2002 ACM Practice Contest at FEI SUT

Problem A: Image Perimeters

Problem A: Image Perimeters

Source file:
image.{c, cpp, pas}

Input file:
image.in

Output file:
image.out

Technicians in a pathology lab analyze digitized images of slides. Objects on a slide are selected for analysis by a mouse click on the object. The perimeter of the boundary of an object is one useful measure. Your task is to determine this perimeter for selected objects.

The digitized slides will be represented by a rectangular grid of periods, '.', indicating empty space, and the capital letter 'X', indicating part of an object. Simple examples are

XX Grid 1 .XXX Grid 2
XX .XXX
 .XXX
 ...X
 ..X.
 X...
An X in a grid square indicates that the entire grid square, including its boundaries, lies in some object. The X in the center of the grid below is adjacent to the X in any of the 8 positions around it. The grid squares for any two adjacent X's overlap on an edge or corner, so they are connected.

XXX
XXX Central X and adjacent X's
XXX
An object consists of the grid squares of all X's that can be linked to one another through a sequence of adjacent X's. In Grid 1, the whole grid is filled by one object. In Grid 2 there are two objects. One object contains only the lower left grid square. The remaining X's belong to the other object.

The technician will always click on an X, selecting the object containing that X. The coordinates of the click are recorded. Rows and columns are numbered starting from 1 in the upper left hand corner. The technician could select the object in Grid 1 by clicking on row 2 and column 2. The larger object in Grid 2 could be selected by clicking on row 2, column 3. The click could not be on row 4, column 3.

[image: image1.png]2P

One useful statistic is the perimeter of the object. Assume each X corresponds to a square one unit on each side. Hence the object in Grid 1 has perimeter 8 (2 on each of four sides). The perimeter for the larger object in Grid 2 is illustrated in the figure at the left. The length is 18.

Objects will not contain any totally enclosed holes, so the leftmost grid patterns shown below could NOT appear. The variations on the right could appear:

Impossible Possible
XXXX XXXX XXXX XXXX
X..X XXXX X... X...
XX.X XXXX XX.X XX.X
XXXX XXXX XXXX XX.X

.....
..X.. ..X.. ..X.. ..X..
.X.X. .XXX. .X...
..X.. ..X.. ..X.. ..X..
.....

The input will contain one or more grids. Each grid is preceded by a line containing the number of rows and columns in the grid and the row and column of the mouse click. All numbers are in the range 1-20. The rows of the grid follow, starting on the next line, consisting of '.' and 'X' characters.

The end of the input is indicated by a line containing four zeros. The numbers on any one line are separated by blanks. The grid rows contain no blanks.

For each grid in the input, the output contains a single line with the perimeter of the specified object.

Example input:

2 2 2 2

XX

XX

6 4 2 3

.XXX

.XXX

.XXX

...X

..X.

X...

5 6 1 3

.XXXX.

X....X

..XX.X

.X...X

..XXX.

7 7 2 6

XXXXXXX

XX...XX

X..X..X

X..X...

X..X..X

X.....X

XXXXXXX

7 7 4 4

XXXXXXX

XX...XX

X..X..X

X..X...

X..X..X

X.....X

XXXXXXX

0 0 0 0

Example output:

8

18

40

48

8

Problem B: Transmitters

Source file:
transmit.{c, cpp, pas}

Input file:
transmit.in

Output file:
transmit.out

In a wireless network with multiple transmitters sending on the same frequencies, it is often a requirement that signals don't overlap, or at least that they don't conflict. One way of accomplishing this is to restrict a transmitter's coverage area. This problem uses a shielded transmitter that only broadcasts in a semicircle.

A transmitter T is located somewhere on a 1,000 square meter grid. It broadcasts in a semicircular area of radius r. The transmitter may be rotated any amount, but not moved. Given N points anywhere on the grid, compute the maximum number of points that can be simultaneously reached by the transmitter's signal. Figure 1 shows the same data points with two different transmitter rotations.

[image: image2.png]

All input coordinates are integers (0-1000). The radius is a positive real number greater than 0. Points on the boundary of a semicircle are considered within that semicircle. There are 1‑150 unique points to examine per transmitter. No points are at the same location as the transmitter.

Input consists of information for one or more independent transmitter problems. Each problem begins with one line containing the (x,y) coordinates of the transmitter followed by the broadcast radius, r. The next line contains the number of points N on the grid, followed by N sets of (x,y) coordinates, one set per line. The end of the input is signalled by a line with a negative radius; the (x,y) values will be present but indeterminate. Figures 1 and 2 represent the data in the first two example data sets below, though they are on different scales. Figures 1a and 2 show transmitter rotations that result in maximal coverage.

For each transmitter, the output contains a single line with the maximum number of points that can be contained in some semicircle.

Example input:
25 25 3.5

7

25 28

23 27

27 27

24 23

26 23

24 29

26 29

350 200 2.0

5

350 202

350 199

350 198

348 200

352 200

995 995 10.0

4

1000 1000

999 998

990 992

1000 999

100 100 -2.5

Example output:
3

4

4

Problem C: Index Generation

Source file:
indexgen.{c, cpp, pas}

Input file:
indexgen.in

Output file:
indexgen.out

Most nonfiction and reference books have an index to help readers find references to specific terms or concepts in the text. Here is a sample index.

larch, 4, 237, 238, 414

+ Monty Python and, 64, 65, 66

+ planting of, 17

Lenny Kravitz, 50

+ going his way, 53

lumbago, 107

mango

+ Chris Kattan, 380

+ storage of, 87, 90

+ use in Nethack, 500, 501

+ Vitamin C content, 192

Each index entry contains a primary entry followed by zero or more secondary entries, which begin with a '+'. Entries will normally be followed by a list of page references, but a primary entry might not be if at least one secondary entry is present (as is the case with mango, above). Primary entries are sorted, and secondary entries following a primary entry are also sorted. Sorting is case-insensitive. Page references for an entry are in ascending order and do not include duplicates. (A duplicate could occur if there are two or more identical entries on the same page.)

