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Does the game with
ogres and knights have
some user interface?



Assume that the game is being
controlled by a window
containing a button to run the
clash and an output text field.

The code that should be run upon
clicking the button can be
attached to it.



Assume that the game is being
controlled by a window
containing a button to run the
clash and an output text field.

The code that should be run upon
clicking the button can be
attached to it.

Is it sufficient to attach to the button
the clash code we alredy have ?



A user interface has
to be decoupled
from the
application logic




WIMP

windows, icons, menus, pointer

Xerox PARC



Entangling the user interface
with application logic (an
inner program model) makes
problems in changing the user
interface



The inner program model
must not be put into listeners



<<interface>>
_ Button_L> EventHandler
Hire() handle()
\
A o
eventHandIer.handIe()B |
|
|

SpracovanieStretu

+handle()




Events are handled by
corresponding handlers
1n the context of the user
interface elements



Events are handled by
corresponding handlers

in the context of the user S t r ate gy

interface elements

there are (and can be added) difterent
strategies of solving a given problem,
and the context of their application
has to be ready for this



Context

«interface»

<> Strategy
contextlnjerface() algorithminterface()
~
~ SR
~ / \
~ / \
/ \
concreteStrategy.algorithminterface() ) / \ .
/ \
/ N\
/ \
ConcreteStrategyA ConcreteStrategyB

algorithminterface()

algorithminterface()




«interface»

Context <> Strategy
contextlnjeﬂace() algorithminterface()
~
N SR
~ 7/ AN
™ / \
concreteStrategy.algorithminterface() Iﬁ , / AN .
/ N
/ hY
/ N
ConcreteStrategyA ConcreteStrategyB
algorithmlinterface() algorithminterface()
Butt <<interface>>
ytlon EventHandler
fir
+hire() - handle()
\ JAN

eventHandler.handle()

SpracovanieStretu

+handle()




The interaction
with GUI is based
on capturing and
handling events




A clash is an object. Its state
changes.

GUI elements could be reacting
differently to the change in the

state of the clash, e.g., show the
current overall energy.



A clash is an object. Its state
changes.

GUI elements could be reacting
differently to the change in the

state of the clash, e.g., show the
current overall energy.

How to provide for adding such
GUI elements without the need
to change the clash object?



A user interface (or its
parts) has to be notified
of a change in the model,
wheras it should be
possible to add it without
the need to change the
model.



A user interface (or its
parts) has to be notified
of a change in the model,

h it should b
wherisbodle Observer

the need to change the
model.

observing objects have to be notified of a
change in the state of the observed object,
and it has to be possible to add them without
a need to modify the observed object




«interface»
Subject —
interface
attach(observer: Observer) > «Ob serv er»
detach(observer:. Observer)
notify() update()
o o
| |
| |
Subject1 Observer1
state < state
+getState() +update()
+setState()




<<interface>>

Stret >{ SledovatelStretu
+pridajSledovatela(sledovatelStretu: SledovatelStretu upovedom()
+upovedomSledovatelov() N

|
+zistiPocetBojovnikov() |
+zistiRytiera(i: Integer) |

+zistiObra(i: Integer) EnergiaBojovnikov

-energia: Integer

/N

+upovedom()




«interface»

Subject
attach(observer: Observer)

«interface»

>~
detach(observer: Observer) - Observer
notify() update()
| |
! |
Subject1 Observerf
state < state
+getState() +update()
+setState()
Stret

+pridajSledovatela(sledovatelStretu: SledovatelStretu
+upovedomSledovatelov()

+zistiPocetBojovnikov()
+zistiRytiera(i: Integer)
+zistiObra(i: Integer)

<<interface>>
SledovatelStretu

upovedom()

o

EnergiaBojovnikov

AN

-energia: Integer

+upovedom()




Observer is
appropriate for
Interconnecting the
user interface and

application logic




A user interface has| | The interaction

to be decoupled with GUI is based
from the on capturing and
application logic handling events

Observer is
appropriate for
Interconnecting the
user interface and
application logic



