Lesighs lmo
bize1.Orieninl Program misyg

Tha Cims witk Ogrve aé Yaights

Fex eonw, e are iptrewsed oo in aclahofa
Wi ard gre

L
aned the ogre reakes 3 reven g afrereasds

Invvhe auack bra kmight, 3 gee baemn 1 af

an ogra nas mare rmerg, 3 bmvighyesd ooss
it ey daring bis attack.

How would you implement a clash of a
kmight and an ogre in C (procedurally)?

There are programming
languages that enable to
create programs exactly
the way thar is close to the
programmer’s mental
madel

How would we in the structure
inaplementarion in Cadd a
kind of a bad ogre who would,
if hungry, during a revenge
draw all the energy of the
Emight?

How would adding new
kinds of ogres would
exhibit in the clash?

typedef struet |
int energy;

} Ogre; the struct
representation of
the characters?

A class:
a prescription
for the object
creation

typedef enum {common, bad, timid} OgreKind;

typedef struct
int energy;

OgreKind ki

bool hungry;
void (*revenge) (Knight kJ;
10gre;

What's missing in

typedef struct {

void (“revenge) (Knight k);

BadOgre inherits the behavior
and strucrire from che Ogre

class

BadOgre

s and

c = the Ogre class: adds
new details into the ogre
abstraction

Object:
-identity
- state
- behavior
Program:

an interaction of objects

Objects represent
behavioral-strucrural
units of the programmer's
mental model (ideas)

With inheritance, an
existing code can be
reused and redundancy
can be avoided

Object-oriented
modularization enables a
more flexible expression
of the programmer's
mental model

Polymorfizmus enables to
create code that would
remain valid even for new,
derived object types




Lecture1:

Insight into
Object-Oriented Programming

Valentino Vranié

Ustav informatiky, informacénych systémov a
softvérového inZinierstva

c...2TU
ceeo FIIT

vranic@stuba.sk

fiit.sk/~vranic

OOP 2019/20
18. 2. 2020



The Game with Ogres and Knights

For now, we are interested only in a clash of a
knight and ogre:

a knight attacks an ogre,

and the ogre makes a revenge afterwards

In the attack by a knight, an ogre looses 10% of
1ts energy

If an ogre has more energy, a knight will loose
10% of his energy during his attack



For now, we are interested only in a clash of a
knight and ogre:

a knight attacks an ogre,

and the ogre makes a revenge afterwards

In the attack by a knight, an ogre looses 10% of
its energy

If an ogre has more energy, a knight will loose
10% of his energy during his attack

How would you implement a clash of a
knight and an ogre in C (procedurally)?



typedef struct {
Int energy;
} Ogre;



What's missing in
the struct

representation of
the characters?



typedef struct {

Int energy;

vold (“revenge)(Knight k);
1 Ogre;



Object:
- 1dentity
- state
- behavior

Program:
an interaction of objects



Objects represent
behavioral-structural
units of the programmer's
mental model (1deas)




There are programming
[anguages that enable to
create programs exactly
the way that is close to the

programmer's mental
model



A class:
a prescription
for the object
creation



Object-oriented
modularization enables a
more flexible expression
of the programmer's
mental model




How would we in the structure
implementation in C add a
kind of a bad ogre who would,
if hungry, during a revenge
draw all the energy of the
knight?



typedef enum {common, bad, timid} OgreKind,;

typedef struct {

Int energy;

OgreKind kind;

bool hungry;

void (“revenge)(Knight k);
} Ogre;



BadOgre inherits the behavior
and structure from the Ogre
class

BadOgre extends and
concretizes the Ogre class: adds
new details into the ogre
abstraction



With inheritance, an
existing code can be
reused and redundancy
can be avoided




How would adding new
kinds of ogres would
exhibit in the clash?



Polymortizmus enables to
create code that would
remain valid even tor new,
derived object types




Objects represent
behavioral-structural
units of the programmer's
mental model (1deas)

With inheritance, an
existing code can be
reused and redundancy
can be avoided

Object-oriented
modularization enables a
more tlexible expression
of the programmer's
mental model

Polymorfizmus enables to
create code that would
remain valid even for new,
derived object types



Objects represent
behavioral-structural
units of the programmer's
mental model (ideas)

With inheritance, an
existing code can be
reused and redundancy
can be avoided

Object-oriented
modularization enables a
more flexible expression
of the programmer's
mental model

Polymorfizmus enables to
create code that would
remain valid even for new,
derived object types



