2001 ACM Local Programming Contest FEI SUT, Bratislava, Slovakia

2001 ACM Local Programming Contest FEI SUT, Bratislava, Slovakia

October 26, 2001

Problem A

Is it a tree?

Source: tree.(c|cc|pas)

Input: standard input, Output: standard output

Background

A tree is a well-known data structure that is either empty (null, void, nothing) or is a set of one or more nodes connected by directed edges between nodes satisfying the following properties.

1. There is exactly one node, called the root, to which no directed edges point.

2. Every node except the root has exactly one edge pointing to it.

3. There is a unique sequence of directed edges from the root to each node.

For example, consider the illustrations below, in which nodes are represented by circles and edges are represented by lines with arrowheads. The first two of these are trees, but the last is not.

[image: image5.png]

 [image: image2.png]@me \.@
OO0
O~

 [image: image3.png]

In this problem you will be given several descriptions of collections of nodes connected by directed edges. For each of these you are to determine if the collection satisfies the definition of a tree or not.

Input

The input will consist of a sequence of descriptions (test cases) followed by a pair of negative integers. Each test case will consist of a sequence of edge descriptions followed by a pair of zeroes Each edge description will consist of a pair of integers; the first integer identifies the node from which the edge begins, and the second integer identifies the node to which the edge is directed. Node numbers will always be greater than zero.

Output

For each test case display the line "Case k is a tree." or the line "Case k is not a tree.", where k corresponds to the test case number (they are sequentially numbered starting with 1).

PRIVATE
Sample Input

6 8 5 3 5 2 6 4

5 6 0 0

8 1 7 3 6 2 8 9 7 5

7 4 7 8 7 6 0 0

3 8 6 8 6 4

5 3 5 6 5 2 0 0

-1 –1

Sample Output

Case 1 is a tree.

Case 2 is a tree.

Case 3 is not a tree.

Problem B

Prime Cuts

Source File: cuts.(c|cc|pas)

Input: standard input, Output: standard output

Background

A prime number is a counting number (1, 2, 3, ...) that is evenly divisible only by 1 and itself. In this problem you are to write a program that will cut some number of prime numbers from the list of prime numbers between (and including) 1 and N. Your program will read in a number N; determine the list of prime numbers between 1 and N; and print the C*2 prime numbers from the center of the list if there are an even number of prime numbers or (C*2)-1 prime numbers from the center of the list if there are an odd number of prime numbers in the list.

Input

Each input set will be on a line by itself and will consist of 2 numbers. The first number (1 <= N <= 1000) is the maximum number in the complete list of prime numbers between 1 and N. The second number (1<=C<=N) defines the C*2 prime numbers to be printed from the center of the list if the length of the list is even; or the (C*2)-1 numbers to be printed from the center of the list if the length of the list is odd.

Output

For each input set, you should print the number N beginning in column 1 followed by a space, then by the number C, then by a colon (:), and then by the center numbers from the list of prime numbers as defined above. If the size of the center list exceeds the limits of the list of prime numbers between 1 and N, the list of prime numbers between 1 and N (inclusive) should be printed. Each number from the center of the list should be preceded by exactly one blank. Each line of output should be followed by a blank line. Hence, your output should follow the exact format shown in the sample output.

Sample Input

21 2

18 2

18 18

100 7

Sample Output

21 2: 5 7 11

18 2: 3 5 7 11

18 18: 1 2 3 5 7 11 13 17

100 7: 13 17 19 23 29 31 37 41 43 47 53 59 61 67
Problem C

Centipede Collisions

Source File: collide.(c|cc|pas)

Input: standard input, Output: standard output

Background

A small boy named Tommy has some toy centipedes that are a series of 1 centimeter segments. Tommy assembles his centipedes to any length he likes and places them on a 30x30 centimeter board that allows the centipedes to travel in 1 centimeter wide tracks that criss-cross the board. The centipedes travel only parallel to either the x or y axis on the board. Centipede segments of the same centipede advance at the same time and centipedes advance in cyclic numerical order (all of centipede 0 first, then 1, etc.). When more than one segment of two or more centipedes occupy the same x,y coordinate, there is a centipede collision. Anytime a collision occurs, all segments occupying the collistion site stop and continue to occupy the collision site. All remaining segments on a centipede detach from the segment involved in the collision and continue their march until another collision occurs or an existing collision site is encountered or until the segments fall off the edge of the board. Anytime a segment enters a collision site, it becomes part of the collision.

Since Tommy left home without his centipede set, his mother has hired you to write a simulation program for his entertainment. Your program will simulate his board with a text printout of his grids. For example, Tommy may simulate 5 centipedes on his board that start out as shown on the grid on the left and finish as shown on the grid on the right (note the example grid is only 10x10 whereas Tommy's is 30x30.)

