Java™ 2 Platform
Enterprise Edition Specification, v5.0

Please send comments to: j2ee-spec-feedback @sun.com

Public Review - 6/20/05 Bill Shannon

N

We make the net work.

Public Review

Java™ 2 Platform, Enterprise Edition 5.0 (J2EE™ 5.0) Specification (" Specification")
Version: 2.0

Status: Pre-FCS, Public Review

Release: Monday, June 20, 2005

Copyright 2005 Sun Microsystems, Inc.

4150 Network Circle, Santa Clara, Cdifornia95054, U.SA.

All rights reserved.

LIMITED EVALUATION LICENSE

Sun hereby grants you afully-paid, non-exclusive, non-transferable, worldwide,

limited license (without the right to sublicense), under Sun’s applicable intellectual property rights to view,
download, use and reproduce the Specification only for the purpose of internal evaluation. Thisincludes (i)
devel oping applications intended to run on an implementation of the Specification, provided that such appli-
cations do not themselves implement any portion(s) of the Specification, and (ii) excerpting brief portions of
the Specification in oral or written communications which discuss the Specification provided that such
excerpts do not in the aggregate constitute a significant portion of the Technology. No license of any kind is
granted hereunder for any other purpose including, for example, creating and distributing implementations of
the Specification, modifying the Specification (other than to the extent of your fair use rights), or distributing
the Specification to third parties. Also, no right, title, or interest in or to any trademarks, service marks, or
trade names of Sun or Sun’slicensorsis granted hereunder. If you wish to create and distribute an implemen-
tation of the Specification, alicensefor that purposeis available at http://www.jcp.org. Theforegoing license
is expressly conditioned on your acting within its scope, and will terminate immediately without notice from
Sun if you breach the Agreement or act outside the scope of the licenses granted above. Java, and Javar
related logos, marks and names are trademarks or registered trademarks of Sun Microsystems, Inc. in the
U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION ISPROVIDED "ASIS'. SUN MAKES NO REPRESENTATIONS OR WARRAN-
TIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT (INCLUD-
ING ASA CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTATION OF THE SPECIFICATION),
OR THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE. This
document does not represent any commitment to rel ease or implement any portion of the Specification in any
product. In addition, the Specification could include technica inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS
OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAM-
AGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, RELATED IN
ANY WAY TO YOUR HAVING OR USING THE SPECIFICATION, EVEN IF SUN AND/OR ITS
LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND
U.S. Government: If this Specification is being acquired by or on behalf of the

U.S. Government or by a U.S. Government prime contractor or subcontractor (at any tier), then the Govern-
ment’s rights in the Software and accompanying documentation shall be only as set forth in this license; this

isin accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisi-
tions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Sun with any comments or suggestions concerning the Specification ("Feedback™), you
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii)
grant Sun a perpetua, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to subli-
cense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feed-
back for any purpose.

GOVERNING LAW
Any action relating to or arising out of this Agreement will be governed by Cdlifornia law and controlling

U.S. federal law. The U.N. Convention for the International Sale of Goods and the choice of law rules of any
jurisdiction will not apply.

Rev. May 9 2005

Public Review

Contents

Java™ 2 Platform

Enterprise Edition Specification,v5.0 i
J2EE.1 Introduction............. ... 1
JEE.1.1 Acknowledgements.............. i 2
J2EE.1.2 Acknowledgementsfor Verson1.3...................... 2
JEE.1.3 Acknowledgementsfor Version1.4...................... 3
JEE.1.4 Acknowledgementsfor Version5.0...................... 3
J2EE.2 PlatformOverview.o i 5
JEE.2.1 Architecture 5
J2EE.2.2 Application Componentsouiiiieennennenn.. 6
JEE.2.2.1 J2EE Server Support for Application Components. . ..7

JEE.2.3 CONtainers.ov it 8
JEE.2.3.1 Container Requirements 8
JEE232 JEESEVES.o 9
J2EE.24 Resource Adapterso 9
JEE25 Datahase.ot 9
JREE26 REEStandardServices...............cciiiiiiiiiia.. 9
JEE26.1 HTTP. .o e 10
JEE26.2 HTTPS. ... e 10
JEE.2.6.3 Java™ Transaction APl (JTA) 10
JREE264 RMI-HIOP. 10
JEE265 JavalDL 11
J2EE.2.6.6 JDBC™ APl e 11
JEE.2.6.7 Java™ Persistence APlo 11
J2EE.2.6.8 Java™ Message Service(IMS).................. 11

J2EE.2.6.9 JavaNaming and Directory Interface™ (JNDI) 12

J2EE.2.6.10 JavaMail™ e 12
J2EE.2.6.11 JavaBeans™ Activation Framework (JAF)......... 12
JEE.26.12 XMLProcessingcooviiiiiiinnnan.n. 12
J2EE.2.6.13 J2EE™ Connector Architecture 12
J2EE.2.6.14 Security SEIVICES. . ..o oot 13
JEE.2.6.15 WEDSErviCes. oot 14
JEE.2.6.16 Managementc.cuiriiininiannnnnnn. 14
J2EE.2.6.17 Deployment.couiiiiiiiiiinennann.. 14
J2EE.2.7 Interoperability........... 15
J2EE.2.8 Flexibility of Product Requirements 16
JPEE.29 J2EE Product EXtensions, 16
JEE.2.10 PlaformRoles e 17
J2EE.2.10.1 J2EE Product Provider 17
J2EE.2.10.2 Application Component Provider 18
J2EE.2.10.3 Application Assembler 18
J2EE.2.10.4 Deployer ... 18
J2EE.2.10.5 System Administrator, 19
J2EE.2.10.6 Tool Provider. ..., 19
J2EE.2.10.7 System Component Provider. 19
J2EE.2.11 PlatformContractSo 20
JREE211.1 J2EEAPIS. ..o 20
J2EE.2.11.2 J2EE Service Provider Interfaces (SPIS). 20
J2EE.2.11.3 Network Protocols., 20
J2EE.2.11.4 Deployment Descriptors and Annotations 21
JEE.212 Changesin REE 1.3. i 21
JEE.213 ChangesinREE 14.ot 21
JEE.2.14 Changesin REES5.0............. . 22
J2EE.3 SECUMItY .. 25
JREE.3.1 Introductioniiiii e 25
JEE.3.2 ASmpleExample............ ... i 26
J2EE.3.3 Security Architecture 30
JREE331 GOaAS. ...t 30
JREE332 NONGOaAS......ovviiiii i 31
J2EE.3.33 Terminologyc.ovuuiiiieiiiienn.. 32
J2EE.3.34 Container Based Security 33
J2EE.3.35 Distributed Security.o 34
J2EE.3.3.6 AuthorizationModdl 35

Public Review

J2EE.3.3.7 HTTPLoginGatewaysc.covvuvvnnnn.. 36
J2EE.3.3.8 User Authentication.ccovvun.... 36
J2EE.3.3.9 Lazy Authentication 39
J2EE.3.4 User Authentication Requirements. 39
JREE.34.1 LOgiNSESSIONS. ..o vvti et 39
JEE.3.4.2 RequiredLogin Mechanisms.................... 40
JEE.3.4.3 UnauthenticatedUsers.ooiun.. 41
JEE.3.4.4 Application Client User Authentication 42
J2EE.3.4.5 Resource Authentication Requirements 43
JEE.3.5 Authorization Requirements. 44
JEE.35.1 CodeAuthorization........................... 44
JEE.35.2 Cdler Authorization 45
JEE.3.5.3 Propagated Caller Identities. 45
J2EE.354 RunAsldentities............... ..o 45
JPEE.3.6 Deployment Requirements. 46
J2EE.3.7 FutureDIrectionsot 46
JREE3.7.1 Auditing.oiiii e 46
JPEE.3.7.2 Instance-based AccessControl 47
J2EE.3.7.3 UserRegistration. ..., 47
J2EE.4 Transaction Management............................ 49
J2EEA.L OVEIVIEW. ..ottt e e ettt 49
JREEA2 RequIrementsuiiiiiiiii it 51
JEE4.21 WebComponentscoviviiiiinnnn.n. 51
JEE.A4.2.2 Transactionsin Web Component LifeCycles. 52
JEE.A23 Transactionsand Threads 53
J2EE.4.24 Enterprise JavaBeans™ Components. 54
JREE.425 ApplicationClients 54
JREE426 AppletClients...............iiiiiiiiiiin.. 54
JEE.4.2.7 Transactional JDBC™ Technology Support. 54
JEE.A4.2.8 Transactional IMSSupport 54
JEE.4.29 Transactional Resource Adapter (Connector) Support 55
JEE.4.3 Transaction Interoperability 55
JEE.A3.1 Multiple J2EE Platform Interoperability 55
J2EE.4.3.2 Support for Transactional Resource Managers. 55
JEE.4.4 Local Transaction Optimization........................ 56
JREEA41 Requirements.o 56
JEE4.42 APosshbleDesign...........ccvviiiiiiii... 56

JEE.45 ConnectionSharing i, 57

Vi

viii

J2EE.4.6 JDBCand IMSDeploymentIssues. 58
JEE.4.7 Two-Phase CommitSupport 59
JPEE.4.8 System Administration Tools. 59
J2EE.5 Resources, Naming, and Injection 61
JREES.1 OVEIVIEW ..ottt et 61
J2EE.5.1.1 Chapter Organizationc.covuunen... 62
J2EE.5.1.2 Required Accessto the INDI Naming Environment. . 63
J2EE.5.2 JINDI NamingContext, 63
J2EE.5.21 The Application Component’s Environment 63
J2EE.5.2.2 Sharing of Environment Entries 64
J2EE.5.2.3 Annotations and Resource Injection.............. 65
JEE.5.2.4 Annotations and Deployment Descriptors 67
J2EE.5.3 Responsibilitiesby 2EERole. 68
JEE.5.3.1 Application Component Provider’s Responsibilities . 68
JEE.5.3.2 Application Assembler’s Responsibilities. 69
J2EE.5.3.3 Deployer’sResponsibilities. 69
J2EE.5.34 J2EE Product Provider's Responsibilities. 69
JEE.5.4 Simple Environment Entries. 70
JPEE.5.4.1 Application Component Provider’s Responsibilities . 70
J2EE.5.5 Enterprise JavaBeans™ (EJB) References. 75
JEE.5.5.1 Application Component Provider’s Responsibilities . 76
J2EE.5.5.2 Application Assembler’s Responsibilities. 79
J2EE.5.5.3 Deployer’'sResponsibilities. 81
J2EE.5.5.4 J2EE Product Provider's Responsibilities. 81
J2EE.5.6 Resource Manager Connection Factory References. 82
J2EE.5.6.1 Application Component Provider’s Responsibilities . 83
J2EE.5.6.2 Deployer’'sResponsibilities. 87
J2EE.5.6.3 J2EE Product Provider’s Responsibilities. 88
JEE.5.6.4 System Administrator’s Responsibilities 89
J2EE.5.7 Resource Environment References. 90
J2EE.5.7.1 Application Component Provider’s Responsibilities . 90
JEE.5.7.2 Deployer'sResponsibilities. 91
J2EE.5.7.3 J2EE Product Provider's Responsihilities. 92
J2EE.5.8 Message Destination References 92
JEE.5.8.1 Application Component Provider’s Responsibilities . 92
J2EE.5.8.2 Application Assembler’s Responsibilities. 95
J2EE.5.8.3 Deployer’sResponsibilities. 97
J2EE.5.84 J2EE Product Provider's Responsibilities. 97

Public Review

JEE.59 UserTransaction References., 97
JEE.5.9.1 Application Component Provider's Responsibilities . 99
J2EE.5.9.2 J2EE Product Provider’s Responsibilities. 99

JPEE.5.10 ORB ReferenCes.o v i 99
J2EE.5.10.1 Application Component Provider’'s Responsibilities 100
J2EE.5.10.2 J2EE Product Provider’s Responsibilities. 101

J2EE.6 Application Programming Interface.................. 103
JEE.6.1 Required APIS. ot 103
JEE.6.1.1 JavaCompatibleAPIs........................ 103
J2EE.6.1.2 JavaOptiona Packages....................... 104
J2EE.6.2 Java?2 Platform, Standard Edition (J2SE) Requirements. . . . 106
JEE.6.2.1 Programming Restrictions. 106
J2EE.6.2.2 The J2EE Security PermissionsSet. 106
J2EE.6.2.3 Listing of the J2EE Security Permissions Set 107
JEE.6.2.4 Additional Requirements. 108
JP2EE.6.3 Enterprise JavaBeans™ (EJB) 3.0 Requirements. 120
JREE.6.4 Servlet24Requirements............iiiiiiiii.. 120
JEE.6.5 JavaServer Pages™ (JSP) 2.1 Requirements. 122
JEE.6.6 Java™ Message Service (JMS) 1.1 Requirements. 122
JEE.6.7 Java™ Transaction APl (JTA) 1.0 Requirements 123
JEE.6.8 JavaMail™ 1.3Requirements.covvvaun.. 124
J2EE.6.9 JavaBeans™ Activation Framework 1.1 Requirements. 125
J2EE.6.10 J2EE™ Connector Architecture 1.5 Requirements 126
J2EE.6.11 Web Servicesfor J2EE 1.1 Requirements 126
J2EE.6.12 Java™ API for XML-based RPC (JAX-RPC) 1.1 Requirements
127

J2EE.6.13 Java™ API for XML Web Services (JAX-WS) 2.0 Requirements
127

J2EE.6.14 Java™ Architecturefor XML Binding (JAXB) 2.0 Requirements
128

J2EE.6.15 SOAP with Attachments API for Java™ (SAAJ) 1.3 128

JP2EE.6.16 Java™ API for XML Registries (JAXR) 1.0 Requirements . 128
J2EE.6.17 Java™ 2 Platform, Enterprise Edition Management APl 1.0 Re-

QUIFEMENES. .« .ottt et et e e 129
JPEE.6.18 Java™ 2 Platform, Enterprise Edition Deployment APl 1.1 Re-
QUITEMENTS. . . o o ettt e e e e et i 129

J2EE.6.19 Java™ Authorization Service Provider Contract for Containers

(JACC) 10Requirementsc.oiieiinenan... 129
J2EE.6.20 Debugging Support for Other Languages (JSR-45) Requirements

130

J2EE.6.21 Standard Tag Library for JavaServer Pages™ (JSTL) 1.1 Re-
QUITEMENTS . . .ttt e 130

J2EE.6.22 Web Services Metadata for the Java™ Platform 1.0 Require-
NS, . et 130
J2EE.6.23 JavaServer Faces™ 1.2 Requirements. 130
J2EE.6.24 Common Annotations for the Java™ Platform 1.0 Requirements

131

J2EE.6.25 Streaming API for XML (StAX) 1.0 Requirements. 132
J2EE.6.26 JavaPersistence APl 1.0. ... 132
J2EE.7 Interoperability............ ... 133
J2EE.7.1 Introduction to Interoperability 133
J2EE.7.2 Interoperability Protocols. 134
J2EE.7.2.1 Internet and Web Protocols. 134
JEE.7.22 OMGProtocols. ... 135
J2EE.7.2.3 JavaTechnology Protocols 136
JEE.7.24 DaaFormals. 136
J2EE.8 Application Assembly and Deployment 139
J2EE.8.1 Application Development LifeCycle. 140
JEE.8.11 ComponentCreation..................ccuvu... 141
JEE.8.1.2 ApplicationAssembly........................ 142
JEE.8.1.3 Deployment........... 143
J2EE.8.2 Library Support 143
J2EE.8.21 BundledLibraries................ 143
JEE.8.22 InsaledLibraries................ 144
J2EE.8.2.3 Library Conflicts.coiiii.. 145
J2EE.8.24 Library ResSOUICESo 145
J2EE.8.25 DynamicClassLoading 146
JREE826 Examples......... ..o 147
J2EE.8.3 Application Assembly 148
J2EE.8.3.1 Assembling aJ2EE Application 148
J2EE.8.3.2 Adding and Removing Modules................ 151
J2EE.8.4 Deploymentt 151
J2EE.8.4.1 Deploying a Stand-Alone 2EE Module. 153
JEE.8.4.2 Deploying aJ2EE Application 154

Public Review

J2EE.84.3 DeployingalLibrary................., 156

J2EE.85 J2EE Application XML Schema 156
JEE.8.6 Common J2EE XML Schema Definitions. 165
J2EE.9 ApplicationClients. ..., 205
JEEOQ.L OVEIVIEW. . .ot e 205
J2EE.Q.2 SECUMTY . ..ottt e e 205
JEEOQ3 Transactionsuiiiiiiiiiiii i 206
J2EE.9.4 Resources, Naming, and Injection 207
J2EE.9.5 Application Programming Interfaces................... 207
JEE.9.6 Packagingand Deployment 207
JPEE.Q.7 J2EE Application Client XML Schema.................. 209
J2EE.10 ServiceProvider Interface..................., 219
J2EE.11 Compatibility and Migration......................... 221
J2EE.12 FutureDirections................ ..., 223
J2EE.12.1 INLP (Java™ Web Start)oveeeineninennnn. 223
JEE12.2 J2EE SPl. .. o 224
J2EE.12.3 Security APIS . ..o 224
Appendix J2EE.A: Previous Version Deployment Descriptors. . . . 225
J2EE.A.1 J2EE 1.4 Application XML Schema 225
J2EE.A.2 Common J2EE 1.4 XML Schema Definitions............ 233
JEE.A.3 JEE:application L3XMLDTDccvviinn.. 270
JREE.A.4 JEE:application 1L.2XMLDTD 276
J2EE.A.5 J2EE 1.4 Application Client XML Schema.............. 281
JREE.A.6 JEE:application-client L3XMLDTD 289
J2EE.A.7 J2EE:application-client 1L.2XMLDTD 299
Appendix J2EE.B: Revison History 307
JEE.B.1 ChangesinExpertDraftl 307
JEE.B.1.1 Additional Requirements. 307
JEE.B.1.2 Removed Requirements....................... 307
J2EE.B.1.3 Editoridd Changescooviiiiin... 307
JEE.B.2 ChangesinExpertDraft2, 308
JEE.B.2.1 Additional Requirements. 308
J2EE.B.2.2 Removed Requirements....................... 308

JEE.B.2.3 Editoria Changes 308

Xi

Xii

J2EE.B.3 ChangesinEarly Draft Review 1...................... 309
J2EE.B.3.1 Additional Requirements. 309
JEE.B.3.2 Removed Requirements 309
JEEB.3.3 EditorialChanges 309

J2EE.B.4 ChangesinEarly Draft Review 2. 309
JEE.B.4.1 Additional Requirements. 309
JEE.B.42 Removed Requirements 310
JEE.B.43 Editoriad Changes 310

J2EE.B.5 ChangesinPublicReviewDraft 310
JEE.B.5.1 Additional Requirements. 310
J2EE.B.5.2 Removed Requirements 310
J2EE.B.53 Editorial Changes 310

Appendix J2EE.C: Related Documents 313

Public Review

cnerend2EELL

| ntroduction

Enterprisestoday need to extend their reach, reduce their costs, and lower the
response times of their servicesto customers, employees, and suppliers.

Typically, applications that provide these services must combine existing
enterprise information systems (EISs) with new business functions that deliver
services to abroad range of users. The services need to be:

» Highly available, to meet the needs of today’ s global business environment.
 Secure, to protect the privacy of users and the integrity of the enterprise.

» Reliable and scalable, to ensure that business transactions are accurately and
promptly processed.

In most cases, enterprise services are implemented as multitier applications.
The middle tiersintegrate existing El Ss with the business functions and data of
the new service. Maturing web technologies are used to provide first tier users
with easy accessto business complexities, and eliminate or drastically reduce user
administration and training.

The Java™ 2 Platform, Enterprise Edition (J2EE™) reduces the cost and
complexity of developing multitier, enterprise services. J2EE applications can be
rapidly deployed and easily enhanced as the enterprise responds to competitive
pressures.

J2EE achieves these benefits by defining a standard architecture with the
following elements:

* J2EE Platform - A standard platform for hosting J2EE applications.
« J2EE Compatibility Test Suite - A suite of compatibility tests for verifying
that a J2EE platform product complies with the J2EE platform standard.

» J2EE Reference Implementation - A reference implementation for proto-
typing J2EE applications and for providing an operational definition of the
J2EE platform.

» J2EE BluePrints- A set of best practices for devel oping multitier, thin-client
services.

This document is the J2EE platform specification. It sets out the requirements
that a J2EE platform product must meet.

J2EE.1.1 Acknowledgements

This specification is the work of many people. Vlada Matenawrote the first draft as
well as the Transaction Management and Naming chapters. Sekhar Vajjhala, Kevin
Oshorn, and Ron Monzillo wrate the Security chapter. Hans Hrasna wrote the
Application Assembly and Deployment chapter. Seth White wrote the JIDBC API
requirements. Jim Inscore, Eric Jendrock, and Beth Stearns provided editorial
assistance. Shel Finkelstein, Mark Hapner, Danny Coward, Tom Kincaid, and Tony
Ng provided feedback on many drafts. And of course this specification was formed
and molded based on conversations with and review feedback from our many
industry partners.

J2EE.1.2 Acknowledgementsfor Version 1.3

Version 1.3 of this specification grew out of discussionswith our partners during the
creation of version 1.2, as well as meetings with those partners subsequent to the
final release of version 1.2. Version 1.3 was created under the Java Community
Process as JSR-058. The JSR-058 Expert Group included representatives from the
following companies and organizations: Allaire, BEA Systems, Bluestone Software,
Borland, Bull S.A., Exoffice, Fujitsu Limited, GemStone Systems, Inc., IBM, Inline
Software, IONA Technologies, iPlanet, jGuru.com, Orion Application Server,
Persistence, POET Software, SilverStream, Sun, and Sybase. In addition, most of
the people who hel ped with the previous version continued to hel p with thisversion,
along with Jon Ellis and Ram Jeyaraman. Alfred Towell provided significant
editorial assistance with thisversion.

Public Review

ACKNOWLEDGEMENTSFORVERSION 1.4

J2EE.1.3 Acknowledgementsfor Version 1.4

Version 1.4 of this specification was created under the Java Community Process as
JSR-151. The JSR-151 Expert Group included the following members: Larry W.
Allen (SilverStream Software), Karl Avedal (Individual), Charlton Barreto
(Borland Software Corporation), Edward Cobb (BEA), Alan Davies (SeeBeyond
Technology Corporation), Sreeram Duvvuru (iPlanet), B.J. Fesq (Individua),
Mark Field (Macromedia), Mark Hapner (Sun Microsystems, Inc.), Pierce Hickey
(IONA), Hemant Khandelwal (Pramati Technologies), im Knutson (IBM), Elika
S. Kohen (Individual), Ramesh L oganathan (Pramati Technologies), Jasen Minton
(Oracle Corporation), Jeff Mischkinsky (Oracle Corporation), Richard Monson-
Haefel (Individual), Sean Neville (Macromedia), Bill Shannon (Sun Microsystems,
Inc.), Simon Tuffs (Lutris Technologies), Jeffrey Wang (Persistence Software,
Inc.), and Ingo Zenz (SAP AG). My colleagues at Sun provided invaluable
assistance: Umit Yalcinalp converted the deployment descriptorsto XML Schema;
Tony Ng and Sanjeev Krishnan helped with transaction requirements; Jonathan
Bruce helped with JIDBC requirements; Suzette Pelouch, Eric Jendrock, and lan
Evans provided editorial assistance. Thanks also to al the externa reviewers,
including Jeff Estefan (Adecco Technical Services).

J2EE.1.4 Acknowledgementsfor Version 5.0

Version 5.0 (originally known asversion 1.5) of this specification was created under
the Java Commuinity Process as JSR-244. The JSR-244 Expert Group included the
following members: Kilinc Alkan (Individua), RamaMurthy Amar Pratap
(Individual), Charlton Barreto (Individua), Michael Bechauf (SAP AG), Florent
Benoit (INRIA), Muraidharan Chandrasekaran (Individual), Yongmin Chen
(Novdll, Inc.), Jun Ho Cho (TmaxSoft), Ed Cobb (BEA), Ugo Corda (SeeBeyond
Technology Corporation), Scott Crawford (Individual), Arulazi Dhesiaseelan
(Hewlett-Packard Company), Bill Dudney (Individual), Francois Exertier (INRIA),
Evan Ireland (Sybase, Inc.), Michael Keith (Orcale Corporation), Jim Knutson
(IBM), ElikaKohen (Individua), Felipe Leme (Individual), Geir Magnusson Jr.
(The Apache Software Foundation), Scott Marlow (Novell, Inc.), Jasen Minton
(Oracle Corporation), Jishnu Mitra (Borland Software Corp), David Morandi
(E.piphany), Nathan Pahucki (Novell, Inc.), Ricardo Morin (Intel Corporation),
Matt Raible (Individual), Dirk Reinshagen (Individual), Narinder Sahota (Cap
Gemini), Suneet Shah (Individual), Bill Shannon (Sun Microsystems, Inc.), Rgjiv

Shivane (Pramati Technologies), Scott Stark (Jboss, Inc), Hani Suleiman (Ironflare
AB), Kresten Krab Thorup (Trifork), Ashish Tiwari (Individual), Sivasundaram
Umapathy (Individual), Steve Weston (Cap Gemini), and Umit Yalcinalp (SAP
AG). Once again, my colleagues at Sun provided invaluable assistance: Roberto
Chinnici provided draft proposals for many issues related to resource injection.

Public Review

cunerend2EEL2

Platform Overview

T his chapter provides an overview of the Java™ 2 Platform, Enterprise Edition
(J2EE™).

J2EE.2.1 Architecture

The required relationships of architectural elements of the J2EE platform are shown
in Figure J2EE.2-1. Note that this figure shows the logical relationships of the
eements; it is not meant to imply aphysical partitioning of the eementsinto
separate machines, processes, address spaces, or virtual machines.

The Containers, denoted by the separate rectangles, are J2EE runtime
environments that provide required services to the application components
represented in the upper half of the rectangle. The services provided are denoted
by the boxesin the lower half of the rectangle. For example, the Application
Client Container provides Java Message Service (IMS) APIsto Application
Clients, aswell as the other services represented. All these services are explained
below. See Section J2EE.2.6, “ J2EE Standard Services'.

The arrows represent required access to other parts of the J2EE platform. The
Application Client Container provides Application Clients with direct accessto
the J2EE required Database through the Java API for connectivity with database
systems, the IDBC™ API. Similar access to databases is provided to JSP pages
and servlets by the Web Container, and to enterprise beans by the EJB Container.

Asindicated, the APIs of the Java™ 2 Platform, Standard Edition (J2SE™),
are supported by J2SE runtime environments for each type of application
component.

Applet Container Web Container EJB Container
HTTP
Applet - > Jsp
EX

Java
Mail

[}

Java
Mail

Ody-Xvl
XVl

Ody-Xvl
XVl

SOINDS GO
elepelsiy SM
JUsWabeuep
S10108UU0D
EERNESEE
elepesiN SM
JUSWabeue
S10)08UU0D

S0USISISIod BAer
SoUSISISIod Bner

w
>
>
[
w
>
>
[

Application Client
Container

Application
Client [

—

Ody-Xvl
SM-XV[

Database

UXvr
SIC
SOOINISS GO
TIEPEION S
SouslSISIad eAer
XVIS

:

[Newin J2EE 5.0

FigureJ2EE.2-1 J2EE Architecture Diagram

Thefollowing sections describe the J2EE Platform requirementsfor each kind
of J2EE platform element.

J2EE.2.2 Application Components

The J2EE runtime environment defines four application component typesthat a
J2EE product must support:

» Application clientsare Java programming language programsthat aretypically
GUI programs that execute on a desktop computer. Application clients offer a
user experience similar to that of native applications, and have accessto all of
the facilities of the J2EE middletier.

» Appletsare GUI components that typically execute in aweb browser, but can
executein avariety of other applications or devices that support the applet

Public Review

APPLICATIONCOMPONENTS

programming model. Applets can be used to provide a powerful user interface
for J2EE applications. (Simple HTML pages can also be used to provide a
more limited user interface for J2EE applications.)

» Servlets, JSP pages, JSF applications, filters, and web event listenerstypically
execute in aweb container and may respond to HT TP requests from web cli-
ents. Servlets, JSP pages, JSF applications, and filters may be used to generate
HTML pages that are an application’s user interface. They may aso be used
to generate XML or other format data that is consumed by other application
components. A special kind of servlet provides support for web servicesusing
the SOAP/HTTP protocol. Servlets, pages created with the JavaServer Pag-
es™ technology or JavaServer™ Faces technol ogy, web filters, and web event
listenersarereferred to collectively in this specification as “ web components.”
Web applications are composed of web components and other data such as
HTML pages. Web components execute in aweb container. A web server in-
cludes aweb container and other protocol support, security support, and so
on, asrequired by J2EE specifications.

 Enterprise JavaBeans™ (EJB) components execute in amanaged environment
that supportstransactions. Enterprise beanstypically containthebusinesslogic
for a J2EE application. Enterprise beans may directly provide web services us-
ing the SOAP/HTTP protacol.

J2EE.2.2.1 J2EE Server Support for Application Components

The J2EE servers provide deployment, management, and execution support for
conforming application components. Application components can be divided into
three categories according to their dependence on a 2EE server:

» Components that are deployed, managed, and executed on a J2EE server.
These componentsinclude web components and Enterprise JavaBeans compo-
nents. See the separate specifications for these components.

» Components that are deployed and managed on a J2EE server, but are loaded
to and executed on a client machine. These components include web resourc-
essuch asHTML pages and applets embedded in HTML pages.

» Componentswhose depl oyment and management isnot completely defined by
this specification. Application Clients fall into this category. Future versions
of this specification may more fully define deployment and management of
Application Clients. See Chapter J2EE.9, “Application Clients’ for a descrip-

tion of Application Clients.

J2EE.2.3 Containers

Containers provide the runtime support for J2EE application components.
Containers provide afederated view of the underlying J2EE APIsto the application
components. J2EE application components never interact directly with other J2EE
application components. They use the protocols and methods of the container for
interacting with each other and with platform services. Interposing a container
between the application components and the J2EE services allows the container to
transparently inject the services required by the component, such as declarative
transaction management, security checks, resource pooling, and state management.

A typical J2EE product will provide a container for each application
component type: application client container, applet container, web component
container, and enterprise bean container.

J2EE.2.3.1 Container Requirements

This specification requires that containers provide a Java Compatible™ runtime
environment, as defined by the Java 2 Platform, Standard Edition, v5.0 specification
(J2SE). The applet container may use the Java Plugin product to provide this
environment, or it may provide it natively. The use of applet containers providing
JDK™ 1.1 APIsis outside the scope of this specification.

The container tools must understand the file formats for the packaging of
application components for deployment.

The containers are implemented by a J2EE Product Provider. See the
description of the Product Provider role in Section J2EE.2.10.1, “J2EE Product
Provider.

This specification defines a set of standard services that each J2EE product
must support. These standard services are described below. The J2EE containers
provide the APIs that application components use to access these services. This
specification also describes standard ways to extend J2EE services with
connectors to other non-J2EE application systems, such as mainframe systems
and ERP systems.

Public Review

RESOURCEADAPTERS

J2EE.2.3.2 J2EE Servers

Underlying a J2EE container isthe server of which itisapart. A J2EE Product
Provider typically implements the J2EE server-side functionality using an existing
transaction processing infrastructure in combination with Java 2 Platform, Standard
Edition (J2SE) technology. The J2EE client functionality istypically built on J2SE
technology.

J2EE.24 Resource Adapters

A resource adapter is a system-level software component that typically implements
network connectivity to an external resource manager. A resource adapter can
extend the functionality of the J2EE platform either by implementing one of the
J2EE standard service APIs (such asa JDBC™ driver), or by defining and
implementing a resource adapter for a connector to an external application system.
Resource adapters may also provide servicesthat are entirely local, perhaps
interacting with native resources. Resource adapters interface with the J2EE
platform through the J2EE service provider interfaces (J2EE SPI). A resource
adapter that uses the J2EE SPIs to attach to the J2EE platform will be able to work
with all J2EE products.

J2EE.25 Database

The J2EE platform requires a database, accessible through the JDBC API, for the
storage of business data. The database is accessible from web components,
enterprise beans, and application client components. The database need not be
accessible from applets.

J2EE.2.6 J2EE Standard Services

The J2EE standard services include the following (specified in more detail later in
this document). Some of these standard services are actually provided by J2SE.

10

J2EE.2.6.1 HTTP

The HTTP client-side APl isdefined by the java.net package. The HTTP server-
side API isdefined by the servlet, JSP, and JSF interfaces and by the web services
support that is a part of the J2EE platform.

J2EE.2.6.2 HTTPS

Use of the HTTP protocol over the SSL protocol is supported by the same client and
server APIsasHTTPR.

J2EE.2.6.3 Java™ Transaction APl (JTA)

The Java Transaction API consists of two parts:

» An application-level demarcation interface that is used by the container and
application components to demarcate transaction boundaries.

» Aninterface between the transaction manager and aresource manager used at
the J2EE SPI level (in afuture release).

J2EE.2.6.4 RMI-110P

The RMI-110OP subsystem is composed of APIsthat alow for the use of RMI-style
programming that is independent of the underlying protocol, aswell asan
implementation of those APIs that supports both the J2SE native RMI protocol
(JRMP) and the CORBA 110P pratocol. J2EE applications can use RMI-110P, with
I1OP protocol support, to access CORBA servicesthat are compatible with the RMI
programming restrictions (see the RMI-110P spec for details). Such CORBA
services would typically be defined by components that live outside of a J2EE
product, usualy in alegacy system. Only J2EE application clients are required to be
able to define their own CORBA services directly, using the RMI-I1OP APIs.
Typically such CORBA objects would be used for callbacks when accessing other
CORBA abjects.

J2EE applications are required to use the RMI-110P APls, specifically the
narrow method of javax.rmi.PortableRemoteObject, When accessing Enterprise
JavaBeans components, as described in the EJB specification. This alows
enterprise beans to be protocol independent. Note that the most common use of
the narrow method is not needed when using resource injection instead of JNDI

Public Review

J2EESTANDARD SERVICES

lookups; the container will perform the narrow for the application before injecting
the object reference. J2EE products must be capable of exporting enterprise beans
using the 11OP protocol, and accessing enterprise beans using the I[1OP protocal,
as specified in the EJB specification. The ability to use the I1OP protocol is
required to enable interoperability between J2EE products, however a J2EE
product may also use other protocols.

J2EE.2.6.5 Java DL

Java DL allows J2EE application components to invoke external CORBA objects
using the [1OP protocol. These CORBA objects may be written in any language and
typically live outside a J2EE product. J2EE applications may use Java DL to act as
clients of CORBA services, but only J2EE application clients are required to be
alowed to use Java IDL directly to present CORBA services themselves.

J2EE.2.6.6 JDBC™ API

The JDBC API isthe API for connectivity with relational database systems. The
JDBC API hastwo parts: an application-level interface used by the application
components to access a database, and a service provider interface to attach aJDBC
driver to the 2EE platform. Support for the service provider interface is not
required in J2EE products. Instead, JDBC drivers should be packaged as resource
adaptersthat use the facilities of the Connector API to interface with a 2EE
product.

J2EE.2.6.7 Java™ Persistence API

Note— Need to fill thisin with a description of the Java Persistence APl being
developed by the EJB 3.0 expert group.

J2EE.2.6.8 Java™ Message Service (JMS)

The Java Message Serviceis a standard API for messaging that supports reliable
point-to-point messaging as well as the publish-subscribe model. This specification
requires a JM S provider that implements both point-to-point messaging aswell as
publish-subscribe messaging.

11

12

J2EE.2.6.9 Java Naming and Directory Interface™ (JNDI)

The JNDI AP isthe standard API for naming and directory access. The INDI API
has two parts: an application-level interface used by the application components to
access haming and directory services and a service provider interface to attach a
provider of anaming and directory service.

J2EE.2.6.10 JavaMail™

Many Internet applications require the ability to send email natifications, so the
J2EE platform includes the JavaMail API along with a JavaMail service provider
that allows an application component to send Internet mail. The JavaMail APl has
two parts. an application-level interface used by the application componentsto send
mail, and a service provider interface used at the J2EE SPI level.

J2EE.2.6.11 JavaBeans™ Activation Framework (JAF)

The JAF API provides aframework for handling datain different MIME types,
originating in different formats and locations. The JavaMail APl makes use of the
JAF API, so it must be included as well.

J2EE.2.6.12 XML Processing

The Java™ API for XML Processing (JAXP) provides support for the industry
standard SAX and DOM APIsfor parsing XML documents, aswell as support for
XSLT transform engines. The Streaming API for XML (StAX) provides a pull-
parsing APl for XML.

