weights = ones(mu,1l); would be (3_I,12)-ES
23 mu = ceil (mup); % number of parents/points for recombination

24 weights = log(mup+l)-log(l:mu)’; % muXone recombination weights

25 weights = weights/sum(weights); % normalize recombination weights array
26 mueff=sum(weights) "2/sum(weights."2); % variance-effective size of mu

27

28 % Strategy parameter setting: Adaptation

29 cc = 4/ (N+4); % time constant for cumulation for covariance matrix

30 cs = (mueff+2)/ (N+mueff+3); % t-const for cumulation for sigma control

31 mucov = mueff; % size of mu used for calculating learning rate ccov

32 ccov = (l/mucov) * 2/(N+1.4)"2 + (1-1/mucov) % ... % learning rate for

33 ((2+*mueff-1)/ ((N+2) "2+2xmueff)); $ covariance matrix

34 damps = 1 + 2*max (0, sqrt((mueff-1)/(N+1))-1) + cs; % damping for sigma

w
o
o

Initialize dynamic (internal) strategy parameters and constants

37 pc = zeros(N,1l); ps = zeros(N,1); % evolution paths for C and sigma
38 B = eye(N); % B defines the coordinate system
39 D = eye(N); % diagonal matrix D defines the scaling

o

40 C = BxD«* (B*D)’; covariance matrix

41 eigeneval = 0; % B and D updated at counteval == 0

42 chiN=N"0.5% (1-1/ (4xN)+1/(21xN"2)); % expectation of

43 % | IN(O,I)|| == norm(randn(N,1)

44

45 § —mmmm e Generation LOOp ———————————=————————————————————

46

47 counteval = 0; % the next 40 lines contain the 20 lines of interesting code
48 while counteval < stopeval

49

50 % Generate and evaluate lambda offspring

51 for k=1:lambda,

52 arz(:,k) = randn(N,1); % standard normally distributed vector

53 arx(:,k) = xmean + sigma % (B+«D % arz(:,k)); % add mutation % Eqg. 37
54 arfitness (k) = feval(strfitnessfct, arx(:,k)); % objective function call
55 counteval = counteval+l;

56 end

57

58 % Sort by fitness and compute weighted mean into xmean

59 [arfitness, arindex] = sort(arfitness); % minimization

60 xmean = arx(:,arindex(l:mu))*weights; % recombination % Eqg. 39
61 zmean = arz(:,arindex(l:mu))+*weights; % == D"-1%B’ * (xmean-xold) /sigma

62

63 % Cumulation: Update evolution paths

64 ps = (l-cs)*ps + (sqgrt(cs*(2-cs)*mueff)) x (B * zmean); % Eq. 40
65 hsig = norm(ps)/sqrt(l-(l-cs)” (2xcounteval/lambda))/chiN < 1.4+2/ (N+1);

66 pc = (l-cc)*pc + hsig x sqrt(ccx(2-cc)*mueff) x (BxDxzmean); $ Eq. 42

29

% Adapt covariance matrix C

C = (l-ccov) = C ... % regard old matrix % Eqg. 43
+ ccov * (1l/mucov) = (pcxpc’ ... % plus rank one update
+ (l-hsig) * ccx(2-cc) % C)
+ ccov * (l1-1/mucov) ... % plus rank mu update
* (B*Dxarz(:,arindex (l:mu)))
* diag(weights) = (BxDxarz(:,arindex(l:mu)))’;

% Adapt step-size sigma
sigma = sigma * exp((cs/damps)* (norm(ps)/chiN - 1)); % Eq. 41

o

Update B and D from C

if counteval - eigeneval > lambda/ccov/N/10 % to achieve O(N"2)
eigeneval = counteval;
C=triu(C)+triu(C,1)’; % enforce symmetry
[B,D] = eig(C); % eigen decomposition, B==normalized eigenvectors
D = diag(sqgrt(diag(D))); % D contains standard deviations now

end

% Break, if fitness is good enough

if arfitness(l) <= stopfitness
break;

end

% Escape flat fitness
if arfitness(l) == arfitness(ceil (0.7xlambda))

sigma = sigma * exp(0.2+cs/damps);

disp(’warning: flat fitness, consider reformulating the objective’);
end

disp ([num2str (counteval) ’: ’/ num2str(arfitness(1l))]);

end $ while, end generation loop

% Ending Message - -
disp ([num2str (counteval) ’: '/ num2str(arfitness(1l))]);
xmin = arx(:, arindex(l)); % Return best point of last generation.
% Notice that xmean is expected to be even
% better.
function f=felli (x)
N = size(x,1); if N < 2 error(’dimension must be greater one’); end
f=le6.” ((0:N-1)/(N-1)) = x.72; % condition number 1le6

30

C Reformulation of Learning Parameter c.,

For sake of clarity, we consider to replace the learning coefficients in (43) in future.

Leov Gith ¢ (53)
MCOV
1 .
Ceov (1 - p) with ¢, and (54)
1—coeov with 1—¢c1—¢, , (55)
and choosing (in replacing (49))
2 (56)
C =
! (n+ 1.3)2 + ficoy
. 2 lucov - 2 + Hclov 1 57
G = i 2 e, LT e

; (58)

The resulting coefficients are quite similar to the previous. In contrast to the previous formu-
lation, ¢; becomes monotonic in pe_ﬁl and ¢; + ¢, becomes virtually monotonic in feg.
Another alternative is

1
C1 = —m+2\/m+ Jioit (59)
0‘(1 + pleft — 2 + L
¢, = min (1—c1, ‘m+4\/ﬁ+éﬁf (60)
¥ = 03, (61)

m

2
where m = - ; % is the degrees of freedom in the covariance matrix. For pe.g = 1, the
coefficient c,, is now chosen to be larger than zero, as ozg > 0. Figure 7 compares the new

learning rates with the old ones.

31

P

10

)
5.3

T

10

; I T T
L I T T
Py I I

10

12 14 16 18 20

7 :
e :
0

T Iy
(LS R0 TETT P pimmn
T
; [

10

Figure 7: Learning rates c, ¢, (solid) and ccoy

decreases much slower with increasing fio, and
for the new formulation).
32

12 14 20

(dash-dotted) versus pof. Above: Equations
(56) etc. for n = 3;10. Below: Equations (59) etc. for n = 2;40. Black: ¢; + ¢, and
Ceovs blue: ¢ and ceov/fheovs green: ¢, and (1 — 1/pcoy)Coov; cyan: 2/(n? + V2); red:
(c1 + ¢u)/ccov, above divided by ten. For jicoy = 2 the difference is maximal, because c;
Ceov 18 NON-MONOONIC in fico, (@ main reason

	Nomenclature
	Preliminaries
	Eigendecomposition of a Positive Definite Matrix
	The Multivariate Normal Distribution
	Randomized Black Box Optimization
	Hessian and Covariance Matrices

	Basic Equation: Sampling
	Selection and Recombination: Moving the Mean
	Adapting the Covariance Matrix
	Estimating the Covariance Matrix From Scratch
	Rank--Update
	Rank-One-Update
	A Different Viewpoint
	Cumulation: Utilizing the Evolution Path

	Combining Rank--Update and Cumulation

	Step-Size Control
	Discussion
	Algorithm Summary: The CMA-ES
	Implementational Concerns

	MATLAB Source Code
	Reformulation of Learning Parameter ccov