 9 9

 8 8

 7 1 1 1 1 1 7 X . . . X

 6 . 0 6

 5 . 0 3 5

 4 . 0 . . . 2 . . . 3 4

 3 . 0 . . . 2 . . . 3 3

 2 2 . . . 3 2

 1 2 . . . 3 1

 0 2 4 4 4 3 0 . X

 Y Y

 / X 0 1 2 3 4 5 6 7 8 9 / X 0 1 2 3 4 5 6 7 8 9

Where 0 represents a centipede segment traveling from top to bottom,

 1 represents a centipede segment traveling from left to right,

 2 represents a centipede segment traveling from bottom to top,

 3 represents a centipede segment traveling from bottom to top,

 4 represents a centipede segment traveling from right to left, and

 X represents a collision site involving 2 or more segments.

Your program will simulate up to 10 centipedes that travel on a 30x30 board. Tommy has 100 segments that he may use in his simulation. Of course, no centipede can be longer than 30 segments.

Input

Input to your program will consist of a series of simulation sets. The first line of each input set will be a single integer (1<=N<=10) representing the number of centipedes in the simulation. (Centipedes are numbered 0 through N-1 in the same order as the input.) The next N lines will each represent one centipede and will contain a single direction character followed by 3 integers. The direction character can be 'U', 'D', 'L', or 'R' for "Up", "Down", "Left", or "Right" respectively and indicate the direction of travel. The next integer (1<=L<=30) indicates the length of the centipede in segments. The second and third integers indicate the x,y coordinates of the lead segment (0<=x&y<=29). The next L-1 segments of the centipede occupy the L-1 board positions extending in the opposite direction from the direction of travel starting adjacent to the lead segment. You can be assured that no centipede segment will originate off the board nor will the original configuration involve any collisions.

Output

For each input simulation set, you should print (exactly) the following lines as the first two lines of output (starting in column 4).

 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

The next 30 lines represent the state of the board after the simulation has completed (all centipede segments have entered a collision site or fallen off the edge of the board). Columns 1 and 2 should contain the row number (rows are numbered 29 down to 00) with leading zeroes. Even numbered columns between 4 and 62 (inclusive) represent the contents of the board cells. Board cells can contain either an X or a period. A period represents an empty cell and X represents a cell that contains 2 or more centipede segments involved in a collision. The last line of each output set is a blank line.

Follow the Sample Output for the exact format of the expected output.

Sample Input

10

R 9 11 23

U 8 11 17

U 5 15 15

U 5 15 8

D 9 23 13

U 6 23 6

R 9 8 9

L 13 17 0

U 12 13 11

L 5 20 9

Sample Output

 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

29 .

28 .

27 .

26 .

25 .

24 .

23 X . . . X

22 .

21 .

20 .

19 .

18 .

17 .

16 .

15 .

14 .

13 .

12 .

11 .

10 .

09 X . X X

08 .

07 .

06 .

05 .

04 .

03 .

02 .

01 .

00 .

Problem D

Finding Rectangles

Source: rect.(c|cc|pas)

Input: standard input, Output: standard output

Background

Consider the point sets in figures 1a, 2a, and 3a. Using only those points as vertices, figures 1b, 2b, and 3b show all the rectangles that can be formed with horizontal and vertical sides. No rectangles can be formed from the points in figure 4.

[image: image1.png]

Your task is to write a program that can find all rectangles that can be formed from a given set of points. The example input and output given below correspond to the figures above.

Input

Input contains one or more point sets, followed by a line containing the number 0 that signals the end of the file. Each point set begins with a line containing n, the number of points, and is followed by n lines that describe the points. Each point description contains a capital letter that is the label of the point, then a space, the horizontal coordinate, a space, and the vertical coordinate. Within each set, points labels occur in alphabetical order. Note that since each point is labelled with a capital letter there can be at most 26 points. All coordinates are nonnegative integers less than 50. Points within a set are unique.

Output

The output for each point set starts with "Point set ", followed by the number of the point set and a colon. If there are no rectangles, " No rectangles" appears after the colon. If there are rectangles, they are listed starting on the next line. A blank precedes each rectangle. Each rectangle is given by its vertex labels, in clockwise order from the upper left, so the order is upper left, upper right, lower right, lower left. The rectangles are listed ten per line, except for the last line, where there may be as few as one. The rectangles are listed in alphabetical order.

