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Abstract. We discuss fast exponential time solutions for NP-complete
problems. We survey known results and approaches, we provide pointers
to the literature, and we discuss several open problems in this area. The
list of discussed NP-complete problems includes the travelling salesman
problem, scheduling under precedence constraints, satisfiability, knap-
sack, graph coloring, independent sets in graphs, bandwidth of a graph,
and many more.

1 Introduction

Every NP-complete problem can be solved by exhaustive search. Unfortunately,
when the size of the instances grows the running time for exhaustive search
soon becomes forbiddingly large, even for instances of fairly small size. For some
problems it is possible to design algorithms that are significantly faster than
exhaustive search, though still not polynomial time. This survey deals with such
fast, super-polynomial time algorithms that solve NP-complete problems to opti-
mality. In recent years there has been growing interest in the design and analysis
of such super-polynomial time algorithms. This interest has many causes.

– It is now commonly believed that P�=NP, and that super-polynomial time
algorithms are the best we can hope for when we are dealing with an NP-
complete problem. There is a handful of isolated results scattered across the
literature, but we are far from developing a general theory. In fact, we have
not even started a systematic investigation of the worst case behavior of such
super-polynomial time algorithms.

– Some NP-complete problems have better and faster exact algorithms than
others. There is a wide variation in the worst case complexities of known
exact (super-polynomial time) algorithms. Classical complexity theory can
not explain these differences. Do there exist any relationships among the
worst case behaviors of various problems? Is progress on the different prob-
lems connected? Can we somehow classify NP-complete problems to see how
close we are to the best possible algorithms?

– With the increased speed of modern computers, large instances of NP-
complete problems can be solved effectively. For example it is nowadays
routine to solve travelling salesman (TSP) instances with up to 2000 cities.

M. Jünger et al. (Eds.): Combinatorial Optimization (Edmonds Festschrift), LNCS 2570, pp. 185–207, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN ----------------------------------------Dateioptionen:     Kompatibilität: PDF 1.3     Für schnelle Web-Anzeige optimieren: Nein     Piktogramme einbetten: Nein     Seiten automatisch drehen: Nein     Seiten von: 1     Seiten bis: Alle Seiten     Bund: Links     Auflösung: [ 2400 2400 ] dpi     Papierformat: [ 595.276 841.889 ] PunktKOMPRIMIERUNG ----------------------------------------Farbbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitGraustufenbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 2400 dpi     Downsampling für Bilder über: 3600 dpi     Komprimieren: Ja     Komprimierungsart: CCITT     CCITT-Gruppe: 4     Graustufen glätten: Nein     Text und Vektorgrafiken komprimieren: JaSCHRIFTEN ----------------------------------------     Alle Schriften einbetten: Ja     Untergruppen aller eingebetteten Schriften: Nein     Wenn Einbetten fehlschlägt: AbbrechenEinbetten:     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     Nie einbetten: [ ]FARBE(N) ----------------------------------------Farbmanagement:     Farbumrechnungsmethode: Farbe nicht ändern     Methode: StandardGeräteabhängige Daten:     Einstellungen für Überdrucken beibehalten: Ja     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja     Transferfunktionen: Anwenden     Rastereinstellungen beibehalten: JaERWEITERT ----------------------------------------Optionen:     Prolog/Epilog verwenden: Ja     PostScript-Datei darf Einstellungen überschreiben: Ja     Level 2 copypage-Semantik beibehalten: Ja     Portable Job Ticket in PDF-Datei speichern: Nein     Illustrator-Überdruckmodus: Ja     Farbverläufe zu weichen Nuancen konvertieren: Ja     ASCII-Format: NeinDocument Structuring Conventions (DSC):     DSC-Kommentare verarbeiten: Ja     DSC-Warnungen protokollieren: Nein     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja     EPS-Info von DSC beibehalten: Ja     OPI-Kommentare beibehalten: Nein     Dokumentinfo von DSC beibehalten: JaANDERE ----------------------------------------     Distiller-Kern Version: 5000     ZIP-Komprimierung verwenden: Ja     Optimierungen deaktivieren: Nein     Bildspeicher: 524288 Byte     Farbbilder glätten: Nein     Graustufenbilder glätten: Nein     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja     sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Error     /ParseDSCComments true     /DoThumbnails false     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize false     /ParseDSCCommentsForDocInfo true     /EmitDSCWarnings false     /CalGrayProfile (Ø¯P)     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue true     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.3     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends true     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo true     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /LeaveColorUnchanged     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 300     /EndPage -1     /AutoPositionEPSFiles true     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 2400     /AutoFilterGrayImages true     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 300     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 595.276 841.890 ]     /HWResolution [ 2400 2400 ]>> setpagedevice



186 G.J. Woeginger

And if the data is nicely structured, then instances with up to 13000 cities
can be handled in practice (Applegate, Bixby, Chvátal & Cook [2]). There is
a huge gap between the empirical results from testing implementations and
the known theoretical results on exact algorithms.

– Fast algorithms with exponential running times may actually lead to practi-
cal algorithms, at least for moderate instance sizes. For small instances, an
algorithm with an exponential time complexity of O(1.01n) should usually
run much faster than an algorithm with a polynomial time complexity of
O(n4).

In this article we survey known results and approaches to the worst case analysis
of exact algorithms for NP-hard problems, and we provide pointers to the liter-
ature. Throughout the survey, we will also formulate many exercises and open
problems. Open problems refer to unsolved research problems, while exercises
pose smaller questions and puzzles that should be fairly easy to solve.

Organization of this survey. Section 2 collects some technical preliminaries and
some basic definitions that will be used in this article. Sections 3–6 introduce and
explain the four main techniques for designing fast exact algorithms: Section 3
deals with dynamic programming across the subsets, Section 4 discusses pruning
of search trees, Section 5 illustrates the power of preprocessing the data, and
Section 6 considers approaches based on local search. Section 7 discusses methods
for proving negative results on the worst case behavior of exact algorithms.
Section 8 gives some concluding remarks.

2 Technical Preliminaries

How do we measure the quality of an exact algorithm for an NP-hard problem?
Exact algorithms for NP-complete problems are sometimes hard to compare,
since their analysis is done in terms of different parameters. For instance, for
an optimization problem on graphs the analysis could be done in terms of the
number n of vertices, or possibly in the number m of edges. Since the standard
reductions between NP-complete problems may increase the instance sizes, many
questions in computational complexity theory depend delicately on the choice
of parameters. The right approach seems to be to include an explicit complexity
parameter in the problem specification (Impagliazzo, Paturi & Zane [21]). Re-
call that the decision version of every problem in NP can be formulated in the
following way:

Given x, decide whether there exists y so that |y| ≤ m(x) and R(x, y).

Here x is an instance of the problem; y is a short YES-certificate for this instance;
R(x, y) is a polynomial time decidable relation that verifies certificate y for
instance x; andm(x) is a polynomial time computable and polynomially bounded
complexity parameter that bounds the length of the certificate y. A trivial exact
algorithm for solving x would be to enumerate all possible strings with lengths
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up to m(x), and to check whether any of them yields a YES-certificate. Up to
polynomial factors that depend on the evaluation time of R(x, y), this would
yield a running time of 2m(x). The first goal in exact algorithms always is to
break the triviality barrier, and to improve on the time complexity of this trivial
enumerative algorithm.