J2EE.2.6.13 J2EE™ Connector Architecture

The Connector architecture is a 2EE SPI that allows resource adapters that support
accessto Enterprise Information Systemsto be plugged in to any J2EE product. The
Connector architecture defines a standard set of system-level contracts between a
J2EE server and aresource adapter. The standard contracts include:

A connection management contract that lets a J2EE server pool connectionsto
an underlying EIS, and lets application components connect to an EIS. This

Public Review

J2EESTANDARD SERVICES 13

leads to a scal able application environment that can support alarge number of
clients requiring accessto EIS systems.

« A transaction management contract between the transaction manager and an
ElSthat supports transactional accessto EIS resource managers. This contract
lets a J2EE server use a transaction manager to manage transactions across
multiple resource managers. This contract also supports transactions that are
managed internal to an EIS resource manager without the necessity of involv-
ing an external transaction manager.

* A security contract that enables secure accessto an EIS. This contract pro-
vides support for a secure application environment, which reduces security
threatsto the EIS and protects valuabl e information resources managed by the
ElIS.

A thread management contract that allows aresource adapter to delegate work
to other threads and allows the application server to manage a pool of threads.
The resource adapter can control the security context and transaction context
used by the worker thread.

A contract that allows a resource adapter to deliver messages to message driv-
en beans independent of the specific messaging style, messaging semantics,
and messaging infrastructure used to deliver messages. This contract aso
serves as the standard message provider pluggability contract that allows a
message provider to be plugged into any J2EE server via aresource adapter.

A contract that allows aresource adapter to propagate an imported transaction
context to the J2EE server such that its interactions with the server and any
application components are part of the imported transaction. This contract
preservesthe ACID (atomicity, consistency, isolation, durability) properties of
the imported transaction.

* Anoptional contract providing ageneric command interface between an appli-
cation program and a resource adapter.

J2EE.2.6.14 Security Services

The Java™ Authentication and Authorization Service (JAAS) enables servicesto
authenticate and enforce access controls upon users. It implements a Java
technology version of the standard Plugable Authentication Module (PAM)
framework and supports user-based authorization. The Java™ Authorization
Service Provider Contract for Containers (JACC) defines a contract between a J2EE

14

application server and an authorization service provider, allowing custom
authorization service providersto be plugged into any J2EE product.

J2EE.2.6.15 Web Services

J2EE provides full support for both clients of web services as well as web service
endpoints. Severa Javatechnol ogies work together to provide support for web
services. The Java APl for XML Web Services (JAX-WS) and the Java AP for
XML-based RPC (JAX-RPC) both provide support for web service calls using the
SOAP/HTTP protocol. AX-WSisthe primary API for web servicesand isa
follow-on to JAX-RPC. JAX-WS offers extensive web services functionality, with
support for multiple bindings/protocols and RESTful web services. JAX-WS and
JAX-RPC are fully interoperable when using the SOAP 1.1 over HTTP protocol as
constrained by the WS-I Basic Profile specification.

JAX-WS and the Java Architecture for XML Binding (JAXB) define the
mapping between Java classes and XML as used in SOAP calls, and provides
support for 100% of XML Schema. The SOAP with Attachments API for Java
(SAAJ) provides support for manipulating low level SOAP messages. The Web
Services for J2EE specification fully defines the deployment of web service
clients and web service endpoints in J2EE, as well as the implementation of web
service endpoints using enterprise beans. The Web Services Metadata
specification defines Java language annotations that make it easier to develop web
services. The Java APl for XML Registries (JAXR) provides client accessto
XML registry servers.

J2EE.2.6.16 Management

The Java 2 Platform, Enterprise Edition Management Specification defines APIsfor
managing J2EE servers using a special management enterprise bean. The Java™
Management Extensions (JMX) API is also used to provide some management
support.

J2EE.2.6.17 Deployment

The Java 2 Platform, Enterprise Edition Deployment Specification defines acontract
between deployment tools and J2EE products. The J2EE products provide plug-in
componentsthat run in the deployment tool and allow the deployment tool to deploy

Public Review

INTEROPERABILITY

applicationsinto the J2EE product. The deployment tool provides services used by
these plug-in components.

X2

JRMP SsL

\l

HTTP \ f

HTTP
IIOP ssL

\

JRMP\ SOAP JRMP

HTTP
/

y

IIOP ggL

f

SOAP

EJB/IIOP / SSL
HTTP ///

\[/

Applet
Container

Application
Client
Container

/N

\l/

T~

Web
Container

\/

EJB
Container

(I

@

T A

J2EE Platform

//\\
JRMP lop

/SOAP HTTP
HTTP SSL

I

Figure J2EE.2-2

J2EE.2.7

\

I nter oper ability

J2EE Interoperability

Many of the APIs described above provide interoperability with components that
are not apart of the J2EE platform, such as external web or CORBA services.

Figure J2EE.2-2 illustrates the interoperability facilities of the J2EE platform.
(The directions of the arrows indicate the client/server relationships of the

components.)

15

16

J2EE.2.8 Flexibility of Product Requirements

This specification doesn’t require that a J2EE product be implemented by asingle
program, asingle server, or even asingle machine. In general, this specification
doesn’t describe the partitioning of services or functions between machines, servers,
or processes. Aslong asthe requirementsin this specification are met, J2EE Product
Providers can partition the functionality however they seefit. A J2EE product must
be able to deploy application components that execute with the semantics described
by this specification.

A typical low end J2EE product will support applets using the Java Pluginin
one of the popular browsers, application clients each in their own Java virtual
machine, and will provide asingle server that supports both web components and
enterprise beans. A high end J2EE product might split the server components into
multiple servers, each of which can be distributed and |oad-bal anced across a
collection of machines. This specification does not prescribe or preclude any of
these configurations.

A wide variety of J2EE product configurations and implementations, all of
which meet the requirements of this specification, are possible. A portable J2EE
application will function correctly when successfully deployed in any of these
products.

J2EE.2.9 J2EE Product Extensions

This specification describes aminimum set of facilitiesthat all J2EE products must
provide. Most J2EE products will provide facilities beyond the minimum required
by this specification. This specification includes only afew limits to the ability of a
product to provide extensions. In particular, it includes the same restrictions as J2SE
on extensions to Java APIs. A J2EE product may not add classesto the Java
programming language packages included in this specification, and may not add
methods or otherwise alter the signatures of the specified classes.

However, many other extensions are allowed. A J2EE product may provide
additional Java APIs, either other Java optional packages or other (appropriately
named) packages. A J2EE product may include support for additional protocols or
services not specified here. A J2EE product may support applications written in
other languages, or may support connectivity to other platforms or applications.

Of course, portable applications will not make use of any platform extensions.
Applications that do make use of facilities not required by this specification will

Public Review

PLATFORMROLES

be less portable. Depending on the facility used, the loss of portability may be
minor or it may be significant. The document Designing Enter prise Applications
with the Java 2 Platform, Enterprise Edition supplies information to help
application devel opers construct portable applications, and contains advice on
how best to manage the use of non-portabl e code when the use of such facilitiesis
necessary.

We expect J2EE products to vary widely and compete vigorously on various
aspects of quality of service. Products will provide different levels of
performance, scalability, robustness, availability, and security. In some cases this
specification requires minimum levels of service. Future versions of this
specification may alow applications to describe their requirements in these areas.

J2EE.2.10 Platform Roles

This section describes typical Java 2 Platform, Enterprise Edition roles. In an actual
instance, an organization may divide role functionality differently to match that
organization’s application development and deployment workflow.

Theroles are described in greater detail in later sections of this specification.
Relevant subsets of these roles are described in the EJB, JSP, and servlet
specifications included herein as parts of the J2EE specification.

J2EE.2.10.1 J2EE Product Provider

A J2EE Product Provider isthe implementor and supplier of a 2EE product that
includes the component containers, J2EE platform APIs, and other features defined
in this specification. A J2EE Product Provider istypically an operating system
vendor, a database system vendor, an application server vendor, or aweb server
vendor. A J2EE Product Provider must make available the J2EE APIsto the
application components through containers. A Product Provider frequently bases
their implementation on an existing infrastructure.

A J2EE Product Provider must provide the mapping of the application
components to the network protocols as specified by this specification. A J2EE
product is free to implement interfaces that are not specified by this specification
in an implementation-specific way.

A J2EE Product Provider must provide application deployment and
management tools. Deployment tools enable a Deployer (see Section J2EE.2.10.4,
“Deployer”) to deploy application components on the J2EE product. M anagement

17

18

tools allow a System Administrator (see Section J2EE.2.10.5, “ System
Administrator”) to manage the J2EE product and the applications deployed on the
J2EE product. The form of these toolsis not prescribed by this specification.

J2EE.2.10.2 Application Component Provider

There are multiple roles for Application Component Providers, including HTML
document designers, document programmers, and enterprise bean devel opers. These
roles use tools to produce J2EE applications and components.

J2EE.2.10.3 Application Assembler

The Application Assembler takes a set of components devel oped by Application
Component Providers and assembles them into a complete J2EE application
delivered in the form of an Enterprise Archive (. ear) file. The Application
Assembler will generally use GUI tools provided by either a Platform Provider or
Tool Provider. The Application Assembler isresponsible for providing assembly
instructions describing external dependencies of the application that the Deployer
must resolve in the deployment process.

J2EE.2.10.4 Deployer

The Deployer isresponsible for deploying application clients, web applications, and
Enterprise JavaBeans components into a specific operational environment. The
Deployer usestools supplied by the J2EE Product Provider to carry out deployment
tasks. Deployment istypically athree-stage process.

1. During I nstallation the Deployer moves application media to the server, gen-
erates the additional container-specific classes and interfaces that enable the
container to manage the application components at runtime, and installs appli-
cation components, and additional classes and interfaces, into the appropriate
J2EE containers.

2. During Configuration, external dependencies declared by the Application
Component Provider are resolved and application assembly instructions de-
fined by the Application Assembler are followed. For example, the Deployer
is responsible for mapping security roles defined by the Application Assem-
bler onto user groups and accounts that exist in the target operational environ-
ment.

Public Review

PLATFORMROLES

3. Finally, the Deployer starts up Execution of the newly installed and config-
ured application.

In some cases, a specialy qualified Deployer may customize the business
logic of the application’s components at deployment time. For example, using
tools provided with a J2EE product, the Deployer may provide simple application
code that wraps an enterprise bean’s business methods, or customizes the
appearance of a JSP page.

The Deployer’s output is web applications, enterprise beans, applets, and
application clients that have been customized for the target operational
environment and are deployed in a specific J2EE container.

J2EE.2.10.5 System Administrator

The System Administrator isresponsible for the configuration and administration of
the enterprise’s computing and networking infrastructure. The System
Adminigtrator is aso responsible for overseeing the runtime well-being of the
deployed J2EE applications. The System Administrator typically uses runtime
monitoring and management tools provided by the J2EE Product Provider to
accomplish these tasks.

J2EE.2.10.6 Tool Provider

A Tool Provider provides tools used for the devel opment and packaging of
application components. A variety of tools are anticipated, corresponding to the
types of application components supported by the J2EE platform. Platform
independent tools can be used for all phases of devel opment through the deployment
of an application and the management and monitoring of an application server.

J2EE.2.10.7 System Component Provider

A variety of system level components may be provided by System Component
Providers. The Connector Architecture defines the primary APIs used to provide
resource adapters of many types. These resource adapters may connect to existing
enterprise information systems of many types, including databases and messaging
systems. Another type of system component is an authorization policy provider as
defined by the Java Authorization Service Provider Contract for Containers
specification.

19

20

J2EE.2.11 Platform Contracts

This section describes the Java 2 Platform, Enterprise Edition contracts that must be
fulfilled by the J2EE Product Provider.

J2EE.2.11.1 J2EE APIs

The J2EE APIs define the contract between the J2EE application components and
the J2EE platform. The contract specifies both the runtime and deployment
interfaces.

The J2EE Product Provider must implement the J2EE APIsin away that
supports the semantics and policies described in this specification. The
Application Component Provider provides components that conform to these
APlsand palicies.

J2EE.2.11.2 J2EE Service Provider Interfaces (SPIs)

The J2EE Service Provider Interfaces (SPIs) define the contract between the J2EE
platform and service providers that may be plugged into a J2EE product. The
Connector APIs define service provider interfaces for integrating resource adapters
with a J2EE application server. Resource adapter components implementing the
Connector APIsare called Connectors. The J2EE Authorization APIs define service
provider interfaces for integrating security authorization mechanisms with a J2EE
application server.

The J2EE Product Provider must implement the J2EE SPIsin away that
supports the semantics and policies described in this specification. A provider of
Service Provider components (for example, a Connector Provider) should provide
components that conform to these SPIs and palicies.

J2EE.2.11.3 Network Protocols

This specification defines the mapping of application components to industry-
standard network protocols. The mapping allows client access to the application
components from systems that have not installed J2EE product technology. See
Chapter J2EE.7, “Interoperability” for details on the network protocol support
required for interoperability.

The J2EE Product Provider is required to publish the installed application
components on the industry-standard protocols. This specification defines the

Public Review

CHANGESIN J2EE 1.3 21

mapping of servlets and JSP pagesto the HTTP and HTTPS protocols, and the
mapping of EJB componentsto I1OP and SOAP protocaols.

J2EE.2.11.4 Deployment Descriptorsand Annotations

Deployment descriptors and Javalanguage annotations are used to communicate the
needs of application components to the Deployer. The deployment descriptor and
classfile annotations are a contract between the Application Component Provider or
Assembler and the Deployer. The Application Component Provider or Assembler is
required to specify the application component’s external resource requirements,
security requirements, environment parameters, and so forth in the component’s
deployment descriptor or through classfile annotations. The J2EE Product Provider
isrequired to provide a deployment tool that interprets the J2EE deployment
descriptors and classfile annotations and allows the Deployer to map the application
component’s regquirements to the capabilities of a specific J2EE product and
environment.

J2EE.2.12 Changesin J2EE 1.3

The J2EE 1.3 specification extends the J2EE platform with additional enterprise
integration facilities. The Connector API supports integration with external
enterprise information systems. A JIM S provider is now required. The JAXP API
provides support for processing XML documents. The JAAS API provides security
support for the Connector API. The EJB specification now reguires support for
interoperability using the [1OP protocol.

Significant changes have been made to the EJB specification. The EJB
specification has a new container-managed persistence model, support for
message driven beans, and support for local enterprise beans.

Other existing J2EE APIs have been updated as well. See the individual API
specifications for details. Finally, J2EE 1.3 requires support for J2SE 1.3.

J2EE.2.13 Changesin J2EE 1.4

The primary focus of J2EE 1.4 is support for web services. The JAX-RPC and
SAAJAPIs provide the basic web services interoperability support. The Web
Services for J2EE specification describes the packaging and deployment
requirements for J2EE applications that provide and use web services. The EJB

22

specification was also extended to support implementing web services using
statel ess session beans. The JAXR API supports access to registries and
repositories.

Several other APIs have been added to J2EE 1.4. The J2EE Management and
J2EE Deployment APIs enable enhanced tool support for J2EE products. The
JMX API supports the 2EE Management API. The J2EE Authorization Contract
for Containers provides an SPI for security providers.

Many of the existing J2EE APIs have been enhanced in 2EE 1.4. 2EE 1.4
builds on J2SE 1.4. The JSP specification has been enhanced to simplify the
development of web applications. The Connector APl now supports integration
with asynchronous messaging systems, including the ability to plug in IMS
providers.

Changes in this J2EE platform specification include support for deploying
classlibraries independently of any application and the conversion of deployment
descriptor DTDsto XML Schemas.

Other J2EE APIs have been enhanced as well. For additional details, see each
of the referenced specifications.

J2EE.2.14 Changesin J2EE 5.0

Thefocus of J2EE 5.0 is ease of development. To ssimplify the devel opment process
for programmers just starting with J2EE, or devel oping small to medium
applications, we've made extensive use of Javalanguage annotations that were
introduced by J2SE 5.0. Annotations reduce or eliminate the need to deal with J2EE
deployment descriptors in many cases. Even large applications can benefit from the
simplifications provided by annotations.

One of the mgjor uses of annotationsis to specify injection of resources into
J2EE components. Resource injection augments the existing JINDI lookup
capability to provide a new simplified model for applications to gain access to the
resources needed from the operational environment. Resource injection also
works with deployment descriptors to allow the deployer to customize or override
resource settings specified in the application’s source code.

Annotations are made even more effective by providing better defaults. Better
default behavior and better default configuration allows most applications to get
what they want most of the time, without the use of either annotations or
deployment descriptorsin many cases. When the default is not what the

Public Review

CHANGESIN J2EES5.0

application wants, a simple annotation can be used to specify the required
behavior or configuration.

Magjor additions to J2EE 5.0 include the JSTL and JSF technol ogies that
simplify development of web applications, and the Java Persistence API being
developed by the EJB 3.0 expert group that greatly simplifies mapping Java
objects to databases.

Note — This section needs to be expanded.

23

24

Public Review

e JZEELS

Security'

T his chapter describes the security requirements for the Java™ 2 Platform,
Enterprise Edition (J2EE) that must be satisfied by J2EE products.

In addition to the J2EE requirements, each J2EE Product Provider will
determine the level of security and security assurances that will be provided by
their implementation.

J2EE.3.1 Introduction

Almost every enterprise has security requirements and specific mechanisms and
infrastructure to meet them. Sensitive resources that can be accessed by many users,
or that often traverse unprotected open networks (such asthe Internet) need to be
protected.

Although the quality assurances and implementation details may vary, they al
share some of the following characteristics:

» Authentication: The means by which communicating entities (for example,
client and server) proveto one another that they are acting on behalf of specific
identities that are authorized for access.

» Accesscontrol for resources: The means by which interactions with resourc-
es are limited to collections of users or programs for the purpose of enforcing
integrity, confidentiality, or availability constraints.

» Dataintegrity: The means used to prove that information has not been modi-
fied by athird party (some entity other than the source of the information).
For example, arecipient of data sent over an open network must be able to de-
tect and discard messages that were modified after they were sent.

25

» Confidentiality or Data Privacy: The means used to ensure that information
is made available only to users who are authorized to accessiit.

* Non-repudiation: The means used to prove that a user performed some ac-
tion such that the user cannot reasonably deny having done so.

» Auditing: The means used to capture a tamper-resistant record of security re-
lated eventsfor the purpose of being ableto eval uate the effectiveness of secu-
rity policies and mechanisms.

This chapter specifies how J2EE platform requirements address security
requirements, and identifies requirements that may be addressed by J2EE Product
Providers. Finally, issues being considered for future versions of this specification
are briefly mentioned in Section J2EE.3.7, “Future Directions”.

J2EE.3.2 A Simple Example

The security behavior of a J2EE environment may be better understood by
examining what happensin a simple application with aweb client, a JSP user
interface, and enterprise bean business logic. (The example is not meant to specify
requirements.)

In this example, the web client relies on the web server to act asits
authentication proxy by collecting user authentication data from the client and
using it to establish an authenticated session.

Step 1: Initial Request
The web client requests the main application URL, shown in Figure J2EE.3-
1

Web Server

Web Client

Reguest access to >
protected resource

FigureJ2EE.3-1 Initial Request

Sincetheclient has not yet authenticated itself to the application environment,
the server responsible for delivering the web portion of the application (here-
after referred to as “web server”) detects this and invokes the appropriate
authentication mechanism for this resource.

Public Review

ASIMPLEEXAMPLE

Step 2: Initial Authentication

The web server returns a form that the web client uses to collect authentica-
tion data (for example, username and password) from the user. The web client
forwards the authentication data to the web server, whereit is validated by the
web server, as shown in Figure J2EE.3-2.

Web Server

Web Client

Form

<

credential

Authentication data

Figure J2EE.3-2 Initial Authentication

The validation mechanism may be local to the server, or it may leverage the
underlying security services. On the basis of the validation, the web server
sets a credential for the user.

Step 3: URL Authorization

The credentia is used for future determinations of whether the user is autho-
rized to access restricted resources it may request. The web server consults
the security policy (derived from the deployment descriptor) associated with
the web resource to determine the security roles that are permitted access to
the resource. The web container then tests the user’s credential against each
role to determine if it can map the user to therole. Figure J2EE.3-3 shows
this process.

Web Server
Web Client
>
Request access to . 5 |sspiserviet
.. 3
protected resource P> | credenial 5’ Object
2
=1
Session
Context

FigureJ2EE.3-3 URL Authorization

The web server’'s evaluation stops with an “is authorized” outcome when the
web server is able to map the user to arole. A “not authorized” outcomeis
reached if the web server is unable to map the user to any of the permitted

28

roles.

Public Review

ASIMPLEEXAMPLE

Step 4: Fulfilling the Original Request
If the user is authorized, the web server returns the result of the original URL-
reguest, as shown in Figure J2EE.3-4.

Web Server
Web Client
< Result of request
credential 5P S?“" e
Object
Post to business logic

Session
Context

FigureJ2EE.3-4 Fulfilling the Original Request

In our example, the response URL of a JSP page isreturned, enabling the user
to post form data that needs to be handled by the business logic component of
the application.

Step 5: Invoking Enterprise Bean Business M ethods

The JSP page performs the remote method call to the enterprise bean, using
the user’s credential to establish a secure association between the JSP page
and the enterprise bean (as shown in Figure J2EE.3-5). The association is
implemented as two related security contexts, one in the web server and one

in the EJB container.
Credential used to
establish security association

Web Server EJB Container
Web Client »

JSPlserviet z
credential Object remote call g
] 2
] S

Session Security Security

Context Context Context

FigureJ2EE.3-5 Invoking an Enterprise Bean Business Method

The EJB container is responsible for enforcing access control on the
enterprise bean method. It consults the security policy (derived from the
deployment descriptor) associated with the enterprise bean to determine the
security roles that are permitted access to the method. For each role, the EJB

29

30

container uses the security context associated with the call to determineif it can
map the caller to therole.

The container’s evaluation stops with an “is authorized” outcome when the
container is able to map the caller’s credential to arole. A “not authorized”
outcome is reached if the container is unable to map the caller to any of the
permitted roles. A “not authorized” result causes an exception to be thrown by the
container, and propagated back to the calling JSP page.

If the call “is authorized”, the container dispatches control to the enterprise
bean method. The result of the bean’s execution of the call is returned to the JSP,
and ultimately to the user by the web server and the web client.

J2EE.3.3 Security Architecture

This section describes the J2EE security architecture on which the security
requirements defined by this specification are based.

J2EE.3.3.1 Goals

Thefollowing are goals for the J2EE security architecture:

1. Portability: The J2EE security architecture must support the Write Once, Run
Anywhere™ application property.

2. Transparency: Application Component Providers should not have to know
anything about security to write an application.

3. Isolation: The J2EE platform should be able to perform authentication and ac-
cess control according to instructions established by the Deployer using de-
ployment attributes, and managed by the System Administrator.

Note that divorcing the application from responsibility for security ensures
greater portability of J2EE applications.

4. Extensibility: The use of platform services by security aware-applications
must not compromise application portability.

This specification provides APIs in the component programming model for
interacting with container/server security information. Applications that
restrict their interactionsto the provided APIs will retain portability.

5. Flexibility: The security mechanismsand declarations used by applications un-
der this specification should not impose a particular security policy, but facil-

Public Review

SECURITYARCHITECTURE

itate the implementation of security policies specific to the particular 2EE
installation or application.

6. Abstraction: An application component’s security requirements will be logi-
cally specified using deployment descriptors. Deployment descriptors will
specify how security roles and access regquirements are to be mapped into en-
vironment-specific security roles, users, and policies. A Deployer may choose
to modify the security propertiesin ways consistent with the deployment envi-
ronment. The deployment descriptor should document which security proper-
ties can be modified and which cannot.

7. Independence: Required security behaviors and deployment contracts should
be implementable using avariety of popular security technologies.

8. Compatibility testing: The J2EE security requirements architecture must be
expressed in amanner that allowsfor an unambiguous determination of wheth-
er or not an implementation is compatible.

9. Secure interoperability: Application components executing in a J2EE product
must be able to invoke services provided in a J2EE product from a different
vendor, whether with the same or adifferent security policy. The services may
be provided by web components or enterprise beans.

J2EE.3.3.2 Non Goals

The following are not goals for the J2EE security architecture:

1. This specification does not dictate a specific security policy. Security policies
for applications and for enterprise information systems vary for many reasons
unconnected with this specification. Product Providers can provide the tech-
nology needed to implement and administer desired security policieswhile ad-
hering to the requirements of this specification.

2. This specification does not mandate a specific security technology, such as
Kerberos, PK, NIS+, or NTLM.

3. This specification does not require that the J2EE security behaviors be univer-
sally implementable using any or all security technologies.

4. This specification does not provide any warranty or assurance of the effective
security of a J2EE product.

32

J2EE.3.3.3 Terminology

This section introduces the terminology that is used to describe the security
requirements of the J2EE platform.

Principal

A principal isan entity that can be authenticated by an authentication protocol
in asecurity service that is deployed in an enterprise. A principd isidentified
using a principal hame and authenticated using authentication data. The con-

tent and format of the principal name and the authentication data can vary
depending upon the authentication protocol.

Security Policy Domain

A security policy domain, also referred to as a security domain, is a scope
over which acommon security policy is defined and enforced by the security
administrator of the security service.

A security policy domain is also sometimes referred to as arealm. This speci-
fication uses the security policy domain, or security domain, terminology.

Security Technology Domain

A security technology domain is the scope over which the same security
mechanism (for example Kerberos) is used to enforce a security policy.

A single security technology domain may include multiple security policy
domains, for example.

Security Attributes

A set of security attributes is associated with every principal. The security
attributes have many uses (for example, access to protected resources and
auditing of users). Security attributes can be associated with a principal by an
authentication protocol and/or by the J2EE Product Provider.

The J2EE platform does not specify what security attributes are associated
with a principal.

Credential

A credential contains or references information (security attributes) used to
authenticate a principal for J2EE product services. A principal acquires a cre-
dential upon authentication, or from another principal that allows its creden-

Public Review

SECURITYARCHITECTURE

tial to be used (delegation).

This specification does not specify the contents or the format of a credential.
The contents and format of a credential can vary widely.

J2EE.3.34 Container Based Security

Security for componentsis provided by their containersin order to achieve the goals
for security specified above in a 2EE environment. A container provides two kinds
of security (discussed in the following sections):

 Declarative security
* Programmatic security

J2EE.3.3.4.1 Declarative Security

Declarative security refersto the means of expressing an application’s security
structure, including security roles, access control, and authentication requirements
in aform externa to the application. The deployment descriptor is the primary
vehicle for declarative security in the J2EE platform.

A deployment descriptor is a contract between an Application Component
Provider and a Deployer or Application Assembler. It can be used by an
application programmer to represent an application’s security related
environmental requirements. A deployment descriptor can be associated with
groups of components.

A Deployer maps the deployment descriptor’s representation of the
application’s security policy to a security structure specific to the particular
environment. A Deployer uses a deployment tool to process the deployment
descriptor.

At runtime, the container uses the security policy security structure derived
from the deployment descriptor and configured by the Deployer to enforce
authorization (see Section J2EE.3.3.6, “Authorization Model”).

J2EE.3.3.4.2 Programmatic Security

Programmatic security refersto security decisions made by security aware
applications. Programmatic security is useful when declarative security alone is not
sufficient to express the security model of the application. The API for
programmatic security required by this specification consists of two methods of the

33

EJB EJBContext interface and two methods of the servlet HttpServietRequest
interface:

e« isCallerInRole (EJBContext)

o getCallerPrincipal (EJBContext)

e jsUserInRole (HttpServletRequest)

e getUserPrincipal (HttpServletRequest)

These methods allow components to make business logic decisions based on
the security role of the caller or remote user. For example they alow the
component to determine the principal name of the caller or remote user to useasa
database key. (Note that the form and content of principal names will vary widely
between products and enterprises, and portable components will not depend on
the actual contents of a principal hame. Dueto principal hame mapping, the same
logical principal may have different names in different containers, although
usually it will be possible to configure a single product to use consistent principal
names. In particular, if aprincipal nameis used as akey into a database table, and
that database table is accessed from multiple components, containers, or products,
the same logical principal may map to different entries in the database.)

J2EE.3.35 Distributed Security

Some Product Providers may produce J2EE products in which the containers for
various component types are distributed. In a distributed environment,
communication between J2EE components can be subject to security attacks (for
example, data modification and replay attacks).

Such threats can be countered by using a secure association to secure
communications. A secure association is shared security state information that
establishes the basis of a secure communication between components.
Establishing a secure association could involve severa steps, such as:

1. Authenticating the target principal to the client and/or authenticating the client
to thetarget principal.

2. Negotiating a quality of protection, such as confidentiality or integrity.
3. Setting up a security context for the association between the components.

Since a container provides security in J2EE, secure associations for a
component are typically established by a container. Secure associations for web

Public Review

SECURITYARCHITECTURE

access are specified here. Secure associations for access to enterprise beans are
described in the EJB specification.

Product Providers may allow for control over the quality of protection or other
aspects of secure association at deployment time. Applications can specify their
requirements for access to web resources using el ementsin their deployment
descriptor.

This specification does not define mechanisms that an Application
Component Provider can use to communicate requirements for secure
associations with an enterprise bean.

J2EE.3.3.6 Authorization Model

The J2EE authorization mode is based on the concept of security roles. A security
roleisalogica grouping of usersthat is defined by an Application Component
Provider or Assembler. A Deployer maps roles to security identities (for example
principals, and groups) in the operational environment. Security roles are used with
both declarative security and programmatic security.

Declarative authorization can be used to control accessto an enterprise bean
method and is specified in the enterprise bean deployment descriptor. An
enterprise bean method can be associated with amethod-permission element in
the deployment descriptor. The method-permission element contains alist of
methods that can be accessed by a given security role. If the calling principal isin
one of the security roles allowed access to a method, the principal is allowed to
execute the method. Conversely, if the calling principal isin none of theroles, the
caler isnot allowed to execute the method. Access to web resources can be
protected in a similar manner.

Security roles are used in the EJBContext method isCallerInRole and the
HttpServletRequest method isUserInRole. Each method returns true if the
calling principal isin the specified security role.

J2EE.3.3.6.1 Role Mapping

Enforcement of security constraints on web resources or enterprise beans, whether
programmatic or declarative, depends upon determination of whether the principal
associated with an incoming request isin a given security role. A container makes
this determination based on the security attributes of the calling principal. For
example,

1. A Deployer may have mapped asecurity roleto auser group in the operational

35

36

environment. In this case, the user group of the calling principal is retrieved
fromitssecurity attributes. Theprincipal isinthe security roleif theprincipal’s
user group matches a user group to which the security role has been mapped.

2. A Deployer may have mapped a security roleto a principal name in a security
policy domain. In this case, the principal hame of the calling principal isre-
trieved from its security attributes. If this principal name isthe same asaprin-
cipa name to which the security role was mapped, the calling principa isin
the security role.

The source of security attributes may vary across implementations of the
J2EE platform. Security attributes may be transmitted in the calling principal’s
credential or in the security context. In other cases, security attributes may be
retrieved from atrusted third party, such as adirectory service or a security
service.

J2EE.3.3.7 HTTP Login Gateways

Secure interoperability between enterprise beans in different security policy
domainsisaddressed in the EJB specification. In addition, acomponent may choose
tologintoaforeign server viaHTTP. An application component can be configured
to use SSL mutual authentication for security when accessing a remote resource
usng HTTP. Applicationsusing HTTP in thisway may chooseto use XML or some
other structured format, rather than HTML.

We call the use of HTTP with SSL mutual authentication to access aremote
service an HTTP Login Gateway. Requirementsin this area are specified in
Section J2EE.3.3.8.1, “Authentication by Web Clients.”

J2EE.3.3.8 User Authentication

User authentication is the process by which auser proves his or her identity to the
system. This authenticated identity is then used to perform authorization decisions
for accessing J2EE application components. An end user can authenticate using
either of the two supported client types:

» Web client
» Application client

Public Review

SECURITYARCHITECTURE

J2EE.3.3.8.1 Authentication by Web Clients

Itisrequired that aweb client be able to authenticate a user to aweb server using
any of the following mechanisms. The Deployer or System Administrator
determines which method to apply to an application or to agroup of applications.

 HTTP Basic Authentication

HTTP Basic Authentication is the authenti cation mechanism supported by the
HTTP protocol. This mechanism is based on a username and password. A
web server requests aweb client to authenticate the user. As part of the
request, the web server passes the realmin which the user is to be authenti-
cated. The web client obtains the username and the password from the user
and transmits them to the web server. The web server then authenticates the
user in the specified realm (referred to as HTTP Realmin this document).

HTTP Basic Authentication is not secure. Passwords are sent in simple
base64 encoding. The target server is not authenticated. Additional protection
can be applied to overcome these weaknesses. The password may be pro-
tected by applying security at the transport layer (for example HTTPS) or at
the network layer (for example, IPSEC or VPN).

Despite its limitations, the HTTP Basic Authentication mechanismis
included in this specification because it iswidely used in form based applica-
tions.

 HTTPS Client Authentication

End user authentication using HTTPS (HTTP over SSL) is a strong authenti-
cation mechanism. This mechanism requires the user to possess a Public Key
Certificate (PKC). Currently, a PKC israrely used by end users on the Inter-
net. However, it is useful for e-commerce applications and also for asingle-
signon from within the browser. For these reasons, it is arequired feature of
the J2EE platform.

» Form Based Authentication

Thelook and feel of alogin screen cannot be varied using the web browser’s
built-in authentication mechanisms. This specification introduces the ability
to package standard HTML or servlet/JSP based forms for logging in, allow-
ing customization of the user interface. The form based authentication mecha-
nism introduced by this specification is described in the servlet specification.

37

38

HTTP Digest Authentication is not widely supported by web browsers and
hence is not required.

A web client can employ aweb server asits authentication proxy. In this case,
aclient’scredential is established in the server, where it may be used by the server
for various purposes: to perform authorization decisions, to act asthe client in
callsto enterprise beans, or to negotiate secure associations with resources.
Current web browsers commonly rely on proxy authentication.

J2EE.3.3.8.2 Web Single Signon

HTTPisadateless protocol. However, many web applications need support for
sessions that can maintain state across multiple requests from a client. Therefore, it
isdesirableto:

1. Make login mechanisms and policies a property of the environment the web
application is deployed in.

2. Be able to use the same login session to represent a user to al the applications
that they access.

3. Require re-authentication of users only when a security policy domain bound-
ary has been crossed.

Credentia s that are acquired through aweb login process are associated with
asession. The container uses the credentials to establish a security context for the
session. The container uses the security context to determine authorization for
access to web resources and for the establishment of secure associations with
other components (including enterprise beans).

J2EE.3.3.8.3 Login Session

In the J2EE platform, login session support is provided by aweb container. When a
user successfully authenticates with aweb server, the container establishesalogin
session context for the user. The login session contains the credentials associated
with the user.!

J2EE.3.3.8.4 Authentication by Application Clients

Application clients (described in detail in Chapter J2EE.9, “Application Clients) are
client programs that may interact with enterprise beans directly (that is without the

Public Review

USERAUTHENTICATION REQUIREMENTS

help of aweb browser and without traversing aweb server. Application clients may
also access web resources.

Application clients, like the other J2EE application component types, execute
in a managed environment that is provided by an appropriate container.
Application clients are expected to have access to agraphical display and input
device, and are expected to communicate with a human user.

Application clients are used to authenticate end users to the J2EE platform,
when the users access protected web resources or enterprise beans.

J2EE.3.3.9 Lazy Authentication

There is a cost associated with authentication. For example, an authentication
process may require exchanging multiple messages across the network. Therefore, it
is desirable to use lazy authentication, that is perform authentication only whenitis
needed. With lazy authentication, a user is not required to authenticate until there is
areguest to access a protected resource.

Lazy authentication can be used with first-tier clients (applets, application
clients) when they request access to protected resources that require
authentication. At that point the user can be asked to provide appropriate
authentication data. If a user is successfully authenticated, the user is allowed to
access the resource.

J2EE.3.4 User Authentication Requirements

The J2EE Product Provider must meet the following requirements concerning user
authentication.

J2EE.34.1 Login Sessions

All J2EE web servers must maintain alogin session for each web user. It must be
possible for alogin session to span more than one application, allowing auser to log

L While the client is stateless with respect to authentication, the client re-
quiresthat the server act asits proxy and maintain itslogin context. A ref-
erence to the login session state is made available to the client through
cookies or URL re-writing. If SSL mutual authentication is used as the
authentication protocol, the client can manage its own authentication
context, and need not depend on references to the login session state.

39

40

in once and access multiple applications. The required login session support is
described in the servlet specification. This requirement of a session for each web
user supports single signon.

Applications can remain independent of the details of implementing the
security and maintenance of login information. The J2EE Product Provider has
the flexibility to choose authentication mechanisms independent of the
applications secured by these mechanisms.

Lazy authentication must be supported by web servers for protected web
resources. When authentication is required, one of the three required login
mechanisms listed in the next section may be used.