Sample input

7

A 1 1

B 2 1

C 3 1

D 2 3

E 3 3

F 1 4

G 3 4

8

B 1 1

D 2 1

F 4 1

J 4 4

L 2 4

M 2 3

N 4 3

P 1 2

12

A 1 5

B 2 5

C 1 4

D 2 4

E 1 3

F 2 3

G 1 2

H 2 2

I 1 1

J 2 1

K 1 0

L 2 0

5

B 1 1

D 2 1

L 2 4

N 2 3

P 1 2

0

Sample output

Point set 1:

 DECB FGCA

Point set 2:

 LJFD LJNM MNFD

Point set 3:

 ABDC ABFE ABHG ABJI ABLK CDFE CDHG CDJI CDLK EFHG

 EFJI EFLK GHJI GHLK IJLK

Point set 4: No rectangles

Problem E

Don't Get Rooked

Source: rook.(c|cc|pas)

Input: standard input, Output: standard output

Background

In chess, the rook is a piece that can move any number of squares vertically or horizontally. In this problem we will consider small chess boards (at most 4x4) that can also contain walls through which rooks cannot move. The goal is to place as many rooks on a board as possible so that no two can capture each other. A configuration of rooks is legal provided that no two rooks are on the same horizontal row or vertical column unless there is at least one wall separating them.

The following image shows five pictures of the same board. The first picture is the empty board, the second and third pictures show legal configurations, and the fourth and fifth pictures show illegal configurations. For this board, the maximum number of rooks in a legal configuration is 5; the second picture shows one way to do it, but there are several other ways.

[image: image4.png]Figure la

1 2
Figure 1b

3

Your task is to write a program that, given a description of a board, calculates the maximum number of rooks that can be placed on the board in a legal configuration.

Input

Input contains one or more board descriptions, followed by a line containing the number 0 that signals the end of the file. Each board description begins with a line containing a positive integer n that is the size of the board; n will be at most 4. The next n lines each describe one row of the board, with a '.' indicating an open space and an uppercase 'X' indicating a wall. There are no spaces in the input file.

Output

For each test case, output one line containing the maximum number of rooks that can be placed on the board in a legal configuration.

Sample input

4

.X..

....

XX..

....

2

XX

.X

3

.X.

X.X

.X.

3

...

.XX

.XX

4

....

....

....

....

0

Sample output

5

1

5

2

4

Problem F

Uniform Generator

Source File: uniform.(c|cc|pas)

Input: standard input, Output: standard output

Background

Computer simulations often require random numbers. One way to generate pseudo-random numbers is via a function of the form

 seed(x+1) = [seed(x) + STEP] % MOD

 where "%" is the modulus operator.

Such a function will generate pseudo-random numbers (seed) between 0 and MOD-1. One problem with functions of this form is that they will always generate the same pattern over and over. In order to minimize this effect, selecting the STEP and MOD values carefully can result in a uniform distribution of all values between (and including) 0 and MOD-1.

For example, if STEP=3 and MOD=5, the function will generate the series of pseudo-random numbers 0, 3, 1, 4, 2 in a repeating cycle. In this example, all of the numbers between and including 0 and MOD-1 will be generated every MOD iterations of the function. Note that by the nature of the function to generate the same seed(x+1) every time seed(x) occurs means that if a function will generate all the numbers between 0 and MOD-1, it will generate pseudo-random numbers uniformly with every MOD iterations.

If STEP = 15 and MOD = 20, the function generates the series 0, 15, 10, 5 (or any other repeating series if the initial seed is other than 0). This is a poor selection of STEP and MOD because no initial seed will generate all of the numbers from 0 and MOD-1.

Your program will determine if choices of STEP and MOD will generate a uniform distribution of pseudo-random numbers.

Input

Each line of input will contain a pair of integers for STEP and MOD in that order (1<=STEP,MOD<=100000).

Output

For each line of input, your program should print the STEP value right-justified in columns 1 through 10, the MOD value right-justified in columns 11 through 20 and either "Good Choice" or "Bad Choice" left-justified starting in column 25. The "Good Choice" message should be printed when the selection of STEP and MOD will generate all the numbers between and including 0 and MOD-1 when MOD numbers are generated. Otherwise, your program should print the message "Bad Choice". After each output test set, your program should print exactly one blank line.

Sample Input

3 5

15 20

63923 99999

Sample Output

 3 5 Good Choice

 15 20 Bad Choice

 63923 99999 Good Choice

Problem G

Station Balance

Source File: balance.(c|cc|pas)

Input: standard input, Output: standard output

Background

The International Space Station contains many centrifuges in its labs. Each centrifuge will have some number (C) of chambers each of which can contain 0, 1, or 2 specimens. You are to write a program which assigns all S specimens to the chambers such that no chamber contains more than 2 specimens and the following expression for IMBALANCE is minimized.