Throughout this survey, we will measure the running times of algorithms
only with respect to the complexity parameter m(x). We will use a modified
big-Oh notation that suppresses all other (polynomially bounded) terms that
depend on the instance x and the relation R(x, y). We write O∗(T (m(x))) for a
time complexity of the form O(T (m(x)) · poly(|x|)). This modification may be
justified by the exponential growth of T (m(x)). Note that for instance for simple
graphs with m(x) = n vertices and m edges, the running time 1.7344n · n2m5 is
sandwiched between the running times 1.7344n and 1.7345n.

We stress, however, the fact that the complexity parameter m(x) in general
is not unique, and that it heavily depends on the representation of the input.
For an input in the form of an undirected graph, for instance, the complexity
parameter might be the number n of vertices or the number m of edges.

Time complexities and complexity classes. Consider a problem in NP as defined
above, with instances x and with complexity parameter m(x). An algorithm for
this problem has sub-exponential time complexity, if the running time depends
polynomially on |x| and if the logarithm of the running time depends sub-linearly
on m(x). For instance, a running time of |x|5 ·2

√
m(x) would be sub-exponential.

A problem in NP is contained in the complexity class SUBEXP (the class of
SUB-EXPonentially solvable problems) if for every fixed ε > 0, it can be solved
in poly(|x|) · 2ε·m(x) time.

The complexity class SNP (the class Strict NP) was introduced by Papadim-
itriou & Yannakakis [32] for studying the approximability of optimization prob-
lems. SNP constitutes a subclass of NP, and it contains all problems that can
be formulated in a certain way by a logical formula that starts with a series of
second order existential quantifiers, followed by a series of first order universal
quantifiers, followed by a first-order quantifier-free formula (a Boolean combina-
tion of input and quantifier relations applied to the quantified element variables).
In this survey, the class SNP will only show up in Section 7. As far as this sur-
vey is concerned, all we need to know about SNP is that it is a fairly broad
complexity class that contains many of the natural combinatorial optimization
problems.

Downey & Fellows [7] introduced parameterized complexity theory for inves-
tigating the complexity of problems that involve a parameter. This parameter
may for instance be the treewidth or the genus of an underlying graph, or an
upper bound on the objective value, or in our case the complexity parameter
m(x). A whole theory has evolved around such parameterizations, and this has
lead to the so-called W-hierarchy, an infinite hierarchy of complexity classes:

FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [k] ⊆ · · · ⊆ W [P ].
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We refer the reader to Downey & Fellows [8] for the exact definitions of all these
classes. It is commonly believed that all W-classes are pairwise distinct, and that
hence all displayed inclusions are strict.

Some classes of optimization problems. Let us briefly discuss some basic classes
of optimization problems that contain many classical problems: the class of sub-
set problems, the class of permutation problems, and the class of partition prob-
lems. In a subset problem, every feasible solution can be specified as a subset
of an underlying ground set. For instance, fixing a truth-assignment in the sat-
isfiability problem corresponds to selecting a subset of TRUE variables. In the
independent set problem, every subset of the vertex set is a solution candidate. In
a permutation problem, every feasible solution can be specified as a total ordering
of an underlying ground set. For instance, in the TSP every tour corresponds
to a permutation of the cities. In single machine scheduling problems, feasible
schedules are often specified as permutations of the jobs. In a partition problem,
every feasible solution can be specified as a partition of an underlying ground set.
For instance, a graph coloring is a partition of the vertex set into color classes.
In parallel machine scheduling problems, feasible schedules are often specified
by partitioning the job set and assigning every part to another machine.

As we observed above, all NP-complete problems possess trivial algorithms
that simply enumerate and check all feasible solutions. For a ground set with
cardinality n, subset problems can be trivially solved in O∗(2n) time, permuta-
tion problems can be trivially solved in O∗(n!) time, and partition problems are
trivial to solve in O∗(cn logn) time; here c > 1 denotes a constant that does not
depend on the instance. These time complexities form the triviality barriers for
the corresponding classes of optimization problems.

More technical remarks. All optimization problems considered in this survey are
known to be NP-complete. We refer the reader to the book [14] by Garey &
Johnson for (references to) the NP-completeness proofs. We denote the base two
logarithm of a real number z by log(z).

3 Technique: Dynamic Programming across the Subsets

A standard approach for getting fast exact algorithms for NP-complete problems
is to do dynamic programming across the subsets. For every ‘interesting’ subset
of the ground set, there is a polynomial number of corresponding states in the
state space of the dynamic program. In the cases where all these corresponding
states can be computed in reasonable time, this approach usually yields a time
complexity of O∗(2n). We will illustrate these benefits of dynamic programming
by developping algorithms for the travelling salesman problem and for total
completion time scheduling on a single machine under precedence constraints.
Sometimes, the number of ‘interesting’ subsets is fairly small, and then an even
better time complexity might be possible. This will be illustrated by discussing
the graph 3-colorability problem.
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The travelling salesman problem (TSP). A travelling salesman has to visit the
cities 1 to n. He starts in city 1, runs through the remaining n − 1 cities in
arbitrary order, and in the very end returns to his starting point in city 1. The
distance from city i to city j is denoted by d(i, j). The goal is to minimize the
total travel length of the salesman. A trivial algorithm for the TSP checks all
O(n!) permutations.

We now sketch the exact TSP algorithm of Held & Karp [16] that is based
on dynamic programming across the subsets. For every non-empty subset S ⊆
{2, . . . , n} and for every city i ∈ S, we denote by Opt[S; i] the length of the
shortest path that starts in city 1, then visits all cities in S − {i} in arbitrary
order, and finally stops in city i. Clearly, Opt[{i}; i] = d(1, i) and

Opt[S; i] = min {Opt[S − {i}; j] + d(j, i) : j ∈ S − {i}} .
By working through the subsets S in order of increasing cardinality, we can
compute the value Opt[S; i] in time proportional to |S|. The optimal travel
length is given as the minimum value of Opt[{2, . . . , n}; j] + d(j, 1) over all j
with 2 ≤ j ≤ n. This yields an overall time complexity of O(n22n) and hence
O∗(2n).

This result was published in 1962, and from nowadays point of view almost
looks trivial. Still, it yields the best time complexity that is known today.

Open problem 31 Construct an exact algorithm for the travelling salesman
problem with time complexity O∗(cn) for some c < 2. In fact, it even would be
interesting to reach such a time complexity O∗(cn) with c < 2 for the closely
related, but slightly simpler Hamiltonian cycle problem (given a graph G on n
vertices, does it contain a spanning cycle).

