2002 ACM Local Contest at FEI SUT

Problem A: Matching Meetings

Problem A: Matching Meetings

“Argh! I can't stand it anymore!” exclaimed Dan Hanson, CS Department administrative assistant, as he slammed down the phone.

“What's the matter, Dan?” asked Valentine McKee, who happened to be in the office making some copies.

“Professors and scheduling. I'm trying to schedule this SSC meeting but as soon as I pick a time and start making calls to confirm it, one of the committee members has a conflict. I feel like this is going to go on forever!” he said.

“Maybe the computer can help,” suggested Valentine. “This is the computer science department, after all,” she said.

Input

The first line of input will be the “current” date. All dates will be specified in the form: dayname month date, where

· dayname is single character from the set {M, T, W, R, F} representing Monday, Tuesday, Wednesday, Thursday, and Friday, respectively;

· month is an integer such that 1 ≤ month ≤ 12;

· date is an integer such that 1 ≤ date ≤ 31.

The next line of input will contain two integers, n and t. n specifies how many meetings should be scheduled, while t indicates how long each meeting will last. t will be specified in increments of 15 minutes.

All times will be specified as zero padded 4 digit integers in military time. The first two digits indicate the hour (00 corresponds to midnight). The appointment times in the input will be in the range of 09 ≤ hour ≤ 17. The last two digits indicate the minute, and will be in the be from the set {00, 15, 30, 45}.

You may assume that date, while formally bounded by 31, will not be greater than the number of days in the month. You may also assume that all years will not be leap years. The rest of the input will contain the schedules for at most 100 individuals. Each schedule will begin with a line specifying the individual's name, followed by a list of appointments for that individual, ending with the word “done” on a line by itself. No individual will have more than 100 appointments scheduled. Each appointment will be a date followed by a start time and an end time. No appointment will extend before 9am or after 5pm.

The last line of input will be the word “done” on a line by itself. No appointment will be before the current date, or more than 1 year after the current date.

Output

Your program should output the first n possible meeting times when all the people from the input can meet for the specified amount of time (t). Each line of output should contain one meeting date and time. Once a common meeting time is found, it should be considered allocated for all people, and cannot be used to schedule other meetings.

The meetings should be sorted by date and time, with the earliest meeting first. If less than n meeting times are available, print all possible meeting times followed by “No more times available”.

Example

The following is sample input for this problem.

M 8 21

2 60

Jack Casey

M 8 21 0900 1015

done

Jack Ross

M 8 21 1000 1100

M 8 21 1200 1700

done

Jack Swigert

M 8 21 1600 1700

T 8 22 0900 1000

done

done

The following is the corresponding output for the input above.

M 8 21 1100

T 8 22 1000

4

Problem B: Packets

A factory produces products packed in square packets of the same height h and of the sizes 1×1, 2×2, 3×3, 4×4, 5×5, 6×6. These products are always delivered to customers in the square parcels of the same height h as the products have and of the size 6×6. Because of the expenses it is the interest of the factory as well as of the customer to minimize the number of parcels necessary to deliver the ordered products from the factory to the customer. A good program solving the problem of finding the minimal number of parcels necessary to deliver the given products according to an order would save a lot of money. You are asked to make such a program.

Input

The input file consists of several lines specifying orders. Each line specifies one order. Orders are described by six integers separated by one space representing successively the number of packets of individual size from the smallest size 1×1 to the biggest size 6×6. The end of the input file is indicated by the line containing six zeros.

Output

The output file contains one line for each line in the input file. This line contains the minimal number of parcels into which the order from the corresponding line of the input file can be packed. There is no line in the output file corresponding to the last “null” line of the input file.

Example

The following is sample input for this problem.

0 0 4 0 0 1

7 5 1 0 0 0

0 0 0 0 0 0

The following is sample output for this problem.

2

1

Problem C: Intersection

[image: image1.png]i ou

You are to write a program that has to decide whether a given line segment intersects a given rectangle.

