Asatime: Ut G garre: i ety
by 2 window

romsaining & butses 10 v the

clish s an orpes eexe eld.

The tade s shesld be run upers
dickimg e burnom can be:
Diaes the game with ,,:‘m..,;‘_ -

d knights b
PERes and iz " Is it suffivient te artack to the button

somme aser inerface?
the clash code we alredy have 7

WIMP Ertangling the wser interface

with applicarion kogic ian T
ineer program moded) make:
prokiams in changing the user
interface

ancs progrars moddl

wltzdovws, Lo, T, poiter

muge ot be pu |

Netow PARD

Auserinterface has| | The interaction
1o be decoupled with GUI is baged
from the on capruring and
application logic handling events
Observer is

approprizte for
interconnecting the
wser interface ard

Events are handled by
application logic

corresponding handlers

iry the ennpssr afthe nter Strategy

inrerface elements

there are (and can be added) different

. . . — per—
strategies of solving a given problem, Eloh e
N -

and the context of their application
has to be ready for this

aligriacae
Subject

attachibaerier: Obsamer -

Auser imerface jor its :nluﬂ'rmw Ohmaree)

parts) ks i be notified Fiy
model,

wheras it shy
~oo.. Observer s !
need o chang = i e Lol
gaian) gy
+satStata()
observing objects have to be notified of a
change in the state of the observed object, P —
How to provide for adding such .) - - el | SledovalelStrety |
.) and it has to be possible to add them without
GUT elements withou the need supavedemSldovatel] uporvadam()
1o change the clash object? a need to modify the observed object .3
il
ssliRyharali: Inager)
:I EnemiaBol ko]
-anargia: | 4
aupavedomy)

Lecture 4:

Graphical User Interface
and Its Separation from
Application Logic

Valentino Vranié

Ustav informatiky, informacnych
systémov a softvérového inZinierstva

....STU

cooe FIIT

vranic@stuba.sk

fiit.sk/~vranic

OOP 2018/19
5.3.2019

Does the game with
ogres and knights have
some user interface?

Assume that the game is being
controlled by a window
containing a button to run the
clash and an output text field.

The code that should be run upon
clicking the button can be
attached to it.

Assume that the game is being
controlled by a window
containing a button to run the
clash and an output text field.

The code that should be run upon
clicking the button can be
attached to it.

Is it sufficient to attach to the button
the clash code we alredy have ?

A user interface has
to be decoupled
from the
application logic

WIMP

windows, icons, menus, pointer

Xerox PARC

Entangling the user interface
with application logic (an
inner program model) makes
problems in changing the user
interface

The inner program model
must not be put into listeners

<<interface>>
_ Button_L> EventHandler
Hire() handle()
\
A o
eventHandIer.handIe()B |
|
|

SpracovanieStretu

+handle()

Events are handled by
corresponding handlers
1n the context of the user
interface elements

Events are handled by
corresponding handlers

in the context of the user S t r ate gy

interface elements

there are (and can be added) difterent
strategies of solving a given problem,
and the context of their application
has to be ready for this

Context

«interface»

<> Strategy
contextlnjerface() algorithminterface()
~
~ SR
~ / \
~ / \
/ \
concreteStrategy.algorithminterface()) / \ .
/ \
/ N\
/ \
ConcreteStrategyA ConcreteStrategyB

algorithminterface()

algorithminterface()

«interface»

Context <> Strategy
contextlnjeﬂace() algorithminterface()
~
N SR
~ 7/ AN
™ / \
concreteStrategy.algorithminterface() Iﬁ , / AN .
/ N
/ hY
/ N
ConcreteStrategyA ConcreteStrategyB
algorithmlinterface() algorithminterface()
Butt <<interface>>
ytlon EventHandler
fir
+hire() - handle()
\ JAN

eventHandler.handle()

SpracovanieStretu

+handle()

The interaction
with GUI is based
on capturing and
handling events

A clash is an object. Its state
changes.

GUI elements could be reacting
differently to the change in the

state of the clash, e.g., show the
current overall energy.

A clash is an object. Its state
changes.

GUI elements could be reacting
differently to the change in the

state of the clash, e.g., show the
current overall energy.

How to provide for adding such
GUI elements without the need
to change the clash object?

A user interface (or its
parts) has to be notified
of a change in the model,
wheras it should be
possible to add it without
the need to change the
model.

A user interface (or its
parts) has to be notified
of a change in the model,

h it should b
wherisbodle Observer

the need to change the
model.

observing objects have to be notified of a
change in the state of the observed object,
and it has to be possible to add them without
a need to modify the observed object

«interface»
Subject —
interface
attach(observer: Observer) > «Ob serv er»
detach(observer:. Observer)
notify() update()
o o
| |
| |
Subject1 Observer1
state < state
+getState() +update()
+setState()

<<interface>>

Stret >{ SledovatelStretu
+pridajSledovatela(sledovatelStretu: SledovatelStretu upovedom()
+upovedomSledovatelov() N

|
+zistiPocetBojovnikov() |
+zistiRytiera(i: Integer) |

+zistiObra(i: Integer) EnergiaBojovnikov

-energia: Integer

/N

+upovedom()

«interface»

Subject
attach(observer: Observer)

«interface»

>~
detach(observer: Observer) - Observer
notify() update()
| |
! |
Subject1 Observerf
state < state
+getState() +update()
+setState()
Stret

+pridajSledovatela(sledovatelStretu: SledovatelStretu
+upovedomSledovatelov()

+zistiPocetBojovnikov()
+zistiRytiera(i: Integer)
+zistiObra(i: Integer)

<<interface>>
SledovatelStretu

upovedom()

o

EnergiaBojovnikov

AN

-energia: Integer

+upovedom()

Observer is
appropriate for
Interconnecting the
user interface and

application logic

A user interface has| | The interaction

to be decoupled with GUI is based
from the on capturing and
application logic handling events

Observer is
appropriate for
Interconnecting the
user interface and
application logic