Hwang, Chang & Lee [19] describe a sub-exponential time O(c
√
n log n) exact

algorithm with some constant c > 1 for the Euclidean TSP. The Euclidean
TSP is a special case of the TSP where the cities are points in the Euclidean
plane and where the distance between two cities is the Euclidean distance. The
approach in [19] is heavily based on planar separator structures, and it cannot
be carried over to the general TSP. The approach can be used to yield similar
time bounds for various NP-complete geometric optimization problems, as the
Euclidean p-center problem and the Euclidean p-median problem.

Total completion time scheduling under precedence constraints. There is a single
machine, and there are n jobs 1, . . . , n that are specified by their length pj and
their weight wj (j = 1, . . . , n). Precedence constraints are given by a partial
order on the jobs; if job i precedes job j in the partial order (denoted by i → j),
then i must be processed to completion before j can begin its processing. All jobs
are available at time 0. We only consider non-preemptive schedules, in which all
pj time units of job Jj must be scheduled consecutively. The goal is to schedule
the jobs on the single machine such that all precedence constraints are obeyed
and such that the total completion time

∑n
j=1 wjCj is minimized; here Cj is

the time at which job j is completed in the given schedule. A trivial algorithm
checks all O(n!) permutations of the jobs.
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Dynamic programming across the subsets yields a time complexity of O∗(2n).
A subset S ⊆ {1, . . . , n} of the jobs is called an ideal, if j ∈ S and i → j always
implies i ∈ S. In other words, for every job j ∈ S the ideal S also contains all
jobs that have to be processed before j. For an ideal S, we denote by first(S)
all jobs in S without predecessors, by last(S) all jobs in S without successors,
and by p(S) =

∑
i∈S pi the total processing time of the jobs in S. For an ideal S,

we denote by Opt[S] the smallest possible total completion time for the jobs in
S. Clearly, for any j ∈ first({1, . . . , n}) we have Opt[{j}] = wjpj . Moreover,
for |S| ≥ 2 we have

Opt[S] = min {Opt[S − {j}] + wj p(S) : j ∈ last(S)} .

This DP recurrence is justified by the observation that some job j ∈ last(S) has
to be processed last, and thus is completed at time p(S). By working through
the ideals S in order of increasing cardinality, we can compute all values Opt[S]
in time proportional to |S|. The optimal objective value can be read from
Opt[{1, . . . , n}]. This yields an overall time complexity of O∗(2n).

Similar approaches yield O∗(cn) time exact algorithms for many other single
machine scheduling problems.

Exercise 32 Use dynamic programming across the subsets to get exact algo-
rithms with time complexity O∗(2n) for the following two scheduling problems.

(a) Minimizing the weighted number of late jobs. There are n jobs that are
specified by a length pj, a penalty wj, and a due date dj. If a job j is completed
after its due date dj, one has to pay a penalty pj. The goal is to sequence the jobs
on a single machine such that the total penalty for the late jobs is minimized.

(b) Minimizing the total tardiness. There are n jobs that are specified by a
length pj and a due date dj. If a job j is completed at time Cj in some fixed
schedule, then its tardiness is Tj = max{0, Cj − dj}. The goal is to sequence the
jobs on a single machine such that the total tardiness of the jobs is minimized.

Exercise 33 Total completion time scheduling under precedence constraints and
job release dates. That is the problem that we have solved above, but with the
additional restriction that every job j cannot be processed before its release rj.
As a consequence, their might be gaps in the middle of the schedule where the
machine is idle.

Use dynamic programming across the subsets to get an exact algorithm with
time complexity O∗(3n) for this problem.

Graph coloring. Given a graph G = (V,E) with n vertices, color the vertices
with the smallest possible number of colors such that adjacent vertices never
receive the same color. This smallest possible number is the chromatic number
χ(G) of the graph. Every color class is a vertex set without induced edges; such
a vertex set is called an independent set. An independent set is maximal, if
none of its proper supersets is also independent. For any graph G, there exists a
feasible coloring with χ(G) colors in which at least one color class is a maximal
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independent set. Moon & Moser [29] have shown that a graph with n vertices
contains at most 3n/3 ≈ 1.4422n maximal independent sets. By considering a
collection of n/3 independent triangles, we see that this bound is best possible.
Paull & Unger [36] designed a procedure that generates all maximal independent
sets in a graph in O(n2) time per generated set.

Based on the ideas introduced by Lawler [26], we present a dynamic program
across the subsets with a time complexity of O∗(2.4422n). For a subset S ⊆ V
of the vertices, we denote by G[S] the subgraph of G that is induced by the
vertices in S, and we denote by Opt[S] the chromatic number of G[S]. If S is
empty, then clearly Opt[S] = 0. Moreover, for S �= ∅ we have

Opt[S] = 1 + min {Opt[S − T ] : T maximal indep. set in G[S]} .
We work through the sets S in order of increasing cardinality, such that when we
are handling S, all its subsets have already been handled. Then the time needed
to compute the value Opt[S] is dominated by the time needed to generate all
maximal independent subsets T of G[S]. By the above discussion, this can be
done in k23k/3 time where k is the number of vertices in G[S]. This leads to an
overall time complexity of

n∑

k=0

(
n

k

)

k23k/3 ≤ n2
n∑

k=0

(
n

k

)

3k/3 = n2(1 + 31/3)n.

Since 1 + 31/3 ≈ 2.4422, this yields the claimed time complexity O∗(2.4422n).
Very recently, Eppstein [11] managed to improve this time complexity to
O∗(2.4150n) where 2.4150 ≈ 4/3+34/3/4. His improvement is based on carefully
counting the small maximal independent sets in a graph.

Finally, we turn to the (much easier) special case of deciding whether
χ(G) = 3. Lawler [26] gives a simple O∗(1.4422n) algorithm: Generate all max-
imal independent sets S, and check whether their complement graph G[V − S]
is bipartite. Schiermeyer [42] describes a rather complicated modification of this
idea that improves the time complexity to O∗(1.415n). The first major progress
is due to Beigel & Eppstein [4] who get a running time of O∗(1.3446n) by ap-
plying the technique of pruning the search tree; see Section 4 of this survey. The
current champion algorithm has a time complexity of O∗(1.3289n) and is due to
Eppstein [10]. This algorithm combines pruning of the search tree with several
tricks based on network flows and matching.

Exercise 34 (Nielsen [30])
Find an O∗(1.7851n) exact algorithm that decides for a graph on n vertices
whether χ(G) = 4. Hint: Generate all maximal independent sets of cardinality
at least n/4 (why?), and use the algorithm from [10] to check their complement
graphs.

Eppstein [10] also shows that for n/4 ≤ k ≤ n/3, a graph on n vertices
contains at most O(34k−n4n−3k) maximal independent sets. Apply this result to
improve the time complexity for 4-coloring further to O∗(1.7504n).
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Open problem 35 Design fast algorithms for k-colorability where k is small,
say for k ≤ 6. Design faster exact algorithms for the general graph coloring
problem. Can we reach running times around O∗(2n)?