Your task is to read a document that has index information embedded within it and produce the index. Documents consist of one or more lines of ASCII text. The page number starts at 1, and the character '&' indicates the start of a new page (which adds 1 to the current page number). Index entries are indicated by a marker, which in its most elaborate form has the following syntax:

{text%primary$secondary}

Here text is the text to be indexed, primary is an alternative primary entry, and secondary is a secondary entry. Both '%primary' and '$secondary' are optional, but if both are present they must appear in the order given. If primary is present then it is used as the primary entry, and if not then text is used as the primary entry. If secondary is present then the marker adds a page reference for that secondary entry; otherwise it adds a page reference for the primary entry. A single marker cannot add a page reference for both a primary and secondary entry. Here are examples of each of the four possible types of marker, which correspond to four of the entries in the sample index above.

... his {lumbago} was acting up, so ...

... {Lenny%Lenny Kravitz} lit up the crowd with his version of ...

... Monty Python often used the {larch$Monty Python and} in ...

... when storing {mangos%mango$storage of}, be sure to ...

The input consists of one or more documents, followed by a line containing only '**' that signals the end of the input. Documents are implicitly numbered starting with 1. Each document consists of one or more lines of text followed by a line containing only '*'. Each line of text will be at most 79 characters long, not counting end-of-line characters. For document i, output the line 'DOCUMENT i' followed by the sorted index using the exact output format shown in the examples.

Input will meet the following conditions:

· A document will contain at most 100 markers, with at most 20 primary entries.

· A primary entry will have at most 5 secondary entries.

· An entry will have at most 10 unique page references (not including duplicates).

· The character '&' will not appear anywhere within a marker, and will appear at most 500 times within a document.

· The character '*' is used only to signal the end of a document or the end of the input.

· The characters '{', '}', '%', and '$' will only be used to define markers, and will not appear in any text or entries.

· A marker may span one or more lines. Every end-of-line within a marker must be converted to a single space.

· A space within a marker (including a converted end-of-line) is normally included in the text/entry, just like any other character. However, any space that immediately follows '{', immediately precedes '}', or is immediately adjacent to '%' or '$' must be ignored.

· The total length of a marker, measured from the opening '{' to the closing '}', and in which all embedded end-of-lines are converted to spaces, will be at most 79 characters.

Example input:

Call me Ishmael.

*

One {fish $unary}, two {fish$ binary},&red {fish $ scarlet}, blue {fish$

azure}. & By { Dr. Seuss }.

*

This is a {simple } & & { document} that &{

simply %simple

$adverb

} & {illustrates %vision} &&&&& one {simple-minded% simple} {Judge}'s {vision}

for what a {document } might { look % vision} like.

*

**

Example output:

DOCUMENT 1

DOCUMENT 2

Dr. Seuss, 3

fish

+ azure, 2

+ binary, 1

+ scarlet, 2

+ unary, 1

DOCUMENT 3

document, 3, 10

Judge, 10

simple, 1, 10

+ adverb, 4

vision, 5, 10

Problem D: What's In A Name?

Source file:
name.{c, cpp, pas}

Input file:
name.in

Output file:
name.out

The FBI is conducting a surveillance of a known criminal hideout which serves as a communication center for a number of men and women of nefarious intent. Using sophisticated decryption software and good old fashion wiretaps, they are able to decode any e-mail messages leaving the site. However, before any arrest warrants can be served, they must match actual names with the user ID's on the messages. While these criminals are evil, they're not stupid, so they use random strings of letters for their ID's (no dillingerj ID's found here). The FBI knows that each criminal uses only one ID. The only other information they have which will help them is a log of names of the people who enter and leave the hideout. In many cases, this is enough to link the names to the ID's.

Input consists of one problem instance. The first line contains a single positive integer n indicating the number of criminals using the hideout. The maximum value for n will be 20. The next line contains the n user ID's, separated by single spaces. Next will be the log entries in chronological order. Each entry in the log has the form type arg , where type is either E, L or M: E indicates that criminal arg has entered the hideout; L indicates criminal arg has left the hideout; M indicates a message was intercepted from user ID arg. A line containing only the letter Q indicates the end of the log. Note that not all user ID's may be present in the log but each criminal name will be guaranteed to be in the log at least once. At the start of the log, the hideout is presumed to be empty. All names and user ID's consist of only lowercase letters and have length at most 20. Note: The line containing only the user ID's may contain more than 80 characters.

Output consists of n lines, each containing a list of criminal names and their corresponding user ID's, if known. The list should be sorted in alphabetical order by the criminal names. Each line has the form name:userid , where name is the criminal's name and userid is either their user ID or the string ??? if their user ID could not be determined from the surveillance log.

Example input:

7

bigman mangler sinbad fatman bigcheese frenchie capodicapo

E mugsy

E knuckles

M bigman

M mangler

L mugsy

E clyde

E bonnie

M bigman

M fatman

M frenchie

L clyde

M fatman

E ugati

M sinbad

E moriarty

E booth

Q

Example Output:

bonnie:fatman

booth:???

clyde:frenchie

knuckles:bigman

moriarty:???

mugsy:mangler

ugati:sinbad

- 8 -