An example:

line:

start point:
(4, 9)

end point:
(11, 2)

rectangle:
left-top:
(1, 5)

right-bottom:
(7, 1)

The line is said to intersect the rectangle if the line and the rectangle have at least one point in common. The rectangle consists of four straight lines and the area in between. Although all input values are integer numbers, valid intersection points do not have to lie on the integer grid.

Input

The input consists of n test cases. The first line of the input file contains the number n. Each following line contains one test case of the format: xstart ystart xend yend xleft ytop xright ybottom where (xstart, ystart) is the start and (xend, yend) the end point of the line and (xleft, ytop) the top left and (xright, ybottom) the bottom right corner of the rectangle. The eight numbers are separated by a blank. The terms “top left” and “bottom right” do not imply any ordering of coordinates.

Output

For each test case in the input file, the output file should contain a line consisting either of the letter “T” if the line segment intersects the rectangle or the letter “F” if the line segment does not intersect the rectangle.

Example

The following is sample input for this problem.
1

4 9 11 2 1 5 7 1

The following is sample output for this problem.
F

Problem D: Synchronous Design

The designers of digital integrated circuits (IC) are very concerned about the correctness of their designs because, unlike software, ICs cannot be easily tested. Real tests are not possible until the design has been finalized and the IC has been produced.

To simulate the behavior of a digital IC and to more or less guarantee that the final chip will work, all of today's digital ICs are based on a synchronous design.

[image: image4.png]¥

(0,0)

Figure 1: The critical path (dashed line) takes 43ns to settle

In a synchronous design, an external clock signal triggers the IC to go from a well defined and stable state to the next one. On the active edge of the clock, all input and output signals and all internal nodes are stable in either the high or low state. Between two consecutive edges of the clock, the signals and nodes are allowed to change and may take any intermediate state. The behavior of a synchronous network is predictable and will not fail due to hazards or glitches introduced by irregularities of the real circuit.

To analyze whether an IC has a synchronous design, we distinguish between synchronous and asynchronous nodes. Flip flops are synchronous nodes. On the active edge of the clock, the output of the flip flop changes to the state of the input and holds that state throughout the next clock cycle. Synchronous nodes are connected to the clock signal.

Simple gates like ANDs or ORs are asynchronous nodes. Their output changes – with a short delay – whenever one of their inputs changes. During that transition phase, the output can even go into some undefined or intermediate state.

For simplicity, we assume that all inputs of the circuits are directly connected to the output of a synchronous node outside the circuit and that all outputs of the circuit are directly connected to the input of a synchronous node outside the circuit.

For an IC to have a synchronous design, mainly two requirements must be met:

· The signal delay introduced between two synchronous nodes must be smaller or equal than the clock period so there is enough time for nodes to become stable. In figure 1, the round-ended boxes are asynchronous nodes whereas the square boxes are synchronous nodes. The delay introduced on the dashed path is 43ns and exceeds the given clock period of 30ns.

· There may be no cycles composed exclusively of asynchronous nodes. In the real circuit such cycles could oscillate. In figure 2, the dashed path constitutes a cycle of asynchronous nodes.

Figure 3 shows a circuit with a synchronous design. It does not contain cycles composed of asynchronous nodes and the longest path between two synchronous nodes is shorter than the clock period of 30ns.

[image: image2.png]n—t—T
oapl———ou

i il

Figure 2: The design contains a cycle (dashed line)

[image: image3.png]ou

ou

Figure 3: A synchronous design

You are to write a program that decides for a given IC whether it has a synchronous design or not. You are given a network of synchronous and asynchronous nodes, a delay for each node, some inputs and outputs and the clock period.

You may safely assume that

· the delays introduced between any input and any output of the same node are equal, i.e. equal to the delay given for that node,

· synchronous nodes have no delay at all,

· all connections between two nodes connect an output to an input.

Input

The input file contains several circuits. The first line gives the number of circuits in the file.

