Object-Oriented Programming 2017/18
doc. Ing. Valentino Vrani¢, PhD., UISI FIIT STU
Exam — May 21, 2018

1b
2b
3b
The exam lasts 70 minutes.

Last name:

Name:

—_

Write the answers to questions
1-12 into the table. With these
questions, only the answers in
the table will be considered (wit-
hout the work out). An answer
must be unambiguous and rea-
dable, otherwise it will be mar-
ked with 0 points.

In multiple-choice questions only
one choice is correct — write into
the table only the letter by which
the answer you choose is marked
with.

Write the answer to question 13
exclusively on the paper with the
question text.

©| 00| | O O & W N

[
o

[t
=

—
[\V]

A damaged paper will not be ac-
cepted.

1. (1b) In Java, an analogous mechanism to C+-+ templa-
tes

) are anonymous classes
) is generics

) do not exist

) are interfaces

)

RTTI

2. (1b) Classes in the C++ language have their roots in
he mechanism of

) union

) template
) define

) struct

) include

w

. (1b) In C#, events

(a) exist as a language mechanism, but can’t be used outside
a GUI

(b) exist as a language mechanism and can be used outside a
GUI

(c) can’t be implemented

(d) are the same as the delegate mechanism

(e) are not a language mechanism

4. (1b) Java supports persistence by
(a) aggregation

(b) radialization

(¢) modularization

(d) synchronization

(e)

e) serialization

5. (1b) Is it possible in AspectJ to influence the program
behavior by using only inter-type declarations (without using
RTTI)?

(a) yes

(b) yes, but only that of non-static methods

(c) no

(d) yes, but not setting the attributes

(e) yes, but only that of static methods

6. (1b) Generics in Java enables collections to

(

be specialized for any data type during inheritance
perform faster

a)
b)
c) store a greater number of objects
d)
)

(
(d) be automatically saved to the disk
(e) be specialized for any data type during instantiation

7. (2b) The following program in Java is given:
class A extends Thread {

C c;

public A(C ¢) {
this.c = ¢;

}

public void run() {
for (int i = 0; i < 9999; i++)
c.a();
}
}

class B extends Thread {
Cc;
public B(C ¢) {
this.c = ¢;

public void run() {
for (int i = 0;1 < 9999; i++)
c.b();

class C {
private char a =’a’, b ='b’;
public synchronized void a() {
if (al=Db)
System.out.println(”a”);
a="a’;
b ="a;

public void b() {
if (al=Db)
System.out.println(”b”);
a="b’;
b= b
}

public static void main(String|[] args) {
C ¢ = new C();
new A(c).start();
new B(c).start();

}
}

The output of this program will be

(a) nothing or characters a a b in an irregular number and
alternation

(b) ten thousand times character a

(c) nothing

(d) ten thousand times characters a and b in an irregular num-
ber

(e) ten thousand times character b

8. (2b) What all makes the output of the
System.out.print() statements of the following program
in Java (until its successful or unsuccessful ending)?

class E extends Exception {}

class M {
public void m(char c) throws E {
if (c =="a’)
System.out.print(”A”);
else
throw new E();
}

public void f(char ¢) throws E {
System.out.print("F”);

try {
m(c);
} catch (E e) {
throw e;
} finally {
System.out.print(”!”);
}

}

public static void main(String[] args) throws E {
new M().f(’a%);
new M().f(’b’);
new M().f(’a’);
}
}

9. (2b) Extensibility of a class with other operations (met-
hods) should be provided, but so that the adding of operations
wouldn’t require changing its code. What design pattern would
you use?

