
Container-oriented Software Architecture,
with implications
Dr. Marko Rankovic

Footer 2

Agenda

1. What is the Container-oriented architecture?

2. Container-based application design – the main characteristics

3. How containers fit into the existing landscape?

4. Practical implications of the containerization

5. When you should use it?

6. Feedback from the experience and the practical use

Footer 3

About RPC

• RPC – part of Raiffeisen Bank International
• Card Payment Processor and Innovation Hub
• Processing more than 1.5 billion transactions per year
• Processing close to 2 billion API calls per year
• Servicing Customers in 11 CEE/SEE countries

Footer 4

About me

• Spent most of the professional career in banking industry, namely
in the payment cards processing area.

• Currently, Deputy CEO, COO, Member of the Board and Executive
Director of Regional

• Card Processing Center - RPC, by far largest card payments
processing company in the CEE and SEE regions, 100% subsidiary of
Raiffeisen Bank International.

• Held/holding numerous lecturing and teaching positions, as:
Professor – Information Technology School Belgrade, Assistant
Professor - Faculty of IT and Engineering Belgrade, Research Fellow
– Institute of Economics Belgrade.

• Published 4 books, and more than 50 articles in scientific and expert
journals.

• Happily married and proud father of 4.

Footer 5

What is Container-oriented architecture?

Container-oriented architecture empowers us to deploy packaged SW
deliveries, as an independent/isolated SW unit.

Do you know which programming concept enabled containerization?

Containerization or container-based virtualization is an Operating System
level virtualization method for deploying and running distributed

applications without launching Virtual Machines for each application.

Footer 6

What is Container-oriented architecture?

Footer 7

What is Container-oriented architecture?

Containers:
- are fully portable, independent SW units

- are compatible within the particular environment,
but can be easily adopted (if needed)/deployed in
other environments

- are similar to virtual machines in the virtualized
environment

- are lightweight (comparing to the VM)

- can have either specific and general functionality

Footer 8

What is Container-oriented architecture – other graphical examples

Footer 9

What is Container-oriented architecture – other graphical examples

Footer 10

Container-based applications – the main design characteristics

- Observability

- Image immutability

- Disposability

- Security

- CI/CD pipeline

Footer 11

Container-based applications – the main design characteristics

Observability
• Container health check
• Monitoring
• Logging engine (and logs interpretation intelligence)
• API-based

Image immutability
• Versioned deployments
• Copy image, build new, deploy, dispose
• Automated pipeline
• Backward compatibility

Footer 12

Container-based applications – the main design characteristics

Disposability
• Scale
• Fix
• Deploy
• Shut-down

Security
• Managed access
• Trustworthy images
• Security testing tools (i.e. RASP)
• Vulnerability scans
• Backward compatibility

13

Container-based applications – the main design characteristics

CI/CD pipeline
• Easy to execute
• Automated deployments
• No manual interventions
• Upgrade/update tools

Footer 14

How containerization fits into the existing landscape?

Business environment landscape
• Fast-changing
• Cost-efficient
• Flexible
• Highly customizable
• …

Technological environment landscape
• Fast deployment
• Plug-and-play
• Impact on the overall system stability
• Service availability
• …

Footer 15

What are the key pillars of the Container-based architecture?

- Container engines

- Container orchestrators

Footer 16

What are the key pillars of the Container-based architecture?

- Container engines
• are based on OS where kernel allows multiple isolated app instances
• are handling users inputs
• are handling APIs inputs
• are managing image management

• image
• Metadata prep
• mount
• container runtime exec

• the most popular:
• Docker
• AWS Fargate
• Google Kubernetes Engine
• MS Azure

Footer 17

What are the key pillars of the Container-based architecture?

- Container orchestrators
• empowering us with automation of much of the operational effort

required to run containerized workloads and services
• are enabling container deployment
• are managing (scaling included) container lifecycle
• are increasing system resilience
• are handling security
• the most popular:

• Kubernetes
• OpenShift

Footer 18

Practical implications of the containerization

- Benefits
• Seamless and fast setup
• Resource-efficient solution
• Efficient utilization
• Portability
• Application level isolation
• Easy to deploy
• Reducing overall time2market

Footer 19

Practical implications of the containerization

- Challenges
• IT resources (knowledge, availability)
• Cloud connections?
• Complexity
• Security challenges?

Footer 20

When you should use it?

- Start with simple
- Nature of the endeavor (sensitive data, speed, scalability, security…)
- Investments
- Speed
- PoC
- Your environment (on-prem, cloud…)

Footer 21

Feedback from the experience and the practical use

Footer 22

THANK YOU!

Questions?