For each circuit in the file, the first line contains the clock period for the circuit, given as an integer number in nanoseconds. The next line gives the number of nodes. The following lines each contain a node, described by a letter and an integer number. The letter is “i” for an input, “o” for an output, “a” for an asynchronous node and “s” for a synchronous node. The number gives the delay introduced by the node as an integer number in nanoseconds (only meaningful for an asynchronous node). Nodes are implicitly numbered, starting at zero.

After the nodes, the number of connections for the circuit follows. Each following line contains a pair of integer numbers denoting a connection between the output and the input of two nodes. The connection links an output of the node given by the first number and an input of the node given by the second number.

The clock signal is not given in the input file. We assume that all synchronous nodes are properly connected to the clock signal.

Output

For each circuit in the input file, your output file should contain a line with one of the following messages:

“Synchronous design. Maximum delay: <ss>.” if the circuit has a synchronous design. <ss> should be replaced by the longest delay found on any path between two synchronous nodes.

“Circuit contains cycle.” if the circuit contains a cycle composed exclusively of asynchronous nodes.

“Clock period exceeded.” if there is a path between two synchronous nodes that is longer than the given clock period and there are no cycles composed of asynchronous nodes.

Example

The following is sample input for this problem.
1

30

10

i 0

i 0

i 0

i 0

o 0

o 0

a 9

a 11

a 8

s 0

9

0 8

1 7

2 6

2 6

6 7

7 8

8 4

7 9

9 5
The following is sample output for this problem.
Synchronous design. Maximum delay: 28

Problem E: Spreadsheet

In 1979, Dan Bricklin and Bob Frankston wrote VisiCalc, the first spreadsheet application. It became a huge success and, at that time, was the killer application for the Apple II computers. Today, spreadsheets are found on most desktop computers.

The idea behind spreadsheets is very simple, though powerful. A spreadsheet consists of a table where each cell contains either a number or a formula. A formula can compute an expression that depends on the values of other cells. Text and graphics can be added for presentation purposes.

You are to write a very simple spreadsheet application. Your program should accept several spreadsheets. Each cell of the spreadsheet contains either a numeric value (integers only) or a formula, which only support sums. After having computed the values of all formulas, your program should output the resulting spreadsheet where all formulas have been replaced by their value.

A1 B1 C1 D1 E1 F1 ...

A2 B2 C2 D2 E2 F2 ...

A3 B3 C3 D3 E3 F3 ...

A4 B4 C4 D4 E4 F4 ...

A5 B5 C5 D5 E5 F5 ...

A6 B6 C6 D6 E6 F6 ...

...

Figure 1: Naming of the top left cells

Input

The first line of the input file contains the number of spreadsheets to follow. A spreadsheet starts with a line consisting of two integer numbers, separated by a space, giving the number of columns and rows. The following lines of the spreadsheet each contain a row. A row consists of the cells of that row, separated by a single space.

A cell consists either of a numeric integer value or of a formula. A formula starts with an equal sign (=). After that, one or more cell names follow, separated by plus signs (+). The value of such a formula is the sum of all values found in the referenced cells. These cells may again contain a formula. There are no spaces within a formula.

You may safely assume that there are no cyclic dependencies between cells. So each spreadsheet can be fully computed.

The name of a cell consists of one to three letters for the column followed by a number between 1 and 999 (including) for the row. The letters for the column form the following series: A, B, C, ..., Z, AA, AB, AC, ..., AZ, BA, ..., BZ, CA, ... ZZ, AAA, AAB, AAC, ... AAZ, ABA, ..., ABZ, ACA, ..., ZZZ. These letters correspond to the number from 1 to 18278. The top left cell has the name A1. See figure 1.

Output

The output of your program should have the same format as the input, except that the number of spreadsheets and the number of columns and rows are not repeated. Furthermore, all formulas should be replaced by their value.

Example

The following is sample input for this problem.
1

4 3

10 34 37 =A1+B1+C1

40 17 34 =A2+B2+C2

=A1+A2 =B1+B2 =C1+C2 =D1+D2

The following is sample output for this problem.
10 34 37 81

40 17 34 91

50 51 71 172
- 3 -