J2EE.3.4.2 Required Login M echanisms

All 2EE products are required to support three login mechanisms: HTTP basic
authentication, SSL mutual authentication, and form-based login. An applicationis
not required to use any of these mechanisms, but they are required to be available
for any application’s use.

J2EE.3.4.2.1 HTTP Basic Authentication

All 2EE products are required to support HT TP basi ¢ authentication (RFC2068).
Platform Providers are al so required to support basic authentication over SSL.

J2EE.3.4.2.2 SSL Mutual Authentication

SSL 3.0 and the means to perform mutual (client and server) certificate based
authentication are required by this specification.

All J2EE products must support the following cipher suites to ensure
interoperable authentication with clients:

o TLS_RSA_WITH_RC4_128_MD5

e SSL_RSA_WITH_RC4_128_MD5

e TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

o SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

e TLS_RSA_EXPORT_WITH_RC4_40_MD5

o SSL_RSA_EXPORT_WITH_RC4_40_MD5

o TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

> The SSL 3.0 specification is available at: http://home.netscape.com/
eng/ss13

Public Review

USERAUTHENTICATION REQUIREMENTS

o SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

These cipher suites are supported by the major web browsers and meet the
U.S. government export restrictions.

J2EE.3.4.2.3 FormBased Login

The web application deployment descriptor contains an element that causes a 2EE
product to associate an HTML form resource (perhaps dynamically generated) with
theweb application. If the Deployer chooses thisform of authentication (over HTTP
basic, or SSL certificate based authentication), this form must be used as the user
interface for login to the application.

Theform based |ogin mechanism and web application deployment descriptors
are described in the servlet specification.

J2EE.3.4.3 Unauthenticated Users

Web containers are required to support access to web resources by clients that have
not authenti cated themsel ves to the container. Thisisthe common mode of accessto
web resources on the Internet.

A web container reports that no user has been authenticated by returning nu1T
from the HttpServietRequest method getUserPrincipal. Thisis different than
the corresponding result for EJB containers. The EJB specification requires that
the EJBContext method getCallerPrincipal awaysreturn avalid Principal
object. The method can never return nul.

Components running in aweb container must be able to call enterprise beans
even when no user has been authenticated in the web container. When acall is
made in such a case from a component in aweb container to an enterprise bean, a
J2EE product must provide a principal for usein the call.

A J2EE product may provide a principal for use by unauthenticated callers
using many approaches, including, but not limited to:

» Always use a single distinguished principal.
» Useadifferent distinguished principal per server, or per session, or per appli-
cation.

» Allow the deployer or system administrator to choose which principal to use
through the Run As capability of the web and enterprise bean containers.

41

42

This specification does not specify how a J2EE product should choose a
principal to represent unauthenticated users, although future versions of this
specification may add requirements in this area. Note that the EJB specification
does include requirements in this area when using the EJB interoperability
protocol. Applications are encouraged to use the Run As capability in cases where
the web component may be unauthenticated and needs to call EJB components.

J2EE.3.4.4 Application Client User Authentication

The application client container must provide authentication of application users to
satisfy the authentication and authorization constraints enforced by the enterprise
bean containers and web containers. The techniques used may vary with the
implementation of the application client container, and are beyond the control of the
application. The application client container may integrate with a J2EE product’s
authentication system, to provide a single signon capability, or the container may
authenticate the user when the application is started. The container may delay
authentication until there is arequest to access a protected resource or enterprise
bean.

The container will provide an appropriate user interface for interactions with
the user to gather authentication data. In addition, an application client may
provide aclass that implements the
javax.security.auth.callback.CallbackHandler interface and specify the class
name in its deployment descriptor (see Section J2EE.Q.7, “ J2EE Application
Client XML Schema” for details). The Deployer may override the callback
handler specified by the application and require use of the container’s default
authentication user interface instead.

If use of acallback handler has been configured by the Deployer, the
application client container must instantiate an object of thisclassand useit for all
authentication interactions with the user. The application’s callback handler must
support al the cal1back objects specified in the javax.security.auth.callback
package.

Application clients execute in an environment controlled by a J2SE security
manager and are subject to the security permissions defined in Section J2EE.6.2,
“Java 2 Platform, Standard Edition (J2SE) Requirements.” Although this
specification does not define the relationship between the operating system
identity associated with arunning application client and the authenticated user
identity, support for single signon requires that the J2EE product be able to relate

Public Review

USERAUTHENTICATION REQUIREMENTS

these identities. Additional application client requirements are described in
Chapter J2EE.9.7 of this specification.

J2EE.3.45 Resour ce Authentication Requirements

Resources within an enterprise are often deployed in security policy domains
different from the security policy domain of the application component. The wide
variance of authentication mechanisms used to authenticate the caller to resources
leads to the requirement that a J2EE product provide the means to authenticatein
the security policy domain of the resource.

A Product Provider must support both of the following:

1. Configured I dentity. A J2EE container must be ableto authenticate for access
to the resource using aprincipal and authentication data specified by a Deploy-
er at deployment time. The authentication must not depend in any way on data
provided by the application components. Providing for the confidential storage
of the authentication information is the responsibility of the Product Provider.

2. Programmatic Authentication. The J2EE product must provide for specifi-
cation of the principal and authentication datafor aresource by the application
component at runtime using appropriate APIs. The application may obtain the
principal and authentication data through a variety of mechanisms, including
receiving them as parameters, obtaining them from the component’ s environ-
ment, and so forth.

In addition, the following techniques are recommended but not required by
this specification:

3. Principal Mapping. A resource can have aprincipal and attributesthat are de-
termined by a mapping from the identity and security attributes of the request-
ing principal. In this case, aresource principal is not based on inheritance of
the identity or security attributes from a requesting principal, but getsitsiden-
tity and security attributes based on the mapping.

4. Caller Impersonation. A resource principal acts on behalf of arequesting
principal. Acting on behalf of acaller principal requires delegation of the call-
er'sidentity and credentials to the underlying resource manager. In some sce-
narios, arequesting principal can be adelegate of an initiating principal and
the resource principal is transitively impersonating an initiating principal .
The support for principal delegation istypically specific to a security mecha-

43

nism. For example, Kerberos supports a mechanism for the delegation of
authentication. (Refer to the Kerberos v5 specification for more details.)

5. Credentials M apping. This technique may be used when an application serv-
er and an EIS support different authentication domains. For example:

a. Theinitiating principal may have been authenticated and have public key
certificate-based credentials.

b. The security environment for the resource manager may be configured
with the Kerberos authentication service.

The application server is configured to map the public key certificate-based
credentials associated with the initiating principal to the Kerberos credentials.

Additional information on resource authentication requirements can be found
in the Connector specification.

J2EE.3.5 Authorization Requirements

To support the authorization model s described in this chapter, the following
requirements are imposed on J2EE products.

J2EE.35.1 Code Authorization

A J2EE product may restrict the use of certain J2SE classes and methods to secure
and ensure proper operation of the system. The minimum set of permissions that a
J2EE product isrequired to grant to a J2EE application isdefined in

Section J2EE.6.2, “ Java 2 Platform, Standard Edition (J2SE) Requirements” All
J2EE products must be capable of deploying application components with exactly
these permissions.

A J2EE Product Provider may choose to enable selective access to resources
using the Java 2 protection model. The mechanism used is J2EE product
dependent.

A future version of the J2EE deployment descriptor definition (see
Chapter J2EE.8, “Application Assembly and Deployment”) may make it possible
to express additional permissions that a component needs for access.

Public Review

AUTHORIZATIONREQUIREMENTS 45

J2EE.3.5.2 Caller Authorization

A J2EE product must enforce the access control rules specified at deployment time
(see Section J2EE. 3.6, “ Deployment Requirements’) and more fully described in
the EJB and servlet specifications.

J2EE.3.5.3 Propagated Caller Identities.

It must be possible to configure a J2EE product so that a propagated caller identity is
used in al authorization decisions. With this configuration, for al callsto al
enterprise beans from a single application within asingle J2EE product, the
principal name returned by the EJBContext method getCallerPrincipal must be
the same asthat returned by the first enterprise bean in the call chain. If the first
enterprise bean in the call chain is called by a servlet or JSP page, the principa
name must be the same as that returned by the HttpServletRequest method
getUserPrincipal inthe calling servlet or JSP page. (However, if the
HttpServletRequest Method getUserPrincipal returnsnull, the principal usedin
callsto enterprise beansis not specified by this specification, although it must still
be possible to configure enterprise beans to be callable by such components.)

Note that this does not require delegation of credentials, only identification of
the caller. A single principal must be the principal used in authorization decisions
for accessto all enterprise beansin the call chain. The requirementsin this section
apply only when a J2EE product has been configured to propagate caller identity.

J2EE.3.5.4 Run Asldentities

J2EE products must also support the Run As capability that allows the Application
Component Provider and the Deployer to specify an identity under which an
enterprise bean or web component must run. In this caseit isthe Run Asidentity
that is propagated to subsequent EJB components, rather than the original caller
identity.

Note that this specification doesn’t specify any relationship between the Run
Asidentity and any underlying operating system identity that may be used to
access system resources such asfiles. However, the Java Authorization Contract
for Containers specification does specify the relationship between the Run As
identity and the access control context used by the J2SE security manager.

46

J2EE.3.6 Deployment Requirements

All 2EE products must implement the access control semantics described in the
EJB, JSP, and servlet specifications, and provide ameans of mapping the
deployment descriptor security rolesto the actual roles exposed by a J2EE product.

While most J2EE products will allow the Deployer to customize therole
mappings and change the assignment of roles to methods, al J2EE products must
support the ability to deploy applications and components using exactly the
mappings and assignments specified in their deployment descriptors.

As described in the EJB specification and the servlet specification, a J2EE
product must provide a deployment tool or tools capable of assigning the security
rolesin deployment descriptors to the entities that are used to determinerole
membership at authorization time.

Application developers will need to specify (in the application’s deployment
descriptors) the security requirements of an application in which some
components may be accessed by unauthenticated users as well as authenticated
users (as described above in Section J2EE.3.4.3, “ Unauthenticated Users’).
Applications express their security requirementsin terms of security roles, which
the Deployer maps to users (principals) in the operational environment at
deployment time. An application might define arole representing all authenticated
and unauthenticated users and configure some enterprise bean methods to be
accessible by thisrole.

To support such usage, this specification requires that it be possible to map an
application defined security role to the universal set of application principals
independent of authentication.

J2EE.3.7 Future Directions

J2EE.3.7.1 Auditing

This specification does not specify requirements for the auditing of security relevant
events, nor APIsfor application components to generate audit records. A future
version of this specification may include such a specification for products that
choose to provide auditing.

Public Review

FUTUREDIRECTIONS

J2EE.3.7.2 I nstance-based Access Control

Some applications need to control access to their data based on the content of the
data, rather than simply the type of the data. We refer to this as “instance-based”

rather than “ class-based” access control. We hope to address thisin afuture release.

J2EE.3.7.3 User Registration

Web-based internet applications often need to manage a set of customers
dynamically, allowing usersto register themselves as new customers. This scenario
was widdly discussed in the serviet expert group (JSR-53) but we were unable to
achieve consensus on the appropriate solution. We had to abandon this work for
J2EE 1.3, and were not able to addressit for J2EE 1.4, but hope to pursueit further
inafuture release.

47

48

Public Review

e J2EE4

Transaction M anagement

T his chapter describes the required Java™ 2 Platform, Enterprise Edition (J2EE)
transaction management and runtime environment.

Product Providers must transparently support transactions that involve
multiple components and transactional resources within asingle J2EE product, as
described in this chapter. This requirement must be met regardliess of whether the
J2EE product isimplemented as a single process, multiple processes on the same
network node, or multiple processes on multiple network nodes.

The following components are considered transactional resources and must
behave as specified here:

* JDBC connections
e JMS sessions

» Resource adapter connections for resource adapters specifying the
XATransaction transaction level

J2EE 4.1 Overview

A J2EE Product Provider must support atransactional application comprised of
combinations of servlets or JSP pages accessing multiple enterprise beans within a
single transaction. Each component may a so acquire one or more connectionsto
access one or more transactional resource managers.

For example, in Figure J2EE.4-1, the call tree starts from a servlet or JSP
page accessing multiple enterprise beans, which in turn may access other
enterprise beans. The components access resource managers via connections.

49

50

connections

connection .

EJBean
2a
EJBean -
la

EJBean
1b

connection

connection

EJBean

Client 2b

connection
EJBean
2C

connection .

siabeuew 82In0sal [euonoesuel] alow 10 sUQ

connection

EJBean
2d

FigureJ2EE.4-1 Servlets/JSP Pages Accessing Enterprise Beans

The Application Component Provider specifies, using a combination of
programmatic and declarative transaction demarcation APIs, how the platform
must manage transactions on behalf of the application.

For example, the application may require that al the componentsin Figure
J2EE.4-1 access resources as part of asingle transaction. The Platform Provider
must provide the transaction capabilities to support such a scenario.

This specification does not define how the components and the resources are
partitioned or distributed within a single J2EE product. In order to achieve the
transactional semantics required by the application, the J2EE Product Provider is
free to execute the application components sharing a transaction in the same Java
virtual machine, or distribute them across multiple virtual machines.

The rest of this chapter describes the transactional requirements for a J2EE
product in more detail.

Public Review

REQUIREMENTS

J2EE.4.2 Requirements

This section defines the transaction support requirements of J2EE Products that
must be supported by Product Providers.

J2EE.4.2.1 Web Components

Servlets and JSP pages demarcate a transaction using the
javax.transaction.UserTransaction interface which is defined in the JTA
specification. They may access multiple resource managers and invoke multiple
enterprise beans within asingle transaction. The specified transaction context is
automatically propagated to the enterprise beans and transactional resource
managers. The result of the propagation may be subject to the enterprise bean
transaction attributes (for example, abean may be required to use Container
Managed Transactions).

Servlet filters and web application event listeners must not demarcate
transactions using the javax. transaction.UserTransaction interface. Serviet
filters may use transactional resourcesin alocal transaction mode within their
doFi1ter methods but should not use any transactional resourcesin the methods of
any objects used to wrap the request or response objects.

J2EE.4.2.1.1 Transaction Requirements
The J2EE platform must meet the following requirements:

» The J2EE platform must provide an object implementing the
javax.transaction.UserTransaction interfaceto all web components. The
platform must publish the UserTransaction object inthe Java™ Naming and
Directory Interface (JNDI) name space available to web components under the
Name java:comp/UserTransaction.

* If aweb component invokes an enterprise bean from a thread associated with
a JTA transaction, the J2EE platform must propagate the transaction context
with the enterprise bean invocation. Whether the target enterprise bean will be
invoked in this transaction context or not is determined by the rules defined in
the EJB specification.

Note that this transaction propagation requirement applies only to invocations
of enterprise beansin the same J2EE product instance' as the invoking com-
ponent. Invocations of enterprise beans in another J2EE product instance (for

51

52

example, using the EJB interoperability protocol) need not propagate the
transaction context. See the EJB specification for details.

* If aweb component accesses a transactional resource manager from athread
associated with a JTA transaction, the J2EE platform must ensure that the re-
source access isincluded as part of the JTA transaction.

* |f aweb component creates a thread, the J2EE platform must ensure that the
newly created thread is not associated with any JTA transaction.

J2EE.4.2.1.2 Transaction Non-Requirements

The Product Provider is not required to support the importing of a transaction
context from aclient to aweb component.

The Product Provider is not required to support transaction context
propagation viaan HT TP request across web components. The HTTP protocol
does not support such transaction context propagation. When aweb component
associated with a transaction makes an HTTP request to another web component,
the transaction context is not propagated to the target servlet or page.

However, when aweb component is invoked through the RequestDispatcher
interface, any active transaction context must be propagated to the called servlet
or JSP page.

J2EE.4.2.2 Transactionsin Web Component Life Cycles

Transactions may not span web requests from aclient. A web component starts a
transaction in the service method of aservlet (or, for a JSP page, the service
method of the equivalent JSP page Implementation Class) and it must be completed
before the service method returns. Returning from the service method with an

- A product instance corresponds to asingle installation of a J2EE product.
A single product instance might use multiple operating system processes,
or might support multiple host machines as part of adistributed contain-
er. In contrast, it might be possible to run multiple instances of a product
on a single host machine, or possibly even in a single Java virtual ma-
chine, for example, as part of a virtual hosting solution. The transaction
propagation requirement applies within a single product instance and is
independent of the number of Java virtual machines, operating system
processes, or host machines used by the product instance.

Public Review

REQUIREMENTS

active transaction context is an error. The web container is required to detect this
error and abort the transaction.

J2EE.4.2.3 Transactions and Threads

There are many subtle and complex interactions between the use of transactional
resources and threads. To ensure correct operation, web components should obey
the following guidelines, and the web container must support at least these usages.

JTA transactions should be started and completed in the thread in which the
service method is called. Additional threads that are created for any purpose
should not attempt to start JTA transactions.

Transactional resources may be acquired and released by athread other than
the service method thread, but should not be shared between threads.

Transactional resource objects (for example, JIDBC Connection objects)
should not be stored in static fields. Such objects can only be associated with
one transaction at atime. Storing them in static fields would make it easy to
erroneously share them between threads in different transactions.

Web components implementing SingleThreadMode1 may store top-level
transactional resource objectsin classinstancefields. A top-level objectisone
acquired directly from a container managed connection factory object (for ex-
ample, aJJDBC Connection acquired from aJDBC ConnectionFactory), as
opposed to other objects acquired from these top-level objects (for example, a
JDBC statement acquired from a JDBC Connection). The web container en-
suresthat requeststo aSingleThreadModel serviet are serialized and thus only
onethread and one transaction will be able to use the object at atime, and that
the top-level object will be enlisted in any new transaction started by the com-
ponent.

In web components not implementing SingleThreadModeT, transactional re-
source objects should not be stored in class instance fields, and should be ac-
quired and released within the same invacation of the service method.

Web components that are called by other web components (using the forward
or incTude methods) should not store transactional resource objectsin class
instance fields.

Enterprise beans may be invoked from any thread used by aweb component.
Transaction context propagation requirements are described above and in the
EJB specification.

53

J2EE.4.2.4 Enterprise JavaBeans™ Components

The J2EE Product Provider must provide support for transactions as defined in the
EJB specification.

J2EE.4.2.5 Application Clients

The J2EE Product Provider is not required to provide transaction management
support for application clients.

J2EE .4.2.6 Applet Clients

The J2EE Product Provider is not required to provide transaction management
support for applets.

J2EE.4.2.7 Transactional JDBC™ Technology Support

A J2EE product must support a JDBC technology database as a transactional
resource manager. The platform must enable transactional JDBC API access from
web components and enterprise beans.

It must be possible to access the JDBC technology database from multiple
application components within a single transaction. For example, a servlet may
wish to start atransaction, access a database, invoke an enterprise bean that
accesses the same database as part of the same transaction, and, finally, commit
the transaction.

A J2EE product must provide a transaction manager that is capable of
coordinating two-phase commit operations across multiple X A-capable JDBC
databases. If aJDBC driver supportsthe Java Transaction API’s XA interfaces (in
the javax.transaction.xa package), then the J2EE product must be capable of
using the XA interfaces provided by the JDBC driver to accomplish two-phase
commit operations. The J2EE product may discover the XA capabilities of JIDBC
drivers through product-specific means, although normally such JDBC drivers
would be delivered as resource adapters using the Connector API.

J2EE.4.2.8 Transactional JM S Support

A J2EE product must support aJMS provider as atransactional resource manager.
The platform must enable transactional IM S access from servlets, JSP pages, and
enterprise beans.

Public Review

TRANSACTIONINTEROPERABILITY

It must be possible to access the IMS provider from multiple application
components within asingle transaction. For example, aservlet may wish to start a
transaction, send a JM S message, invoke an enterprise bean that also sendsaJMS
message as part of the same transaction, and, finally, commit the transaction.

J2EE.4.2.9 Transactional Resour ce Adapter (Connector) Support

A J2EE product must support resource adapters that use XATransaction mode as
transactional resource managers. The platform must enable transactional accessto
the resource adapter from servlets, JSP pages, and enterprise beans.

It must be possible to access the resource adapter from multiple application
components within asingle transaction. For example, aservlet may wish to start a
transaction, access the resource adapter, invoke an enterprise bean that also
accesses the resource adapter as part of the same transaction, and, finally, commit
the transaction.

J2EE.4.3 Transaction Interoperability

J2EE.4.3.1 Multiple J2EE Platform Interoperability

This specification does not require the Product Provider to implement any particular
protocol for transaction interoperability across multiple J2EE products. J2EE
compatibility requires neither interoperability among identical J2EE products from
the same Product Provider, nor among heterogeneous J2EE products from multiple
Product Providers.

We recommend that J2EE Product Providers use the I1OP transaction
propagation protocol defined by OMG and described in the OTS specification
(and implemented by the Java Transaction Service), for transaction
interoperability when using the EJB interoperability protocol based on RMI-I10P.
We plan to require the I1OP transaction propagation protocol asthe EJB server
transaction interoperability protocol in afuture release of this specification.

J2EE.4.3.2 Support for Transactional Resour ce Managers

This specification requires all J2EE products to support the
javax.transaction.xa.XAResource interface, as specified in the Connector
specification. This specification also requires all J2EE products to support the

55

56

javax.transaction.xa.XAResource interface for performing two-phase commit
operations on JDBC driversthat support the JTA XA APIs. This specification does
not require that JDBC drivers or IMS providers use the
javax.transaction.xa.XAResource interface, athough they may usethisinterface
and in al casesthey must meet the transactional resource manager requirements
described in this chapter. In particular, it must be possible to combine operations on
one or more JDBC databases, one or more JM S sessions, one or more enterprise
beans, and multiple resource adapters supporting the XATransaction modein a
single JTA transaction.

J2EE.4.4 Local Transaction Optimization

J2EE.4.4.1 Requirements

If atransaction uses a single resource manager, performance may beimproved by
using aresource manager specific local optimization. A local transactionistypically
more efficient than a global transaction and provides better performance. Local
optimization is not available for transactions that are imported from a different
container.

Containers may choose to provide local transaction optimization, but are not
required to do so. Local transaction optimization must be transparent to a 2EE
application.

The following section describes a possible mechanism for local transaction
optimization by containers.

J2EE.4.4.2 A Possible Design

This section illustrates how the previously described regquirements might be
implemented.

When the first connection to aresource manager is established as part of the
transaction, a resource manager specific local transaction is started on the
connection. Any subsequent connection acquired as part of the transaction that
can share the local transaction on the first connection is allowed to share the local
transaction.

A global transaction is started lazily under the following conditions:

Public Review

CONNECTIONSHARING

» When a subsequent connection cannot share the resource manager local trans-
action on the first connection, or if it uses a different resource manager.

» When atransaction is exported to a different container.

After the lazy start of aglobal transaction, any subsequent connection
acquired may either share the local transaction on the first connection, or be part
of the global transaction, depending on the resource manager it accesses.

When atransaction completion (commit or rollback) is attempted, there are
two possibilities:

« If only asingle resource manager had been accessed as part of the transaction,
the transaction is completed using the resource manager specific local transac-
tion mechanism.

« If aglobal transaction had been started, the transaction is completed treating
the resource manager local transaction as alast resourcein the global 2-phase
commit protocol, that is using the last resource 2-phase commit optimization.

J2EE.45 Connection Sharing

When multiple connections acquired by a J2EE application use the same resource
manager, containers may choose to provide connection sharing within the same
transaction scope. Sharing connections typically results in efficient usage of
resources and better performance. Containers are required to provide connection
sharing in certain situations; see the Connector specification for details..

Connections to resource managers acquired by J2EE applications are
considered potentially shared or shareable. A J2EE application component that
intends to use a connection in an unshareable way must provide deployment
information to that effect, to prevent the connection from being shared by the
container. Examples of when this may be needed include situations with changed
security attributes, isolation levels, character settings, and localization
configuration. Containers must not attempt to share connections that are marked
unshareable. If a connection is not marked unshareable, it must be transparent to
the application whether the connection is actually shared or not.

J2EE application components may use the optional deployment descriptor
element res-sharing-scope to indicate whether a connection to aresource
manager is shareable or unshareable. Containers must assume connections to be
shareable if no deployment hint is provided. Section J2EE.9.7, “ J2EE Application

57

58

Client XML Schema’, the EJB specification, and the servlet specification provide
descriptions of the deployment descriptor element.

J2EE application components may cache connection objects and reuse them
across multiple transactions. Containers that provide connection sharing must
trangparently switch such cached connection objects (at dispatch time) to point to
an appropriate shared connection with the correct transaction scope. Refer to the
Connector specification for a detailed description of connection sharing.

J2EE.4.6 JDBC and JM S Deployment | ssues

The JDBC transaction requirements in Section J2EE.4.2.7, “Transactional JDBC™
Technology Support” and the IM S transaction requirements in Section J2EE.4.2.8,
“Transactional JIM'S Support” may impose some restrictions on a Deployer's
configuration of an application’s IDBC and JM S resources. J2EE Product Providers
may impose the restrictions described in this section to meet these requirements.

If the deployer configures a non-X A-capable JDBC resource manager in a
transaction, then aJ2EE Product Provider may restrict all JIDBC access within that
transaction to that non-XA-capable JDBC resource manager. Otherwise, a 2EE
Product Provider must support use of multiple X A-capable JDBC resource
managers wthin atransaction. In addition, a J2EE Product Provider may restrict
the security configuration of all JDBC connections within atransaction to asingle
user identity. A J2EE Product Provider is not required to support transactions
where more than one JDBC identity is used. Specifically, this means that
transactions that require the use of more than one JDBC security identity (which
can be done explicitly via component provided user name and password) may not
be portable.

A J2EE Product Provider may make the same restrictions as above, resulting
in atransaction being restricted to a single JM S resource manager and user
identity.

In addition, when both a JDBC resource manager and a JM S resource
manager are used in the same transaction, a J2EE Product Provider may restrict
both to a pairing that allows their combination to deliver the full transactional
semantics required by the application, and may restrict the security identity of
both to a single identity. To fully support such usage, portable applications that
wish to include JDBC and JM S access in asingle global transaction must not
mark the corresponding transactional resources as “unshareable”.

Public Review

TWO-PHASECOMMIT SUPPORT 59

Although these restrictions are allowed, it is recommended that J2EE Product
Providers support JDBC and JM S resource managers that provide full two-phase
commit functionality and, as aresult, do not impose these restrictions.

J2EE.47 Two-Phase Commit Support

A J2EE product must support the use of multiple X A-capable resource adaptersin a
single transaction. To support such a scenario, full two-phase commit support is
required. A IM S provider may be provided as an X A-capable resource adapter. In
such acase, it must be possible to include IM S operations in the same global
transaction as other resource adapters. While JDBC drivers are not required to be
XA-capable, aJDBC driver may be delivered as an X A-capable resource adapter. In
such acase, it must be possible to include JDBC operations in the same global
transaction as other X A-capable resource adapters. See also Section J2EE.4.2.7,
“Transactional JDBC™ Technology Support.”

J2EE.4.8 System Administration Tools

Although there are no compatibility requirements for system administration
capabilities, the J2EE Product Provider will typically include toolsthat alow the
System Administrator to perform the following tasks:

* Integrate transactional resource managers with the platform.
« Configure the transaction management parts of the platform.
» Monitor transactions at runtime.

 Receive notifications of abnormal transaction processing conditions (such as
abnormally high number of transaction rollbacks).

60

Public Review

e JZEELD

Resources, Naming, and
Injection

T his chapter describes how applications declare dependencies on external
resources and configuration parameters, and how those items are represented in the
J2EE naming system and can be injected into application components. These
reguirements are based on annotations defined in the Java M etadata specification
(JSR-175) and features defined in the Java Naming and Directory Interface™
(INDI) specification. The Resource annotation described here is defined in more
detail in the Common Annotations specification (JSR-250). The EJB annotation
described here is defined in more detail in the Enterprise JavaBeans specification
(JSR-220).

J2EE.5.1 Overview
The requirements defined in this chapter address the following two issues:

» The Application Assembler and Deployer should be able to customize the be-
havior of an application’ s business logic without accessing the application’s
source code. Typically thiswill involve specification of parameter values, con-
nection to external resources, and so on. Deployment descriptors provide this
capability

» Applications must be ableto access resources and external informationin their
operational environment without knowledge of how the external information
is named and organized in that environment. The JINDI naming context and
Java language annotations provide this capability.

J2EE.5.1.1 Chapter Organization

The following sections contain the J2EE platform solutions to the above issues:

* Section J2EE.5.2, “INDI Naming Context” defines general rulesfor the use of
the INDI naming context and its interaction with Java language annotations
that reference entries in the naming context.

» Section J2EE.5.3, “Responsibilities by J2EE Rol€” defines the general re-
sponsibilities for each of the J2EE roles such as Application Component Pro-
vider, Application Assembler, Deployer, and J2EE Product Provider.

» Section J2EE.5.4, “Simple Environment Entries’ defines the basic interfaces
that specify and access the application component’s naming environment. The
section illustrates the use of the application component’s naming environment
for generic customization of the application component’s business logic.

 Section J2EE.5.5, “Enterprise JavaBeans™ (EJB) References’ definesthe in-
terfaces for obtaining the home interface or an instance of an enterprise bean
using an EJB reference. An EJB referenceis aspecial entry in the application
component’s environment.

 Section J2EE.5.6, “ Resource Manager Connection Factory References’ de-
finesthe interfaces for obtaining aresource manager connection factory using
aresource manager connection factory reference. A resource manager con-
nection factory reference is a special entry in the application component’s en-
vironment.

» Section J2EE.5.7, “Resource Environment References’ defines the interfaces
for obtaining an administered object that is associated with aresource using a
resource environment reference. A resource environment reference is a spe-
cia entry in the application component’s environment.

» Section J2EE.5.8, “Message Destination References’ defines the interfaces
for declaring and using message destination references.

* Section J2EE.5.9, “UserTransaction References’ describesthe use by eligible
application components of referencesto aUserTransaction object in the
component’s environment to start, commit, and abort transactions.

» Section J2EE.5.10, “ORB References’ describes the use by eligible applica-
tion components of references to a CORBA 0RB object in the component’ s en-
vironment.

Public Review

INDINAMING CONTEXT 63

J2EE.5.1.2 Required Accessto the INDI Naming Environment

J2EE application clients, enterprise beans, and web components are required to have
access to a JNDI naming environment. The containers for these application
component types are required to provide the naming environment support described
here.

Annotations and deployment descriptors are the main vehicles for conveying
access information to the Application Assembler and Deployer about application
components' requirements for customization of business|ogic and accessto
external information. The annotations decscribed here are available for use by all
application component types. The deployment descriptor entries described here
are present in identical form in the deployment descriptor schemas for each of
these application component types. See the corresponding specification of each
application component type for the details.

J2EE.5.2 JNDI Naming Context

The application component’s naming environment is amechanism that allows
customization of the application component’s business logic during deployment or
assembly. Use of the application component’s environment allows the application
component to be customized without the need to access or change the application
component’s source code.

J2EE.5.2.1 The Application Component’s Environment

The container implements the application component’s environment, and
providesit to the application component instance as a INDI naming context. The
application component’s environment is used as follows:

1. The application component’ s business methods make use of entries from the
environment. The business methods may access the environment using the
JNDI interfaces or lookup methods on component-specific context abjects. Al-
so, entries from the environment may be injected into the application compo-
nent’ sfields or methods. The Application Component Provider declaresinthe
deployment descriptor, or viaannotations, all the environment entries that the
application component expects to be provided in its environment at runtime.

2. The container provides an implementation of the INDI naming context that
storesthe application component environment. The container also providesthe

toolsthat alow the Deployer to create and manage the environment of each ap-
plication component.

3. The Deployer usesthe tools provided by the container to initialize the environ-
ment entries that are declared in the application component’ s deployment de-
scriptor or viaannotations. The Deployer can set and modify the values of the
environment entries.

4. The container injects entries from the environment into application component
fields or methods as specified by the application component’ s deployment de-
scriptor or by annotations on the application component class.

5. The container aso makes the environment naming context avail able to the ap-
plication component instances at runtime. The application component’sin-
stances may use the INDI interfaces or component context lookup methodsto
obtain the values of the environment entries.

J2EE.5.2.2 Sharing of Environment Entries

Each application component defines its own set of dependencies that must
appear as entriesin the application component’s environment. All instances of an
application component within the same container share the same environment
entries. Application component instances are not allowed to modify the
environment at runtime.

In general, lookups of objectsin the INDI java: namespace are required to
return a new instance of the requested object every time. Exceptions are allowed
for the following:

» The container knows the object isimmutable (for example, objects of type
java.lang.String), or knowsthat the application can’t change the state of the
object.

» The object is defined to be a singleton, such that only one instance of the ob-
ject may exist inthe VM.

» Thename used for the lookup is defined to return an instance of the object that
might be shared. The name java: comp/0RB is such a name.

In these cases, a shared instance of the object may be returned. In all other

cases, a new instance of the requested object must be returned on each lookup.
Note that, in the case of resource adapter connection objects, it is the resource

Public Review

INDINAMING CONTEXT

adapter’sManagedConnectionFactory implementation that is responsible for
satisfying this requirement.

Each injection of an object correspondsto a JINDI lookup. Whether a new
instance of the requested object isinjected, or whether a shared instance is
injected, is determined by the rules described above.

J2EE.5.2.3 Annotations and Resour ce I njection

As described in the following sections, afield or method of certain container-
managed component classes may be annotated to request that an entry from the
application component’s environment be injected into the class. Any of the types
of resources described in this chapter may be injected. Injection may aso be
requested using entries in the deployment descriptor corresponding to each of
these resource types. The field or method may have any access qualifier (pubTic,
private, etc.). For all classes except application client main classes, the fields or
methods must not be stati c. Because application clients use the same lifecycle as
J2SE applications, no instance of the application client main classis created by
the application client container. Instead, the static main method isinvoked. To
support injection for the application client main class, the fields or methods
annotated for injection must be static.

A field of aclass may be the target of injection. The field may not be final.
By default, the name of the field is combined with the fully qualified name of the
class and used directly as the name in the application component’s naming
context. For example, afield named myDatabase in the classMyApp in the package
com.example would correspond to the INDI name java: comp/env/
com.example.MyApp/myDatabase. The annotation also allows the INDI nameto be
specified explicitly. When a deployment descriptor entry is used to specify
injection, the INDI name and the field name are both specified explicitly. Note
that the INDI name is always relative to the java: comp/env naming context.

Environment entries may also be injected into a class through methods that
follow the naming conventions for JavaBeans properties. The annotation is
applied to the set method for the property, which is the method that's called to
inject the environment entry into the class. The JavaBeans property name (not the
method name) is used as the default INDI name. For example, a method named
setMyDatabase in the sameMyApp class would correspond to the same JNDI name
java:comp/env/com.example.MyApp/myDatabase asthe field myDatabase.

Each resource may only be injected into asingle field or method of a given
name in a given class. Requesting injection of the java: comp/env/

65

66

com.example.MyApp/myDatabase resource into both the setMybDatabase method
and the myDatabase field is an error; a development tool that processes such
annotations must detect this error. Note, however, that either the field or the
method could request injection of aresource of adifferent (non-default) name. By
explicitly specifying the INDI name of aresource, asingle resource may be
injected into multiple fields or methods of multiple classes.

The specifications for the various application component types describe
which classes may be annotated for injection, as summarized in Table J2EE.5-1.
They also describe when injection occurs in the lifecycle of the component.
Typically injection will occur after an instance of the classis constructed, but
before any business methods are called. If the container fails to find aresource
needed for injection, initialization of the class must fail, and the class must not be
put into service.

Table J2EE.5-1 Component classes supporting injection

Container Spec Classes supporting injection

web container Servlet servlets
servlet filters
event listeners

Jsp tag handlers
tag library event listeners

JSF managed beans

JAX-RPC service endpoints
handlers

JAX-WS service endpoints
handlers

EJB container EJB beans
callback listeners
interceptors

JAX-RPC service endpoints
handlers

JAX-WS service endpoints
handlers

application client container J2EE main class (static)
platform login callback handler

Public Review

INDINAMING CONTEXT

Annotations may also be applied to the classitself. These annotations declare
an entry in the application component’s environment but do not cause the resource
to be injected. Instead, the application component is expected to use INDI or a
component context lookup method to lookup the entry. When the annotation is
applied to the class, the INDI name and the environment entry type must be
specified explicitly.

Resource annotations may appear on any of the classeslisted above, or on any
superclass of any class listed above. A resource annotation on any classin the
inheritance hierarchy defines a resource needed by the application component.
However, injection of resources follows the Java language overriding rules for
visibility of fields and methods. A field or method definition that overrides afield
or method on a superclass defines the resource, if any, to be injected into that field
or method. An overriding field or method may request injection even though the
superclass field or method does not request injection, it may request injection of a
different resource than is requested by the superclass, or it may request no
injection even though the superclass field or method requests injection.

