
Object-Oriented Programming 20018/19 A
doc. Ing. Valentino Vranić, PhD., ÚISI FIIT STU
Exam – June 7, 2019

Last name:

Name:

1 b

2 b

3 b

1

2

3

4

5

6

7

8

9

10

11

12

The exam can take up to 70 minu-
tes.
Write the answers to questions 1–
12 into the table. With these qu-
estions, only the answers in the
table will be considered (without
the work out). An answer must be
unambiguous and readable, other-
wise it will be marked with 0 points.

In multiple-choice questions only
one choice is correct – write into the
table only the letter by which the
answer you choose is marked with.

Write the answer to question 13
exclusively on the paper with the
question text.

A damaged paper will not be accep-
ted.

1. (1 b) In the C++ language, by overloading an operator

(a) the meaning of this operator changes for all types of ope-
rands

(b) the meaning of this operator changes for a given type of
operands

(c) the meaning of this operator doesn’t change at all
(d) the meaning of this operator changes by an intervention

in the compiler
(e) the meaning of this operator changes by an intervention

in the linker

2. (1 b) In the C++ language, a destructor

(a) must be introduced in all classes
(b) is never introduced
(c) must be introduced in classes that are derived from several

other classes
(d) must be introduced in classes in which memory is being

allocated when objects are created
(e) must be introduced in classes that contain virtual methods

3. (1 b) The C# language simplifies providing the encapsu-
lation by

(a) delegates
(b) events
(c) properties
(d) templates
(e) macros

4. (1 b) Serialization in Java serves to

(a) protect data
(b) store source code
(c) aggregate data
(d) synchronize data
(e) store data

5. (1 b) In Java, a method being generic means that

(a) it has no body
(b) it has no parameters nor a return value
(c) it has at least one parameter or return value of the Object

type

(d) it doesn’t implement all the details, but a part of its code
is generated automatically according to parameters

(e) it has the type of at least one of its parameters represented
by a variable

6. (1 b) In the AspectJ language, without changing the code
of a method it is possible to

(a) fully manage method execution
(b) ensure executing code before, after, or instead of a met-

hod, but not executing a method conditionally
(c) ensure executing code before or after a method, but not

instead of a method
(d) add new methods, but not to affect the behavior of exis-

ting methods
(e) add new attributes, but not methods

7. (2 b) The following program in Java is given:

class S1 extends Thread {
C c;
public S1(C c) {

this.c = c;
}
public synchronized void run() {

synchronized(this) {
for (int i = 0; i < 10000; i++)
c.s1();

}
}

}

class S2 implements Runnable {
C c;
public S2(C c) {

this.c = c;
}
public synchronized void run() {

for (int i = 0; i < 10000; i++)
c.s2();

}
}

class C {
private char o1 = 0, o2 = 0;

public void s1() {
if (o1 != o2)
System.out.println(”s1”);

o1 = 1;
o2 = 1;

}

public synchronized void s2() {
synchronized(this) {

if (o1 != o2)
System.out.println(”s2”);

o1 = 2;
o2 = 2;

}
}

public static synchronized void main(String[] args) {
C c = new C();
new S1(c).start();
new Thread(new S2(c)).start();

}
}

At which methods it is possible to remove the synchronized
modifier so that it remains guaranteed that nothing ever
appears in the output (introduce them in this form:
Class.method())?

1



8. (2 b) It is necessary to ensure that the objects that be-
have according to changes in the state of a given object know
about these changes and that such objects could be added
without the necessity to modify this object.

(a) Visitor
(b) Observer
(c) MVC
(d) Composite
(e) Strategy

9. (2 b) What all makes the output of the System.out.print()
statements of the following program in Java (until its success-
ful or unsuccessful ending)?

class E extends Exception {}

class C {
public void f(int n) throws E {

if (n < 1)
throw new E();

}

public void g(int n) {
System.out.print(n);

try {
f(n);

} catch (E e) {
System.out.print(”E”);

} finally {
System.out.print(”F ”);

}
}

public static void main(String[] args) {
new C().g(1);
new C().g(0);
new C().g(1);
new C().g(0);

}
}

10. (2 b) A game in Java includes the following code:

class Player {
private int energy;
private int lives;
. . .
public void energyToLives() {
acquiredLives = energy/100;
lives += acquiredLives;
energy −= energy/100 ∗ 100;
GameGUI.mainWindow.numberOfLives.setText(
Integer.toString(lives));

}
. . .

