
Functional JavaScript
marcus@gratex.com	

FIIT	,	2018	

Functional JavaScript

•  JavaScript	is	a	multi-paradigm	language	
•  It	can	be	used	to	program	functionally	

FP	idioms:	
•  iterative	functions,	which	can	replace	
loops,		

•  list	processing		
•  function	manipulations	
•  immutability	
•  pure	functions	
•  branching	
•  ...	and	many	other	things,		

Can	help	us	to	keep	code:	
•  smaller	
•  cleaner/readable/semantic	
•  testable	
•  reusable	
•  maintainable	
•  ….	
•  more	fun	

JavaScript (intro in 30 lines)

JavaScript (intro in 30 lines)

JavaScript – "ugly" "for"

•  for,	while,	do	while	
•  they	exist	from	Basic	…	Java	

•  Bad:	
•  Verbose	
•  Not	semantic		
•  Not	reusable	

•  Good:	
•  …	

•  keď	sa	pozriem	na	FOR	cyklus	neviem	čo	robí,	lebo	

•  robiť	hocičo	
•  veľa	vecí	naraz	

	

•  cyclomatic	complexity		

•  for,	if,.	for,	while	all	nested	

JavaScript - "ugly" "for"
How	it	is	done	

What	it	does	

JavaScript - array extras vs ugly “for”

Function	 In	 Out	 loop	eq.	 ES	

map	 [],	N	 [],	N	 var	[],	for,	push,	return	[]	 		

filter	 [],	N	 [],	M<N	 var	[],	for,	if,	push,	return	[]	 		

reduce	 []	 {},	[],	whatever,…	 var	[],	for,	if,	push,	return	{}	 		

reduceRight	 []	 {},	[],	whatever,…	 var	[],	for	(i--),	if,	push,	return	{}	 		

some	 []	 boolean	 var	b,	for,	if	return	true	 		

every	 []	 boolean	 var	b,	for,	if	return	false	 		

forEach	 []	 		 for		 		

		 		 		 		 		

find	 []	of	items	 item	 for,	if	return	a[i];	return;	 		

fill	 [],	item	 []	of	items	 var	[],	for,	push,	return	[]	 		

from	 [],	iterable	 []	 var	[],	for,	push,	return	[]	 		

mapping	variants	of	for,	to	semantic	methods	

JavaScript - Array Extras vs ugly “for”

JavaScript - Array Extras vs ugly “for”

JavaScript - Array Extras vs ugly “for”

JavaScript - best of both worlds

Composition styles inline, adhoc, generic
readable	
reused,	
slow	400ms	

readable,	
reused	
fast	120ms	

readable,	
reused	
fast	120ms	

readable,	
reused	
fast	153ms		
slow	300ms	

readable	
reused,	
non	standard	

Composition - compose() implementations

153ms	

300ms	
JavaScript	language		
does	not	have	API	for		
“generic	compose”	or		
“construct”	
	
Observe	these	2		
sample	implementations.		
still	naive,		
not	exact	semantics	as	
map.map.map	
because	of	(i,	items).	

	
Just	as	an	example		
of	performance	of		
good	old	“for”	[1]	

JavaScript - too much
functional ?
Alebo čo sa stane, keď
to “preženiete”.
•  is	this	still	JavaScript	?	
how	many	JS	people		
•  will	have	to	read	it,		
•  and	will	understand	?	

•  Do	you	want	to	study		
•  custom	APIs	(vocabularies)	or	
use		

•  “idiomatic	JS”	(for	common	
oneliners)	?	

•  is	recursion	really	“best”	for	
this	structure	parsing	?	

•  is	functional	really	best	for	
this	?	(internal	data	structure	
hiding)	
•  which	functions	are	really	
reusable	?	

JavaScript - from functions to object+methods

JavaScript - from methods to functions

Functional JavaScript (Summary)

•  JavaScript	is	a	multi-paradigm	language	
•  It	can	be	used	to	program	functionally	(specially	with	“modern	JS”)	
• But	(my	opinion,	my	current	“functional	JS	POV”),	so	far	on	covered	topics	
• use	functional	concepts	for	business,	keep	the	rest	“as	needed”	(procedural,	declarative)	
• use	functional	concepts	for	functional	problems	
• use	chaining	(nicer	syntax,	more	readable	programs)	
• use	(parameter)	destructuring,	rest	parameters,	defaults	(less	bloated	code,	less	need	for	low	level	FP	primitives,	branching)	
• use	(study)	JS	syntax,	if	exists	whenever	possible,	do	not	hide	known	JS	under	unknown	libs	
• do	not	implement	low	level	functional	features	by	reusing	functional	features	(e.g	use	raw	loops	to	implement	_ranges,	etc…,	beware	
performance,	O(n),	call	stack	price,	memory)	
• do	not	implement	functional	low	level	features,	use	libs	(eg.	_underescore.js),	use	only	what	needed,	more	and	more	is	replaced	by	
standard	JS	syntax)	
• use	arrow	functions	only	for	inlines	(I	like	hoisting,	more	readable	programs,	top	down	reading,	code	first,	then	functions,	function(){},	
vs	const=()=>{})	
• do	not	follow	blindly	FP	concepts	eg.	“using	functions	instead	of	values”	f(f())	vs	f(v),	we	can	have	f(funOrValue)	
• use	recursion	only	where	appropriate	for	“problem	solving”,	reduce	is	almost	always	fine	if	not	needing	quick	exits	
•  implement	mappers,	filters,	reducers,	instead	of	implementing	“whole	methods”	