In addition, fields or methods that are not visible in or are hidden (as opposed
to overridden) by a subclass may still request injection. This alows, for example,
aprivate field to be the target of injection and that field to be used in the
implementation of the superclass, even though the subclass has no visibility into
that field and doesn’t know that the implementation of the superclassis using an
injected resource.

In some cases a class may need to perform initialization of its own after all
resources have been injected. To support this case, one method of the class may be
annotated with the InjectionComplete annotation. This method will be called
after al resource injections have occured and before the classis put into service.
This method will be called even if the class doesn’t request any resources to be
injected.

J2EE.5.2.4 Annotations and Deployment Descriptors

Environment entries may be declared by use of annotations, without need for any
deployment descriptor entries. Environment entries may also be declared by
deployment descriptor entries. The same environment entry may be declared using
both an annotation and a deployment descriptor entry. In this case, the information
in the deployment descriptor entry may be used to override some of the information
provided in the annotation. This approach may be used by an Application
Assembler or Deployer to override information provided by the Application

67

68

Component Developer. Applications should not use deployment descriptor entries
to request injection of aresourceinto afield or method that has not been annotated
for injection

The following list describes the rules for how a deployment descriptor entry
may override aResource annotation.

» Therelevant deployment descriptor entry islocated based on the JNDI name
used with the annotation (either defaulted or provided explicitly).

» Thetype specified in the deployment descriptor must be assignable to the type
of thefield or property.

» Thedescription, if specified, overrides the description el ement of the annota-
tion.

» Theinjection target, if specified, must name exactly the annotated field or
property method.

* The res-sharing-scope element, if specified, overridesthe shareable ele-
ment of the annotation.

* The res-auth element, if specified, overridesthe authenticationType €le-
ment of the annotation.

The rules for how a deployment descriptor entry may override an EJB
annotation are included in the EJB specification. The rules for how a deployment
descriptor entry may override awebServiceRef annotation are included in the
Web Services for J2EE specification.

J2EE.5.3 Responsibilitiesby J2EE Role

This section describes the responsibilities for each J2EE role that apply to all uses of
the J2EE naming context. The sections that follow describe the responsibilities that
are specific to the different types of objects that may be stored in the naming
context.

J2EE.5.3.1 Application Component Provider’s Responsibilities

The Application Component Provider may make use of three techniques for
accessing and managing the naming context. First, the Application Component
Provider may use Javalanguage annotations to request injection of aresource from

Public Review

RESPONSIBILITIESBY J2EEROLE

the naming context, or to declare elements that are needed in the naming context.
Second, the component may use the INDI APIs to access entries in the naming
context. Third, deployment descriptor entries may be used to declare entries needed
in the naming context, and to regquest injection of these entriesinto application
components. Deployment descriptor entries may also be used to override
information provided by annotations.

J2EE.5.3.2 Application Assembler’s Responsibilities

The Application Assembler is allowed to modify the entriesin the naming context

set by the Application Component Provider, and is allowed to set the values of those
entries for which the Application Component Provider has not specified any values.
The Application Assembler may use the deployment descriptor to override settings

made by the Application Component Provider in the source code using annotations.

J2EE.5.3.3 Deployer’s Responsibilities

The Deployer must ensure that al the entries declared by an application component
are cregted and properly initialized.

The Deployer can modify the entries that have been previously set by the
Application Component Provider and/or Application Assembler, and must set the
values of those entries for which arequired value has not been specified.

The description deployment descriptor elements and annotation elements
provided by the Application Component Provider or Application Assembler help
the Deployer with this task.

J2EE.5.34 J2EE Product Provider’s Responsibilities

The J2EE Product Provider has the following responsibilities:

 Provide a deployment tool that allows the Deployer to set and modify the en-
tries of the application component’ s naming context.

* Implement the java: comp/env environment naming context, and provide it to
the application component instances at runtime. The naming context must in-
clude al the entries declared by the Application Component Provider, with
their values supplied in the deployment descriptor or set by the Deployer. The
environment naming context must allow the Deployer to create subcontexts if
they are needed by an application component.

69

70

* Inject entries from the naming environment into the application component,
as specified by the deployment descriptor or annotations on the application
component classes.

» The container must ensure that the application component instances have only
read access to their naming context. The container must throw the
javax.naming.OperationNotSupportedException from al the methods of the
javax.naming.Context interface that modify the environment naming context
and its subcontexts.

J2EE.5.4 Simple Environment Entries

A simple environment entry is a configuration parameter used to customize an
application component’s business logic. The environment entry values may be one
of the following Javatypes: String, Character, Byte, Short, Integer, Long,
Boolean, Double, and Float.

The following subsections describe the responsibilities of each J2EE Role.

J2EE.5.4.1 Application Component Provider’s Responsibilities

This section describes the Application Component Provider’s view of the
application component’s environment, and defines his or her responsibilities. It does
S0 in three sections, the first describing annotations for injecting environment
entries, the second describing the API for accessing environment entries, and the
third describing syntax for declaring the environment entriesin a deployment
descriptor.

J2EE.5.4.1.1 Injection of Simple Environment Entries

A field or amethod of an application component may be annotated with the
Resource annotation. The name and type of the environment entry are as described
above. Note that the container will unbox the environment entry as required to
match it to a primitive type used for the injection field or method. The
authenticationType and shareable elements of the Resource annotation must not
be specified; simple environment entries are not shareable and do not require
authentication.

The following code example illustrates how an application component uses
annotations to declare environment entries.

Public Review

SIMPLEENVIRONMENT ENTRIES

// The maximum number of tax exemptions, configured by the Deployer.
@Resource int maxExemptions;
// The minimum number of tax exemptions, configured by the Deployer.
@Resource int minExemptions;

pubTlic void setTaxInfo(int numberOfExemptions,...)
throws InvalidNumberOfExemptionsException {

// Use the environment entries to
// customize business logic.
if (numberOfExemptions > maxExemptions ||
numberOfExemptions < minExemptions)
throw new InvalidNumberOfExemptionsException();

J2EE.5.4.1.2 Programming I nterfacesfor Accessing Simple Environment
Entries

In addition to the injection based approach described above, an application
component may access environment entries dynamically. An application component
instance | ocates the environment naming context using the JINDI interfaces. An
instance creates a javax.naming.InitialContext Object by using the constructor
with no arguments, and looks up the naming environment viathe InitialContext
under the name java: comp/env. The application component’s environment entries
are stored directly in the environment naming context, or initsdirect or indirect
subcontexts.

Environment entries have the Java programming language type declared by
the Application Component Provider in the deployment descriptor.

The following code example illustrates how an application component
accesses its environment entries.

pubTlic void setTaxInfo(int numberOfExemptions,...)
throws InvalidNumberOfExemptionsException {

// Obtain the application component’s

// environment naming context.

Context initCtx = new InitialContext();

Context myEnv = (Context)initCtx.lookup(“java:comp/env”);

// Obtain the maximum number of tax exemptions

71

72

// configured by the Deployer.
Integer max = (Integer)myEnv.lookup(“maxExemptions”);

// Obtain the minimum number of tax exemptions
// configured by the Deployer.
Integer min = (Integer)myEnv.lookup(“minExemptions”);

// Use the environment entries to
// customize business logic.
if (numberOfExemptions > max.intValue() ||
numberOfExemptions < min.intValue(Q))
throw new InvalidNumberOfExemptionsException();

// Get some more environment entries. These environment
// entries are stored in subcontexts.

String vall = (String)myEnv.lookup(“foo/namel”);
Boolean val2 = (Boolean)myEnv.Tookup(“foo/bar/name2”);

// The application component can also

// lookup using full pathnames.

Integer val3 = (Integer)initCtx.lookup(“java:comp/env/name3”);

Integer val4
(Integer)initCtx.lookup(“java:comp/env/foo/name4”);

J2EE.5.4.1.3 Declaration of Simple Environment Entries

The Application Component Provider must declare all the environment entries
accessed from the application component’s code. The environment entries are
declared using either annotations on the application component’s code, or using the
env-entry eementsin the deployment descriptor. Each env-entry element
describes asingle environment entry. The env-entry element consists of an optional
description of the environment entry, the environment entry name relative to the
java:comp/env context, the expected Java programming language type of the
environment entry value (the type of the object returned from the INDI Tookup
method), and an optional environment entry value.

An environment entry is scoped to the application component whose
declaration contains the env-entry element. This means that the environment
entry is not accessible from other application components at runtime, and that

Public Review

SIMPLEENVIRONMENT ENTRIES

other application components may define env-entry elements with the same env-
entry-name Without causing a name conflict.

If the Application Component Provider provides a value for an environment
entry using the env-entry-value element, the value can be changed later by the
Application Assembler or Deployer. The value must be astring that isvalid for the
constructor of the specified type that takes a single String parameter, or in the
case of Character, asingle character.

The following example is the declaration of environment entries used by the
application component whose code was illustrated in the previous subsection.

<env-entry>
<description>
The maximum number of tax exemptions
allowed to be set.
</description>
<env-entry-name>maxExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>15</env-entry-value>
</env-entry>
<env-entry>
<description>
The minimum number of tax exemptions
allowed to be set.
</description>
<env-entry-name>minExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>l</env-entry-value>
</env-entry>
<env-entry>
<env-entry-name>foo/namel</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>valuel</env-entry-value>
</env-entry>
<env-entry>
<env-entry-name>foo/bar/name2</env-entry-name>
<env-entry-type>java.lang.Boolean</env-entry-type>
<env-entry-value>true</env-entry-value>
</env-entry>
<env-entry>
<description>Some description.</description>
<env-entry-name>name3</env-entry-name>

73

74

<env-entry-type>java.lang.Integer</env-entry-type>

</env-entry>

<env-entry>
<env-entry-name>foo/name4</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>10</env-entry-value>

</env-entry>

Injection of environment entries may also be specified using the deployment
descriptor, without need for Java language annotations. The following exampleis
the declaration of environment entries corresponding to the earlier injection
example.

<env-entry>
<description>
The maximum number of tax exemptions
allowed to be set.
</description>
<env-entry-name>
com.example.Payroll1Service/maxExemptions
</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>15</env-entry-value>
<injection-target>
<injection-target-class>
com.example.PayrollService
</injection-target-class>
<injection-target-name>
maxExemptions
</injection-target-name>
</injection-target>
</env-entry>
<env-entry>
<description>
The minimum number of tax exemptions
allowed to be set.
</description>
<env-entry-name>
com.example.Payroll1Service/minExemptions
</env-entry-name>

Public Review

ENTERPRISE JAVABEANS™ (EJB) REFERENCES

<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>1l</env-entry-value>
<injection-target>
<injection-target-class>
com.example.Payroll1Service
</injection-target-class>
<injection-target-name>
minExemptions
</injection-target-name>
</injection-target>
</env-entry>

It's often convenient to declare afield or method as an injection target, but
specify a default value in the code, asillustrated in the following example.

// The maximum number of tax exemptions, configured by the Deployer.
@Resource int maxExemptions = 4; // defaults to 4

To support this case, the container must only inject avalue for thisresource if
the deployer has specified avalue to override the default value. The env-entry-
value element in the deployment descriptor is optional when an injection target is
specified. If the element is not specified, no value will be injected. In addition, if
the element is not specified, the named resource is not initialized in the naming
context; explicit lookups of the named resource will fail.

J2EE.55 Enterprise JavaBeans™ (EJB) References

This section describes the programming and deployment descriptor interfaces that
allow the Application Component Provider to refer to the homes of enterprise beans
or to enterprise bean instances using “logical” names called EJB references. The
EJB references are special entriesin the application component’s naming
environment. The Deployer binds the EJB references to the enterprise bean’s homes
or instances in the target operational environment.

The deployment descriptor also allows the Application Assembler to link an
EJB reference declared in one application component to an enterprise bean
contained in an gjb-jar file in the same J2EE application. Thelink is an instruction
to the tools used by the Deployer describing the binding of the EJB reference to
the home of the specified target enterprise bean. The same linking can aso be

75

76

specified by the Application Component Provider using annotations in the source
code of the component.

J2EE.5.5.1 Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider's view and
responsibilities with respect to EJB references. It does so in three sections, the first
describing annotations for injecting EJB references, the second describing the AP
for accessing EJB references, and the third describing the syntax for declaring the
EJB references in a deployment descriptor

J2EE.5.5.1.1 Injection of EJB Entries

A field or amethod of an application component may be annotated with the E1B
annotation. The EJB annotation represents areference to an EJB session bean. The
reference may beto the local or remote home interface of the session bean, or may
be to the business interface of an EJB 3 bean. If the referenceisto the EJB 3
business interface, areference to an instance of the enterprise bean will be injected.

Thefollowing exampleillustrates how an application component usesthe EJB
annotation to reference an instance of an enterprise bean. Thereferenced beanisa
stateful session bean. The enterprise bean reference will have the name
java:comp/env/com.example.myCart in the naming context. The target of the
reference is not named and must be resolved by the Deployer.

@EJB private ShoppingCart myCart;

The following example illustrates use of al elements of the EJB annotation.

@EJB(
name = “ejb/shopping-cart”,
beanName = “cartl”,
beanInterface = ShoppingCart.class,
description = “The shopping cart for this application”

)

private Cart myCart;

J2EE.5.5.1.2 Programming Interfacesfor EJB References

The Application Component Provider may use EJB references to locate the home
interfaces or instances of enterprise beans asfollows.

Public Review

ENTERPRISE JAVABEANS™ (EJB) REFERENCES

» Assign an entry in the application component’ s environment to the reference.
(See subsection 5.5.1.3 for information on how EJB references are declared in
the deployment descriptor.)

 This specification recommends, but does not require, that references to enter-
prise beans be organized in the ejb subcontext of the application component’s
environment (that is, inthe java:comp/env/ejb JNDI context). Note that en-
terprise bean references declared via annotations will not, by default, bein
any subcontext.

 Look up the homeinterface or instance of the referenced enterprise bean in the
application component’ s environment using JNDI.

The following example illustrates how an application component uses an EJB
reference to locate the home interface of an enterprise bean.

public void changePhoneNumber(...) {

// Obtain the default initial INDI context.
Context initCtx = new InitialContext();

// Look up the home interface of the EmployeeRecord
// enterprise bean in the environment.
Object result = initCtx.lookup("java:comp/env/ejb/EmplRecord");

// Convert the result to the proper type.
EmployeeRecordHome empl1RecordHome = (EmployeeRecordHome)
javax.rmi.PortableRemoteObject.narrow(result,
EmployeeRecordHome.class);

}

In the example, the Application Component Provider assigned the
environment entry ejb/Emp1Record as the EJB reference name to refer to the
home of an enterprise bean.

J2EE.5.5.1.3 Declaration of EJB References

Although the EJB referenceis an entry in the application component’s environment,
the Application Component Provider must not use a env-entry element to declare

it. Instead, the Application Component Provider must declare all the EJB references
using either annotations on the application component’s code or the ejb-ref or ejb-

77

78

local-ref elements of the deployment descriptor. This allows the consumer of the
application component’s JAR file (the Application Assembler or Deployer) to
discover all the EJB references used by the application component. Deployment
descriptor entries may also be used to specify injection of an EJB reference into an
application component.

Each ejb-ref oOr ejb-Tocal-ref element describes the interface requirements
that the referencing application component has for the referenced enterprise bean.
The ejb-ref element contains adescription element and the ejb-ref-name,
ejb-ref-type, home, and remote €lements.

The ejb-ref-name element specifies the EJB reference name. Itsvalueisthe
environment entry name used in the application component code. The ejb-ref-
type €element specifiesthe expected type of the enterprise bean. Its value must be
either Entity Or Session. The home and remote €lements specify the expected Java
programming language types of the referenced enterprise bean’s home and remote
interfaces.

An EJB reference is scoped to the application component whose declaration
containsthe ejb-ref oOr ejb-local-ref e ement. This meansthat the EJB
referenceis not accessible from other application components at runtime, and that
other application components may define ejb-ref or ejb-Tocal-ref elements
with the same ejb-ref-name Without causing a name conflict.

The following example illustrates the declaration of EJB referencesin the
deployment descriptor.

<ejb-ref>
<description>
This is a reference to the entity bean that
encapsulates access to employee records.
</description>
<ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmpToyeeRecord</remote>
</ejb-ref>

<ejb-ref>
<ejb-ref-name>ejb/Payrolli</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.aardvark.payrol1.Payrol1Home</home>
<remote>com.aardvark.payroll.Payroll</remote>

Public Review

ENTERPRISE JAVABEANS™ (EJB) REFERENCES

</ejb-ref>

<ejb-ref>
<ejb-ref-name>ejb/PensionPlan</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.wombat.empl.PensionPTanHome</home>
<remote>com.wombat.empl.PensionPlan</remote>
</ejb-ref>

J2EE.5.5.2 Application Assembler’s Responsibilities

The Application Assembler can use the ejb-1ink element in the deployment
descriptor to link an EJB reference to atarget enterprise bean.
The Application Assembler specifiesthe link to an enterprise bean as follows:

» TheApplication Assembler usesthe optional ejb-11ink element of theejb-ref
or ejb-local-ref element of the referencing application component. The val-
ue of the ejb-Tink element is the name of the target enterprise bean. (It isthe
name defined inthe ejb-name element of thetarget enterprise bean.) Thetarget
enterprise bean can be in any gjb-jar file in the same J2EE application asthe
referencing application component.

« Alternatively, to avoid the need to rename enterprise beans to have unique
names within an entire J2EE application, the Application Assembler may use
the following syntax in the ejb-1ink element of the referencing application
component. The Application Assembler specifies the path name of the gjb-jar
file containing the referenced enterprise bean and appends the ejb-name of the
target bean separated from the path name by “#”. The path nameisrelativeto
the referencing application component JAR file. In this manner, multiple
beans with the same ejb-name may be uniquely identified when the Applica-
tion Assembler cannot change gjb-names.

» The Application Assembler must ensure that the target enterprise bean istype-
compatible with the declared EJB reference. This means that the target enter-
prise bean must be of the typeindicated in the ejb-ref-type element, and that
the home and remote interfaces of the target enterprise bean must be Javatype-
compatible with the interfaces declared in the EJB reference.

The following example illustrates the use of the ejb-T1ink element in the
deployment descriptor. The enterprise bean reference should be satisfied by the

80

bean named EmpToyeeRecord. The EmployeeRecord enterprise bean may be
packaged in the same modul e as the component making this reference, or it may
be packaged in another module within the same J2EE application as the
component making this reference.

<ejb-ref>
<description>
This is a reference to the entity bean that
encapsulates access to employee records. It
has been Tinked to the entity bean named
EmployeeRecord in this application.
</description>
<ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
<ejb-Tink>EmpTloyeeRecord</ejb-Tink>
</ejb-ref>

The following example illustrates using the ejb-1ink element to indicate an
enterprise bean reference to the ProductEJB enterprise bean that is in the same
J2EE application unit but in adifferent gb-jar file.

<ejb-ref>
<description>
This is a reference to the entity bean that
encapsulates access to a product. It
has been 1linked to the entity bean named
ProductEJB in the product.jar file in this
application.
</description>
<ejb-ref-name>ejb/Product</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.acme.products.ProductHome</home>
<remote>com.acme.products.Product</remote>
<ejb-Tink>../products/product.jar#ProductEJB</ejb-Tink>
</ejb-ref>

Public Review

ENTERPRISE JAVABEANS™ (EJB) REFERENCES

The following example illustrates using the ejb-1ink element to indicate an
enterprise bean reference to the ShoppingCart enterprise bean that isin the same
J2EE application unit but in a different gjb-jar file. The reference was originally
declared in the application component’s code using an annotation. The Assembler
provides only the link to the bean.

<ejb-ref>
<ejb-ref-name>ShoppingService/myCart</ejb-ref-name>
<ejb-Tink>../products/product.jar#ShoppingCart</ejb-Tink>
</ejb-ref>

J2EE.5.5.3 Deployer’s Responsibilities
The Deployer is responsible for the following:

» TheDeployer must ensurethat all the declared EJB references are bound to the
homes or instances of enterprise beans that exist in the operational environ-
ment. The Deployer may use, for example, the INDI LinkRef mechanism to
create asymbolic link to the actual INDI name of the target enterprise bean.

» The Deployer must ensure that the target enterprise bean is type-compatible
with the types declared for the EJB reference. This means that the target en-
terprise bean must be of the type indicated in the ejb-ref-type element or
specified viathe EJB annotation, and that the home and remote interfaces of
the target enterprise bean must be Java type-compatible with the home and re-
mote interfaces declared in the EJB reference (if specified).

« If an EJB reference declaration includes the ejb-1ink element, the Deployer
should bind the enterprise bean reference to the enterprise bean specified asthe
link’ s target.

J2EE.5.5.4 J2EE Product Provider’s Responsibilities

The J2EE Product Provider must provide the deployment tools that allow the
Deployer to perform the tasks described in the previous subsection. The deployment
tools provided by the J2EE Product Provider must be able to processthe
information supplied in class file annotations and in the ejb-ref elementsin the
deployment descriptor.

81

At the minimum, the tools must be able to:

* Preserve the application assembly information in annotations or in the ejb-
link elements by binding an EJB reference to the home interface or instance
of the specified target enterprise bean.

* Inform the Deployer of any unresolved EJB references, and allow him or her
to resolve an EJB reference by binding it to a specified compatible target en-
terprise bean.

J2EE.5.6 Resource Manager Connection Factory References

A resource manager connection factory isan object that is used to create
connections to a resource manager. For example, an object that implements the
javax.sql.DataSource interfaceisaresource manager connection factory for
java.sql.Connection objectsthat implement connections to a database
management system.

This section describes the application component programming and
deployment descriptor interfaces that allow the application component code to
refer to resource factories using logical names called resource manager
connection factory references. The resource manager connection factory
references are special entries in the application component’s environment. The
Deployer binds the resource manager connection factory references to the actual
resource manager connection factories that exist in the target operational
environment. Because these resource manager connection factories allow the
Container to affect resource management, the connections acquired through the
resource manager connection factory references are called managed resources (for
example, these resource manager connection factories allow the Container to
implement connection pooling and automatic enlistment of the connection with a
transaction).

Resource manager connection factory objects accessed through the naming
environment are only valid within the component instance that performed the
lookup. Seethe individual component specifications for additional restrictions

that may apply.

Public Review

RESOURCE MANAGER CONNECTION FACTORY REFERENCES

J2EE.5.6.1 Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view of locating
resource factories and defines his or her responsibilities. It does so in three sections,
the first describing the annotations used to inject resource manager connection
factory references, the second describing the API for accessing resource manager
connection factory references, and the thrid describing the syntax for declaring the
factory referencesin a deployment descriptor

J2EE.5.6.1.1 Injection of Resource Manager Connection Factory
References

A field or amethod of an application component may be annotated with the
Resource annotation. The name and type of the factory are as described above. The
authenticationType and shareable elements of the Resource annotation may be
used to control the type of authentication desired for the resource and the
shareability of connection acquired from the factory, as described in the following
sections.

The following code example illustrates how an application component uses
annotations to declare resource manager connection factory references.

// The employee database.
@Resource javax.sql.DataSource employeeAppDB;

public void changePhoneNumber(...) {

// Invoke factory to obtain a resource. The security

// principal for the resource 1is not given, and

// therefore it will be configured by the Deployer.
java.sql.Connection con = employeeAppDB.getConnection();

J2EE.5.6.1.2 Programming I nterfaces for Resource Manager Connection
Factory References

The Application Component Provider may use resource manager connection factory
references to obtain connections to resources as follows.

» Assign an entry in the application component’ s naming environment to the re-
source manager connection factory reference. (See subsection 5.6.1.3 for in-

83

formation on how resource manager connection factory references are
declared in the deployment descriptor.)

* This specification recommends, but does not require, that all resource manag-
er connection factory references be organized in the subcontexts of the appli-
cation component’s environment, using a different subcontext for each
resource manager type. For example, all JDBC™ DataSource references
should be declared in the java: comp/env/jdbc subcontext, all IMS connec-
tion factoriesin the java: comp/env/jms subcontext, all JavaMail connection
factoriesin the java: comp/env/mai1 subcontext, and all URL connection fac-
toriesin the java: comp/env/url subcontext. Note that resource manager con-
nection factory references declared via annotations will not, by default,
appear in any subcontext.

* Lookup the resource manager connection factory object in the application
component’s environment using the JINDI interface.

* Invokethe appropriate method on the resource manager connection factory ob-
ject to obtain a connection to the resource. The factory method is specific to
the resource type. It is possible to obtain multiple connections by calling the
factory object multiple times.

The Application Component Provider can control the shareability of the
connections acquired from the resource manager connection factory. By defaullt,
connections to a resource manager are shareable across other application
components in the application that use the same resource in the same transaction
context. The Application Component Provider can specify that connections
obtained from a resource manager connection factory reference are not shareable
by specifying the value of the res-sharing-scope deployment descriptor element
to be Unshareable. The sharing of connections to aresource manager allows the
container to optimize the use of connections and enables the container’s use of
local transaction optimizations.

The Application Component Provider has two choices with respect to dealing
with associating a principal with the resource manager access:

 Allow the Deployer to set up principal mapping or resource manager sign on
information. In this case, the application component code invokes a resource
manager connection factory method that has no security-related parameters.

* Sign on to the resource from the application component code. In this case, the
application component invokes the appropriate resource manager connection

Public Review

RESOURCE MANAGER CONNECTION FACTORY REFERENCES

factory method that takes the sign on information as method parameters.

The Application Component Provider uses the res-auth deployment
descriptor element to indicate which of the two resource authentication
approachesis used.

We expect that the first form (that is letting the Deployer set up the resource
sign on information) will be the approach used by most application components.

The following code sampleillustrates obtaining a JDBC connection.

public void changePhoneNumber(...) {

// obtain the initial INDI context
Context initCtx = new InitialContext();

// perform INDI lookup to obtain resource manager

// connection factory

javax.sql.DataSource ds = (javax.sql.DataSource)
initCtx.Tookup("java:comp/env/jdbc/EmployeeAppDB™) ;

// Invoke factory to obtain a resource. The security
// principal for the resource is not given, and

// therefore it will be configured by the Deployer.
java.sql.Connection con = ds.getConnection();

J2EE.5.6.1.3 Declaration of Resource Manager Connection Factory
Referencesin Deployment Descriptor

Although a resource manager connection factory reference is an entry in the
application component’s environment, the Application Component Provider must
not use an env-entry element to declareit.

Instead, the Application Component Provider must declare al the resource
manager connection factory references using either annotations on the application
component’s code or in the deployment descriptor using the resource-ref
elements. This allows the consumer of the application component’s JAR file (the
Application Assembler or Deployer) to discover all the resource manager
connection factory references used by an application component. Deployment

85

86

descriptor entries may also be used to specify injection of aresource manager
connection factory reference into an application component.

Each resource-ref element describes a single resource manager connection
factory reference. The resource-ref element consists of the description
element, the mandatory res-ref-name, res-type, and res-auth elements, and the
optional res-sharing-scope lement. The res-ref-name €ement containsthe
name of the environment entry used in the application component’s code. The
name of the environment entry isrelative to the java: comp/env context (for
example, the name should be jdbc/EmployeeAppDB rather than java: comp/env/
jdbc/EmployeeAppDB). The res-type element contains the Java programming
language type of the resource manager connection factory that the application
component code expects. The res-auth element indicates whether the
application component code performs resource sign on programmatically, or
whether the container signs on to the resource based on the principal mapping
information supplied by the Deployer. The Application Component Provider
indicates the sign on responsibility by setting the value of the res-auth element to
Application Or Container. The res-sharing-scope element indicates whether
connectionsto the resource manager obtained through the given resource manager
connection factory reference can be shared or whether connections are
unshareable. The value of the res-sharing-scope element is Shareable oOr
Unshareable. If the res-sharing-scope element is not specified, connections are
assumed to be shareable.

A resource manager connection factory reference is scoped to the application
component whose declaration contains the resource-ref element. This means
that the resource manager connection factory reference is not accessible from
other application components at runtime, and that other application components
may define resource-ref elements with the same res-ref-name without causing
aname conflict.

The type declaration alows the Deployer to identify the type of the resource
manager connection factory.

Note that the indicated type is the Java programming language type of the
resource manager connection factory, not the type of the connection.

Thefollowing example isthe declaration of the resource reference used by the
application component illustrated in the previous subsection.

<resource-ref>
<description>
A data source for the database in which

Public Review

RESOURCE MANAGER CONNECTION FACTORY REFERENCES

the EmployeeService enterprise bean will

record a Tog of all transactions.
</description>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

J2EE.5.6.1.4 Standard Resource Manager Connection Factory Types

The Application Component Provider must usethe javax.sql.DataSource
resource manager connection factory type for obtaining JDBC API connections.

The Application Component Provider must use the
javax.jms.QueueConnectionFactory, the javax.jms.TopicConnectionFactory
or the javax. jms.ConnectionFactory for obtaining JIMS connections.

The Application Component Provider must use the javax.mail.Session
resource manager connection factory type for obtaining JavaMail API
connections.

The Application Component Provider must use the java.net.URL resource
manager connection factory type for obtaining URL connections.

It isrecommended that the A pplication Component Provider name JDBC API
data sources in the java: comp/env/jdbc subcontext, all IMS connection factories
inthe java: comp/env/jms subcontext, al JavaMail APl connection factoriesin
the java: comp/env/mai1 subcontext, and all URL connection factoriesin the
java:comp/env/url subcontext. Note that resource manager connection factory
references declared via annotations will not, by default, appear in any subcontext.

The J2EE Connector Architecture allows an application component to use the
annotation or API described in this section to obtain resource objects that provide
access to additional back-end systems.

J2EE.5.6.2 Deployer’s Responsibilities

The Deployer uses deployment tools to bind the resource manager connection
factory referencesto the actua resource factories configured in the target
operational environment.

The Deployer must perform the following tasks for each resource manager
connection factory reference declared in the deployment descriptor:

87

* Bind the resource manager connection factory reference to aresource manager
connection factory that existsin the operational environment. The Deployer
may use, for example, the INDI LinkRef mechanism to create asymbolic link
to the actual INDI name of the resource manager connection factory. There-
source manager connection factory type must be compatible with the type de-
clared in the res-type element.

 Provide any additional configuration information that the resource manager
needs for opening and managing the resource. The configuration mechanism
is resource manager specific, and is beyond the scope of this specification.

« |f the value of the Resource annotation authenticationType element is
AuthenticationType.CONTAINER or the deployment descriptor’s res-auth ele-
ment is Container, the Deployer isresponsible for configuring the sign onin-
formation for the resource manager. Thisis performed in a manner specific to
the container and resource manager; it is beyond the scope of this specifica
tion.

For example, if principals must be mapped from the security domain and prin-
cipa realm used at the application component level to the security domain
and principal realm of the resource manager, the Deployer or System Admin-
istrator must define the mapping. The mapping is performed in a manner spe-
cific to the container and resource manager; it is beyond the scope of this
specification.

J2EE.5.6.3 J2EE Product Provider’s Responsibilities

The J2EE Product Provider isresponsible for the following:

* Provide the deployment tools that allow the Deployer to perform the tasks de-
scribed in the previous subsection.

* Provide the implementation of the resource manager connection factory class-
esthat are required by this specification.

* If the Application Component Provider set the authenticationType element
of the Resource annotation to AuthenticationType.APPLICATION Or the res-
auth of aresource referenceto Application, the container must allow the ap-
plication component to perform explicit programmatic sign on using the re-
source manager’s API.

* If the Application Component Provider setsthe shareable element of the
Resource annotation to false or setsthe res-sharing-scope of aresource

Public Review

RESOURCE MANAGER CONNECTION FACTORY REFERENCES 89

manager connection factory reference to Unshareable, the container must not
attempt to share the connections obtained from the resource manager connec-
tion factory reference.

» The container must provide tools that alow the Deployer to set up resource
sign on information for the resource manager references whose
authenticationType iS Set tO AuthenticationType.CONTAINER Oor Whose res-
auth element is set to Container. The minimum requirement is that the De-
ployer must be able to specify the username/password information for each re-
source manager connection factory reference declared by the application
component, and the container must be abl e to use the username/password com-
bination for user authentication when obtaining a connection by invoking the
resource manager connection factory.

Although not required by this specification, we expect that containers will
support some form of asingle sign on mechanism that spans the application server
and the resource managers. The container will allow the Deployer to set up the
resources such that the principal can be propagated (directly or through principal
mapping) to aresource manager, if required by the application.

While not required by this specification, most J2EE products will provide the
following features:

A tool to allow the System Administrator to add, remove, and configure are-
source manager for the J2EE Server.

» A mechanism to pool resourcesfor the application components and otherwise
manage the use of resources by the container. The pooling must be transparent
to the application components.

J2EE.5.6.4 System Administrator’s Responsibilities

The System Adminisgtrator istypically responsible for the following:

» Add, remove, and configure resource managers in the J2EE Server environ-
ment.

In some scenarios, these tasks can be performed by the Deployer.

1 Connections obtained from the same resource manager connection facto-
ry through a different resource manager connection factory reference
many be shareable.

90

J2EE 5.7 Resour ce Environment Refer ences

This section describes the programming and deployment descriptor interfaces that
alow the Application Component Provider to refer to administered objects that are
associated with aresource (for example, a Connector CCl InteractionSpec
instance) by using “logical” names called resource environment references. The
resource environment references are special entries in the application component’s
environment. The Deployer binds the resource environment references to
administered objectsin the target operational environment.

J2EE.5.7.1 Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider's view and
responsibilities with respect to resource environment references.

J2EE.5.7.1.1 Injection of Resource Environment References

A field or amethod of an application component may be annotated with the
Resource annotation to request injection of a resouce environment reference. The
name and type of the resource environment reference are as described earlier. The
authenticationType and shareable elements of the Resource annotation must not
be specified; resource environment entries are not shareable and do not require
authentication. The use of the Resource annotation to declare aresource
environment references differs from the use of the Resource annotation to declare
other environment references only in that the type of aresource environment
referenceis not one of the Java language types used for other environment
references.

J2EE.5.7.1.2 Resource Environment Reference Programming I nterfaces

The Application Component Provider may use resource environment references to
locate administered objects that are associated with resources as follows.

» Assign an entry in the application component’ s environment to the reference.
(See subsection 5.7.1.3 for information on how resource environment refer-
ences are declared in the deployment descriptor.)

* This specification recommends, but does not require, that all resource envi-
ronment references be organized in the appropriate subcontext of the compo-
nent’s environment for the resource type. Note that resource environment

Public Review

RESOURCE ENVIRONMENT REFERENCES 91

references declared via annotations will not, by default, appear in any subcon-
text.

 Look up the administered object in the application component’ s environment
using JNDI.

J2EE.5.7.1.3 Declaration of Resource Environment Referencesin
Deployment Descriptor

Although the resource environment reference is an entry in the application
component’s environment, the Application Component Provider must not use a
env-entry element to declareit. Instead, the Application Component Provider must
declare all references to administered objects associated with resources using either
annotations on the application component’s code or the resource-env-ref e ements
of the deployment descriptor. This allows the application component’s JAR file
consumer to discover al the resource environment references used by the
application component. Deployment descriptor entries may also be used to specify
injection of aresource environment reference into an application component.

Each resource-env-ref element describes the requirements that the
referencing application component has for the referenced administered object.
The resource-env-ref element contains an optional description element and the
mandatory resource-env-ref-name and resource-env-ref-type €lements.

The resource-env-ref-name element specifies the resource environment
reference name. Its value is the environment entry name used in the application
component code. The name of the resource environment reference is relative to
the java: comp/env context. The resource-env-ref-type element specifiesthe
expected type of the referenced object.

A resource environment reference is scoped to the application component
whose declaration contains the resource-env-ref element. This means that the
resource environment reference is not accessible to other application components
at runtime, and that other application components may define resource-env-ref
elements with the same resource-env-ref-name without causing a name conflict.

J2EE.5.7.2 Deployer’s Responsibilities
The Deployer is responsible for the following:

» The Deployer must ensurethat all the declared resource environment referenc-
es are bound to administered objects that exist in the operational environment.

92

The Deployer may use, for example, the INDI LinkRef mechanism to create a
symbolic link to the actual INDI name of the target object.

» The Deployer must ensure that the target object is type-compatible with the
type declared for the resource environment reference. This means that the tar-
get object must be of the type indicated in the Resource annotation or the
resource-env-ref-type € ement.

J2EE.5.7.3 J2EE Product Provider’s Responsibilities

The J2EE Product Provider must provide the deployment tools that allow the
Deployer to perform the tasks described in the previous subsection. The deployment
tools provided by the J2EE Product Provider must be able to processthe
information supplied in the class file annotations and the resource-env-ref
elementsin the deployment descriptor.