C

IMBALANCE =  | CMi - AM |

 i=1

where:

CMi is the Chamber Mass of chamber i and is computed by summing the masses of the

specimens assigned to chamber i.

AM is the Average Mass of the chambers and is computed by dividing the sum of the

masses of all specimens by the number of chambers (C).

Input

Input to this program will be a file with multiple sets of input. The first line of each set will contain two numbers. The first number (1 <= C <= 5) defines the number of chambers in the centrifuge and the second number (1 <= S <= 2C) defines the number of specimens in the input set. The second line of input will contain S integers representing the masses of the specimens in the set. Each specimen mass will be between 1 and 1000 and will be delimited by the beginning or end of the line and/or one or more blanks.

Output

For each input set, you are to print a line specifying the set number (starting with 1) in the format "Set #X" where "X" is the set number. The next C lines will contain the chamber number in column 1, a colon in column number 2, and then the masses of the specimens your program has assigned to that chamber starting in column 4. The masses in your output should be separated by exactly one blank. Your program should then print "IMBALANCE X" on a line by itself where X is the computed imbalance of your specimen assignments printed to 5 digits of precision to the right of the decimal. The final line of output for each set should be a blank line. (Follow the sample output format.)

Sample Input

2 3

6 3 8

3 5

51 19 27 14 33

5 9

1 2 3 5 7 11 13 17 19

Sample Output

Set #1

 0: 6 3

 1: 8

IMBALANCE 1.00000

Set #2

 0: 51

 1: 19 27

 2: 14 33

IMBALANCE 6.00000

Set #3

 0: 1 17

 1: 2 13

 2: 3 11

 3: 5 7

 4: 19

IMBALANCE 11.60000

Problem H

Galactic Import

Source File: inport.(c|cc|pas)

Input: standard input, Output: standard output

Background

With the introduction of the new ThrustoZoom gigadimensional drive, it has become possible for HyperCommodities, the import/export conglomerate from New Jersey, to begin trading with even the most remote galaxies in the universe. HyperCommodities wants to import goods from some of the galaxies in the Plural Z sector. Planets within these galaxies export valuable products and raw materials like vacuuseal, transparent aluminum, digraphite, and quantum steel. Preliminary reports have revealed the following facts:

· Each galaxy contains at least one and at most 26 planets. Each planet within a galaxy is identified by a unique letter from A to Z.

· Each planet specializes in the production and export of one good. Different planets within the same galaxy export different goods.

· Some pairs of planets are connected by hyperspace shipping lines. If planets A and B are connected, they can trade goods freely. If planet C is connected to B but not to A, then A and C can still trade goods with each other through B, but B keeps 5% of the shipment as a shipping fee. (Thus A only receives 95% of what C shipped, and C receives only 95% of what A shipped.) In general, any two planets can trade goods as long as they are connected by some set of shipping lines, but each intermediate planet along the shipping route keeps 5% of what it shipped (which is not necessarily equal to 5% of the original shipment).

· At least one planet in each galaxy is willing to open a ThrustoZoom shipping line to Earth. A ThrustoZoom line is the same as any other shipping line within the galaxy, as far as business is concerned. For example, if planet K opens a ThrustoZoom line to Earth, then the Earth can trade goods freely with K, or it can trade goods with any planet connected to K, subject to the usual shipping fees.

HyperCommodities has assigned a relative value (a positive real number less than 10) to each planet's chief export. The higher the number, the more valuable the product. More valuable products can be resold with a higher profit margin in domestic markets. The problem is to determine which planet has the most valuable export when shipping fees are taken into account.

Input

The input consists of one or more galaxy descriptions. Each galaxy description begins with a line containing an integer N which specifies the number of planets in the galaxy. The next N lines contain descriptions of each planet, which consist of:

1. The letter used to represent the planet.

2. A space.

3. The relative value of the planet's export, in the form d.dd.

4. A space.

5. A string containing letters and/or the character `*'; a letter indicates a shipping line to that planet, and a `*' indicates a willingness to open a ThrustoZoom shipping line to Earth.

Output

For each galaxy description, output a single line which reads "Import from P" where P is the letter of the planet with the most valuable export, once shipping fees have been taken into account. (If more than one planet have the same most valuable export value then output the plant which is alphabetically first).

Sample input

1

F 0.81 *

5

E 0.01 *A

D 0.01 A*

C 0.01 *A

A 1.00 EDCB

B 0.01 A*

10

S 2.23 Q*

A 9.76 C

K 5.88 MI

E 7.54 GC

M 5.01 OK

G 7.43 IE

I 6.09 KG

C 8.42 EA

O 4.55 QM

Q 3.21 SO

Sample output

Import from F

Import from A

Import from A

18