4 Technique: Pruning the Search Tree

Every NP-complete problem can be solved by enumerating and checking all
feasible solutions. An organized way for doing this is to (1) concentrate on some
piece of the feasible solution, to (2) determine all the possible values this piece
can take, and to (3) branch into several subcases according to these possible
values. This naturally defines a search tree: Every branching in (3) corresponds
to a branching of the search tree into subtrees. Sometimes, it can be argued that
certain values for a certain piece can never lead to an optimal solution. In these
cases we may simply ignore all these values, kill the corresponding subtrees, and
speed-up the search procedure. Every Branch-and-Bound algorithm is based on
this idea, and we can also get exact algorithms with good worst case behavior
out of this idea. However, to get the worst case analysis through, we need a
good mathematical understanding of the evolution of the search tree, and we
need good estimates on the sizes of the killed subtrees and on the number and
on the sizes of the surviving cases.

We will illustrate the technique of pruning the search tree by developping
algorithms for the satisfiability problem, for the independent set problem in
graphs, and for the bandwidth problem in graphs.

The satisfiability problem. Let X = {x1, x2, . . . , xn} be a set of logical variables.
A variable or a negated variable from X is called a literal. A clause over X is
the disjunction of literals from X. A Boolean formula is in conjunctive normal
form (CNF), if it is the conjunction of clauses over X. A formula in CNF is
in k-CNF, if all clauses contain at most k literals. A formula is satisfiable, if
there is a truth assignment from X to {0, 1} which assigns to each variable a
Boolean value (0=false, 1=true) such that the entire formula evaluates to true.
The k-satisfiability problem is the problem of deciding whether a formula F in k-
CNF is satisfiable. It is well-known that 2-satisfiability is polynomially solvable,
whereas k-satisfiability with k ≥ 3 is NP-complete. A trivial algorithm checks
all possible truth assignments in O∗(2n) time.

We will now describe an exact O∗(1.8393n) algorithm for 3-satisfiability that
is based on the technique of pruning the search tree. Let F be a Boolean formula
in 3-CNF with m clauses (m ≤ n3). The idea is to branch on one of the clauses
c with three literals �1, �2, �3. Every satisfying truth assignment for F must fall
into one of the following three classes:

(a) literal �1 is true;
(b) literal �1 is false, and literal �2 is true;
(c) literals �1 and �2 are false, and literal �3 is true.
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We fix the values of the corresponding one, two, three variables appropriately,
and we branch into three subtrees according to these cases (a), (b), and (c)
with n − 1, n − 2, and n − 3 unfixed variables, respectively. By doing this, we
cut away the subtree where the literals �1, �2, �3 all are false. The formulas in
the three subtrees are handled recursively. The stopping criterion is when we
reach a formula in 2-CNF, which can be resolved in polynomial time. Denote by
T (n) the worst case time that this algorithm needs on a 3-CNF formula with n
variables. Then

T (n) ≤ T (n− 1) + T (n− 2) + T (n− 3) +O(n+m).

Here the terms T (n − 1), T (n − 2), and T (n − 3) measure the time for solving
the subcase with n−1, n−2, and n−3 unfixed variables, respectively. Standard
calculations yield that T (n) is within a polynomial factor of αn where α is the
largest real root of α3 = α2+α+1. Since α ≈ 1.8393, this gives a time complexity
of O∗(1.8393n).

In a milestone paper in this area, Monien & Speckenmeyer [28] improve the
branching step of the above approach. They either detect a clause that can be
handled without any branching, or they detect a clause for which the branch-
ing only creates formulas that contain one clause with at most k − 1 literals. A
careful analysis yields a time complexity of O∗(βn) for k-satisfiability, where β
is the largest real root of β = 2− 1/βk−1. For 3-satisfiability, this time complex-
ity is O∗(1.6181n). Schiermeyer [41] refines these ideas for 3-satisfiability even
further, and performs a quantitative analysis of the number of 2-clauses in the
resulting subtrees. This yields a time complexity of O∗(1.5783n). Kullmann [24,
25] writes half a book on the analysis of this approach, and gets time complex-
ities of O∗(1.5045n) and O∗(1.4963n) for 3-satisfiability. The current champion
algorithms for satisfiability are, however, not based on pruning the search tree,
but on local search ideas; see Section 6 of this survey.

Exercise 41 For a formula F in CNF, consider the following bipartite graph
GF : For every logical variable in X, there is a corresponding variable-vertex
in GF , and for every clause in F , there is a corresponding clause-vertex in
GF . There is an edge from a variable-vertex to a clause-vertex if and only if
the corresponding variable is contained (in negated or un-negated form) in the
corresponding clause. The planar satisfiability problem is the special case of the
satisfiability problem that contains all instances with formulas F in CNF for
which the graph GF is planar.

Design a sub-exponential time exact algorithm for the planar 3-satisfiability
problem! Hint: Use the planar separator theorem of Lipton & Tarjan [27] to break
the formula F into two smaller, independent pieces. Running times of roughly
O∗(c

√
n) are possible.

The independent set problem. Given a graph G = (V,E) with n vertices, the
goal is to find an independent set of maximum cardinality. An independent set
S ⊆ V is a set of vertices that does not induce any edges. Moon & Moser [29]
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have shown that a graph contains at most 3n/3 ≈ 1.4422n maximal (with respect
to inclusion) independent sets. Hence the first goal is to beat the time complexity
O∗(1.4422n).

We describe an exact O∗(1.3803n) algorithm for independent set that is based
on the technique of pruning the search tree. Let G be a graph with m edges.
The idea is to branch on a high-degree vertex: If all vertices have degree at most
two, then the graph is a collection of cycles and paths. It is straightforward to
determine a maximum independent set in such a graph. Otherwise, G contains
a vertex v of degree d ≥ 3; let v1, . . . , vd be the neighbors of v in G. Every
independent set I for G must fall into one of the following two classes:

(a) I does not contain v.
(b) I does contain v; then I cannot contain any neighbor of v.

We dive into two subtrees. The first subtree deals with the graph that results
from removing vertex v from G. The second subtree deals with the graph that
results from removing v together with v1, . . . , vd from G. We recursively compute
the maximum independent set in both subtrees, and update it to a solution for
the original graph G. Denote by T (n) the worst case time that this algorithm
needs on a graph with n vertices. Then

T (n) ≤ T (n− 1) + T (n− 4) +O(n+m).

Standard calculations yield that T (n) is within a polynomial factor of γn where
γ ≈ 1.3803 is the largest real root of γ4 = γ3+1. This yields the time complexity
O∗(1.3803n).

The first published paper that deals with exact algorithms for maximum
independent set is Tarjan & Trojanowski [46]. They give an algorithm with run-
ning time O∗(1.2599n). This algorithm follows essentially the above approach,
but performs a smarter (and pretty tedious) structural case analysis of the neigh-
borhood around the high-degree vertex v. The algorithm of Jian [22] has a time
complexity of O∗(1.2346n). Robson [38] further refines the approach. A com-
binatorial argument about connected regular graphs helps to get the running
time down to O∗(1.2108n). Robson’s algorithm uses exponential space. Beigel
[3] presents another algorithm with a weaker time complexity of O∗(1.2227n),
but polynomial space complexity. Robson [39] is currently working on a new
algorithm which is supposed to run in time O∗(1.1844n). This new algorithm is
based on a detailed computer generated subcase analysis where the number of
subcases is in the tens of thousands.