At the minimum, the tools must be able to inform the Deployer of any
unresolved resource environment references, and allow him or her to resolve a
resource environment reference by binding it to a specified compatible target
object in the environment.

J2EE.5.8 Message Destination References

This section describes the programming and deployment descriptor interfaces that
alow the Application Component Provider to refer to message destination objects
by using “logical” names called message destination references. Message
destination references are special entries in the application component’s
environment. The Deployer binds the message destination references to

admini stered message destinations in the target operational environment.

J2EE.5.8.1 Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’'s view and
responsibilities with respect to message destination references.

J2EE.5.8.1.1 Injection of Message Destination References

A field or amethod of an application component may be annotated with the
Resource annotation to request injection of a message destination reference. The
name and type of the resource environment reference are as described earlier. The

Public Review

MESSAGEDESTINATION REFERENCES

authenticationType and shareable elements of the Resource annotation must not
be specified; message destination references are not shareable and do not require
authentication.

Note that when using the Resource annotation to declare a message
destination reference it is not possible to link the reference to other referencesto
the same message destination, or to specify whether the message desitnation is
used to produce or consume messages. The deployment descriptor entries
described later do provide away to associate many message destination references
with a single message destination and to specify whether each message
destination reference is used to produce, consume, or both produce and consume
messages, so that the entire message flow of an application may be specified. The
Application Assembler may use these message destination linksto link together
message destination references that have been declared using the Resource
anotation. A message destination reference declared viathe Resource annotation
is assumed to be used to both produce and consume messages; this default may be
overridden using a deployment descriptor entry.

The following example illustrates how an application component uses the
Resource anotation to request injection of a message destination reference.

@Resource javax.jms.Queue stockQueue;

J2EE.5.8.1.2 Message Destination Reference Programming | nterfaces

The Application Component Provider may use message destination references to
locate message destinations, as follows.

« Assign an entry in the application component’ s environment to the reference.
(Seesubsection 5.8.1.3 for information on how message destination references
are declared in the deployment descriptor.)

* This specification recommends, but does not require, that all message destina-
tion references be organized in the appropriate subcontext of the component’s
environment for the resource type (for example, in the java: comp/env/jms
JNDI context for IMS Destinations). Note that message destination references
declared via annotations will not, by default, appear in any subcontext.

 Look up the administered object in the application component’s environment
using JNDI.

93

The following example illustrates how an application component uses a
message destination reference to locate a JIM S Destination.

// Obtain the default initial INDI context.
Context initCtx = new InitialContext();

// Look up the IMS StockQueue in the environment.
Object result = initCtx.Tookup("java:comp/env/jms/StockQueue™);

// Convert the result to the proper type.
javax.jms.Queue queue = (javax.jms.Queue)result;

In the example, the Application Component Provider assigned the
environment entry jms/StockQueue as the message destination reference name to
refer to aJM S queue.

J2EE.5.8.1.3 Declaration of Message Destination References in Deployment
Descriptor

Although the message destination reference is an entry in the application
component’s environment, the Application Component Provider must not use a
env-entry element to declareit. Instead, the Application Component Provider
should declare all references to message destinations using either the Resource
annotation in the application component’s code or the message-destination-ref
elements of the deployment descriptor. This allows the application component’s
JAR file consumer to discover al the message destination references used by the
application component. Deployment descriptor entries may also be used to specify
injection of a message destination reference into an application component.

Each message-destination-ref element describes the requirements that the
referencing application component has for the referenced destination. The
message-destination-ref element containsan optional description element and
the mandatory message-destination-ref-name, message-destination-type, and
message-destination-usage €lements.

Themessage-destination-ref-name element specifies the message
destination reference name. Its value is the environment entry name used in the
application component code. The name of the message destination referenceis
relative to the java: comp/env context (for example, the name should be jms/
StockQueue rather than java:comp/env/jms/StockQueue). The message-
destination-type €element specifiesthe expected type of the referenced
destination. For example, in the case of a JMS Destination, its value might be

Public Review

MESSAGEDESTINATION REFERENCES

javax.jms.Queue. Themessage-destination-usage element specifies whether
messages are consumed from the message destination, produced for the
destination, or both.

A message destination reference is scoped to the application component
whose declaration contains the message-destination-ref element. This means
that the message destination reference is not accessible to other application
components at runtime, and that other application components may define
message-destination-ref elements with the same message-destination-ref-
name Without causing a name conflict.

The following example illustrates the declaration of message destination
references in the deployment descriptor.

<message-destination-ref>
<description>
This is a reference to a JMS queue used in the
processing of Stock info
</description>
<message-destination-ref-name>
jms/StockInfo
</message-destination-ref-name>
<message-destination-type>
javax.jms.Queue
</message-destination-type>
<message-destination-usage>
Produces
</message-destination-usage>
</message-destination-ref>

J2EE.5.8.2 Application Assembler’s Responsibilities

By means of linking message consumers and producers to one or more common
logical destinations specified in the enterprise bean deployment descriptor, the
Application Assembler can specify the flow of messages within an application. The
Application Assembler usesthemessage-destination elementinan gb-jar file, the
message-destination-1ink element of the message-destination-ref element,
and the message-destination-1ink element of an gb-jar'Smessage-driven
element to link message destination references to a common logical destination.

95

The Application Assembler specifies the link between message consumers
and producers as follows:

» The Application Assembler uses the message-destination element in an gb-
jar deployment descriptor to specify alogical message destination within the
application. The message-destination element defines amessage-
destination-name, which is used for the purpose of linking.

» The Application Assembler usesthe message-destination-Tink element of
the message-destination-ref element of an application component that pro-
duces messagesto link it to the target destination. The value of the message-
destination-Tink element isthe name of thetarget destination, as defined in
the message-destination-name element of the message-destination ele-
ment. The message-destination element can bein any EJB modulein the
same J2EE application as the referencing component. The Application As-
sembler usesthe message-destination-usage element of the message-
destination-ref element to indicate that the referencing application compo-
nent produces messages to the referenced destination.

« If the consumer of messages from the common destination is a message-driv-
en bean, the Application Assembler usesthe message-destination-Tink €le-
ment of the message-driven element to reference the logical destination. If
the Application Assembler links a message-driven bean to its source destina-
tion, he or she should use the message-destination-type € ement of the
message-driven €lement to specify the expected destination type. Otherwise,
the Application Assembler uses the message-destination-1ink element of
the message-destination-ref element of the application component that
consumes messages to link to the common destination. In the latter case, the
Application Assembler uses the message-destination-usage €lement of the
message-destination-ref element to indicate that the application component
consumes messages from the referenced destination.

 To avoid the need to rename message destinations to have unique names with-
in an entire J2EE application, the Application Assembler may use the follow-
ing syntax in the message-destination-1ink €lement of the referencing
application component. The Application Assembler specifies the path name
of the g/b-jar file containing the referenced message destination and appends
the message-destination-name Of the target destination separated from the
path name by #. The path name is relative to the referencing application com-

Public Review

USERTRANSACTIONREFERENCES

ponent JAR file. In this manner, multiple destinations with the same message-
destination-name May be uniquely identified.

» When linking message destinations, the Application Assembler must ensure
that the consumers and producers for the destination require a message desti-
nation of the same or compatible type, as determined by the messaging system.

J2EE.5.8.3 Deployer’s Responsibilities
The Deployer is responsible for the following:

» The Deployer must ensure that all the declared message destination references
are bound to administered objects that exist in the operational environment.
The Deployer may use, for example, the INDI LinkRef mechanism to create a
symboalic link to the actual INDI name of the target object.

» The Deployer must ensure that the target object is type-compatible with the
type declared for the message destination reference. This meansthat the target
object must be of the type indicated in the message-destination-type €le-
ment.

» The Deployer must observe the message destination links specified by the Ap-
plication Assembler.

J2EE.5.84 J2EE Product Provider’s Responsibilities

The J2EE Product Provider must provide the deployment tools that allow the
Deployer to perform the tasks described in the previous subsection. The deployment
tools provided by the J2EE Product Provider must be able to processthe
information supplied in the message-destination-ref elementsin the deployment
descriptor.

At the minimum, the tools must be able to inform the Deployer of any
unresolved message destination references, and allow him or her to resolve a
message destination reference by binding it to a specified compatible target object
in the environment.

J2EE.5.9 User Transaction References

Certain J2EE application component types are allowed to use the JTA
UserTransaction interface to start, commit, and abort transactions. Such

97

98

application components can find an appropriate object implementing the
UserTransaction interface by looking up the INDI name java: comp/
UserTransaction OF by requesting injection of auserTransaction object using the
Resource annotation. The authenticationType and shareable elements of the
Resource annotation must not be specified. The container is only required to
providethe java:comp/UserTransaction Name, or inject aUserTransaction
object, for those componentsthat can validly make use of it. Any such referencetoa
UserTransaction object isonly valid within the component instance that performed
the lookup. See theindividual component definitions for further information.

Thefollowing exampleillustrates how an application component acquires and
uses aUserTransaction object viainjection.

@Resource UserTransaction tx;
public void updateData(...) {

// Start a transaction.
tx.begin(Q;
// Perform transactional operations on data.

// Commit the transaction.
tx.commit();

Thefollowing exampleillustrates how an application component acquires and
uses aUserTransaction object using a INDI lookup.

public void updateData(...) {

// Obtain the default initial JINDI context.
Context initCtx = new InitialContext();

// Look up the UserTransaction object.
UserTransaction tx = (UserTransaction)initCtx.lookup(

"java:comp/UserTransaction");

// Start a transaction.
tx.begin(Q;

Public Review

ORBREFERENCES

// Perform transactional operations on data.

// Commit the transaction.
tx.commit(Q);

}

A UserTransaction object reference may also be declared in a deployment
descriptor in the same way as a resource environment reference. Such a
deployment descriptor entry may be used to specify injection of a
UserTransaction Object.

J2EE.5.9.1 Application Component Provider’s Responsibilities

The Application Component Provider is responsible for requesting injection of a
UserTransaction object using aResource annotation, or using the defined name to
look up the UserTransaction object.

Only some application component types are required to be able to access a
UserTransaction object; see Table J2EE.6-1 in this specification and the EJB
specification for details.

J2EE.5.9.2 J2EE Product Provider’s Responsibilities

The J2EE Product Provider isresponsible for providing an appropriate
UserTransaction object as required by this specification.

J2EE.5.10 ORB References

Some J2EE applications will need to make use of the CORBA ORB to perform
certain operations. Such applications can find an appropriate object implementing
the orB interface by looking up the INDI name java: comp/ORB oOr by requesting
injection of an ORB object. The container isrequired to provide the java: comp/ORB
name for al components except applets. Any such reference to aorB object isonly
valid within the component instance that performed the lookup.

Thefollowing exampleillustrates how an application component acquires and
uses an ORB object viainjection.

99

100

@Resource ORB orb;
public void method(...) {

// Get the POA to use when creating object references.
POA rootPOA = (POA)orb.resolve_initial_references("RootPOA");

Thefollowing exampleillustrates how an application component acquires and
uses an ORB object using a JINDI lookup.

pubTlic void method(...) {

// Obtain the default initial JINDI context.
Context initCtx = new InitialContext();

// Look up the ORB object.
ORB orb = (ORB)initCtx.lookup("java:comp/ORB");

// Get the POA to use when creating object references.
POA rootPOA = (POA)orb.resolve_initial_references("RootPOA");

}

An 0RB object reference may also be declared in adeployment descriptor in
the same way as a resource manager connection factory reference. Such a
deployment descriptor entry may be used to specify injection of an orB object.

The 0rB instance avail able under the INDI name java: comp/0RB may always
be a shared instance. By default, the ORB instance injected into a component or
declared via a deployment descriptor entry may also be a shared instance.
However, the application may set the shareable element of the Resource
annotation to false, or may Set the res-sharing-scope element in the deployment
descriptor to UnshareabTe, to request a non-shared ORB instance.

J2EE.5.10.1 Application Component Provider’s Responsibilities

The Application Component Provider isresponsible for requessting injection of the
ORB object using the Resource annotation, or using the defined name to look up the
ORB object. If the shareable element of the Resource annotation is set to false, the

Public Review

ORBREFERENCES

ORB object injected will not be the shared instance used by other componentsin the
application but instead will be a private ORB instance used only by this component.

J2EE.5.10.2 J2EE Product Provider’s Responsibilities

The J2EE Product Provider isresponsiblefor providing an appropriate ORB object as
required by this specification.

101

102

Public Review

e JZEE.O

Application Programmind
Interface

T his Chapter describes API requirements for the Java™ 2 Platform, Enterprise
Edition (J2EE). J2EE requires the provision of anumber of APIsfor use by J2EE
applications, starting with the core Java APIs and including several Java optional
packages'.

J2EE.6.1 Required APIs

J2EE application components execute in runtime environments provided by the
containers that are a part of the J2EE platform. The J2EE platform supports four
types of containers corresponding to J2EE application component types: application
client containers, applet containers, web containers for servlets and JSP pages, and
enterprise bean containers.

J2EE.6.1.1 Java Compatible APIs

The containers provide al application components with the Java 2 Platform,
Standard Edition, v5.0 (J2SE) APIs, which include the following enterprise APIs:

 Note that “optional packages’ were previously called “standard exten-
sions’. The packages described here are optional relativeto J2SE, but re-
quired for J2EE.

103

104

« JavalDL API
* JDBC API

* RMI-IIOP API
* JNDI API

* JAXPAPI

* JAASAPI

« IMX API

In particular, the applet execution environment must be J2SE 5.0 compatible.
Since typical browsers don't yet provide such support, J2EE products may make
use of the Java Plugin to provide the required applet execution environment. Use
of the Java Plugin is not required, but is one method of meeting the requirement to
provide a J2SE 5.0 compatible applet execution environment.

The specifications for the 2SE APIs are available at http://java.sun.com/
j2se/5.0/docs/.

J2EE.6.1.2 Java Optional Packages

The J2EE platform also requires a number of Java optiona packages. Table
J2EE.6-1 indicates the required optional packages with their required versions.

TableJ2EE.6-1 J2EE-Required Java Optional Packages

Optional Package App Client Applet Web

m
[
w

<

EJB 3.0 Y?
Serviet 2.4
JSP2.1
JMS11
JTA 10
JavaMail 1.3
JAF11

Connector 1.5

< Z < < zZ < zZ z
z z z z z z z z zZ
< < < < < < =< <

< < < < < < zZ zZ <

Web Services 1.1

Public Review

REQUIREDAPIS 105

Table J2EE.6-1 J2EE-Required Java Optional Packages

Optional Package App Client Applet Web EJB
JAX-RPC 1.1 Y N Y Y
JAX-WS 2.0 Y N Y Y
JAXB 2.0 Y N Y Y
SAAJ13 Y N Y Y
JAXR 1.0 Y N Y Y
J2EE Management 1.0 Y N Y Y
J2EE Deployment 1.1° N N N N
JACC1.0 N N Y Y
JSP Debugging 1.0 N N Y N
JSTL 1.1 N N Y N
WebSvc Metadata 1.0 Y N Y Y
JSF1.2 N N Y N
Common Annotations 1.0 Y N Y Y
SIAX 1.0 Y N Y Y
Java Persistence 1.0 Y N Y Y

a Client APIs only.
b. Client APIs only.
C. See section J2EE.6.18 on page 129 for details.

All classes and interfaces required by the specifications for the APIs must be
provided by the J2EE containers. In some cases, a J2EE product is not required to
provide objects that implement interfaces intended to be implemented by an
application server, nevertheless, the definitions of such interfaces must be
included in the J2EE platform.

Note— Severa of theincluded APIsarelikely to be revised before 2EE 5.0 is
finalized. The table above will be updated at that time.

106

J2EE.6.2 Java2 Platform, Standard Edition (J2SE)
Requirements

J2EE.6.2.1 Programming Restrictions

The J2EE programming model divides responsibilities between Application
Component Providers and J2EE Product Providers: Application Component
Providers focus on writing business logic and the J2EE Product Providers focus on
providing amanaged system infrastructure in which the application components can
be deployed.

This division leads to arestriction on the functionality that application
components can contain. If application components contain the same functionality
provided by J2EE system infrastructure, there are clashes and mis-management of
the functionality.

For example, if enterprise beans were alowed to manage threads, the J2EE
platform could not manage the life cycle of the enterprise beans, and it could not
properly manage transactions.

Since we do not want to subset the J2SE platform, and we want J2EE Product
Providers to be able to use J2SE products without modification in the J2EE
platform, we use the J2SE security permissions mechanism to express the
programming restrictions imposed on Application Component Providers.

In this section, we specify the J2SE security permissions that the J2EE
Product Provider must provide for each application component type. We call these
permissions the J2EE security permissions set. The J2EE security permissions set
isarequired part of the J2EE API contract. Portable applications will rely on only
the set of permissions specified here.

J2EE.6.2.2 The J2EE Security Permissions Set

The J2EE security permissions set defines the minimum set of permissions that
application components can expect. All J2EE products must be capable of
deploying application components that require the set of permissions described
here. The Product Provider must ensure that the application components do not use
functions that conflict with the J2EE security permission set.

Public Review

JAVA 2 PLATFORM, STANDARD EDITION (J2SE) REQUIREMENTS

The exact set of security permissions for application componentsin use at a
particular installation is a matter of policy outside the scope of this specification.
A J2EE product may allow applications to run with no security manager at al, or
with a security manager that enforces any set of security permissions, as required
by the enterprise environment. All J2EE products must be capable of running
applications with at least the set of permissions described here. Some J2EE
products will allow the set of permissions available to a component to be
configurable, providing some components with more or fewer permissions than
those described here. A future version of this specification will alow these
security requirements to be specified in the deployment descriptor for application
components. At the present time, application components that need permissions
not in thisminimal set should describe their requirements in their documentation.
Note that it may not be possible to deploy applications that require more than this
minimal set on some J2EE products.

The J2SE security permissions are fully described in http://java.sun.com/
j2se/5.0/docs/guide/security/permissions.html.

J2EE.6.2.3 Listing of the J2EE Security Permissions Set

Table J2EE.6-2 lists the J2EE security permissions set. Thisisthetypica set of
permissions that components of each type should expect to have.

Table J2EE.6-2 J2EE Security Permissions Set

Security Permissions Target Action

Application Clients

java.awt.AWTPermission accessClipboard
java.awt.AWTPermission accessEventQueue
java.awt.AWTPermission showWindowWithout

WarningBanner

java.lang.RuntimePermission exitVM
java.lang.RuntimePermission loadLibrary
java.lang.RuntimePermission gueuePrintJob

java.net.SocketPermission * connect

107

108

TableJ2EE.6-2 J2EE Security Permissions Set

Security Permissions Target Action
java.net.SocketPermission localhost:1024- accept,listen
java.io.FilePermission * read,write
java.util.PropertyPermission * read
Applet Clients

java.net.SocketPermission codebase connect
java.util.PropertyPermission limited read

Web Components and EJB Components

java.lang.RuntimePermission loadLibrary
java.lang.RuntimePermission queuePrintJob
java.net.SocketPermission * connect
java.io.FilePermission * read,write
java.util.PropertyPermission * read

Note that an operating system that hosts a J2EE product may impose
additional security restrictions of its own that must be taken into account. For
instance, the user identity under which a component executesis not likely to have

permission to read and write all files.

J2EE.6.2.4

J2EE.6.2.4.1 Networking

Additional Requirements

The J2SE platform includes a pluggable mechanism for supporting multiple URL

protocols through the java.net.URLStreamHandler class and the

java.net.URLStreamHandlerFactory interface.
The following URL protocols must be supported:

* file: Only reading from a file URL need be supported. That is, the corre-
sponding URLConnection object’s getOutputStream method may fail with an

Public Review

JAVA 2 PLATFORM, STANDARD EDITION (J2SE) REQUIREMENTS

UnknownServiceException. File accessis restricted according to the permis-
sions described above.

e http: Version 1.1 of the HTTP protocol must be supported An http URL
must support both input and output.

* https: SSL version 3.0 and TLSversion 1.0 must be supported by https URL
objects. Both input and output must be supported.

The J2SE platform aso includes a mechanism for converting a URL's byte
stream to an appropriate object, using the java.net.ContentHandler class and
java.net.ContentHandlerFactory interface. A ContentHandler object can
convert aMIME byte stream to an object. ContentHandler Objects are typically
accessed indirectly using the getContent method of URL and URLConnection.

When accessing data of the following MIME types using the getContent
method, objects of the corresponding Javatype listed in Table J2EE.6-3 must be
returned.

Table J2EE.6-3 Java Type of Objects Returned When Using the
getContent Method

MIME Type Java Type

image/qgif java.awt.Image
image/jpeg java.awt.Image
image/png java.awt.Image

Many environments will use HTTP proxies rather than connecting directly to
HTTP servers. If HTTP proxies are being used in the local environment, the
HTTP support in the J2SE platform should be configured to use the proxy
appropriately. Application components must not be required to configure proxy
support in order to use an http URL.

Most enterprise environments will include afirewall that limits access from
the internal network (intranet) to the public Internet, and vice versa. It istypical
for access using the HTTP protocol to pass through such firewalls, perhaps by
using proxy servers. It isnot typical that general TCP/IP traffic, including RMI-
JRMP, and RMI-110P, can pass through firewalls.

These considerations have implications on the use of various protocolsto
communicate between application components. This specification requires that
HTTP access through firewalls be possible where local policy alows. Some J2EE

109

110

products may provide support for tunneling other communication through
firewalls, but thisis neither specified nor required.

J2EE.6.24.2 JDBC™ API

The JDBC API, which is part of the J2SE platform, allows for accessto awide
range of data storage systems. The J2SE platform, however, does not require that a
system mesting the Java Compatible™ quality standards provide a database that is
accessible through the JDBC API.

To alow for the development of portable applications, the J2EE specification
does require that such a database be available and accessible from a J2EE product
through the JDBC API. Such a database must be accessible from web
components, enterprise beans, and application clients, but need not be accessible
from applets. In addition, the driver for the database must meet the JIDBC
Compatible requirements in the JDBC specification.

J2EE applications should not attempt to load JDBC drivers directly. Instead,
they should use the technique recommended in the JDBC specification and
perform a INDI lookup to locate aDataSource object. The INDI hame of the
DataSource object should be chosen as described in Section J2EE.5.6, “ Resource
Manager Connection Factory References.” The J2EE platform must be able to
supply abataSource that does not require the application to supply any
authentication information when obtaining a database connection. Of course,
applications may also supply a user name and password when connecting to the
database.

When aJDBC API connection is used in an enterprise bean, the transaction
characteristics will typically be controlled by the container. The component
should not attempt to change the transaction characteristics of the connection,
commit the transaction, roll back the transaction, or set autocommit mode.
Attempts to make changes that are incompatible with the current transaction
context may result in asQLException being thrown. The EJB specification
contains the precise rules for enterprise beans.

Note that similar restrictions apply when a component creates a transaction
using the JTA UserTransaction interface. The component should not attempt
operations on the JDBC Connection object that would conflict with the
transaction context.

Drivers supporting the JDBC API in a J2EE environment must meet the
JDBC 3.0 API Compliance requirements as specified in the JDBC specification

Public Review

JAVA 2 PLATFORM, STANDARD EDITION (J2SE) REQUIREMENTS 111

and must meet a number of additional requirements in their implementation of
JDBC APIs, as described below:

* Driversarerequired to provide accurate and complete metadata through the
Connection.getMetaData method. J2EE applications should examine the
DatabaseMetaData oObject and adapt their behavior to the capabilities of the
current database. How this information is used to create portable applications
that are independent of the underlying database vendor and driver is beyond
the scope of this specification.

« Drivers must support stored procedures. The DatabaseMetaData method
supportsStoredProcedures must return true. The driver must also support
the full JIDBC API escape syntax for calling stored procedures with the fol-
lowing methods on the Statement, PreparedStatement, and
CallableStatement Classes.

= executelUpdate

= executeQuery

Support for calling stored procedures using the method execute on the
Statement, PreparedStatement, and CallableStatement interfacesis not
required because some databases don't support returning more than asingle
ResultSet from a stored procedure.

 Drivers must support all of the CallableStatement methods that apply to
SQL 92 types, including the following:

» getBigDecimal
= getBoolean

= getByte

= getBytes

= getDate

» getDouble

= getFloat

= getlnt

= getlLong

+ getObject

112

- getShort

= getString

- getTime

- getTimestamp
registerOutParameter

= wasNull

Support for the new BLOB, CLOB, ARRAY, REF, STRUCT, and JAVA_OBJECT typesis
not required. All parameter types (IN, 0UT, and INOUT) must be supported.

 Drivers must support all of the PreparedStatement methods that apply to
SQL 92 types, including the following:

+ setAsciiStream
- setBigDecimal

- setBinaryStream
- setBoolean

* setByte

* setBytes

- setCharacterStream
* setDate

+ setDouble

- setFloat

* setInt

* setlLong

+ setNull

+ setObject

- setShort

- setString

+ setTime

- setTimestamp

Support for the new BLOB, CLOB, ARRAY, REF, STRUCT, and JAVA_OBJECT typesis

Public Review

JAVA 2 PLATFORM, STANDARD EDITION (J2SE) REQUIREMENTS 113

not required. Support for the PreparedStatement method getMetaData iSnot
required. This method must throw an SQLException if it isnot supported. Sup-
port for the PreparedStatement method getParameterMetaData iSrequired.

Full support for batch updatesis required. Thisimplies support for the follow-
ing methods on the Statement, PreparedStatement, and CallableStatement
classes.

= addBatch
= clearBatch

- executeBatch

Driversare freeto implement these methods any way they choose (including a
non-batching implementation) as long as the semantics are correct.

Drivers must support the ResultSet type TYPE_FORWARD_ONLY, with a concur-
rency of CONCUR_READ_ONLY. Support for other ResultSet types
TYPE_SCROLL_INSENSITIVE and TYPE_SCROLL_SENSITIVE, and concurrency
CONCUR_UPDATABLE, is not required.

A driver must provide full support for batabaseMetabata and
ResultSetMetaData. Thisimpliesthat al of the methodsin the
DatabaseMetaData interface must be implemented and must behave as speci-
fied in the JDBC specification. None of the methodsin DatabaseMetaData and
ResultSetMetaData may throw an exception because they are not implement-
ed.

The JDBC API core specification requires that JDBC compliant drivers pro-
vide support for the SQL92, Transitional Level, DROP TABLE command, full
support for the CASCADE and RESTRICT optionsis required. As many popular
databases do not support DROP TABLE as specified in the SQL 92 specification,
the following clarification is required.

A JDBC compliant driver is required to support the DROP TABLE command as
specified by the SQL92, Transitional Level. However, support for the CASCADE
and RESTRICT options of DROP TABLE isoptional. In addition, the behavior of
DROP TABLE isimplementation defined when there are views or integrity con-
straints defined that reference the table that is being dropped.

A driver must support the statement escape syntax for the following func-
tions as specified by the JDBC specification:

114

+ CONCAT

= SUBSTRING

- LOCATE (two argument version only)
- LENGTH

- ABS

* SQRT

* MOD

The JDBC API includes APIsfor row sets, connection naming viaJNDI, connection
pooling, and distributed transaction support. The connection pooling and distributed
transaction features are intended for use by JDBC driversto coordinate with an
application server. 2EE products are not required to support the application server
facilities described by these APIs, although they may prove useful.

The Connector architecture defines an SPI that essentially extends the
functionality of the JIDBC SPI with additional security functionality, and afull
packaging and deployment functionality for resource adapters. A J2EE product
must support deploying and using a JDBC driver that has been written and
packaged as a resource adapter using the Connector architecture.

The JDBC 3.0 specification is available a http://java.sun.com/products/
jdbc/download.htmT.

J2EE.6.2.4.3 JavalDL

JavalDL alows applicationsto access any CORBA object, written in any language,
using the standard I1OP protocol. The J2EE security restrictionstypically prevent all
application component types except application clients from creating and exporting
a CORBA abject, but al J2EE application component types can be clients of
CORBA abjects.

A J2EE product must support Java IDL as defined by chapters 1 - 8, 13, and
15 of the CORBA 2.3.1 specification, available at http://www.omg.org/cgi-bin/
doc?formal/99-10-07, and the IDL To Java Language Mapping Specification,
available at http://www.omg.org/cgi-bin/doc?ptc/2000-01-08.

The I10OP protocol supports the ability to multiplex calls over asingle
connection. All J2EE products must support requests from clients that multiplex
callson aconnection to either Java DL server objects or RMI-110P server objects
(such as enterprise beans). The server must allow repliesto be sent in any order, to
avoid deadlocks where one call would be blocked waiting for another call to

Public Review

JAVA 2 PLATFORM, STANDARD EDITION (J2SE) REQUIREMENTS

complete. J2EE clients are not required to multiplex calls, although such support
is highly recommended.

A J2EE product must provide support for a CORBA Portable Object Adapter
(POA) to support portable stub, skeleton, and tie classes. A J2EE application that
defines or uses CORBA objects other than enterprise beans must include such
portable stub, skeleton, and tie classes in the application package.

J2EE applications need to use an instance of org.omg.CORBA.ORB to perform
many Java IDL and RMI-110OP operations. The default ORB returned by acall to
ORB.init(new String[@], null) must be usable for such purposes; an
application need not be aware of the implementation classes used for the ORB and
RMI-11OP support.

In addition, for performance reasonsit is often advantageous to share an ORB
instance among components in an application. To support such usage, al web,
enterprise bean, and application client containers are required to provide an ORB
instance in the INDI namespace under the name java: comp/ORB. The container is
allowed, but not required, to share this instance between components. The
container may also use this ORB instance itself. To support isolation between
applications, an ORB instance should not be shared between componentsin
different applications. To allow this ORB instance to be safely shared between
components, portable components must restrict their usage of certain ORB APls
and functionality:

* Do not call the ORB shutdown method.

» Do not call the org.omg.CORBA_2_3.0RB methods register_value_factory
and unregister_value_factory With an id used by the container.

A J2EE product must provide a COSNaming service to support the EJB
interoperability requirements. It must be possible to access this COSNaming
service using the Java IDL COSNaming APIs. Applications with appropriate
privileges must be able to lookup objects in the COSNaming service.
COSNaming is defined in the Interoperable Naming Service specification,
available at http://www.omg.org/cgi-bin/doc?formal/2000-06-19.

J2EE.6.2.44 RMI-JRMP

JRMP is the Java technol ogy-specific Remote Method Invocation (RMI) protocol.
The J2EE security restrictions typically prevent all application component types

115

116

except application clients from creating and exporting an RMI object, but al J2EE
application component types can be clients of RMI objects.

J2EE.6.245 RMI-IIOP

RMI-110OP alows objects defined using RMI style interfaces to be accessed using
the I1OP protocol. It must be possible to make any remote enterprise bean accessible
viaRMI-I10OP. Some J2EE products will simply make all remote enterprise beans
always (and only) accessible viaRMI-110P; other products might control thisviaan
administrative or deployment action. These and other approaches are alowed,
provided that any remote enterprise bean (or by extension, al remote enterprise
beans) can be made accessible using RMI-110P,

All components accessing remote enterprise beans must use the narrow
method of the javax. rmi.PortableRemoteObject class, as described in the EJB
specification. Because remote enterprise beans may be deployed using other RMI
protocols, portable applications must not depend on the characteristics of RMI-
I1OP objects (for example, the use of the stub and T4ie base classes) beyond what
is specified in the EJB specification.

The J2EE security restrictions typically prevent all application component
types, except application clients, from creating and exporting an RMI-110P
object. All J2EE application component types can be clients of RMI-110P objects.
J2EE applications should also use JNDI to lookup non-EJB RMI-110P objects.
The INDI names used for such non-EJB RMI-110P objects should be configured
at deployment time using the standard environment entries mechanism (see
Section J2EE.5.2, “INDI Naming Context”). The application should fetch a name
from INDI using an environment entry, and use the name to lookup the RMI-110P
object. Typically such names will be configured to be names in the COSNaming
name service.

This specification does not provide a portable way for applications to bind
objects to namesin a name service. Some products may support use of JINDI and
COSNaming for binding objects, but thisis not required. Portable J2EE
application clients can create non-EJB RMI-110P server objects for use as
callback objects, or to passin calls to other RMI-110P abjects.

Note that while RMI-110OP doesn’t specify how to propagate the current
security context or transaction context, the EJB interoperability specification does
define such context propagation. This specification only requires that the
propagation of context information as defined in the EJB specification be
supported in the use of RMI-110P to access enterprise beans. The propagation of

Public Review

JAVA 2 PLATFORM, STANDARD EDITION (J2SE) REQUIREMENTS 117

context information is not required in the uses of RMI-110P to access objects
other than enterprise beans.

The RMI-110P specification describes how portable Stub and Tie classes can
be created. To be portable to all implementations that use a CORBA Portable
Object Adapter (POA), the Tie classes must extend the
org.omg.PortableServer.Servant class. Thisistypically done by using the -poa
option to the rmic command. A J2EE product must provide support for these
portable stub and Tie classes, typically using the required CORBA POA.
However, for portability to systems that do not use a POA to implement RMI-
[1OP, applications should not depend on the fact that the Tie extends the Servant
class. A J2EE application that defines or uses RMI-110P objects other than
enterprise beans must include such portable Stub and Tie classesin the
application package. Stub and Tie objects for enterprise beans, however, must not
be included with the application: they will be generated, if needed, by the J2EE
product at deployment time or at run time.

RMI-110P is defined by chapters 5, 6, 13, 15, and section 10.6.2 of the
CORBA 2.3.1 specification, available at http: //www.omg.org/cgi-bin/
doc?formal/99-10-07, and by the Java™ Language To IDL Mapping
Soecification, available at http://www.omg.org/cgi-bin/doc?ptc/2000-01-06.

J2EE.6.2.4.6 JNDI

A J2EE product must be able to make the following types of objects availablein the
application’s INDI namespace; EJBHome Objects, EJBLocalHome Objects, JTA
UserTransaction objects, JDBC APl DataSource oObjects, IMS
ConnectionFactory and Destination objects, JavaMail Session objects, URL
objects, resource manager ConnectionFactory objects (as specified in the
Connector specification), ORB objects, EntityManager objects, and other Java
language objects as described in Chapter J2EE.5, “ Resources, Naming, and
Injection.” The JINDI implementation in a J2EE product must be capabl e of
supporting al of these usesin a single application component using asingle JNDI
InitialContext. Application componentswill generally create a INDI
InitialContext using the default constructor with no arguments. The application
component may then perform lookups on that InitialContext to find objects as
specified above.

The names used to perform lookups for J2EE objects are application
dependent. The application component’s deployment descriptor is used to list the
names and types of objects expected. The Deployer configures the INDI

118

namespace to make appropriate components available. The INDI names used to
lookup such objects must be in the INDI java: namespace. See Chapter J2EE.5,
“Resources, Naming, and Injection” for details.

Two particular names are defined by this specification. For all application
components that have access to the JTA UserTransaction interface, the
appropriate UserTransaction object can be found using the name java: comp/
UserTransaction. In al containers except the applet container, application
components may lookup a CORBA 0RB instance using the name java: comp/ORB.

The name used to lookup a particular J2EE object may be different in
different application components. In general, INDI names can not be
meaningfully passed as arguments in remote calls from one application
component to another remote component (for example, in acall to an enterprise
bean).

The INDI java: namespace is commonly implemented as symbolic links to
other naming systems. Different underlying naming services may be used to store
different kinds of objects, or even different instances of objects. It isup to a J2EE
product to provide the necessary JNDI service providers for accessing the various
objects defined in this specification.

This specification requires that the J2EE platform provide the ability to
perform lookup operations as described above. Different INDI service providers
may provide different capabilities, for instance, some service providers may
provide only read-only access to the data in the name service.

All J2EE products must provide a COSNaming name service to meet the EJB
interoperability requirements. In addition, a COSNaming JNDI service provider
must be available through the web, EJB, and application client containers. It will
also typicaly be available in the applet container, but thisis not required.

A COSNaming JNDI service provider is apart of the J2SE 5.0 SDK and JRE
from Sun, but is not a required component of the J2SE specification. The
COSNaming JNDI service provider specification isavailable at http://
java.sun.com/j2se/5.0/docs/guide/jndi/jndi-cos.html.

See Chapter J2EE.5, “Resources, Naming, and Injection” for the complete
naming requirements for the J2EE platform. The INDI specification is available at
http://java.sun.com/products/jndi/docs.html.

J2EE.6.2.4.7 Context Class Loader

This specification requires that J2EE containers provide a per thread context class
loader for the use of system or library classes in dynamically loading classes

Public Review

JAVA 2 PLATFORM, STANDARD EDITION (J2SE) REQUIREMENTS

provided by the application. The EJB specification requiresthat all EJB client
containers provide a per thread context class loader for dynamically loading system
value classes. The per thread context class loader is accessed using the Thread
method getContextClassLoader.