(a) Visitor
(b) Composite
(c) Strategy
(d) Observer
(e) MVC

10. (2b) A game in Java includes the following code:

class Vila {
private int energy;
private int lives;

public void energyToLives() {
acquiredLives = energy/100;
lives += acquiredLives;
energy —= acquiredLives x 100;
MainWindow.window.numberOfLives.set Text(
Integer.toString(lives));

}

The main problem in this code with respect of object-oriented
design is that

(a) the attributes are private and they won’t be accessible
by derived classes

(b) the code for transforming energy to lives isn’t a part of
the corresponding listener (handler)

(¢) the internal logic is being mixed with the user interface

(d) the method changes two attributes

(e) the code for transforming energy to lives isn’t a part of

the game window

11. (3b) What is the output of the execution of the follo-
wing program in Java?

class A {
public void x() {
System.out.print(” Ax”);
}

public static void y() {
System.out.print(” Ay”);
}
}

class B extends A {
public void x() {
super.x();
System.out.print(”Bx”);
}
public static void y() {
Ay ();
System.out.print(”By”);
}
}
class C extends B {
public void x() {
System.out.print(” Cx”);
}

public static void y() {
System.out.print(”Cy”);
}
}

class M {
public static void main(String[] args) {
B 01 = new C();
C 02 = new C();
A 03 = new B();
0;
0

B 04 = new B
A 05 = new B

((C) o1).x();
((C) o1).y();

System.out.print(” ”);

((B) 02).x();
((B) 02).y();

System.out.print(” ”);

)

)

03.x();

03.y();
System.out.print(” ”);

04.x();

od.y();
System.out.print(” ”);

12. (3b) The class that represents a special document is
devised from the class that represents a general document. The
method for identifying the general document signatory does
not guarantee returning the name of the signatory because a
general document may have no one. By this, preconditions and
postconditions of these methods weaken, strengthen, or remain
the same? Is Liskov substitution principle (LSP) preserved by
this?

Answer in this form: preconditions / postconditions / LSP.
Items preconditions and postconditions replace with the one
of the following possibilities: weaken, strengthen, or remain
the same. Items LSP replace with the one of the following
possibilities: preserved or not preserved.

OOQOP — exam — May 21, 2018

Last name:

Name:

13. (10b) In an urbanistic simulation program, different
decorations occur with respect to a city. For the time being,
these are colored lights and fountains, but in future, other
kinds will be added. In the city, energy is being saved and the
decorations indicate when this is necessary to its inhabitants.
Thus, colored lights shine blue, when the city instant consump-
tion is under 50% of the long-term average, blue, when the city
instant consumption is between 50% and 70% of the long-term
average, a red, when the city instant consumption is above 70%
of the long-term average. Fountains operate only when the city
instant consumption is under 60% of the long-term average.
The implementation of calculating the long-term average and
instant consumption is not the subject of this task.

Design and implement in Java the corresponding object-
oriented solution that takes into account the principles of
object-oriented programming. In this, apply the most approp-
riate design pattern among Strategy, Observer, Visitor, and
Composite.

Provide the basic design as a UML class diagram sketch
containing the most important relationships, operations, and
attributes. In this, take into account the design pattern. Visi-
bility is not required to be provided.

In implementation, focus on the application logic — GUI is
not the subject of the question. Also, the algorithms applied
do not have to be optimal.

Explicitly identify the elements that model and implement
the roles of the design pattern applied and explain why did
you apply this design pattern. Present an example of use in
which you create the corresponding objects and start off their
interaction.

The question would be marked according to the following
key:

e providing the basic functionality — 4 b

e a design with respect to the open-closed principle and
appropriate use of encapsulation — 6 b

Object-Oriented Programming 2017/18
doc. Ing. Valentino Vrani¢, PhD., UISI FIIT STU
Exam — May 21, 2018

30

-

b
d

FA!F!

© od] ~ =] [=~ w N
)

a
10 ¢
11 CxCy CxAyBy AxBxAy AxBxAyBy AxBxAy

12 remain the same / strengthen / preserved

In the last question, the Observer pattern should have been
applied. A city and the energy consumption data as such are
represented by an abstract class or interface and play the Sub-
ject role. From this class or interface, the only concrete city
type is derived. Decorations are represented by an abstract
class or interface and play the Observer role. From this class
or interface, concrete types of decoration are derived. In the
method which updates the instant city consumption, the no-
tification of all registered decorations is activated, which in
turn update their state.