Open problem 42 (a) Construct an exact algorithm for the maximum inde-
pendent set problem with time complexity O∗(cn) for some c ≤ 1.1. If this really
is doable, it will be very tedious to do.

(b) Prove a lower bound on the time complexity of any exact algorithm for
maximum independent set that is based on the technique of pruning the search
tree and that makes its branching decision by solely considering the subgraphs
around a fixed chosen vertex.
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Exercise 43 (a) Design an algorithm with time complexity O∗(1.1602n) for the
restriction of the maximum independent set problem to graphs with maximum
degree three! Warning: This is not an easy exercise. See Chen, Kanj & Jia [5]
for a solution.

(b) Design a sub-exponential time exact algorithm for the restriction of the
maximum independent set problem to planar graphs! Hint: Use the planar sepa-
rator theorem of Lipton & Tarjan [27].

Open problem 44 An input to the Max-Cut problem consists of a graph G =
(V,E) on n vertices. The goal is to find a partition of V into two sets V1 and V2
that maximizes the number of edges between V1 and V2 in E.

(a) Design an exact algorithm for the Max-Cut problem with time complexity
O∗(cn) for some c < 2.

(b) Design an exact algorithm for the restriction of the Max-Cut problem to
graphs with maximum degree three that has a time complexity O∗(cn) for some
c < 1.5. Gramm & Niedermeier [15] state an algorithm with time complexity
O∗(1.5160n).

The bandwidth problem. Given a graph G = (V,E) with n vertices, a linear
arrangement is a bijective numbering f : V → {1, . . . , n} of the vertices from
1 to n (which can be viewed as a layout of the graph vertices on a line). In
some fixed linear arrangement, the stretch of an edge [u, v] ∈ E is the distance
|f(u)−f(v)| of its endpoints, and the bandwidth of the linear arrangement is the
maximum stretch over all edges. In the bandwidth problem, the goal is to find
a linear arrangement of minimum bandwidth for G. A trivial algorithm checks
all possible linear arrangements in O∗(n!) time.

We will sketch an exact O∗(20n) algorithm for the bandwidth problem that is
based on the technique of pruning the search tree. This beautiful algorithm is due
to Feige & Kilian [13]. The algorithm checks for every integer b with 1 ≤ b ≤ n
in O∗(20n) time whether the bandwidth of the input graph G is less or equal to
b. To simplify the presentation, we assume that both n and b are powers of two
(and otherwise analogous but more messy arguments go through). Moreover, we
assume that G is connected. The algorithm proceeds in two phases. In the first
phase, it generates an initial piece of the search tree that branches into up to 5n

subtrees. In the second phase, each of these subtrees is handled in O(4n) time
per subtree.

The goal of the first phase is to break the set of ‘reasonable’ linear arrange-
ments into up to n 5n−1 subsets; in each of these subsets the approximate po-
sition of every single vertex is known. More precisely, we partition the interval
[1, n] into 2n/b segments of length b/2, and we will assign every vertex to one
of these segments. We start with an arbitrary vertex v ∈ V , and we check all
2n/b possibilities for assigning v to some segment. Then we iteratively select a
yet unassigned vertex x that has a neighbor y that has already been assigned
to some segment. In any linear arrangement with bandwidth b, vertex x can not
be placed more than two segments away from vertex y; hence, vertex x can only
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be assigned to five possible segments. There are n− 1 vertices to assign, and we
end up with O∗(5n) assignments.

In the second phase, we check which of these O∗(5n) assignments can be
extended to a linear arrangement of bandwidth at most b. All assignments are
handled in the same way: If an assignment stretches some edge from a segment
to another segment with at least two other segments in between, then this as-
signment can never lead to a linear arrangement with bandwidth b; therefore,
we may kill such an assignment right away. If an edge goes from a segment to
the same segment or to one of the adjacent segments, then it will have stretch at
most b regardless of the exact positions of vertices in segments; therefore, such an
edge may be removed. Hence, in the end we are only left with edges that either
connect consecutive even numbered segments or consecutive odd numbered seg-
ments. The problem decomposes into two independent subproblems, one within
the even numbered segments and one within the odd numbered segments.

All these subproblems now are solved recursively. We break every segment
into two subsegments of equal length. We try all possibilities for assigning every
vertex from every segment into the corresponding left and right subsegments.
Some of these refined assignments can be killed right away since they overstretch
some edge; other edges are automatically short, and hence can be removed. In
any case, we end up with two independent subproblems (one within the right
subsegments and one within the left subsegments) that both can be solved recur-
sively. Denote by T (k) the time needed for solving a subproblem with k vertices.
Then

T (k) ≤ 2k · (T (k/2) + T (k/2)).

Standard calculations yield that T (k) is in O(4k). Therefore, in the second phase
we check O∗(5n) assignments in O∗(4n) time per assignment. This yields an
overall time complexity of O∗(20n). Feige & Kilian [13] do a more careful analysis
and improve the time complexity below O∗(10n).

Open problem 45 (Feige & Kilian [13])
Does the bandwidth problem have considerably faster exact algorithms? For in-
stance, can it be solved in O∗(2n) time?

Exercise 46 In the minimum sum linear arrangement problem, the input is a
graph G = (V,E) with n vertices. The goal is to find a linear arrangement of G
that minimizes the sum of the stretches of all edges. Design an exact algorithm
with time complexity O∗(2n) for this problem. Hint: Do not use the technique of
pruning the search tree.

5 Technique: Preprocessing the Data

Preprocessing is an initial phase of computation, where one analyzes and re-
structures the given data, such that later on certain queries to the data can be
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answered quickly. By preprocessing an exponentially large data set or part of
this data in an appropriate way, we may sometimes gain an exponentially large
factor in the running time. In this section we will use the technique of prepro-
cessing the data to get fast algorithms for the subset sum problem and for the
binary knapsack problem. We start this section by discussing two very simple,
polynomially solvable toy problems where preprocessing helps a lot.

In the first toy problem, we are given two integer sequences x1, . . . , xk and
y1, . . . , yk and an integer S. We want to decide whether there exist an xi and a
yj that sum up to S. A trivial approach would be to check all possible pairs in
O(k2) overall time. A better approach is to first preprocess the data and to sort
the xi in O(k log k) time. After that, we may repeatedly use bisection search
in this sorted array, and search for the k values S − yj in O(log k) time per
value. The overall time complexity becomes O(k log k), and we save a factor of
k/ log k. By applying the same preprocessing, we can also decide in O(k log k)
time, whether the sequences 〈xi〉 and 〈yj〉 are disjoint, or whether every value
xi also occurs in the sequence 〈yj〉.