The classes used by an application will typically be loaded by a hierarchy of
classloaders. Theremay be atop level application class|oader, an extension class
loader, and so on, down to a system class loader. The top level application class
loader delegates to the lower class loaders as needed. Classes loaded by lower
class loaders, such as portable EJB system value classes, need to be able to
discover the top level application class loader used to dynamically load
application classes.

This specification requires that containers provide a per thread context class
loader that can be used to load top level application classes as described above.
See Section J2EE.8.2.5, “Dynamic Class Loading” for recommendations for
libraries that dynamically load classes.

J2EE.6.2.4.8 Java™ Authentication and Authorization Service (JAAS)
Requirements

All EJB containers and all web containers must support the use of the JAAS APIsas

specified in the Connector specification. All application client containers must

support use of the JAAS APIs as specified in Chapter J2EE.9, “Application Clients”
The JAAS specification isavailable at http://java.sun.com/products/jaas.

J2EE.6.2.4.9 Logging APl Requirements

The Logging API provides classes and interfacesin the java.util.logging
package that are the Java™ 2 platform’s core logging facilities. This specification
does not require any additional support for logging. A J2EE application typically
will not havethe LoggingPermission necessary to control the logging
configuration, but may use the logging API to produce log records. A future version
of this specification may require that the J2EE containers use the logging API to log
certain events.

J2EE.6.2.4.10 Preferences APl Requirements

The Preferences APl inthe java.util.prefs package alows applications to store
and retrieve user and system preference and configuration data. A J2EE application
typically will not have the RuntimePermission("preferences™) hecessary to use

119

120

the Preferences API. This specification does not define any relationship between the
principal used by a J2EE application and the user preferences tree defined by the
Preferences API. A future version of this specification may define the use of the
Preferences APl by J2EE applications.

J2EE.6.3 Enterprise JavaBeans™ (EJB) 3.0 Requirements

This specification requires that a J2EE product provide support for enterprise beans
as specified in the EJB specification. The EJB specification isavailable at http://
java.sun.com/products/ejb/docs.html.

This specification does not impose any additional requirements at thistime.
Note that the EJB specification includes the specification of the EJB
interoperability protocol based on RMI-I10OP. All containers that support EJB
clients must be capable of using the EJB interoperability protocol to invoke
enterprise beans. All EJB containers must support the invocation of enterprise
beans using the EJB interoperability protocol. A J2EE product may also support
other protocols for the invocation of enterprise beans.

A J2EE product may support multiple object systems (for example, RMI-
[1OP and RMI-JRMP). It may not always be possible to pass object references
from one object system to objects in another object system. However, when an
enterprise bean is using the RMI-110P protocaol, it must be possible to pass object
referencesfor RMI-110P or Java I DL objects as arguments to methods on such an
enterprise bean, and to return such object references as return values of a method
on such an enterprise bean. In addition, it must be possible to pass a reference to
an RMI-110OP-based enterprise bean’s Home or Remote interface to a method on
an RMI-110P or Java IDL object, or to return such an enterprise bean object
reference as areturn value from such an RMI-110P or Java IDL object.

The EJB container and the web container are both required to support access
to local enterprise beans. No support is provided for access to local enterprise
beans from the application client container or the applet container.

J2EE.6.4 Servlet 2.4 Requirements

The servlet specification defines the packaging and deployment of web applications,
whether standalone or as part of a J2EE application. The servlet specification also

Public Review

SERVLET 2.4REQUIREMENTS

addresses security, both standal one and within the J2EE platform. These optional
components of the servlet specification are requirements of the J2EE platform.

The servlet specification includes additional requirements for web containers
that are part of a J2EE product and a J2EE product must meet these requirements
aswell.

The servlet specification defines distributable web applications. To support
J2EE applications that are distributable, this specification adds the following
requirements.

Web containers must support J2EE distributable web applications placing
objects of any of the following typesinto a javax.servlet.http.HttpSession
object using the setAttribute Or putValue methods:

* java.io.Serializable

* javax.ejb.EJBObject

* javax.ejb.EJBHome

* javax.ejb.EJBLocalObject

* javax.ejb.EJBLocalHome

* javax.transaction.UserTransaction

* ajavax.naming.Context Object for the java:comp/env context
 areferenceto an EJB 3 local or remote business interface

Web containers may support objects of other types as well. Web containers
must throw ajava.lang.I11egalArgumentException if an object that is not one of
the above types, or another type supported by the container, is passed to the
setAttribute Or putValue methods of an HttpSession object corresponding to a
J2EE distributable session. This exception indicates to the programmer that the
web container does not support moving the object between VMs. A web container
that supports multi-VM operation must ensure that, when a session is moved from
one VM to another, all objects of supported types are accurately recreated on the
target VM.

The servlet specification defines access to local enterprise beans as an
optional feature. This specification requiresthat all J2EE products provide support
for accessto local enterprise beans from the web container.

The servlet specification isavailable at http://java.sun.com/products/
serviet.

121

122

J2EE.6.5 JavaServer Pages™ (JSP) 2.1 Requirements

The JSP specification depends on and builds on the servlet framework. A J2EE
product must support the entire JSP specification.
The JSP specification is available at http://java.sun.com/products/jsp.

J2EE.6.6 Java™ Message Service (JMS) 1.1 Requirements

A Java Message Service provider must be included in a J2EE product. The IMS
implementation must provide support for both IM S point-to-point and publish/
subscribe messaging, and thus must make those facilities available using the
ConnectionFactory and Destination APIS.

The IM S specification defines several interfaces intended for integration with
an application server. A J2EE product need not provide objects that implement
these interfaces, and portable J2EE applications must not use the following
interfaces:

* javax.jms.ServerSession
* javax.jms.ServerSessionPool
* javax.jms.ConnectionConsumer

e al javax.jms XA interfaces

The following methods may only be used by application components
executing in the application client container:

Public Review

JAVA™ TRANSACTION API (JTA) 1.0 REQUIREMENTS

e javax.jms.Session method setMessagelListener

* javax.jms.Session method getMessagelListener

* javax.jms.Session method run

* javax.jms.QueueConnection method createConnectionConsumer
* javax.jms.TopicConnection method createConnectionConsumer
* javax.jms.TopicConnection method createDurableConnectionConsumer
* javax.jms.MessageConsumer Method getMessagelListener

* javax.jms.MessageConsumer method setMessagelistener

* javax.jms.Connection method setExceptionListener

* javax.jms.Connection method stop

* javax.jms.Connection method setC1ientID

A J2EE container may throw a IMSException (if allowed by the method) if the
application component violates these restrictions.

Application components in the web and EJB containers must not attempt to
create more than one active (not closed) Session object per connection. An
attempt to use the Connection object’s createSession method when an active
Session oObject exists for that connection should be prohibited by the container.
The container may throw a JMSException if the application component violates
thisrestriction. Application client containers must support the creation of multiple
sessions for each connection.

In general, the behavior of aJM S provider should be the same in both the EJB
container and the web container. The EJB specification describes restrictions on
the use of IMSin an EJB container, as well as the interaction of IMS with
transactionsin an EJB container. Applications running in the web container
should follow the same restrictions.

The IM S specification is available at http://java.sun.com/products/jms.

J2EE.6.7 Java™ Transaction API (JTA) 1.0 Requirements

JTA definesthe UserTransaction interface that is used by applications to start, and
commit or abort transactions. Enterprise beans are expected to get UserTransaction
objects through the EJBContext’s getUserTransaction method. Other application
components get aUserTransaction object through a JNDI lookup using the name
java:comp/UserTransaction.

123

124

JTA also defines a number of interfaces that are used by an application server
to communicate with a transaction manager, and for a transaction manager to
interact with aresource manager. These interfaces must be supported as described
in the Connector specification. In addition, support for other transaction facilities
may be provided transparently to the application by a J2EE product.

The latest JTA 1.0 specification isversion 1.0.1B and isavailable at http://

java.sun.com/products/jta.

J2EE.6.8 JavaMail™ 1.3 Requirements

The JavaMail API alowsfor accessto email messages contained in message stores,
and for the creation and sending of email messages using a message transport.
Specific support isincluded for Internet standard M1ME messages. Access to
message stores and transportsis through protocol providers supporting specific store
and transport protocols. The JavaMail API specification does not require any
specific protocol providers, but the JavaMail reference implementation includes an
IMAP message store provider, a POP3 message store provider, and an SMTP
message transport provider.

Configuration of the JavaMail API istypically done by setting propertiesin a
Properties object that is used to create a javax.mail.Session object using a
static factory method. To allow the J2EE platform to configure and manage
JavaMail API sessions, an application component that uses the JavaMail AP
should request a Session object using INDI, and should list its need for aSession
object in its deployment descriptor using a resource-ref element. A JavaMail
APl session object should be considered a resource factory, as described in
Section J2EE.5.6, “ Resource Manager Connection Factory References.” This
specification requires that the J2EE platform support javax.mail.Session objects
as resource factories, as described in that section.

The J2EE platform requires that a message transport be provided that is
capable of handling addresses of type javax.mail.internet.InternetAddress
and messages of type javax.mail.internet.MimeMessage. The default message
transport must be properly configured to send such messages using the send
method of the javax.mail.Transport class. Any authentication needed by the
default transport must be handled without need for the application to provide a
javax.mail.Authenticator or to explicitly connect to the transport and supply
authentication information.

Public Review

JAVABEANS™ ACTIVATION FRAMEWORK 1.1 REQUIREMENTS

This specification does not require that a J2EE product support any message
store protocols.

Note that the JavaMail APl creates threads to deliver notifications of Store,
Folder, and Transport events. The use of these notification facilities may be
limited by the restrictions on the use of threads in various containers. In EJB
containers, for instance, it istypically not possible to create threads.

The JavaMail API uses the JavaBeans Activation Framework API to support
various MIME data types. The JavaMail APl must include
javax.activation.DataContentHandlers for the following MIME data types,
corresponding to the Java programming language type indicated in Table J2EE.6-
4.

Table J2EE.6-4 JavaMail API MIME Data Typeto Java Type

Mappings
Mime Type Java Type
text/plain java.lang.String
text/html java.lang.String
text/xml java.lang.String
multipart/* javax.mail.internet.MimeMultipart
message/rfc822 javax.mail.internet.MimeMessage

The JavaMail API specification isavailable at http://java.sun.com/
products/javamail.

J2EE.6.9 JavaBeans™ Activation Framework 1.1
Requirements

The JavaBeans Activation Framework integrates support for MIME data typesinto
the Java platform. MIME byte streams can be converted to and from Java
programming language objects, using javax.activation.DataContentHandler
objects. JavaBeans components can be specified for operating on MIME data, such
asviewing or editing the data. The JavaBeans Activation Framework also providesa
mechanism to map filename extensionsto MIME types.

The JavaBeans Activation Framework is used by the JavaMail API to handle
the data included in email messages. Typical J2EE applications will not need to

125

126

use the JavaBeans Activation Framework directly, although applications making
sophisticated use of email may need it.

This specification requires that a J2EE product provide only the
DataContentHandlers Specified above for the JavaMail API. Thisincludes
requirement of a javax.activation.MimetypesFileTypeMap that supportsthe
mappings listed in Table J2EE.6-5.

Table J2EE.6-5 Filename Extension to MIME Type Mappings

MIME Type Filename Extensions
text/html html htm
text/plain txt text
image/gif gif GIF
image/jpeg jpeg jpg jpe JPG
image/png png PNG

The JavaBeans Activation Framework 1.1 specification isavailable at http://
java.sun.com/beans/glasgow/jaf.html.

J2EE.6.10 J2EE™ Connector Architecture 1.5 Requirements

All EJB containers and all web containers must support the full set of Connector
APIs. All such containers must support Resource Adaptersthat use any of the
specified transaction capabilities. The J2EE deployment tools must support
deployment of Resource Adapters, as defined in the Connector specification, and
must support the deployment of applications that use Resource Adapters.

The Connector specification is available at http://java.sun.com/j2ee/
connector/.

J2EE.6.11 Web Servicesfor J2EE 1.1 Requirements

The Web Services for J2EE specification defines the capabilities a J2EE application
server must support for deployment of web service endpoints. A complete
deployment model is defined, including several new deployment descriptors. All

Public Review

JAVA™ APl FOR XML-BASED RPC (JAX-RPC) 1.1 REQUIREMENTS

J2EE products must support the deployment and execution of web services as
specified by the Web Services for J2EE 1.1 specification (JSR-109).

The Web Services for J2EE specification isavailable at http://jcp.org/en/
jsr/detail?id=109 and http://jcp.org/en/jsr/detail?id=921.

J2EE.6.12 Java™ API for XML-based RPC (JAX-RPC) 1.1
Requirements

The JAX-RPC specification defines client APIs for accessing web services as well
as techniques for implementing web service endpoints. The Web Services for J2EE
specification describes the deployment of JAX-RPC-based services and clients. The
EJB and servlet specifications a so describe aspects of such deployment. It must be
possible to deploy JAX-RPC-based applications using any of these deployment
models.

The JAX-RPC specification describes the support for message handlers that
can process message requests and responses. In general, these message handlers
execute in the same container and with the same privileges and execution context
as the JAX-RPC client or endpoint component with which they are associated.
These message handlers have access to the same JNDI java: comp/env namespace
astheir associated component. Custom serializers and deserializers, if supported,
are treated in the same way as message handlers.

The JAX-RPC specification isavailable at http://java.sun.com/xm1/
jaxrpc.

J2EE.6.13 Java™ API for XML Web Services (JAX-WS) 2.0
Requirements

The JAX-WS specification provides support for web servicesthat usethe JAXB API
for binding XML data to Java objects. The JAX-WS specification defines client
APIsfor accessing web services aswell astechniquesfor implementing web service
endpoints. The Web Services for J2EE specification describes the deployment of
JAX-WS-based services and clients. The EJB and servlet specifications also
describe aspects of such deployment. It must be possible to deploy JAX-WS-based
applications using any of these deployment models.

The JAX-WS specification describes the support for message handlers that
can process message requests and responses. In general, these message handlers

127

128

execute in the same container and with the same privileges and execution context
asthe JAX-WS client or endpoint component with which they are associated.
These message handlers have access to the same JNDI java: comp/env hamespace
as their associated component. Custom serializers and deserializers, if supported,
are treated in the same way as message handlers.

The JAX-WS specification isavailable at http://java.sun.com/xm1/jaxws.

J2EE.6.14 Java™ Architecturefor XML Binding (JAXB) 2.0
Requirements

The Java Architecture for XML Binding (JAXB) provides a convenient way to bind
an XML schemato a representation in Javalanguage programs. JAXB can be used
independently or in combination with JAX-WS, where it provides a standard data
binding for web service messages. All J2EE application client containers, web
conatiners, and EJB containers are required to support the JAXB API.

The Java APl for XML Data Binding specification can be found at http://
jcp.org/en/jsr/detail?id=222.

J2EE.6.15 SOAP with Attachments API for Java™ (SAAJ) 1.3

The SAAJAPI isused to manipulate SOAP messages. The SAAJAPI isused by the
JAX-RPC API to represent XML fragments and to access the entire SOAP message
in aJAX-RPC message handler. As described in the SAAJ specification,
implementations of the SOAPConnectionFactory method newInstance may, and
typicadly will, throw an exception indicating that this functionality is not
implemented.

The SAAJ specification isavailable at http://java.sun.com/xml1/saaj.

J2EE.6.16 Java™ API for XML Registries (JAXR) 1.0
Requirements

The JAXR specification defines APIsfor client accessto XML -based registries such
as ebXML registries and UDDI registries. J2EE products must include a JAXR
registry provider that meets at least the JAXR level O requirements, aswell asa
registry implementation that can be accessed using that provider.

The JAXR specification isavailable at http://java.sun.com/xm1/jaxr.

Public Review

JAVA™ 2 PLATFORM, ENTERPRISE EDITION MANAGEMENT API 1.0 REQUIREMENTS

J2EE.6.17 Java™ 2 Platform, Enterprise Edition Management
API 1.0 Requirements

The 2EE Management API provides APIsfor management toolsto query a 2EE
application server to determine its current status, applications deployed, and so on.
All J2EE products must support this API as described in its specification.

The J2EE Management API specification isavailable at http://jcp.org/
jsr/detail/77.jsp.

J2EE.6.18 Java™ 2 Platform, Enter prise Edition Deployment
API 1.1 Requirements

The J2EE Deployment API defines the interfaces between the runtime environment
of adeployment tool and plug-in components provided by a J2EE application
server. These plug-in components execute in the deployment tool and implement the
J2EE product-specific deployment mechanisms. All J2EE products are required to
supply these plug-in components for use in tools from other vendors.

Note that the J2EE Deployment specification does not define new APIs for
direct use by J2EE applications. However, it would be possible to create a J2EE
application that acts as a deployment tool and provides the runtime environment
required by the J2EE Deployment specification.

The J2EE Deployment API specification is available at http://
java.sun.com/j2ee/tools/deployment.

J2EE.6.19 Java™ Authorization Service Provider Contract for
Containers (JACC) 1.0 Requirements

The JACC specification defines a contract between a J2EE application server and an
authorization policy provider. All J2EE application containers, web containers, and
enterprise bean containers are required to support this contract.

The JACC specification can be found at http://jcp.org/jsr/detail/
115.7jsp.

129

130

J2EE.6.20 Debugging Support for Other Languages (JSR-45)
Requirements

JSP pages are usually trandated into Javalanguage pages and then compiled to
create classfiles. The Debugging Support for Other Languages specification
describes information that can be included in aclassfileto relate classfile datato
datain the original sourcefile. All J2EE products are required to be able to include
such information in classfilesthat are generated from JSP pages.

The Debugging Support for Other Languages specification can be found at
http://jcp.org/en/jsr/detail?id=45.

J2EE.6.21 Standard TagLibrary for JavaServer Pages™
(JSTL) 1.1 Requirements

JSTL defines a standard tag library that makesit easier to develop JSP pages. Al
J2EE products are required to provide JSTL for use by all JSP pages.

The Standard Tag Library for JavaServer Pages specification can be found at
http://jcp.org/en/jsr/detail?id=52.

J2EE.6.22 Web ServicesMetadata for theJava™ Platform 1.0
Requirements

The Web Services Metadata for the Java Platform specification defines Java
language annotations that can be used to simplify the development of web services.

Note — Will need to say more about packaging and deployment.

The Web Services Metadata for the Java Platform specification can be found
a http://jcp.org/en/jsr/detail?id=181.

J2EE.6.23 JavaServer Faces™ 1.2 Requirements

JavaServer Faces technology simplifies building user interfaces for JavaServer
applications. Devel opers of various skill levels can quickly build web applications
by: assembling reusable Ul components in apage; connecting these components to

Public Review

COMMON ANNOTATIONSFOR THE JAVA™ PLATFORM 1.0 REQUIREMENTS

an application data source; and wiring client-generated events to server-side event
handlers. All J2EE web containers are required to support applications that use the
JavaServer Faces technology.

The JavaServer Faces specification can be found at http://jcp.org/en/jsr/
detail?id=252.

J2EE.6.24 Common Annotationsfor the Java™ Platform 1.0
Requirements

The Common Annotations specification defines Java language annotations that are
used by several other specifications, including this specification. The specifications
that use these annotations fully define the requirements for these annotations. The
applet container need not support any of these annotations. All other containers
must provide definitions for al of these annotations, and must support the semantics
of these annotations as described in the corresponding specifications and
summarized in the following table.

TableJ2EE.6-6 Common Annotations Support by Container

Annotation App Client Web EJB
PropertySet Y Y
Resource Y Y Y
Resources Y Y Y
InjectionComplete Y Y Y
Generated N N N
RunAs N N Y
RolesReferenced N N Y
RolesAlTowed N N Y
PermitAll N N Y
DenyATll N N Y

The Common Annotations for the Java Platform specification can be found at
http://jcp.org/en/jsr/detail?id=250.

131

132

J2EE.6.25 Streaming API for XML (StAX) 1.0 Requirements

The Streaming API for XML (StAX) specification defines a pull-parsing API for
XML. The streaming API gives parsing control to the programmer by exposing a
simpleiterator based API. This allows the programmer to ask for the next event
(pull the event) and allows state to be stored in a procedural fashion. All J2EE
application client containers, web containers, and EJB containers are required to
support the SIAX API.

The Streaming API for XML specification can be found at http://jcp.org/
en/jsr/detail?id=173.

J2EE.6.26 Java Persistence API 1.0

Note — Theinclusion of the Java Persistence API that's being devel oped by
the EJB 3.0 expert group in J2EE 5.0 is currently a contentious issue in the J2EE
expert group. Some experts believe this new technology will not be mature and
should not be included in the J2EE platform until J2EE 6.0. Other experts believe
that the advantages this technology brings to the J2EE platform are significant and
it should beincluded in J2EE 5.0. Sun strongly supports inclusion of the Java Per-
sistence API. Your feedback on thisissue is encouraged.

Note — This section is still incomplete.

Public Review

cnerend2EEL T

|nteroperabil ity'

This chapter describes the interoperability requirements for the Java™ 2 Platform,
Enterprise Edition (J2EE).

J2EE.7.1 Introduction to I nteroperability

The J2EE platform will be used by enterprise environments that support clients of
many different types. The enterprise environments will add new servicesto existing
Enterprise Information Systems (EISs). They will be using various hardware
platforms and applications written in various languages.

In particular, the 2EE platform in enterprise environments may be used in
enterprise environments to bring together any of the following kinds of
applications:

« applications written in such languages as C++ and Visual Basic.
« applications running on a persona computer platform, or Unix® workstation.

« standal one Java technol ogy-based applications that are not directly supported
by the J2EE platform.

It is the interoperability requirements of the J2EE platform, set out in this
chapter, that make it possible for it to provide indirect support for various types of
clients, different hardware platforms, and a multitude of software applications.
Theinteroperability features of the J2EE platform permit the underlying disparate
systems to work together seamlessly, while hiding much of the complexity
required to join these pieces together.

The interoperability requirements for the current J2EE platform release allow:

133

134

» J2EE applications to connect to legacy systems using CORBA or low-level
socket interfaces.

» J2EE applicationsto connect to other J2EE applications across multiple 2EE
products, whether from different Product Providers or from the same Provider,
and multiple J2EE platforms.

Inthisversion of the specification, interoperability between J2EE applications
running in different platformsis accomplished through the HT TP protocal,
possibly using SSL, or the EJB interoperability protocol based on I11OP.

J2EE.7.2 Interoperability Protocols

This specification requires that a J2EE product support a standard set of protocols
and formats to ensure interoperability between J2EE applications and with other
applications that also implement these protocols and formats. The specification
requires support for the following groups of protocols and formats:

* Internet and web protocols
* OMG protocols
 Javatechnology protocols
» Dataformats

Most of these protocols and formats are supported by J2SE and by the
underlying operating system.

J2EE.7.2.1 Internet and Web Protocols

Standards based I nternet protocols are the means by which different pieces of the
platform communicate. The J2EE platform requires support for the following
Internet protocols:

» TCP/IP protocol family—This is the core component of Internet communica-
tion. TCP/IP and UDP/IP are the standard transport protocols for the Internet.
TCP/IP is supported by J2SE and the underlying operating system.

» HTTP 1.1—Thisisthe core pratocol of web communication. Aswith TCP/IP,
HTTP 1.1 is supported by J2SE and the underlying operating system. A J2EE

Public Review

INTEROPERABILITYPROTOCOLS 135

web container must be capable of advertising its HT TP services on the stan-
dard HTTP port, port 80.

e SSL 3.0, TLS1.0—SSL 3.0 (Secure Socket Layer) represents the security
layer for Web communication. It is available indirectly when using the https
URL as opposed to the http URL. A J2EE web container must be capable of
advertising its HTTPS service on the standard HTTPS port, port 443. SSL 3.0
and TLS 1.0 are also required as part of the EJB interoperability protocol in
the EJB specification.

* SOAP 1.1—SOAP is apresentation layer protocol for the exchange of XML
messages. Support for SOAP layered on HTTP isrequired, as described in the
JAX-RPC and JAX-WS specifications.

» SOAP 1.2—SO0OAP 1.2 isthe version of the SOAP protocol standardized
through W3C and supported by JAX-WS.

* WS- Basic Profile 1.1—The WS-I Basic Profile, in combination with the Sim-
ple SOAP Binding Profile and Attachment Profile, describes interoperability
requirements for the use of SOAP 1.1, WSDL 1.1, and MIME-based SOAP
with Attachments. It is required by the JAX-RPC specification.

J2EE.7.2.2 OMG Protocols

This specification requires the J2EE platform to support the following Object
Management Group (OMG) based protocols:

 |IOP(Internet Inter-ORB Protocol)—Supported by JavalDL and RMI-1IOPin
J2SE. Java IDL provides standards-based interoperability and connectivity
through the Common Object Request Broker Architecture (CORBA). CORBA
specifies the Object Request Broker (ORB) which allows applications to com-
municate with each other regardless of location. This interoperability is deliv-
ered through I1OP, and istypically found in an intranet setting. 110P can be
used as an RMI protocol using the RMI-I10OP technology. [1OP is defined in
Chapters 13 and 15 of the CORBA 2.3.1 specification, available at http://
cgi.omg.org/cgi-bin/doc?formal/99-10-07.

» EJB interoperability protocol—The EJB interoperability protocol is based on
I1OP (GIOP 1.2) and the CSIv2 CORBA Secure Interoperability specifica-
tion. The EJB interoperability protocol is defined in the EJB specification.

» CORBA Interoperable Naming Service protocol—The COSNaming-based
INS protocol isan | 10P-based protocol for accessing aname service. The EJB

136

interoperability protocol requiresthe use of the INS protocol for lookup of EJB
objectsusing the INDI API. In addition, it must be possibleto usethe JavalDL
COSNaming API to accessthe INS name service. All J2EE products must pro-
vide a name service that meets the requirements of the Interoperable Naming
Service specification, available at http://cgi.omg.org/cgi-bin/
doc?formal/2000-06-19. This name service may be provided as a separate
name server or asaprotocol bridge or gateway to another name service. Either
approach is consistent with this specification.

J2EE.7.2.3 Java Technology Protocols

This specification requires the J2EE platform to support the JRMP protocol, which
isthe Javatechnol ogy-specific Remote Method I nvocation (RMI) protocol. JRMPis
arequired component of J2SE and is one of two required RMI protocols. (I1OPis
the other required RMI protocoal, see above.)

JRMPisadistributed object model for the Java programming language.
Distributed systems, running in different address spaces and often on different
hosts, must be able to communicate with each other. JRMP permits program-level
objectsin different address spaces to invoke remote objects using the semantics of
the Java programming language object model.

Complete information on the JRM P specification can be found at http://
java.sun.com/j2se/1.4/docs/guide/rmi.

J2EE.7.2.4 Data Formats

In addition to the protocols that alow communication between components, this
specification requires J2EE platform support for anumber of data formats. These
formats provide the definition for data exchanged between components.

The following data formats must be supported:

* XML 1.0—The XML format can be used to construct documents, RPC mes-
sages, etc. The JAXP APl provides support for processing XML format data.
The JAX-RPC API provides support for XML RPC messages, aswell asa
mapping between Java classes and XML.

* HTML 3.2—This represents the minimum web browser standard document
format. While not directly supported by J2EE APIs, J2EE web clients must be
ableto display HTML 3.2 documents.

Public Review

INTEROPERABILITYPROTOCOLS 137

* Image file formats—The J2EE platform must support GIF, JPEG, and PNG
images. Support for these formatsis provided by the java.awt.image APIs
(seethe URL: http://java.sun.com/j2se/5.0/docs/api/java/awt/image/
package-summary.htm1) and by J2EE web clients.

* AR files—JAR (Java Archive) files are the standard packaging format for
Java technol ogy-based application components, including the gjb-jar special-
ized format, the Web application archive (WAR) format, the Resource Adapt-
er archive (RAR), and the J2EE enterprise application archive (EAR) format.
JAR isaplatform-independent file format that permits many files to be aggre-
gated into onefile. This allows multiple Java components to be bundled into
one JAR file and downloaded to a browser in asingle HTTP transaction. JAR
file formats are supported by the java.util.jar and java.util.zip packag-
es. For complete information on the JAR specification, see http://
java.sun.com/j2se/5.0/docs/guide/jar.

 Classfileformat—The classfile format is specified in the Java Virtual Ma-
chine specification. Each class file contains one Java programming language
type—either a class or an interface—and consists of a stream of 8-bit bytes.
For complete information on the class file format, see http://java.sun.com/
docs/books/vmspec.

138

Public Review

e JZEE.8

Application Assembly anci
Deployment

This chapter specifies Java™ 2 Platform, Enterprise Edition (J2EE) requirements
for assembling, packaging, and deploying a J2EE application. The main goal of
these requirementsisto provide scalable and modular application assembly, and
portable deployment of J2EE applications into any J2EE product.

J2EE applications are composed of one or more J2EE components and one
J2EE application deployment descriptor. The deployment descriptor lists the
application’s components as modules. A J2EE modul e represents the basic unit of
composition of a J2EE application. J2EE modules consist of one or more J2EE
components and an optional module level deployment descriptor. The flexibility
and extensibility of the J2EE component model facilitates the packaging and
deployment of J2EE components as individual components, component libraries,
or J2EE applications.

Figure J2EE.8-1 shows the composition model for J2EE deployment units
and includes the optional use of aternate deployment descriptors by the
application package to preserve any digital signatures of the original J2EE
modules.

139

140

Components J2EE J2EE Application
Modules

EJB

EJB
module

EJB

EJB

Web a
WEB moatla

WEB

Deployment
Tool

application
client
module

Resource
Adapter
module

add/delete ingredients

deploy standalone modules

Figure J2EE.8-1 J2EE Deployment

J2EE.8.1 Application Development Life Cycle

The development life cycle of a J2EE application begins with the creation of
discrete J2EE components. These components may then be packaged with amodule
level deployment descriptor to create a J2EE module. J2EE modules can be
deployed as stand-alone units or can be assembled with a J2EE application
deployment descriptor and deployed as a J2EE application.

Figure J2EE.8-2 showsthe life cycle of a J2EE application.

Public Review

APPLICATION DEVELOPMENT LIFECYCLE

Creation Assembly Deployment
Created by AAssembITddan — . .
Component J2EE Module ugmented by | joeE APP rocessed by

Provider Application Deployer
Assembler
”deploy

J2EE Container/Server

Enterprise
Components

Figure J2EE.8-2 J2EE Application Life Cycle

J2EE.8.1.1 Component Creation

The EJB, servlet, application client, and Connector specificationsinclude the XML
Schema definition of the associated module level deployment descriptors and
component packaging architecture required to produce J2EE modules. (The
application client specification is found in Chapter J2EE.9 of this document.)

A J2EE module is a collection of one or more J2EE components of the same
component type (web, EJB, application client, or Connector) with an optional
module deployment descriptor of that type. Any number of components of the
same container type can be packaged together with a single J2EE deployment
descriptor appropriate to that container type to produce a J2EE module.
Components of different container types may not be mixed in asingle J2EE
module.

» A J2EE modulerepresentsthe basic unit of composition of a J2EE application.
In some cases a single J2EE modul e (not necessarily packaged into a J2EE ap-
plication package) will contain an entire application. In other cases an applica-
tion will be composed of multiple J2EE modules.

*» The deployment descriptor for a J2EE modul e contains declarative data re-
quired to deploy the components in the module. The deployment descriptor

141

142

for a J2EE module al so contains assembly instructions that describe how the
components are composed into an application.

* Starting with version 5.0 of the J2EE platform, aweb application module, an
enterprise bean module, or an application client module need not contain ade-
ployment descriptor. Instead, the deployment information may be specified by
annotations present in the class files of the module.

* Anindividua J2EE module can be deployed as a stand-alone J2EE module
without an application level deployment descriptor and represents avalid
J2EE application.

» J2EE modules may express dependencies on libraries as described below in
Section J2EE.8.2, “Library Support.”

J2EE.8.1.2 Application Assembly

A J2EE application may consist of one or more J2EE modules and one J2EE
application deployment descriptor. A J2EE application is packaged using the Java
Archive (JAR) fileformat into afilewith a . ear (Enterprise ARchive) filename
extension. A minimal J2EE application package will only contain J2EE modules
and the application deployment descriptor. A J2EE application package may also
include libraries referenced by J2EE modules (using the Class-Path mechanism
described below in Section J2EE.8.2, “Library Support™), help files, and
documentation to aid the deployer.

The deployment of a portable J2EE application should not depend on any
entities that may be contained in the package other than those defined by this
specification. Deployment of a portable J2EE application must be possible using
only the application deployment descriptor and the J2EE modules (and their
dependent libraries) and descriptors listed in it.

The J2EE application deployment descriptor represents the top level view of a
J2EE application’s contents. The J2EE application deployment descriptor is
specified by an XML schema or document type definition (see Section J2EE.8.5,
“J2EE Application XML Schema”).

In certain cases, a J2EE application will need customization before it can be
deployed into the enterprise. New J2EE modules may be added to the application.
Existing modules may be removed from the application. Some J2EE modules may
need custom content created, changed, or replaced. For example, an application
consumer may need to use an HTML editor to add company graphicsto a
template login page that was provided with a J2EE web application.

Public Review

LIBRARY SUPPORT

J2EE.8.1.3 Deployment

During the deployment phase of an application’slife cycle, the application is
installed on the J2EE platform and then is configured and integrated into the existing
infrastructure. Each J2EE module listed in the application deployment descriptor
must be deployed according to the requirements of the specification for the
respective J2EE module type. Each module listed must be installed in the
appropriate container type and the environment properties of each module must be
set appropriately in the target container to reflect the values declared by the
deployment descriptor element for each component.

J2EE.8.2 Library Support

The J2EE platform provides severa mechanisms for applications to use optional
packages and shared libraries (hereafter referred to aslibraries). Libraries may be
bundled with an application or may be installed separately for use by any
application.

J2EE products are required to support the use of bundled and installed
libraries as specified in the Extension Mechanism Architecture and Optional
Package Versioning specifications (available at http://java.sun.com/j2se/5.0/
docs/guide/extensions) and the JAR File Specification (available at http://
java.sun.com/j2se/5.0/docs/guide/jar/jar.htm1). Using this mechanism a
J2EE JAR file can reference utility classes or other shared classes or resources
packaged in a separate . jar file or directory that isincluded in the same J2EE
application package, or that has been previously installed in the J2EE containers.

J2EE.8.2.1 Bundled Libraries
Libraries bundled with an application may be referenced in the following ways:

1. AJARformat file (such asa.jar file, .war file, or .rar file) may referencea
.jar file or directory by naming the referenced . jar file or directory ina
Class-Path header in thereferencing JAR file's Manifest file. The referenced
.jar file or directory is named using a URL relative to the URL of the refer-
encing JAR file. The Manifest fileisnamed META-INF/MANIFEST.MF inthe JAR
file. The C1ass-Path entry in the Manifest fileis of the form

Class-Path: Tist-of-jar-files-or-directories-separated-by-spaces

143

The J2EE deployment tools must process all such referenced files and directo-
ries when processing a JJEE module. Any deployment descriptorsin refer-
enced . jar files must be ignored when processing the referencing . jar file.
The deployment tool must install the . jar files and directories in away that
preserves the relative references between the files. Typicaly thisis done by
installing the . jar filesinto adirectory hierarchy that matches the original
application directory hierarchy. All referenced . jar files or directories must
appear in the logical class path of the referencing JAR files at runtime.

Only JAR format files containing class files or resources to be loaded directly
by astandard class|oader should bethetarget of aClass-Path reference; such
files are dways named with a . jar extension. Top level JAR filesthat are pro-
cessed by a deployment tool should not contain Class-Path entries; such
entries would, by definition, reference other files external to the deployment
unit. A deployment tool is not required to process such external references.

2. A .ear filemay contain adirectory that contains libraries packaged in JAR
files. TheTibrary-directory element of the . ear fil€' sdeployment descriptor
contains the name of this directory.

All filesin this directory (but not subdirectories) with a . jar extension must
be made available to all components packaged in the EAR file, including
application clients. These libraries may reference other libraries, either bun-
dled with the application or installed separately, using any of the techniques
described herein.

3. A web application may include librariesin the weB-INF/11ib directory. Seethe
Servlet specification for details. These libraries may reference other libraries,
either bundled with the application or installed separately, using any of the
techniques described herein.

J2EE.8.2.2 Installed Libraries

Libraries that have been installed separately may be referenced in the following
way:

1. JAR format files of al types may contain an Extension-List attributein their
Manifest file, indicating a dependency on an installed library. The JAR File
Foecification defines the semantics of such attributes for use by applets; this
specification requires support for such attributes for all component types and
corresponding JAR format files. The deployment tool isrequired to check such

Public Review

LIBRARY SUPPORT

dependency information and reject the deployment of any component for
which the dependency can not be met. Portabl e applications should not assume
that any installed libraries will be available to a component unless the compo-
nent’s JAR format file, or one of the containing JAR format files, expresses a
dependency on the library using the Extension-List and related attributes.