}

The main problem in this code with respect of object-oriented
design is that

(a) the internal logic is being mixed with the user interface
(b) the attributes are private and they won’t be accessible by

derived classes
(c) the code for transforming energy to lives isn’t a part of

the corresponding listener (handler)
(d) the method changes two attributes
(e) the code for transforming energy to lives isn’t a part of

the game window

11. (3 b) What is the output of the execution of the follo-
wing program in Java?

class A {
public void x() {
System.out.print(”Ax”);

}
public static void y() {
System.out.print(”Ay”);

}
}
class B extends A {

public void x() {
super.x();
System.out.print(”Bx”);

}
public static void y() {
A.y();
System.out.print(”By”);

}
}
class C extends B {

public void x() {
System.out.print(”Cx”);

}
public static void y() {
System.out.print(”Cy”);

}
}
class M {

public static void main(String[] args) {
A o1 = new B();
C o2 = new C();
A o3 = new A();
B o4 = new B();
B o5 = new C();

((B) o1).x();
((B) o1).y();
System.out.print(” ”);

((A) o2).x();
((A) o2).y();
System.out.print(” ”);

o3.x();
o3.y();
System.out.print(” ”);

o4.x();
o4.y();
System.out.print(” ”);

((A) o5).x();
((A) o5).y();

}
}

12. (3 b) The class that represents a special document is
devised from the class that represents a general document. The
method for signing the document, one parameter of which is a
signatory, is in the special document overridden and requires
that the signatory be from the list of authorized signatories.
By this, postconditions and preconditions of these methods
weaken, strengthen, or remain the same? Is Liskov substitution
principle (LSP) preserved by this?

Answer in this form: postconditions / preconditions / LSP.
Items postconditions and preconditions replace with the one
of the following possibilities: weaken, strengthen, or remain
the same. Items LSP replace with the one of the following
possibilities: preserved or not preserved.

2



OOP – exam – June 7, 2019
Last name:

Name:

13. (10 b) In a simplified computer representation a city
consists of building objects which represent any kind of buil-
ding or independent units within these buildings. Each such in-
dependent unit can be divided into further independent units
and rooms that are not divided further.

A user may enter a building object by which the system
prints a list of the identifiers of the building objects and rooms
out of which this building object consists of. In case a user
enters a room, the system prints only the identifier of this
room.

Design and implement in Java the corresponding object-
oriented solution that takes into account the principles of
object-oriented programming. In this, apply the most approp-
riate design pattern among Strategy, Observer, Visitor, and
Composite.

Provide the basic design as a UML class diagram sketch
containing the most important relationships, operations, and
attributes. In this, take into account the design pattern. Visi-
bility is not required to be provided.

In implementation, focus on the application logic – GUI is
not the subject of the question. Also, the algorithms applied
do not have to be optimal.

Explicitly identify the elements that model and implement
the roles of the design pattern applied and explain why did
you apply this design pattern. Present an example of use in
which you create the corresponding objects and start off their
interaction.

The question would be marked according to the following
key:

• providing the basic functionality – 4 b

• a design with respect to the open-closed principle and
appropriate use of encapsulation – 6 b

3



Object-Oriented Programming 2018/19 A
doc. Ing. Valentino Vranić, PhD., ÚISI FIIT STU
Exam – June 7, 2019

30

1 b

2 d

3 c

4 e

5 e

6 a

7 C.main(), C.s2(), S1.run(), S2.run()
(keďže pri metóde C.s1() omylom nebol uvedený modi-
fikátor synchronized, akceptovaná je aj odpoveď typu
„nedá sa dosiahnuť“)

8 b

9 1F 0EF 1F 0EF (akceptovaná je aj odpoveď bez medzier)

10 a

11 AxBxAyBy CxAy AxAy AxBxAyBy CxAy (akceptovaná
je aj odpoveď bez medzier)

12 nemenia sa / zosilňujú sa / nedodržaný

V poslednej otázke mal byť aplikovaný vzor Composite. Sta-
vebné objekty by boli v role Composite, a miestnosti v role
Leaf. Obidva druhy objektov by boli zastrešené rolou Compo-
nent.

4