In the second toy problem, we are given k points (xi, yi) in two-dimensional
space, together with the n numbers z1, . . . , zk, and a number W . The goal is to
determine for every zj the largest value yi, subject to the condition that xi+zj ≤
W . The trivial solution needs O(k2) time, and by applying preprocessing this can
be brought down to O(k log k): If there are two points (xi, yi) and (xj , yj) with
xi ≤ xj and yi ≥ yj , then the point (xj , yj) may be disregarded since it is always
dominated by (xi, yi). The subset of non-dominated points can be computed in
O(k log k) time by standard methods from computational geometry. We sort the
non-dominated points by increasing x-coordinates and store this sequence in an
array. This completes the preprocessing. To handle a value zj , we simply search
in O(log k) time through the sorted array for the largest value xi less or equal
to W − zj .

In both toy problems preprocessing improved the time complexity from O(k2)
to O(k log k). Of course, when dealing with exponential time algorithms an im-
provement by a factor of k/ log k is not impressive at all. The right intuition is
to think of k as roughly 2n/2. Then preprocessing the data yields a speedup from
k2 = 2n to k log k = n2n/2, and such a speedup of 2n/2 indeed is impressive!

The subset sum problem. In this problem, the input consists of positive integers
a1, . . . , an and S. The question is whether there exists a subset of the ai that
sums up to S. The subset sum problem belongs to the class of subset problems,
and can be solved (trivially) in O∗(2n) time. By splitting the problem into two
halves and by preprocessing the first half, the time complexity can be brought
down to O∗(

√
2
n
) ≈ O∗(1.4145n).

Let X denote the set of all integers of the form
∑
i∈I ai with I ⊆

{1, . . . , �n/2}, and let Y denote the set of all integers of the form
∑
i∈I ai

with I ⊆ {�n/2 + 1, . . . , n}. Note that 0 ∈ X and 0 ∈ Y . It is straightforward
to compute X and Y in O∗(2n/2) time by complete enumeration. The subset sum
instance has a solution if and only if there exists an xi ∈ X and a yj ∈ Y with
xi + yj = S. But now we are back at our first toy problem that we discussed at
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the beginning of this section! By preprocessing X and by searching for all S−yj
in the sorted structure, we can solve this problem in O(n2n/2) time. This yields
an overall time of O∗(2n/2).

Exercise 51 An input to the Exact-Hitting-Set problem consists of a ground set
X with n elements, and a collection S of subsets over X. The question is whether
there exists a subset Y ⊆ X such that |Y ∩ T | = 1 for all T ∈ S.

Use the technique of preprocessing the data to get an exact algorithm with
time complexity O∗(2n/2) ≈ O∗(1.4145n).

Drori & Peleg [9] use the technique of pruning the search tree to get a time
complexity of O∗(1.2494n) for the Exact-Hitting-Set problem.

Exercise 52 (Van Vliet [47])
In the Three-Partition problem, the input consists of 3n positive integers
a1, . . . , an, b1, . . . , bn, and c1, . . . , cn, together with an integer D. The ques-
tion is to determine whether there exist three permutations π, ψ, φ of {1, . . . , n}
such that aπ(i) + bψ(i) + cφ(i) = D holds for all i = 1, . . . , n. By checking all
possible triples (π, ψ, φ) of permutations, this problem can be solved trivially in
O∗(n!3) time.

Use the technique of preprocessing the data to improve the time complexity
to O∗(n!).

The binary knapsack problem. Here the input consists of n items that are speci-
fied by a positive integer value ai and a positive integer weight wi (i = 1, . . . , n),
together with a bound W . The goal is to find a subset of the items with the max-
imum total value subject to the condition that the total weight does not exceed
W . The binary knapsack problem is closely related to the subset sum problem,
and it can be solved (trivially) in O∗(2n) time. In 1974, Horowitz & Sahni [18]
used a preprocessing trick to improve the time complexity to O∗(2n/2).

For every I ⊆ {1, . . . , �n/2} we create a compound item xI with value
aI =

∑
i∈I ai and weight wI =

∑
i∈I wi, and we put this item into the set X.

For every J ⊆ {�n/2+1, . . . , n} we put a corresponding compound item yJ into
the set Y . The sets X and Y can be determined in O∗(2n/2) time. The solution
of the knapsack instance now reduces to the following: Find a compound item
xI in X and a compound item yJ in Y , such that wI + wJ ≤ W and such that
aI + aJ becomes maximum. But this can be handled by preprocessing as in our
second toy problem, and we end up with an overall time complexity and an
overall space complexity of O∗(2n/2).

In 1981, Schroeppel & Shamir [45] improved the space complexity of this
approach to O∗(2n/4), while leaving its time complexity unchanged. The main
trick is to split the instance into four pieces with n/4 items each, instead of two
pieces with n/2 items. Apart from this, there has been no progress on exact
algorithms for the knapsack problem since 1974.

Open problem 53 Construct an exact algorithm for the subset sum problem
or the knapsack problem with time complexity O∗(cn) for some c <

√
2, or prove

that no such algorithm can exist under some reasonable complexity assumptions.
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6 Technique: Local Search

The idea of using local search methods in designing exact exponential time al-
gorithms is relatively new. A local search algorithm is a search algorithm that
wanders through the space of feasible solutions. At each step, this search algo-
rithm moves from one feasible solution to another one nearby. In order to express
the word ‘nearby’ mathematically, we need some notion of distance or neighbor-
hood on the space of feasible solutions. For instance in the satisfiability problem,
the feasible solutions are the truth assignments from the set X of logical vari-
ables to {0, 1}. A natural distance between truth assignments is the Hamming
distance, that is, the number of bits where two truth assignments differ.

In this section we will concentrate on the 3-satisfiability problem where
the input is a Boolean formula F in 3-CNF over the n logical variables in
X = {x1, x2, . . . , xn}; see Section 4 for definitions and notations for this prob-
lem. We will describe three exact algorithms for 3-satisfiability that all are based
on local search ideas. All three algorithms are centered around the Hamming
neighborhood of truth assignments: For a truth assignment t and a non-negative
integer d, we denote by H(t, d) the set of all truth assignments that have Ham-
ming distance at most d from assignment t. It is easy to see that H(t, d) contains
exactly

∑d
k=0

(
n
k

)
elements.

Exercise 61 For a given truth assignment t and a given non-negative integer
d, use the technique of pruning the search tree to check in O∗(3d) time whether
the Hamming neighborhood H(t, d) contains a satisfying truth assignment for the
3-CNF formula F .

In other words, the Hamming neighborhood H(t, d) can be searched quickly for
the 3-satisfiability problem. For the k-satisfiability problem, the corresponding
time complexity would be O∗(kd).

First local search approach to 3-satisfiability. We denote by 0n (respectively,
1n) the truth assignment that sets all variables to 0 (respectively, to 1). Any
truth assignment is in H(0n, n/2) or in H(1n, n/2). Therefore by applying the
search algorithm from Exercise 61 twice, we get an exact algorithm with running
time O∗(

√
3
n
) ≈ O∗(1.7321n) for 3-satisfiability. It is debatable whether this

algorithm should be classified under pruning the search tree or under local search.
In any case, it is due to Schöning [44].