The referenced libraries must be made available to all components contained
within the referencing file, including any components contained within other
JAR format files within the referencing file. For example, if a . ear file refer-
ences an installed library, the library must be made available to all compo-
nentsin all .war files, EJB .jar files, application . jar files, and resource
adapter . rar fileswithin the .ear file.

A J2EE product is not required to support downloading of libraries (using the
<extension>-Implementation-URL header) at deployment time or runtime. A
J2EE product is also not required to support more than a single version of an
installed library at once. A J2EE product isnot required to limit accessto installed
libraries to only those for which the application has expressed a dependency; the
application may be given access to more installed libraries than it has requested.
In all of these cases, such support is highly recommended and may be required in
afuture version of this specification. In particular, we recommend that a J2EE
product support multiple versions of an installed library, and only allow
applications to access the installed libraries for which they have expressed a
dependency.

J2EE.8.2.3 Library Conflicts

If an application includes a bundled version of alibrary, and the same library exists
asaningtaled library, theinstance of thelibrary bundled with the application should
be used in preference to any installed version of the library. This allows an
application to bundle exactly the version of alibrary it requires without being
influenced by any installed libraries. Note that if the library is aso arequired
component of the J2EE platform version on which the application is being
deployed, the platform version may (and typically will) take precedence.

J2EE.8.2.4 Library Resources

In addition to alowing access to referenced classes, as described above, any
resources contained in the referenced JAR files must also be accessible using the

145

146

Class and ClassLoader getResource methods, as allowed by the security
permissions of the application. An application will typically have the security
permissions required to access resources in any of the JAR files packaged with the
application.

J2EE.8.2.5 Dynamic Class L oading

Librariesthat dynamically load classes must consider the class |oading environment
of aJ2EE application. Librarieswill often beloaded by aclass|oader that is aparent
classloader of the class |oader that is used to load application classes. A library that
only needs to dynamically load classes provided by the library itself can safely use
the C1ass method forName. However, libraries that need to dynamically load classes
that have been provided as a part of the application need to use the context class
loader to load the classes. Accessto the context class loader requires
RuntimePermission(“getClassLoader”), which isnot normally granted to
applications, but should be granted to libraries that need to dynamically load classes.
Libraries can use a method such as the following to assert their privilege when
accessing the context class loader. This technique will work in both J2SE and J2EE.

pubTlic ClassLoader getContextClassLoader() {
return AccessController.doPrivileged(
new PrivilegedAction<ClassLoader>() {
public ClassLoader run() {
ClassLoader c1 = null;
try {
cl = Thread.currentThread().
getContextClassLoader();
} catch (SecurityException ex) { }
return cl;
}
s
}

Libraries should then use the following technique to load classes.

ClassLoader c1 = getContextClassLoader();
if (c1 !'= null)

clazz = cl.loadClass(name);
else

clazz = Class.forName(name);

Public Review

LIBRARY SUPPORT

J2EE.8.2.6 Examples

Thefollowing exampleillustrates a simple use of the bundled library mechanism to
reference alibrary of utility classes that are shared between enterprise beansin two
separate gb-jar files.

appl.ear:
META-INF/application.xml
ejbl.jar Class-Path: util.jar
ejb2.jar Class-Path: util.jar
util.jar

The next example illustrates a more complex use of the C1ass-Path
mechanism. In this example the Developer has chosen to package the enterprise
bean client view classesin aseparate JAR file and reference that JAR file from the
other JAR files that need those classes. Those classes are needed both by
ejb2.jar, packaged in the same application asejbl.jar, and by ejb3.jar and
servletl.jar, packaged in adifferent application. Those classes are also needed
by ejb1.jar itself because they define the remote interface of the enterprise beans
inejbl.jar, and the developer has chosen the by reference model of making these
classes available, as described in the EJB spec. The deployment descriptor for
ejbl.jar namesthe client view JAR filein the ejb-client-jar element.

The Class-Path mechanism must be used by componentsin app3.ear to
reference the client view JAR file that corresponds to the enterprise beans
packaged in ejbl.jar Of app2.ear. These enterprise beans are referenced by
enterprise beansin ejb3. jar and by the servlets packaged in webapp .war.

app2.ear:
META-INF/application.xml
ejbl.jar Class-Path: ejbl_client.jar

deployment descriptor contains:
<ejb-client-jar>ejbl_client.jar</ejb-client-jar>
ejbl_client.jar
ejb2.jar Class-Path: ejbl_client.jar

app3.ear:
META-INF/appTlication.xml
ejbl_client.jar
ejb3.jar Class-Path: ejbl_client.jar
webapp.war Class-Path: ejbl_client.jar

147

148

WEB-INF/web.xml
WEB-INF/1ib/servletl. jar

The following example illustrates a simple use of the installed library
mechanism to reference alibrary of utility classesthat isinstalled separately.

appl.ear:
META-INF/application.xml
ejbl.jar:
META-INF/MANIFEST.MF:
Extension-List: util
util-Extension-Name: com/example/util
util-Extension-Specification-Version: 1.4
META-INF/ejb-jar.xml

util.jar:
META-INF/MANIFEST.MF:
Extension-Name: com/example/util
Specification-Title: example.com’s util package
Specification-Version: 1.4
Specification-Vendor: example.com
Implementation-Version: build96

J2EE.8.3 Application Assembly

This section specifies the sequence of stepsthat are typically followed when
composing a J2EE application.

J2EE.8.3.1 Assembling a J2EE Application

1. Select the J2EE modules that will be used by the application.
2. Create an application directory structure.

The directory structure of an application is arbitrary, but by following some
simple conventions a deployment descriptor may not be needed. The structure
should be designed around the requirements of the contained components.

3. Reconcile J2EE module deployment descriptors.
The deployment descriptors for the J2EE modules must be edited to link inter-

Public Review

APPLICATIONASSEMBLY 149

nally satisfied dependencies and eliminate any redundant security role names.
An optional element a1t-dd (described in Section J2EE.8.5, “J2EE Applica-
tion XML Schema’) may be used when it is desirable to preserve the original
deployment descriptor. The element al1t-dd specifies an aternate deployment
descriptor to use at deployment time. The edited copy of the deployment
descriptor file may be saved in the application directory treein alocation
determined by the Application Assembler. If the alt-dd element is not
present, the Deployer must read the deployment descriptor directly from the
module package.

a. Link theinternally satisfied dependencies of all componentsin every
modul e contained in the application. For each component dependency,
there must only be one corresponding component that fulfills that
dependency in the scope of the application.

i. For each ejb-11nk, there must be only one matching ejb-name in the
scope of the entire application (see Section J2EE.5.5, “Enterprise
JavaBeans™ (EJB) References”).

ii. Dependencies that are not linked to internal components must be
handled by the Deployer as external dependencies that must be met by
resources previously installed on the platform. External dependencies
must be linked to the resources on the platform during deployment.

b. Synchronize security role-names across the application. Rename unique
role-names with redundant meaning to a common name. Rename role-
names with common names but different meanings to unique names.
Descriptions of role-names that are used by many components of the
application can beincluded in the application-level deployment descriptor.

c. Assign acontext root for each web module included in the J2EE
application. The context root is arelative name in the web hamespace for
the application. Each web module must be given a distinct and non-
overlapping namefor its context root. The web modules will be assigned a
complete name in the namespace of the web server at deployment time. If
thereisonly one web modulein the J2EE application, the context root may
be the empty string. If no deployment descriptor isincluded in the
application package, the context root of the web module will be the name
of the web modulefile relative to the root of the application package, with
the .war extension removed. See the servlet specification for detailed
reguirements of context root naming.

150

d. Make sure that each component in the application properly describes any

dependenciesit may have on other componentsin the application. A J2EE
application should not assume that all components in the application will
be available on the class path of the application at run time. Each
component might be loaded into a separate class |oader with a separate
namespace. If the classesin a JAR file depend on classes in another JAR
file, thefirst JAR file should reference the second JAR file using the
Class-Path mechanism. A notable exception to thisrule is JAR files
located in the WwEB-INF/14b directory of aweb application. All such JAR
files areincluded in the class path of the web application at runtime;
explicit references to them using the C1ass-Path mechanism are not
needed. Another exception to thisrule is JAR files located in the library
directory (usually named 11b) in the application package.

. There must be only one version of each classin an application. If one

component depends on one version of alibrary, and another component
depends on another version, it may not be possible to deploy an application
containing both components. A J2EE application should not assume that
each component is loaded in a separate class |oader and has a separate
namespace. All componentsin a single application may be loaded in a
single class |oader and share a single namespace. Note, however, that it
must be possible to deploy an application such that all components of the
application arein anamespace (or namespaces) separate from that of other
applications. Typically, thiswill be the normal method of deployment.

4. (Optional) Create an XML deployment descriptor for the application.

The deployment descriptor must be named application.xm1 and must reside
in the top level of the META-INF directory of the application .ear file. The
deployment descriptor must be avalid XML document according to the XML
schemafor aJ2EE:appTlication XML document. (Alternatively, the deploy-
ment descriptor may meet the requirements of previous versions of J2EE.)

Many applications that follow the conventions described below will not need
a deployment descriptor for the application. The deployment tool will deter-
mine the components of the application using some simple rules.

5. Package the application.

a. Place the J2EE modules and the deployment descriptor in the appropriate

directories.

Public Review

DEPLOYMENT

b. Package the application directory hierarchy in afile using the JAR file
format. The file should be named with a . ear filename extension.

J2EE.8.3.2 Adding and Removing M odules

After the application is created, J2EE modules may be added or removed before
deployment. When adding or removing a module the following steps must be
performed:

1. Decide on alocationinthe application package for the new module. Optionally
create new directories in the application package hierarchy to contain any
J2EE modules that are being added to the application.

2. Copy the new J2EE modul esto the desired location in the application package.
The packaged modules are inserted directly in the desired location; the mod-
ules are not unpackaged.

3. Edit the deployment descriptorsfor the J2EE modulesto link the dependencies
which areinternally satisfied by the J2EE modulesincluded in the application.

4. Edit the J2EE application deployment descriptor (if included) to meet the con-
tent requirements of the J2EE platform and the validity requirements of the
J2EE:application XML DTD or schema

J2EE.84 Deployment
The J2EE platform supports three types of deployment units:

» Stand-alone J2EE modules.

» J2EE applications, consisting of one or more J2EE modules. A J2EE applica-
tion must include one J2EE application deployment descriptor.

* Classlibraries packaged as . jar files according to the Extension Mechanism
Architecture. These class libraries then become installed libraries.

Any J2EE product must be able to accept a J2EE application delivered as a
.ear file or astand-alone J2EE module delivered asa . jar,.war, or . rar file (as
appropriatetoitstype). If the application isdelivered asa . ear, an enterprise bean
module delivered as a . jar file, aweb application delivered asa .war file, or an
application client delivered as a . jar file, the deployment tool must be able to

151

152

deploy the application such that the Java classesin the application arein a
separate namespace from classes in other Java applications. Typically thiswill
require the use of a separate class|oader for each application. Standal one resource
adapters delivered in . rar files and standalone class libraries delivered in . jar
filesthat become installed libraries will of necessity appear in the class
namespaces of applications that use them, and may appear in the class namespace
of any application depending on the level of isolation supported by the J2EE
product.

In al cases, the deployment of a J2EE application must be complete before
the container delivers requests to any of the application’s components. When an
application is started, the container must deliver requests to enterprise bean
components immediately. Containers must deliver requests to web components
and resource adapters only after initialization of the component has completed.

The J2EE Deployment API describes how a product-independent deployment
tool accepts plugins for a specific J2EE product, and how the tool and those
plugins cooperate to deploy J2EE applications. The requirementsin this
specification that refer to a deployment tool are meant to refer to the combination
of any vendor-provided product-independent deployment tool and the vendor-
specific deployment plugin for this tool, as well as any other vendor-specific
deployment tools provided with the J2EE product.

Typically adeployment tool will copy the deployed application or moduleto a
product-specific location, along with the configuration settings and
customizations specified by the Deployer. In some cases a deployment tool might
include Application Assembly functionality as well, allowing the Deployer to
construct, modify, or customize the application before deployment. Still, it must
be possible to deploy a portable J2EE application, module, or library containing
no product-specific deployment information without modifying the original files
or artifacts that the Deployer specified to the deployment tool.

The deployment tools for J2EE containers must validate the deployment
descriptors against the J2EE deployment descriptor schemas or DTDs that
correspond to the deployment descriptors being processed. The appropriate
schemaor DTD is chosen by analyzing the deployment descriptor to determine
which version it claims to conform to. Validation errors must cause an error to be
reported to the Deployer. The deployment tool may allow the Deployer to correct
the error and continue deployment.

Public Review

DEPLOYMENT 153

J2EE.8.4.1 Deploying a Stand-Alone J2EE Module

This section specifies the requirements for deploying a stand-alone J2EE module.

1. The deployment tool must first read the J2EE modul e deployment descriptor
if present in the package. See the component specificationsfor the required lo-
cation and name of the deployment descriptor for each component type.

2. If the deployment descriptor is absent, or is present and isa J2EE 5.0 version
descriptor and the fu11 attribute is not set to true, the deployment tool must
examine al the classfilesin the application package. Any annotations that
specify deployment information must be logically merged with the informa-
tion in the deployment descriptor (if present). The correspondence of annota
tion information with deployment descriptor information, as well as the
overriding rules, are described in thisand other J2EE specifications. Theresult
of thislogical merge process provides the deployment information used in sub-
sequent deployment steps. Note that there is no requirement for the merge pro-
cess to produce a new deployment descriptor, although that might be a
common implementation technique.

3. The deployment tool must deploy all of the components listed in the J2EE
modul e deployment descriptor, or marked via annotations and discovered as
described in the previous requirement, according to the deployment require-
ments of the respective J2EE component specification. If the moduleisatype
that contains JAR format files (for example, web and Connector modules), all
classesin . jar files within the modul e referenced from other JAR fileswithin
the module using the C1ass-Path manifest header must be included in the de-
ployment. If the module, or any JAR format files within the module, declares
adependency on an installed library, that dependency must be satisfied.

4. The deployment tool must allow the Deployer to configure the container to
provide the resources and configuration values needed for each component.
The required resources and configuration parameters are specified in the de-
ployment descriptor or via annotations discovered in requirement 2.

5. The deployment tool must allow the Deployer to deploy the same module mul-
tiple times, as multiple independent applications, possibly with different con-
figurations. For example, the enterprise beansin an gjb-jar file might be
deployed multiple times under different INDI names and with different con-
figurations of their resources.

154

J2EE.8.4.2 Deploying a J2EE Application
This section specifies the requirements for deploying a J2EE application.

1. The deployment tool must first read the J2EE application deployment descrip-
tor from the application .ear file (META-INF/application.xm1). If no deploy-
ment descriptor is present, the deployment tool uses the following rulesto
determine the components included in the application.

a. All filesin the application package with a filename extension of .war are
considered web modules. The context root of the web module is the name
of thefilerelative to the root of the application package, but with the .war
extension removed.

b. All filesin the application package with afilename extension of . rar are
considered resource adapters.

c. A directory named 11b is considered to be the library directory, as
described in Section J2EE.8.2.1, “Bundled Libraries.”

d. For al filesin the application package with a filename extension of . jar,
but not contained in the 1ib directory, do the following:

i. If the JAR file contains aMETA-INF/MANIFEST.MF file with aMain-
Class attribute, or contains aMETA-INF/application-client.xml filg,
consider the JAR file to be an application client module.

ii. If the JAR file contains aMETA-INF/ejb-jar.xml file, or contains any
classwith an EJB component annotation (Stateless, €tc.), consider the
JAR fileto be an EJB module.

iii. All other JAR files areignored unless referenced by a JAR file
discovered above using one of the JAR file reference mechanisms such
asthe C1ass-Path header in amanifest file.

2. The deployment tool must open each of the J2EE modules listed in the J2EE
application deployment descriptor or discovered using the rules above and
read the J2EE modul e deployment descriptor, if present in the package. Seethe
Enterprise JavaBeans, servlet, J2EE Connector and application client specifi-
cations for the required location and name of the deployment descriptor for
each component type. (The application client specification is Chapter J2EE.9,
“Application Clients’.)

Public Review

DEPLOYMENT

. If the modul e deployment descriptor is absent, or is present and is a J2EE 5.0
version descriptor and the fu11 attributeis not set to true, the deployment tool
must examine all the class filesin the application package [XXX - and refer-
enced jar files?]. Any annotationsthat specify deployment information must be
logically merged with the information in the deployment descriptor (if
present). The correspondence of annotation information with deployment de-
scriptor information, as well as the overriding rules, are described in this and
other J2EE specifications. Theresult of thislogical merge process providesthe
deployment information used in subsequent deployment steps. Note that there
isno requirement for the merge processto produce a new deployment descrip-
tor, although that might be a common implementation technique.

. The deployment tool must install al of the components described by each
modul e deployment descriptor, or marked via annotations and discovered as
described in the previousrequirement, into the appropriate container according
to the deployment requirements of the respective J2EE component specifica
tion. All classesin . jar filesreferenced from other JAR filesusing the C1ass-
Path manifest header must be included in the deployment. If the . ear file, or
any JAR format files within the . ear file, declares a dependency on anin-
stalled library, that dependency must be satisfied.

. The deployment tool must allow the Deployer to configure the container to
provide the resources and configuration values needed for each component.
The required resources and configuration parameters are specified in the de-
ployment descriptor or via annotations discovered in requirement 3.

. The deployment tool must allow the Deployer to deploy the same J2EE appli-
cation multiple times, as multiple independent applications, possibly with dif-
ferent configurations. For example, the enterprise beansin an g/b-jar file might
be deployed multipletimes under different INDI names and with different con-
figurations of their resources.

. When presenting security role descriptions to the Deployer, the deployment
tool must use the descriptions in the J2EE application deployment descriptor
rather than the descriptionsin any module deployment descriptorsfor security
roles with the same name. However, for security rolesthat appear in amodule
deployment descriptor but do not appear in the application deployment de-
scriptor, the deployment tool must use the description provided in the module
deployment descriptor.

155

156

J2EE.8.4.3 Deployinga Library

This section specifies the requirements for deploying alibrary.

1. The deployment tool must record the extension name and version information
from the manifest file of thelibrary JAR file. The deployment tool must make
the library available to other J2EE deployment units that request it according
to the version matching rules described in the Optional Package Versioning
specification. Note that the library itself may include dependencies on other li-
braries and these dependencies must also be satisfied.

2. The deployment tool must make the library available with at |east the same se-
curity permissions as any application or module that usesit. The library may
be installed with the full security permissions of the container.

3. Not al librarieswill be deployable on all J2EE productsat all times. Libraries
that conflict with the operation of the J2EE product may not be deployable. For
example, an attempt to deploy an older version of alibrary that has subsequent-
ly beenincluded in the J2EE platform specification may berejected. Similarly,
deployment of alibrary that is also used in the implementation of the J2EE
product may be rejected. Deployment of alibrary that isin active use by an ap-
plication may be rejected.

J2EE.85 J2EE Application XML Schema

This section providesthe XML Schema for the J2EE application deployment
descriptor. The XML grammar for a J2EE application deployment descriptor is
defined by the J2EE: app1ication schema. The granularity of composition for J2EE
application assembly isthe J2EE module. A J2EE:app1ication deployment
descriptor contains a name and description for the application and the URI of a Ul
icon for the application, aswell alist of the J2EE modules that comprise the
application. The content of the XML elementsisin general case sensitive. This
means, for example, that <role-name>Manager</role-name> isadifferent role than
<role-name>manager</role-name>.

All valid J2EE application deployment descriptors must conform to the XML
Schema definition below, or the DTD or schema definition from a previous
version of this specification. (See Appendix J2EE.A, “Previous Version Deploy-
ment Descriptors.”) The deployment descriptor must be named META-INF/
application.xml inthe .ear file. Note that this nameis case-sensitive.

Public Review

J2EEAPPLICATION XML SCHEMA

Figure J2EE.8-3 shows a graphic representation of the structure of the J2EE
application XML Schema.

description*

display-name*
small-icon?
icon*

large-icon?

application |—

context-root

connector | ejb | java | web

module+

alt-dd?

description*
security-role*

role-name

11 G

library-directory?

FigureJ2EE.8-3 J2EE Application XML Schema Structure

The XML Schemathat follows defines the XML grammar for a J2EE
application deployment descriptor.

<?xml version="1.0" encoding="UTF-8"7>

<xsd:schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://java.sun.com/xml/ns/j2ee"
xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified"
version="5.0">

<xsd:annotation>
<xsd:documentation>

@(#)application_5_0.xsds 1.15 01/04/05

</xsd:documentation>
</xsd:annotation>

157

158

<xsd:annotation>
<xsd:documentation>

This is the XML Schema for the application 5.0 deployment
descriptor. The deployment descriptor must be named
"META-INF/application.xml" in the application’s ear file.
A1l application deployment descriptors must indicate

the application schema by using the J2EE namespace:

http://java.sun.com/xml/ns/j2ee

and indicate the version of the schema by
using the version element as shown below:

<application xmins="http://java.sun.com/xml/ns/j2ee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/application_5_0.xsd"
version="5.0">

</application>
The instance documents may indicate the published version of
the schema using the xsi:schemalocation attribute for J2EE

namespace with the following Tocation:

http://java.sun.com/xml/ns/j2ee/application_5_0.xsd

</xsd:documentation>
</xsd:annotation>

<xsd:annotation>
<xsd:documentation>

The following conventions apply to all J2EE

deployment descriptor elements unless indicated otherwise.

- In elements that specify a pathname to a file within the
same JAR file, relative filenames (i.e., those not
starting with "/") are considered relative to the root of
the JAR file’s namespace. Absolute filenames (i.e., those
starting with "/") also specify names in the root of the
JAR file’s namespace. In general, relative names are

Public Review

J2EEAPPLICATION XML SCHEMA

preferred. The exception is .war files where absolute
names are preferred for consistency with the Serviet API.

</xsd:documentation>
</xsd:annotation>

<xsd:include schemalLocation="j2ee_5_0.xsd"/>

<!l--
<xsd:element name="application" type="j2ee:applicationType'>

<xsd:annotation>
<xsd:documentation>

The application element is the root element of a J2EE
application deployment descriptor.

</xsd:documentation>
</xsd:annotation>

<xsd:unique name="context-root-uniqueness'>

<xsd:annotation>
<xsd:documentation>

The context-root element content must be unique
in the ear.

</xsd:documentation>
</xsd:annotation>

<xsd:selector xpath="j2ee:module/j2ee:web"/>
<xsd:field xpath="j2ee:context-root" />
</xsd:unique>
<xsd:unique name="security-role-uniqueness'>

<xsd:annotation>
<xsd:documentation>

The security-role-name element content
must be unique in the ear.

159

160

</xsd:documentation>
</xsd:annotation>

<xsd:selector xpath="j2ee:security-role"/>
<xsd:field xpath="j2ee:role-name" />
</xsd:unique>
</xsd:element>

<!__ Yo
<xsd:complexType name="applicationType">

<xsd:annotation>
<xsd:documentation>

The applicationType defines the structure of the
application.

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:group ref="j2ee:descriptionGroup"/>
<xsd:element name="module"
type="j2ee:moduleType"
maxOccurs="unbounded">

<xsd:annotation>
<xsd:documentation>

The application deployment descriptor must have one
module element for each J2EE module in the
application package. A module element is defined
by moduleType definition.

</xsd:documentation>
</xsd:annotation>

</xsd:element>

<xsd:element name="security-role"
type="j2ee:security-roleType
minOccurs="0"
maxOccurs="unbounded" />

<xsd:element name="1ibrary-directory"

Public Review

J2EEAPPLICATION XML SCHEMA 161

type="j2ee:pathType"
minOccurs="0"
maxOccurs="1">

<xsd:annotation>
<xsd:documentation>

The Tibrary-directory element specifies the pathname
of a directory within the application package, relative
to the top level of the application package. All files
named "*.jar" in this directory must be made available
in the class path of all components included in this
application package.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
</xsd:sequence>
<xsd:attribute name="version"
type="j2ee:dewey-versionType"
fixed="5.0"
use="required">

<xsd:annotation>
<xsd:documentation>

The required value for the version is 5.0.

</xsd:documentation>
</xsd:annotation>

</xsd:attribute>
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:complexType>

< R R R O e R R R R L R R kR R R A A >

<xsd:complexType name="moduleType'">

<xsd:annotation>
<xsd:documentation>

The moduleType defines a single J2EE module and contains a

162

connector, ejb, java, or web element, which indicates the
module type and contains a path to the module file, and an
optional alt-dd element, which specifies an optional URI to
the post-assembly version of the deployment descriptor.

</xsd:documentation>
</Xsd:annotation>

<xsd:sequence>
<xsd:choice>
<xsd:element name="connector"
type="j2ee:pathType">

<xsd:annotation>
<xsd:documentation>

The connector element specifies the URI of a
resource adapter archive file, relative to the
top Tevel of the application package.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name="ejb"
type="j2ee:pathType">

<xsd:annotation>
<xsd:documentation>

The ejb element specifies the URI of an ejb-jar,
relative to the top level of the application
package.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name="java"
type="j2ee:pathType">

<xsd:annotation>
<xsd:documentation>

Public Review

J2EEAPPLICATION XML SCHEMA

The java element specifies the URI of a java
application client module, relative to the top
level of the application package.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name="web"
type="j2ee:webType" />
</xsd:choice>
<xsd:element name="alt-dd"
type="j2ee:pathType"
minOccurs="0">

<xsd:annotation>
<xsd:documentation>

The alt-dd element specifies an optional URI to the
post-assembly version of the deployment descriptor
file for a particular J2EE module. The URI must
specify the full pathname of the deployment
descriptor file relative to the application’s root
directory. If alt-dd is not specified, the deployer
must read the deployment descriptor from the default
location and file name required by the respective
component specification.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID"/>
</xsd:complexType>
<l oo sk ke ek e R bk e e ke ek ke ke
<xsd:complexType name="webType'>

<xsd:annotation>
<xsd:documentation>

The webType defines the web-uri and context-root of

163

164

a web application module.

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:element name="web-uri"
type="j2ee:pathType">

<xsd:annotation>
<xsd:documentation>

The web-uri element specifies the URI of a web
application file, relative to the top level of the
application package.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name="context-root"
type="j2ee:string">

<xsd:annotation>
<xsd:documentation>

The context-root element specifies the context root
of a web application.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
</xsd:sequence>
<xsd:attribute name="1id" type="xsd:ID"/>

</xsd:complexType>

</xsd:schema>

Public Review

COMMON J2EE XML SCHEMA DEFINITIONS

J2EE.8.6 Common J2EE XML Schema Definitions

Thefollowing XML Schema defines types that are used by many other J2EE
deployment descriptor schemas, both in this specification and in other
specifications.

<?xml version="1.0" encoding="UTF-8"7>

<xsd:schema
targetNamespace="http://java.sun.com/xml1/ns/j2ee"
xmIns:j2ee="http://java.sun.com/xml/ns/j2ee"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified"
version="5.0">

<xsd:annotation>
<xsd:documentation>

@(#)jlee_5_0.xsds 1.50 05/06/08

</xsd:documentation>
</xsd:annotation>

<xsd:annotation>
<xsd:documentation>

The following definitions that appear in the common
shareable schema(s) of J2EE deployment descriptors should be
interpreted with respect to the context they are included:

Deployment Component may indicate one of the following:
j2ee application;
application client;
web application;
enterprise bean;
resource adapter;

Deployment File may indicate one of the following:
ear file;
war file;
jar file;
rar file;

165

166

</xsd:documentation>
</xsd:annotation>

<xsd:import namespace="http://www.w3.0rg/XML/1998/namespace"
schemalLocation="http://www.w3.0rg/2001/xml.xsd" />
<xsd:include schemalLocation=
"http://www.ibm.com/webservices/xsd/
j2ee_web_services_client_1_1.xsd"/>
< l —— Fhdeddehdeh NNl Nl hdehddhdehfhfh N A Nd A ddhdhdhfhfdh Nl Nk —>
<xsd:group name="descriptionGroup'>

<xsd:annotation>
<xsd:documentation>

This group keeps the usage of the contained description related
elements consistent across J2EE deployment descriptors.

All elements may occur multiple times with different languages,
to support localization of the content.

</xsd:documentation>
</Xsd:annotation>

<xsd:sequence>
<xsd:element name="description"
type="j2ee:descriptionType"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="display-name"
type="j2ee:display-nameType"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="icon"
type="j2ee:iconType"
minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:group>

<xsd:complexType name="descriptionType'>

Public Review

COMMON J2EE XML SCHEMA DEFINITIONS 167

<xsd:annotation>
<xsd:documentation>

The description type is used by a description element to
provide text describing the parent element. The elements
that use this type should include any information that the
Deployment Component’s Deployment File file producer wants
to provide to the consumer of the Deployment Component’s
Deployment File (i.e., to the Deployer). Typically, the
tools used by such a Deployment File consumer will display
the description when processing the parent element that
contains the description.

The lang attribute defines the language that the
description is provided in. The default value is "en" (English).

</xsd:documentation>
</xsd:annotation>

<xsd:simpTleContent>
<xsd:extension base="j2ee:xsdStringType">
<xsd:attribute ref="xml:lang"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

< | —— Fedefededededefehdededededefeddededededededededehh ——>

<xsd:simpleType name="dewey-versionType'>

<xsd:annotation>
<xsd:documentation>

This type defines a dewey decimal that is used
to describe versions of documents.

</xsd:documentation>
</xsd:annotation>

<xsd:restriction base="xsd:token">
<xsd:pattern value=".7[0-9]+(.[0-9]+)*"/>
</xsd:restriction>
</xsd:simpleType>

168

<!__ ER R R R R R o S o S o S R R o S o S o ——>
<xsd:complexType name="d1isplay-nameType'>

<xsd:annotation>
<xsd:documentation>

The display-name type contains a short name that is intended
to be displayed by tools. It is used by display-name
elements. The display name need not be unique.

Example:

<display-name xml:lang="en">
Employee Self Service
</display-name>

The value of the xml:1ang attribute is "en" (English) by default.

</xsd:documentation>
</Xsd:annotation>

<xsd:simpTeContent>
<xsd:extension base="j2ee:string">
<xsd:attribute ref="xml:lang"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

<!__ ER SRR R T R R R o S o S o S R S R o S o S o —>
<xsd:complexType name="ejb-1inkType">

<xsd:annotation>
<xsd:documentation>

The ejb-1inkType is used by ejb-1ink
elements in the ejb-ref or ejb-local-ref elements to specify
that an EJB reference is linked to enterprise bean.

The value of the ejb-Tink element must be the ejb-name of an

enterprise bean in the same ejb-jar file or in another ejb-jar
file in the same J2EE application unit.

Public Review

COMMON J2EE XML SCHEMA DEFINITIONS

Alternatively, the name in the ejb-1ink element may be
composed of a path name specifying the ejb-jar containing the
referenced enterprise bean with the ejb-name of the target
bean appended and separated from the path name by "#". The

path name is relative to the Deployment File containing
Deployment Component that is referencing the enterprise
bean. This allows multiple enterprise beans with the same
ejb-name to be uniquely identified.

Examples:
<ejb-T1ink>EmployeeRecord</ejb-1ink>
<ejb-Tink>../products/product. jar#ProductEJB</ejb-1ink>

</xsd:documentation>
</xsd:annotation>

<xsd:simpTleContent>
<xsd:restriction base="j2ee:string"/>
</xsd:simpleContent>
</xsd:complexType>

FTedededefdd

<l--
<xsd:complexType name="ejb-local-refType'>

<xsd:annotation>
<xsd:documentation>

The ejb-Tlocal-refType is used by ejb-local-ref elements for
the declaration of a reference to an enterprise bean’s Tlocal
home. The declaration consists of:

- an optional description

- the EJB reference name used in the code of the Deployment
Component that’s referencing the enterprise bean

- the expected type of the referenced enterprise bean

- the expected Tocal home and local interfaces of the
referenced enterprise bean

- optional ejb-Tink information, used to specify the
referenced enterprise bean

169

170

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:element name="description"
type="j2ee:descriptionType"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="ejb-ref-name"
type="j2ee:ejb-ref-nameType" />
<xsd:element name="ejb-ref-type"
type="j2ee:ejb-ref-typeType"/>
<xsd:element name="Tocal-home"
type="j2ee:local-homeType" />
<xsd:element name="1local"
type="j2ee:TocalType"/>
<xsd:element name="ejb-Tink"
type="j2ee:ejb-1inkType"
minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:complexType>

FTedededefhddede Al denhdddedhhdd

<!__ % dededededededededede el S

<xsd:complexType name="ejb-ref-nameType'">

<xsd:annotation>
<xsd:documentation>

The ejb-ref-name element contains the name of an EJB
reference. The EJB reference is an entry in the

Deployment Component’s environment and is relative to the
java:comp/env context. The name must be unique within the
Deployment Component.

It is recommended that name is prefixed with "ejb/".
Example:

<ejb-ref-name>ejb/Payroll</ejb-ref-name>

</xsd:documentation>
</xsd:annotation>

Public Review

COMMON J2EE XML SCHEMA DEFINITIONS 171

<xsd:simpTleContent>
<xsd:restriction base="j2ee:jndi-nameType" />
</xsd:simpleContent>
</xsd:complexType>
<!__ B R R SR S T R R R SR R R R R R S SR T SR A R R R R R R R R R R S ——>
<xsd:complexType name="ejb-ref-typeType'>

<xsd:annotation>
<xsd:documentation>

The ejb-ref-typeType contains the expected type of the
referenced enterprise bean.

The ejb-ref-type designates a value
that must be one of the following:

Entity
Session

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:restriction base="j2ee:string">
<xsd:enumeration value="Entity"/>
<xsd:enumeration value="Session"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>

<l-- %
<xsd:complexType name="ejb-refType'>

<xsd:annotation>
<xsd:documentation>

The ejb-refType is used by ejb-ref elements for the
declaration of a reference to an enterprise bean’s home. The
declaration consists of:

- an optional description
- the EJB reference name used in the code of

172

the Deployment Component that’s referencing the enterprise
bean
- the expected type of the referenced enterprise bean
- the expected home and remote interfaces of the referenced
enterprise bean
- optional ejb-Tink information, used to specify the
referenced enterprise bean

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:element name="description"
type="j2ee:descriptionType"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="ejb-ref-name"
type="j2ee:ejb-ref-nameType" />
<xsd:element name="ejb-ref-type"
type="j2ee:ejb-ref-typeType"/>
<xsd:element name="home"
type="j2ee:homeType" />
<xsd:element name="remote"
type="j2ee:remoteType" />
<xsd:element name="ejb-1ink"
type="j2ee:ejb-1inkType"
minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:complexType>

<!__ EE
<xsd:complexType name="emptyType'>

<xsd:annotation>
<xsd:documentation>

This type is used to designate an empty
element when used.

</xsd:documentation>
</xsd:annotation>

Public Review

COMMON J2EE XML SCHEMA DEFINITIONS

<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:complexType>

<!l--

Fedededede NNl

JROROROROROROROROROROL

Fedededef N Nhdedede NN hdde NN A A de N Nhdde NN Ahdddn

e e e e ale ale sl o sl e ale ale ol oo o

<xsd:complexType name="env-entry-type-valuesType'>

<xsd:annotation>
<xsd:documentation>

This type contains the fully-qualified Java type of the
environment entry value that is expected by the
application’s code.

The following are the legal values of env-entry-type-valuesType:

java.
java.
java.
java.
java.
java.
java.
java.
java.

lang.
lang.
lang.
lang.
Tlang.
lang.
lang.
lang.
lang.

Example:

Boolean
Byte
Character
String
Short
Integer
Long
Float
Double

<env-entry-type>java. lang.Boolean</env-entry-type>

</xsd:documentation>
</Xsd:annotation>

<xsd:simpTleContent>
<xsd:restriction base="j2ee:string">

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:

enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration

value="java.
value="java.
value="java.
value="java.
value="java.
value="java.
value="java.
value="java.
value="java.

Tlang.
Tlang.

Tlang

Tlang.
Tlang.
Tlang.
Tang.
Tang.

Tang

Boolean"/>
Byte"/>
.Character"/>
String"/>
Short" />
Integer"/>
Long"/>
Float"/>
.DoubTe" />

173

174

</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>
<l oo Fwddededdkdd R kded R kded ik dd Rk dfdddwddhdhdd ikl wkddnwkddnk
<xsd:complexType name="env-entryType'>

<xsd:annotation>
<xsd:documentation>

The env-entryType is used to declare an application’s
environment entry. The declaration consists of an optional
description, the name of the environment entry, a type
(optional if the value is injected, otherwise required), and
an optional value.

It also includes optional elements to define injection of
the named resource into fields or JavaBeans properties.