Second local search approach to 3-satisfiability. In the first approach, we essen-
tially covered the whole solution space by two balls of radius d = n/2 centered at
0n and 1n. The second approach works with balls of radius d = n/4. The crucial
idea is to randomly choose the center of a ball, and to search this ball with the
algorithm from Exercise 61. If we only do this once, then we ignore most of the
solution space, and the probability for answering correctly is pretty small. But
by repeating this procedure a huge number α of times, we can boost the proba-
bility arbitrarily close to 1. A good choice for α is α = 100 · 2n/

∑n/4
k=0

(
n
k

)
. The
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algorithm now works as follows: Choose α times a truth assignment t uniformly
at random, and search for a satisfying truth assignment in H(t, n/4). If in the
end no satisfying truth assignment has been found, then answer that the formula
F is not satisfiable.

We will now discuss the running time and the error probability of this algo-
rithm. By Exercise 61, the running time can be bounded by roughly α · 3n/4. By
applying Stirling’s approximation, one can show that up to a polynomial factor
the expression

∑n/4
k=0

(
n
k

)
behaves asymptotically like (256/27)n/4. Therefore, the

upper bound α · 3n/4 on the running time is in O∗((3/2)n) = O∗(1.5n).
Now let us analyze the error probability of the algorithm. The only possible

error occurs, if the formula F is satisfiable, whereas the algorithm does not man-
age to find a good ball H(t, n/4) that contains some satisfying truth assignment
for F . For a single ball, the probability of containing a satisfying truth assign-
ment equals

∑n/4
k=0

(
n
k

)
/2n, that is the number of elements in H(t, n/4) divided by

the overall number of possible truth assignments. This probability equals 100/α.
Therefore the probability of selecting a ball that does not contain any satisfying
truth assignment is 1 − 100/α. The probability of α times not selecting such a
ball equals (1 − 100/α)α, which is bounded by the negligible value e−100.

In fact, the whole algorithm can be derandomized without substantially in-
creasing the running time. Dantsin, Goerdt, Hirsch, Kannan, Kleinberg, Pa-
padimitriou, Raghavan & Schöning [6] do not choose the centers of the balls
at random, but they take all centers from a so-called covering code so that
the resulting balls cover the whole solution space. They show that such cover-
ing codes can be computed within reasonable amounts of time. The approach
in [6] yields deterministic exact algorithms for k-satisfiability with running time
O∗((2− 2

k+1 )n). For 3-satisfiability, [6] improve the time complexity further down
to O∗(1.4802n) by using a smart idea for an underlying branching step. This is
currently the fastest known deterministic algorithm for 3-satisfiability.

Third local search approach to 3-satisfiability. The first approach was based on
selecting the center of a ball deterministically, and then searching through the
whole ball. The second approach was based on selecting the center of a ball
randomly, and then searching through the whole ball. The third approach now
is based on selecting the center of a ball randomly, and then doing a short
random walk within the ball. More precisely, the algorithm repeats the following
procedure roughly 200 · (4/3)n times: Choose a truth assignment t uniformly at
random, and perform 2n steps of a random walk starting in t. In each step, first
select a violated clause at random, then select a literal in the selected clause at
random, and finally flip the truth value of the corresponding variable. If in the
very end no satisfying truth assignment has been found, then answer that the
formula F is not satisfiable.

The intuition behind this algorithm is as follows. If we start far away from a
satisfying truth assignment, then the random walk has little chance of stumbling
towards a satisfying truth assignment. Hence, it is a good idea to terminate it
quite early after 2n steps, without wasting time. But if the starting point is



Exact Algorithms for NP-Hard Problems: A Survey 201

very close to a satisfying truth assignment, then the probability is high that
the random walk will be dragged closer and closer towards this satisfying truth
assignment. And if the random walk indeed is dragged into a satisfying truth
assignment, then with high probability this happens within the first 2n steps
of the random walk. The underlying mathematical structure is a Markov chain
that can be analyzed by standard methods. Clearly, the error probability can
be made negligibly small by sufficiently often restarting the random walk. And
up to a polynomial factor, the running time of the algorithm is proportional to
the number of performed random walks. This implies that the time complexity
is O∗((4/3)n) ≈ O∗(1.3334n).

This algorithm and its analysis are due to Schöning [43]. Some of the un-
derlying ideas go back to Papadimitriou [31] who showed that 2-SAT can be
solved in polynomial time by a randomized local search procedure. The algo-
rithm easily generalizes to the k-satisfiability problem, and yields a randomized
exact algorithm with time complexity O∗((2(k − 1)/k)n). The fastest known
randomized exact algorithm for 3-satisfiability is due to Hofmeister, Schöning,
Schuler & Watanabe [17], and has a running time of O∗(1.3302n). It is based on
a refinement of the above random walk algorithm.

Open problem 62 Design better deterministic and/or randomized algorithms
for the k-satisfiability problem.

More resuls on exact algorithms for k-satisfiability and related problems can
be found in the work of Paturi, Pudlak & Zane [34], Paturi, Pudlak, Saks &
Zane [35], Pudlak [37], Rodošek [40], and Williams [48].

7 How Can We Prove That a Problem Has No
Sub-exponential Time Exact Algorithm?

All the problems discussed in this paper are NP-complete, and almost all of the
developped algorithms use exponential time. Of course we cannot expect to find
polynomial time algorithms for NP-complete problems, but maybe there exist
better, sub-exponential, super-polynomial algorithms? How can we settle such
questions?

Since our understanding of the landscape around the complexity classes P
and NP still is fairly poor, the only available way of proving negative results on
exact algorithms is by arguing relative to some widely believed conjectures. For
instance, an NP-hardness proof establishes that some problem does not have a
polynomial time algorithm, given that the widely believed conjecture P�=NP holds
true. The right conjecture for disproving the existence of sub-exponential time
exact algorithms seems to be the following.

Widely believed conjecture 71 SNP �⊆ SUBEXP.

We already mentioned in Section 2 that the class SNP is a broad complex-
ity class that contains many important combinatorial optimization problems.
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Therefore, if the widely believed Conjecture 71 is false, then quite unexpectedly
all these important problems would possess relatively fast, sub-exponential time
algorithms. However, the exact relationship between the P versus NP question
and Conjecture 71 is unclear.

Open problem 72 Does SNP ⊆ SUBEXP imply P = NP?

Impagliazzo, Paturi & Zane [21] introduce the concept of SERF-reduction
(Sub-Exponential Reduction Family) that preserves sub-exponential time com-
plexities. Consider two problems A1 and A2 in NP with complexity parameters
m1 and m2, respectively. A SERF-reduction from A1 to A2 is a family Tε of
Turing-reductions from A1 to A2 over all ε > 0 with the following two proper-
ties:

– The reduction Tε(x) can be done in time poly(|x|) · 2ε·m1(x).
– If the reduction Tε(x) queries A2 with input x′, then m2(x′) is linearly

bounded in m1(x) and the length of x′ is polynomially bounded in the length
of x.

SERF-reducibility is transitive. Moreover, if problem A1 is SERF-reducible to
problem A2 and if problem A2 has a sub-exponential time algorithm, then also
problem A1 has a sub-exponential time algorithm. Consider some problem A
that is hard for the complexity class SNP under SERF-reductions. If problem
A had a sub-exponential time algorithm, then all the problems in SNP had
sub-exponential time algorithms, and this would contradict the widely believed
Conjecture 71 that SNP �⊆ SUBEXP.

The k-satisfiability problem plays a central role for sub-exponential time algo-
rithms, the same central role that it plays everywhere else in computational com-
plexity theory. There are two natural complexity parameters for k-satisfiability,
the number of logical variables and the number of clauses. Impagliazzo, Pa-
turi & Zane [21] prove that the two variants of k-satisfiability with these two
complexity parameters are SERF-reducible to each other, and hence are equiv-
alent under SERF-reductions. This indicates that for k-satisfiability the exact
parameterization is not very important, and that all natural parameterizations
of k-satisfiability should be SERF-reducible to each other. Most important, the
paper [21] shows that for any fixed k ≥ 3 the k-satisfiability problem is SNP-
complete under SERF-reductions. As we discussed above, this implies that for
any fixed k ≥ 3 the k-satisfiability problem cannot have a sub-exponential time
algorithm, unless SNP ⊆ SUBEXP. Therefore, the widely believed Conjecture 71
could also be formulated in the following way.

Widely believed conjecture 73 (Exponential Time Hypothesis, ETH)
For any fixed k ≥ 3, k-satisfiability does not have a sub-exponential time algo-
rithm.

Now let sk denote the infimum of all real numbers δ with the property that
there exists an O∗(2δn) exact algorithm for solving the k-satisfiability problem.
Observe that sk ≤ sk+1 and 0 ≤ sk ≤ 1 hold trivially for all k ≥ 3. The
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exponential time hypothesis conjectures sk > 0 for all k ≥ 3, and that the
numbers sk converge to some limit s∞ > 0. Impagliazzo & Paturi [20] prove
that under ETH, sk ≤ (1 − α/k) · s∞ holds, where α is some small positive
constant. Consequently, under ETH we can never have sk = s∞ and the time
complexities for k-satisfiability must increase more and more as k increases.

Open problem 74 (Impagliazzo & Paturi [20])
Assuming the exponential time hypothesis for k-satisfiability, obtain evidence for
the hypothesis that s∞ = 1.

Now let us discuss the behavior of some other problems in NP. Impagliazzo,
Paturi & Zane [21] show that for any fixed k ≥ 3 the k-colorability problem is
SNP-complete under SERF-reductions. Hence 3-colorability can not be solved
in sub-exponential time, unless SNP ⊆ SUBEXP. The paper [21] also shows that
the Hamiltonian cycle problem and the independent set problem (both with the
number of vertices as complexity parameter) can not be solved in sub-exponential
time, unless SNP ⊆ SUBEXP. Johnson & Szegedy [23] strengthen the result on
the independent set problem by showing that the independent set problem in
arbitrary graphs is equally difficult as in graphs with maximum degree three:
Either both of these problems have a sub-exponential time algorithm, or neither
of them does. Feige & Kilian [13] prove that also the bandwidth problem can
not be solved in sub-exponential time, unless SNP ⊆ SUBEXP. For all results
listed in this paragraph, the proofs are done by translating classical NP-hardness
proofs from the 1970s into SERF-reductions. The main technical problem is to
keep the complexity parameters m(x) under control.

In another line of research, Feige & Kilian [12] show that if in graphs with
n vertices independent sets of size O(log n) can be found in polynomial time,
then the 3-satisfiability problem can be solved in sub-exponential time. This
result probably does not speak against the ETH, but indicates that finding
small independent sets is difficult.

The W-hierarchy gives rise to yet another widely believed conjecture that can
be used for disproving the existence of sub-exponential time exact algorithms.
As we already mentioned in Section 2, the general belief is that all the W-classes
are pairwise distinct. The following (cautious) conjecture only states that the
W-hierarchy does not collapse completely.

Widely believed conjecture 75 FPT �= W[P].

Abrahamson, Downey & Fellows [1] proved that Conjecture 75 is false if and only
if the satisfiability problem for Boolean circuits can be solved in sub-exponential
time poly(|x|) · 2o(n). Here |x| denotes the size of the Boolean circuit that is
given as an input, n denotes the number of input variables of the circuit, and
o(n) denotes some sub-linear function in n. Since the k-satisfiability problem is
a special case of the Boolean circuit satisfiability problem, the exponential time
hypothesis ETH implies Conjecture 75. It is not known whether the reverse
implication also holds.



204 G.J. Woeginger

Most optimization problems that are mentioned in this survey possess ex-
act algorithms with time complexity O∗(cm(x)), i.e., exponential time where the
exponent grows linearly in the complexity parameter m(x). The quadratic as-
signment problem is a candidate for a natural problem that does not possess
such an exact algorithm.

Open problem 76 In the quadratic assignment problem (QAP) the input con-
sists of two n × n matrices A = (aij) and B = (bij) (1 ≤ i, j ≤ n) with real
entries. The objective is to find a permutation π that minimizes the cost func-
tion

∑n
i=1

∑n
j=1 aπ(i)π(j)bij. The QAP can be solved in O∗(n!) time. The QAP

is a notoriously hard problem, and no essentially faster algorithms are known
(Pardalos, Rendl & Wolkowicz [33]).

Prove that (under some reasonable complexity assumptions) the QAP can not
be solved in O∗(cn) time, for any fixed value c.

8 Concluding Remarks

Currently, when we are dealing with an optimization problem, we are used to look
at its computational complexity, its approximability behavior, its online behavior
(with respect to competitive analysis), its polyhedral structure. Exact algorithms
with good worst case behavior should probably become another standard item
on this list, and we feel that the known techniques and results as described in
Sections 3–6 deserve to be taught in our introductory algorithms courses.

There remain many open problems and challenging questions around the
worst case analysis of exact algorithms for NP-hard problems. This seems to be
a rich and promising area. We only have a handful of techniques available, and
there is ample space for improvements and for new results.
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44. U. Schöning [2001]. New algorithms for k-SAT based on the local search principle.
Proceedings of the 26th International Symposium on Mathematical Foundations of
Computer Science (MFCS’2001), Springer, LNCS 2136, 87–95.

45. R. Schroeppel and A. Shamir [1981]. A T = O(2n/2), S = O(2n/4) algorithm
for certain NP-complete problems. SIAM Journal on Computing 10, 456–464.

46. R.E. Tarjan and A.E. Trojanowski [1977]. Finding a maximum independent
set. SIAM Journal on Computing 6, 537–546.

47. A. van Vliet [1995]. Personal communication.
48. R. Williams [2002]. Algorithms for quantified Boolean formulas. Proceedings of

the 13th ACM-SIAM Symposium on Discrete Algorithms (SODA’2002).


	Introduction
	Technical Preliminaries
	Technique: Dynamic Programming across the Subsets
	Technique: Pruning the Search Tree
	Technique: Preprocessing the Data
	Technique: Local Search
	How Can We Prove That a Problem Has No Sub-exponential Time Exact Algorithm?
	Concluding Remarks