If a value is not specified and injection is requested,

no injection will occur and no entry of the specified name
will be created. This allows an initial value to be
specified in the source code without being incorrectly
changed when no override has been specified.

If a value is not specified and no injection is requested,
a value must be supplied during deployment.

This type is used by env-entry elements.

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:element name="description"
type="j2ee:descriptionType"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="env-entry-name"
type="j2ee:jndi-nameType">

<xsd:annotation>
<xsd:documentation>

Public Review

COMMON J2EE XML SCHEMA DEFINITIONS 175

The env-entry-name element contains the name of a
Deployment Component’s environment entry. The name
is a JNDI name relative to the java:comp/env
context. The name must be unique within a
Deployment Component. The uniqueness

constraints must be defined within the declared
context.

Example:
<env-entry-name>minAmount</env-entry-name>

</xsd:documentation>
</xsd:annotation>

</xsd:element>

<xsd:element name="env-entry-type"
type="j2ee:env-entry-type-valuesType"
minOccurs="0">

<xsd:annotation>
<xsd:documentation>

The env-entry-type element contains the Java language
type of the environment entry. If an injection target
is specified for the environment entry, the type may
be omitted, or must match the type of the injection
target. If no injection target is specified, the type
is required.

Example:
<env-entry-type>java.lang.Integer</env-entry-type>

</xsd:documentation>
</xsd:annotation>

</xsd:element>

<xsd:element name="env-entry-value"
type="j2ee:xsdStringType"
minOccurs="0">

176

<xsd:annotation>
<xsd:documentation>

The env-entry-value designates the value of a
Deployment Component’s environment entry. The value
must be a String that is valid for the

constructor of the specified type that takes a
single String parameter, or for java.lang.Character,
a single character.

Example:
<env-entry-value>100.00</env-entry-value>

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name="injection-target"
type="j2ee:injection-targetType"
minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:complexType>

<!__ %
<xsd:complexType name="fully-qualified-classType">

<xsd:annotation>
<xsd:documentation>

The elements that use this type designate the name of a
Java class or interface. The name is in the form of a
"binary name', as defined in the JLS. This is the form
of name used in Class.forName(). Tools that need the
canonical name (the name used in source code) will need
to convert this binary name to the canonical name.

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>

Public Review

COMMON J2EE XML SCHEMA DEFINITIONS

<xsd:restriction base="j2ee:string"/>
</xsd:simpleContent>
</xsd:complexType>
<!__ %
<xsd:complexType name="generic-booleanType">

<xsd:annotation>
<xsd:documentation>

This type defines four different values which can designate
boolean values. This includes values yes and no which are
not designated by xsd:boolean

</xsd:documentation>
</xsd:annotation>

<xsd:simpTleContent>
<xsd:restriction base="j2ee:string">
<xsd:enumeration value="true"/>
<xsd:enumeration value="false"/>
<xsd:enumeration value="yes"/>
<xsd:enumeration value="no"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>

<|__ Fededede R ddededefhdddedhhddede e hddedhhdddefhhdddhdddedhhdddhhk —_—>

<xsd:complexType name="homeType'>

<xsd:annotation>
<xsd:documentation>

The homeType defines the fully-qualified name of
an enterprise bean’s home interface.

Example:
<home>com. aardvark.payroll.PayrollHome</home>

</xsd:documentation>
</xsd:annotation>

177

178

<xsd:simpleContent>
<xsd:restriction base="j2ee:fully-qualified-classType"/>
</xsd:simpleContent>
</xsd:complexType>

< | —— wERdkddRkddeRkded kel dd e ddfRdeddwdkd i dkddkddwhd ikl S
<xsd:complexType name="1iconType'>

<xsd:annotation>
<xsd:documentation>

The icon type contains small-icon and large-icon elements
that specify the file names for small and large GIF, JPEG,
or PNG icon images used to represent the parent element in a
GUI tool.

The xml:lang attribute defines the language that the
icon file names are provided in. Its value is "en" (English)
by default.

</xsd:documentation>
</Xsd:annotation>

<xsd:sequence>
<xsd:element name="small-icon" type="j2ee:pathType"

minOccurs="0">

<xsd:annotation>
<xsd:documentation>

The small-icon element contains the name of a file
containing a small (16 x 16) icon image. The file
name is a relative path within the Deployment

Component’s Deployment File.

The image may be in the GIF, JPEG, or PNG format.
The icon can be used by tools.

Example:

<small-icon>employee-service-iconl6x16. jpg</small-icon>

Public Review

COMMON J2EE XML SCHEMA DEFINITIONS 179

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name="Tlarge-icon" type="j2ee:pathType"
minOccurs="0">

<xsd:annotation>
<xsd:documentation>

The large-icon element contains the name of a file
containing a large

(32 x 32) icon image. The file name is a relative
path within the Deployment Component’s Deployment
File.

The image may be in the GIF, JPEG, or PNG format.
The icon can be used by tools.

Example:
<large-icon>employee-service-icon32x32.jpg</large-icon>

</xsd:documentation>
</xsd:annotation>

</xsd:element>
</xsd:sequence>
<xsd:attribute ref="xml:lang"/>
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:complexType>
< ! — FededeldedededefeNeedededede NN dedede N NNededede NN Nededede NN Nedededede N Ndeddede N Ndddd
<xsd:complexType name="1injection-targetType'>

<xsd:annotation>
<xsd:documentation>

An injection target specifies a class and a name within
that class into which a resource should be injected.

The injection target class specifies the fully qualified
class name that is the target of the injection. The

180

J2EE specifications describe which classes can be an
injection target.

The injection target name specifies the target within

the specified class. The target is first looked for as a
JavaBeans property name. If not found, the target is
looked for as a field name.

The specified resource will be injected into the target
during initialization of the class by either calling the
set method for the target property or by setting a value
into the named field.

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:element name="injection-target-class"
type="j2ee:fully-qualified-classType"/>
<xsd:element name="injection-target-name"
type="j2ee:java-identifierType"/>
</xsd:sequence>
</xsd:complexType>
< l —— Fhdededehfehfdefdefddhddhdehdhfhfd Nl Rddhdddhdhfhfh Nl —_—>
<xsd:complexType name="java-identifierType">

<xsd:annotation>
<xsd:documentation>

The java-identifierType defines a Java identifier.
The users of this type should further verify that
the content does not contain Java reserved keywords.

</xsd:documentation>
</Xsd:annotation>

<xsd:simpTeContent>
<xsd:restriction base="j2ee:string">
<xsd:pattern value="($|_|p{L}) (p{L} | p{Nd}I_|$)*"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>

Public Review

COMMON J2EE XML SCHEMA DEFINITIONS 181

<l oo Fdewddedndkddi kel kdedwkdd ki dd R kdedfkdedfkddddkddwdkddwidhdn (S
<xsd:complexType name="java-typeType'>

<xsd:annotation>
<xsd:documentation>

This is a generic type that designates a Java primitive
type or a fully qualified name of a Java interface/type,

or an array of such types.

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:restriction base="j2ee:string">
<xsd:pattern value="[Ap{Z}]*"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>

Fededede N AN Nud

<!l--
<xsd:complexType name="jndi-nameType">

<xsd:annotation>
<xsd:documentation>

The jndi-nameType type designates a JNDI name in the
Deployment Component’s environment and is relative to the

java:comp/env context. A JINDI name must be unique within the

Deployment Component.

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:restriction base="j2ee:string"/>

</xsd:simpTleContent>
</xsd:complexType>
FTedededefhhdded NN hdde NN hdde NN hhdde NN ddde RN Nddde R hddd N hddd Nt —_——>

<!l--
<xsd:group name="jndiEnvironmentRefsGroup">

182

<xsd:annotation>
<xsd:documentation>

This group keeps the usage of the contained JNDI environment
reference elements consistent across J2EE deployment descriptors.

</xsd:documentation>
</Xsd:annotation>

<xsd:sequence>

<xsd:element name="env-entry"
type="j2ee:env-entryType"
minOccurs="0" maxOccurs="unbounded" />

<xsd:element name="ejb-ref"
type="j2ee:ejb-refType"
minOccurs="0" maxOccurs="unbounded" />

<xsd:element name="ejb-local-ref"
type="j2ee:ejb-local-refType"
minOccurs="0" maxOccurs="unbounded" />

<xsd:group ref="j2ee:service-refGroup"/>

<xsd:element name="resource-ref"
type="j2ee:resource-refType"
minOccurs="0" maxOccurs="unbounded" />

<xsd:element name="resource-env-ref"
type="j2ee:resource-env-refType"
minOccurs="0" maxOccurs="unbounded" />

<xsd:element name="message-destination-ref"
type="j2ee:message-destination-refType"
minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:group>

< | —— wERAkddRkddRkdedfkded ik dd e ddfRded A dkddkddhddiwkddwt S
<xsd:complexType name="11istenerType'>

<xsd:annotation>
<xsd:documentation>

The TistenerType indicates the deployment properties for a web
application listener bean.

</xsd:documentation>
</xsd:annotation>

Public Review

COMMON J2EE XML SCHEMA DEFINITIONS

<xsd:sequence>
<xsd:group ref="j2ee:descriptionGroup"/>
<xsd:element name="1l1istener-class"
type="j2ee:fully-qualified-classType">

<xsd:annotation>
<xsd:documentation>

The Tistener-class element declares a class in the
application must be registered as a web
application listener bean. The value is the fully
qualified classname of the listener class.

</xsd:documentation>
</xsd:annotation>

</xsd:element>

</xsd:sequence>
<xsd:attribute name="1id" type="xsd:ID"/>

</xsd:complexType>

FedededefhdhdededNnhhd NN Nhdd SN NN A AR N Nddde NN hdd A NN ddde NN NdddnNd >

<!l--
<xsd:complexType name="1ocal-homeType'>

<xsd:annotation>
<xsd:documentation>

The Tocal-homeType defines the fully-qualified
name of an enterprise bean’s local home interface.

</xsd:documentation>
</xsd:annotation>

<xsd:simpTleContent>
<xsd:restriction base="j2ee:fully-qualified-classType"/>

</xsd:simpleContent>
</xsd:complexType>

FedededefehNhddde NN hdddNhhdd

<!l--
<xsd:complexType name="TlocalType'>

<xsd:annotation>
<xsd:documentation>

183

184

The TocalType defines the fully-qualified name of an
enterprise bean’s local interface.

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:restriction base="j2ee:fully-qualified-classType"/>
</xsd:simpTeContent>
</xsd:complexType>

<xsd:complexType name="message-destination-1inkType'>

<xsd:annotation>
<xsd:documentation>

The message-destination-1inkType is used to Tlink a message
destination reference or message-driven bean to a message
destination.

The Assembler sets the value to reflect the flow of messages
between producers and consumers in the application.

The value must be the message-destination-name of a message
destination in the same Deployment File or in another
Deployment File in the same J2EE application unit.

Alternatively, the value may be composed of a path name
specifying a Deployment File containing the referenced
message destination with the message-destination-name of the
destination appended and separated from the path name by
"#". The path name is relative to the Deployment File
containing Deployment Component that is referencing the
message destination. This allows multiple message
destinations with the same name to be uniquely identified.

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:restriction base="j2ee:string"/>

Public Review

COMMON J2EE XML SCHEMA DEFINITIONS 185

</xsd:simpleContent>
</xsd:complexType>

<!__ %

<xsd:complexType name="message-destination-refType'>

<xsd:annotation>
<xsd:documentation>

The message-destination-ref element contains a declaration
of Deployment Component’s reference to a message destination
associated with a resource in Deployment Component’s
environment. It consists of:

- an optional description
- the message destination reference name
- an optional message destination type
- an optional specification as to whether
the destination is used for
consuming or producing messages, or both.
if not specified, "both" is assumed.
- an optional 1ink to the message destination
- optional injection targets

The message destination type must be supplied unless an
injection target is specified, in which case the type

of the target is used. If both are specified, the type
must be assignment compatible with the type of the injection
target.

Examples:

<message-destination-ref>
<message-destination-ref-name>jms/StockQueue
</message-destination-ref-name>
<message-destination-type>javax.jms.Queue
</message-destination-type>
<message-destination-usage>Consumes
</message-destination-usage>
<message-destination-1ink>CorporateStocks
</message-destination-1ink>

</message-destination-ref>

186

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:element name="description"
type="j2ee:descriptionType"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="message-destination-ref-name"
type="j2ee:jndi-nameType">

<xsd:annotation>
<xsd:documentation>

The message-destination-ref-name element specifies
the name of a message destination reference; its
value is the environment entry name used in
Deployment Component code. The name is a JNDI name
relative to the java:comp/env context and must be
unique within an ejb-jar (for enterprise beans) or a
Deployment File (for others).

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name="message-destination-type"
type="j2ee:message-destination-typeType"
minOccurs="0"/>
<xsd:element name="message-destination-usage"
type="j2ee:message-destination-usageType"
minOccurs="0"/>
<xsd:element name="message-destination-1ink"
type="j2ee:message-destination-TinkType"
minOccurs="0"/>
<xsd:element name="injection-target"
type="j2ee:injection-targetType"
minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:complexType>

Public Review

COMMON J2EE XML SCHEMA DEFINITIONS

<l oo Fdewddedndkddi kel kdedwkdd ki dd R kdedfkdedfkddddkddwdkddwidhdn (S

<xsd:complexType name="message-destination-typeType'>

<xsd:annotation>
<xsd:documentation>

The message-destination-typeType specifies the type of
the destination. The type is specified by the Java interface
expected to be implemented by the destination.

Example:

<message-destination-type>javax.jms.Queue
</message-destination-type>

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:restriction base="j2ee:fully-qualified-classType"/>
</xsd:simpTleContent>
</xsd:complexType>

Fedededefehhdedede R hdded R dddefhddde N hddde N dddd N

<l--
<xsd:complexType name="message-destination-usageType'>

<xsd:annotation>
<xsd:documentation>

The message-destination-usageType specifies the use of the
message destination indicated by the reference. The value
indicates whether messages are consumed from the message
destination, produced for the destination, or both. The
Assembler makes use of this information in linking producers
of a destination with its consumers.

The value of the message-destination-usage element must be
one of the following:

Consumes

Produces

ConsumesProduces

187

188

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:restriction base="j2ee:string">
<xsd:enumeration value="Consumes"/>
<xsd:enumeration value="Produces"/>
<xsd:enumeration value="ConsumesProduces"/>
</xsd:restriction>
</xsd:simpTeContent>
</xsd:complexType>

<!__ %
<xsd:complexType name="message-destinationType'>

<xsd:annotation>
<xsd:documentation>

The message-destinationType specifies a message
destination. The logical destination described by this
element is mapped to a physical destination by the Deployer.

The message destination element contains:

- an optional description

- an optional display-name

- an optional icon

- a message destination name which must be unique
among message destination names within the same
Deployment File.

Example:

<message-destination>
<message-destination-name>CorporateStocks
</message-destination-name>

</message-destination>

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:group ref="j2ee:descriptionGroup"/>

Public Review

COMMON J2EE XML SCHEMA DEFINITIONS 189

<xsd:element name="message-destination-name"
type="j2ee:string">

<xsd:annotation>
<xsd:documentation>

The message-destination-name element specifies a
name for a message destination. This name must be
unique among the names of message destinations
within the Deployment File.

</xsd:documentation>
</xsd:annotation>

</xsd:element>

</xsd:sequence>
<xsd:attribute name="1id" type="xsd:ID"/>

</xsd:complexType>

B R R R R R R R RS RS

<!l--
<xsd:complexType name="param-valueType">

<xsd:annotation>
<xsd:documentation>

This type is a general type that can be used to declare
parameter/value lists.

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:element name="description"
type="j2ee:descriptionType"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="param-name"
type="j2ee:string">

<xsd:annotation>
<xsd:documentation>

The param-name element contains the name of a

190

parameter.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name="param-value"
type="j2ee:xsdStringType">

<xsd:annotation>
<xsd:documentation>

The param-value element contains the value of a
parameter.

</xsd:documentation>
</xsd:annotation>

</xsd:element>

</xsd:sequence>
<xsd:attribute name="1id" type="xsd:ID"/>

</xsd:complexType>

< | P R R R o L R R R Uk
<xsd:complexType name="pathType'>

<xsd:annotation>
<xsd:documentation>

The elements that use this type designate either a relative
path or an absolute path starting with a "/".

In elements that specify a pathname to a file within the
same Deployment File, relative filenames (i.e., those not
starting with "/") are considered relative to the root of
the Deployment File’s namespace. Absolute filenames (i.e.,
those starting with "/") also specify names in the root of
the Deployment File’s namespace. 1In general, relative names
are preferred. The exception is .war files where absolute
names are preferred for consistency with the Serviet API.

</xsd:documentation>
</xsd:annotation>

Public Review

COMMON J2EE XML SCHEMA DEFINITIONS 191

<xsd:simpTleContent>
<xsd:restriction base="j2ee:string"/>
</xsd:simpleContent>
</xsd:complexType>
<!__ B R R SR S T R R R SR R R R R R S SR T SR A R R R R R R R R R R S ——>
<xsd:complexType name="remoteType'>

<xsd:annotation>
<xsd:documentation>

The remote element contains the fully-qualified name
of the enterprise bean’s remote interface.

Example:
<remote>com.wombat.empl.EmployeeService</remote>

</xsd:documentation>
</xsd:annotation>

<xsd:simpTleContent>
<xsd:restriction base="j2ee:fully-qualified-classType"/>
</xsd:simpleContent>
</xsd:complexType>
<l oo e ddedde e d s de g de b s g de s e e b s e b e e e e e e e e e ke b e
<xsd:complexType name=

res-authType'>

<xsd:annotation>
<xsd:documentation>

The res-authType specifies whether the Deployment Component
code signs on programmatically to the resource manager, or
whether the Container will sign on to the resource manager
on behalf of the Deployment Component. In the latter case,
the Container uses information that is supplied by the
Deployer.

The value must be one of the two following:

Application
Container

192

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:restriction base="j2ee:string">
<xsd:enumeration value="Application"/>
<xsd:enumeration value="Container"/>
</Xsd:restriction>
</xsd:simpTeContent>
</xsd:complexType>

ek

Fededefhdededede R hddedef N ddede N hddedew

<l--
<xsd:complexType name="res-sharing-scopeType'>

<xsd:annotation>
<xsd:documentation>

The res-sharing-scope type specifies whether connections
obtained through the given resource manager connection
factory reference can be shared. The value, if specified,
must be one of the two following:

Shareable
Unshareable

The default value is Shareable.

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:restriction base="j2ee:string">
<xsd:enumeration value="Shareable"/>
<xsd:enumeration value="Unshareable"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>
<!__ Fehdeddehfh NNl Nl hdhdndhdehdhfh N Al ANl dhdhdfh NNl Nk —>
<xsd:complexType name='"resource-env-refType'>

<xsd:annotation>
<xsd:documentation>

Public Review

COMMON J2EE XML SCHEMA DEFINITIONS 193

The resource-env-refType is used to define
resource-env-type elements. It contains a declaration of a
Deployment Component’s reference to an administered object
associated with a resource in the Deployment Component’s
environment. It consists of an optional description, the
resource environment reference name, and an optional
indication of the resource environment reference type
expected by the Deployment Component code.

It also includes optional elements to define injection of
the named resource into fields or JavaBeans properties.

The resource environment type must be supplied unless an
injection target is specified, in which case the type

of the target is used. If both are specified, the type
must be assignment compatible with the type of the injection
target.

Example:

<resource-env-ref>
<resource-env-ref-name>jms/StockQueue
</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Queue
</resource-env-ref-type>
</resource-env-ref>

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:element name="description"
type="j2ee:descriptionType"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="resource-env-ref-name"
type="j2ee:jndi-nameType">

<xsd:annotation>
<xsd:documentation>

The resource-env-ref-name element specifies the name
of a resource environment reference; its value is

194

the environment entry name used in

the Deployment Component code. The name is a JNDI
name relative to the java:comp/env context and must
be unique within a Deployment Component.

</xsd:documentation>
</xsd:annotation>

</xsd:element>

<xsd:element name="resource-env-ref-type"
type="j2ee:fully-qualified-classType"
minOccurs="0">

<xsd:annotation>
<xsd:documentation>

The resource-env-ref-type element specifies the type
of a resource environment reference. It is the
fully qualified name of a Java language class or
interface.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name="injection-target"
type="j2ee:injection-targetType"
minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:complexType>

o e e e e e e e R
<xsd:complexType name="resource-refType">

<xsd:annotation>
<xsd:documentation>

The resource-refType contains a declaration of a

Deployment Component’s reference to an external resource. It
consists of an optional description, the resource manager
connection factory reference name, an optional indication of

Public Review

COMMON J2EE XML SCHEMA DEFINITIONS 195

the resource manager connection factory type expected by the

Deployment Component code, an optional type of authentication
(Application or Container), and an optional specification of
the shareability of connections obtained from the resource
(Shareable or Unshareable).

It also includes optional elements to define injection of
the named resource into fields or JavaBeans properties.

The connection factory type must be supplied unless an
injection target is specified, in which case the type

of the target is used. If both are specified, the type
must be assignment compatible with the type of the injection
target.

Example:

<resource-ref>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:element name="description"
type="j2ee:descriptionType"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="res-ref-name"
type="j2ee:jndi-nameType">

<xsd:annotation>
<xsd:documentation>

The res-ref-name element specifies the name of a
resource manager connection factory reference.
The name is a JNDI name relative to the
java:comp/env context.

The name must be unique within a Deployment File.

196

</xsd:documentation>
</xsd:annotation>

</xsd:element>

<xsd:element name="res-type"
type="j2ee:fully-qualified-classType"
minOccurs="0">

<xsd:annotation>
<xsd:documentation>

The res-type element specifies the type of the data
source. The type is specified by the fully qualified
Java language class or interface

expected to be implemented by the data source.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name="res-auth"
type="j2ee:res-authType"
minOccurs="0"/>
<xsd:element name="res-sharing-scope"
type="j2ee:res-sharing-scopeType'
minOccurs="0"/>
<xsd:element name="injection-target"
type="j2ee:injection-targetType"
minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:complexType>

<!__ kR
<xsd:complexType name="role-nameType'>

<xsd:annotation>
<xsd:documentation>

The role-nameType designates the name of a security role.

The name must conform to the lexical rules for a token.

Public Review

COMMON J2EE XML SCHEMA DEFINITIONS 197

</xsd:documentation>
</Xsd:annotation>

<xsd:simpleContent>
<xsd:restriction base="j2ee:string"/>
</xsd:simpTleContent>
</xsd:complexType>
<!__ FededdefdhdehdhdhdehfhfhNd Nl dhddhdhfhfh NNl Nl Nl dhd
<xsd:complexType name="run-asType'>

<xsd:annotation>
<xsd:documentation>

The run-asType specifies the run-as identity to be
used for the execution of a component. It contains an
optional description, and the name of a security role.

</xsd:documentation>
</Xsd:annotation>

<xsd:sequence>
<xsd:element name="description"
type="j2ee:descriptionType"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="role-name"
type="j2ee:role-nameType" />
</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID"/>
</xsd:complexType>

<!__ Fkdded Rk dedwdkddwdkd R kdedeRdkdde Rkl dwkdedfkddefkdde ke dfhddvwh S
<xsd:complexType name="security-role-refType">

<xsd:annotation>
<xsd:documentation>

The security-role-refType contains the declaration of a
security role reference in a component’s or a

Deployment Component’s code. The declaration consists of an
optional description, the security role name used in the
code, and an optional link to a security role. If the

198

security role is not specified, the Deployer must choose an
appropriate security role.

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:element name="description"
type="j2ee:descriptionType"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="role-name"
type="j2ee:role-nameType">

<xsd:annotation>
<xsd:documentation>

The value of the role-name element must be the String used
as the parameter to the

EJBContext.isCallerInRole(String roleName) method or the
HttpServietRequest.isUserInRole(String role) method.

</xsd:documentation>
</xsd:annotation>

</xsd:element>

<xsd:element name="role-Tink"
type="j2ee:role-nameType"
minOccurs="0">

<xsd:annotation>
<xsd:documentation>

The role-1ink element is a reference to a defined
security role. The role-1ink element must contain
the name of one of the security roles defined in the
security-role elements.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
</xsd:sequence>

Public Review

COMMON J2EE XML SCHEMA DEFINITIONS

<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:complexType>

<!__ %

<xsd:complexType name="security-roleType'>

<xsd:annotation>
<xsd:documentation>

The security-roleType contains the definition of a security
role. The definition consists of an optional description of

the security role, and the security role name.

Example:

<security-role>
<description>

This role includes all employees who are authorized
to access the employee service application.

</description>
<role-name>employee</role-name>
</security-role>

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:element name="description"
type="j2ee:descriptionType"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="role-name"
type="j2ee:role-nameType" />
</xsd:sequence>
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:complexType>

Fededededededede

<l--
<xsd:complexType name="string'">

<xsd:annotation>
<xsd:documentation>

199

200

This is a special string datatype that is defined by J2EE as
a base type for defining collapsed strings. When schemas
require trailing/leading space elimination as well as
collapsing the existing whitespace, this base type may be
used.

</xsd:documentation>
</Xsd:annotation>

<xsd:simpTeContent>
<xsd:extension base="xsd:token">
<xsd:attribute name="id" type="xsd:ID"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

FededededededdededNhdhdd e dedededededededeNdeddhddd ——>

<!__ * Tedkdd

<xsd:complexType name="true-falseType'>

<xsd:annotation>
<xsd:documentation>

This simple type designates a boolean with only two
permissible values

- true
- false

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:restriction base="j2ee:xsdBooleanType'>
<xsd:pattern value="(true|false)"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>

Fededede Al N NN ddde NN Nhdddn

<loo w3
<xsd:complexType name="url-patternType'>

<xsd:annotation>
<xsd:documentation>

Public Review

COMMON J2EE XML SCHEMA DEFINITIONS

The url-patternType contains the url pattern of the mapping.
It must follow the rules specified in Section 11.2 of the
Serviet API Specification. This pattern is assumed to be in
URL-decoded form and must not contain CR(#xD) or LF(#xA).
If it contains those characters, the container must inform
the developer with a descriptive error message.

The container must preserve all characters including whitespaces.

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:extension base="xsd:string"/>
</xsd:simpleContent>
</xsd:complexType>

<l el dedededede ek %k
<xsd:complexType name='"xsdAnyURIType'>

<xsd:annotation>
<xsd:documentation>

This type adds an "id" attribute to xsd:anyURI.

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:extension base="xsd:anyURI">
<xsd:attribute name="id" type="xsd:ID"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

e e %

<!l--
<xsd:complexType name=

'xsdBooleanType'>

<xsd:annotation>
<xsd:documentation>

This type adds an "id" attribute to xsd:boolean.

201

202

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:extension base="xsd:boolean">
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:extension>
</xsd:simpTeContent>
</xsd:complexType>
<l oo sk i ek d b R bk e ek ek e ke ek ek
<xsd:complexType name="xsdIntegerType'>

<xsd:annotation>
<xsd:documentation>

This type adds an "id" attribute to xsd:integer.

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:extension base="xsd:integer">
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:extension>
</xsd:simpTeContent>
</xsd:complexType>
< l —— Fhdededehfehfdefdefddhddhdehdhfhfd Nl Rddhdddhdhfhfh Nl
<xsd:complexType name="'xsdNMTOKENType'">

<xsd:annotation>
<xsd:documentation>

This type adds an "id" attribute to xsd:NMTOKEN.

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:extension base="xsd:NMTOKEN">
<xsd:attribute name="1id" type="xsd:ID"/>
</Xxsd:extension>

Public Review

-—>

-—>

COMMON J2EE XML SCHEMA DEFINITIONS

</xsd:simpleContent>
</xsd:complexType>

<!__ %

<xsd:complexType name="xsdNonNegativeIntegerType'>

<xsd:annotation>
<xsd:documentation>

This type adds an "id" attribute to xsd:nonNegativelnteger.

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:extension base="xsd:nonNegativelnteger">
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

Fededede N AN NNl

<!l--
<xsd:complexType name="xsdPositiveIntegerType'>

<xsd:annotation>
<xsd:documentation>

This type adds an "id" attribute to xsd:positivelnteger.

</xsd:documentation>
</xsd:annotation>

<xsd:simpTeContent>
<xsd:extension base="xsd:positivelnteger">
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
<!__ B R R R R R SR S L R R R SR R R R R R R S S T S R R R R R o R R R R R SR T
<xsd:complexType name="xsdQNameType'>

-—>

203

204

<xsd:annotation>
<xsd:documentation>

This type adds an "id" attribute to xsd:QName.

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:extension base="xsd:QName">
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

<o %
<xsd:complexType name="xsdStringType'>

<xsd:annotation>
<xsd:documentation>

This type adds an "id" attribute to xsd:string.

</xsd:documentation>
</Xsd:annotation>

<xsd:simpTeContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

</xsd:schema>

Public Review

e JZEELD

Application Clienté

This chapter describes application clients in the Java™ 2 Platform, Enterprise
Edition (J2EE).

J2EE.9.1 Overview

Application clients arefirst tier client programs that execute in their own Java™
virtual machines. Application clients follow the model for Javatechnol ogy-based
applications: they areinvoked at their main method and run until the virtual machine
isterminated. However, like other J2EE application components, application clients
depend on a container to provide system services. The application client container
may be very light-weight compared to other J2EE containers, providing only the
security and deployment services described bel ow

J2EE.9.2 Security

The J2EE authentication requirements for application clients are the same asfor
other 2EE components, and the same authenti cation techniques may be used asfor
other J2EE application components.

No authentication is necessary when accessing unprotected web resources.
When accessing protected web resources, the usual varieties of authentication
may be used, namely HTTP Basic authentication, SSL client authentication, or
HTTP Login Form authentication. Lazy authentication may be used.

Authentication is required when accessing protected enterprise beans. The
authentication mechanisms for enterprise beans include those required in the EJB

205

206

specification for enterprise bean interoperability. Lazy authentication may be
used.

An application client makes use of an authentication service provided by the
application client container for authenticating its users. The container’s service
may be integrated with the native platform’s authentication system, so that a
single signon capability is employed. The container may authenticate the user
when the application is started, or it may use lazy authentication, authenticating
the user when a protected resource is accessed. This specification does not
describe the technique used to authenticate the user, although alater version may
do so.

If the container interacts with the user to gather authentication data, the
container must provide an appropriate user interface. In addition, an application
client may provide a class that implements the
javax.security.auth.callback.CallbackHandler interface and specify the class
name in its deployment descriptor (see Section J2EE.9.7, “ J2EE Application
Client XML Schema’” for details). The Deployer may override the callback
handler specified by the application and use the container’s default authentication
user interface instead.

If acallback handler is configured by the Deployer, the application client
container must instantiate an object of this class and useit for all authentication
interactions with the user. The application’s callback handler must fully support
Callback objects specified in the javax.security.auth.callback package.

Note that when HTTP Login Form authentication is used, the authentication
user interface provided by the server (in the form of an HTML page delivered in
response to an HTTP request) must be displayed by the application client.

Application clients execute in an environment with a SecurityM anager
installed, and have similar security permission requirements as servlets. The
security permission requirements are described fully in Section J2EE.6.2, “ Java 2
Platform, Standard Edition (J2SE) Requirements.”

J2EE.9.3 Transactions

Application clients are not required to have direct access to the transaction facilities
of the JI2EE platform. A J2EE product is not required to provide a JTA
UserTransaction object for use by application clients. Application clients can
invoke enterprise beans that start transactions, and they can use the transaction
facilities of the JIDBC API. If aJDBC API transaction is open when an application

Public Review

RESOURCES, NAMING, AND INJECTION

client invokes an enterprise bean, the transaction context is not required to be
propagated to the EJB server.

J2EE.9.4 Resources, Naming, and I njection

Aswith all J2EE components, application clients use JINDI to look up enterprise
beans, get access to resource managers, reference configurable parameters set at
deployment time, and so on. Application clients use the java: JNDI namespace to
access these items (see Chapter J2EE.5, “Resources, Naming, and Injection” for
details).

Resource injection is also supported for the application client main class.
Because the application client container does not create instances of the
application client main class, but merely loads the class and invokes the static
main method, resource injection into the application client classuses static fields
and methods, unlike other J2EE components. Resource injection occurs before the
main method is called.

J2EE.9.5 Application Programming I nterfaces

Application clients have al the facilities of the Java™ 2 Platform, Standard Edition
(subject to security restrictions), aswell as various standard extensions, as described
in Chapter J2EE.6 “Application Programming Interface.” Each application client
executesin its own Javavirtual machine. Application clients start execution at the
main method of the class specified in theMain-Class attribute in the manifest file of
the application client’s JAR file (although note that application client container code
will typically execute before the application client itself, in order to prepare the
environment of the container, install aSecurityManager, initialize the name service
client library, and so on).

J2EE.9.6 Packaging and Deployment

Application clients are packaged in JAR format fileswith a . jar extension and may
include a deployment descriptor similar to other J2EE application components. The
deployment descriptor describes the enterprise beans, web services, and other types
of external resources referenced by the application. If the depoyment descriptor is
not included, or isincluded but not marked fu11, annotations on the main class of

207

208

the application client may also be used to describe the resources needed by the
application. Aswith other J2EE application components, access to resources must
be configured at deployment time, names assigned for enterprise beans and
resources, and so on.

The following table describes the cases the depoyment tool must consider
when deciding whether or not to process annotations on the application client
main class.

TableJ2EE.9-1 Deployment Descriptor Processing Requirements

Deployment descriptor full? process annotations?

application-client_1_2 N/A No
application-client_1_3 N/A No
application-client_1_4 N/A No
application-client_5_0 Yes No
application-client_5_0 No Yes
none N/A Yes

Thetool used to deploy an application client to the client machine, and the
mechanism used to install the application client, is not specified. Very
sophisticated J2EE products may allow the application client to be deployed on a
J2EE server and automatically made available to some set of (usually intranet)
clients. Other J2EE products may require the J2EE application bundle containing
the application client to be manually deployed and installed on each client
machine. And yet another approach would be for the deployment tool on the J2EE
server to produce an installation package that could be used by each client to
install the application client. There are many possibilities here and this
specification doesn’t prescribe any one. It only defines the package format for the
application client and the things that must be possible during the deployment
process.

How an application client isinvoked by an end user is unspecified. Typically a
J2EE Product Provider will provide an application launcher that integrates with
the application client machine's native operating system, but the level of such
integration is unspecified.

Public Review

J2EE APPLICATION CLIENT XML SCHEMA

J2EE.9.7 J2EE Application Client XML Schema

The XML grammar for a J2EE application client deployment descriptor is defined
by the J2EE application-client schema. The root e ement of the deployment
descriptor for an application clientisapplication-client. The content of the XML
elementsisin general case sengitive. This means, for example, that <res-
auth>Container</res-auth> must be used, rather than <res-auth>container</
res-auth>.

All valid application-client deployment descriptors must conform to the
following XML Schemadefinition, or to aDTD or schema definition from a
previous version of this specification. (See Appendix J2EE.A, “Previous Version
Deployment Descriptors.”) The deployment descriptor must be named META-INF/
application-client.xml inthe application client’s . jar file. Note that this name
is case-sensitive.

Figure J2EE.9-1 shows the structure of the J2EE application-client XML
Schema.

209

210

small-icon?

display-name+
—| icon* I

large-icon?
description*

env-entry-name

env-entry*

env-entry-type?

env-entry-value?

injection-target*

injection-target-class
injection-target-name

ejb-ref-type?

—| ejb-ref* I

resource-ref*

I home? |

res-ref-name

injection-target-class
injection-target-name

injection-target*

injection-target-class
injection-target-name

resource-env-ref-name |

—| resource-env-ref* I

—| message-destination*

{resource-env-ref-type? I

injection-target*

injection-target-class
injection-target-name

display-name+

message-destination-name |

—| message-destination-ref*

|— -I message-destination-ref-name I

-|message-destination-type? |

-|message-destination-usage? |

-Imessage-destination-link? I

injection-target*

injection-target-class
injection-target-name

FigureJ2EE.9-1 J2EE Application Client XML Schema Structure

Public Review

J2EE APPLICATION CLIENT XML SCHEMA

<?xm1 version="1.0" encoding="UTF-8"7>

<xsd:schema xmIns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://java.sun.com/xml/ns/j2ee"
xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified"
version="5.0">

<xsd:annotation>
<xsd:documentation>

@(#)application-client_5_0.xsds 1.19 03/15/05

</xsd:documentation>
</xsd:annotation>

<xsd:annotation>
<xsd:documentation>

This is the XML Schema for the application client 5.0
deployment descriptor. The deployment descriptor must
be named "META-INF/application-client.xml" in the
application client’s jar file. All application client
deployment descriptors must indicate the application
client schema by using the J2EE namespace:

http://java.sun.com/xml/ns/j2ee

and indicate the version of the schema by
using the version element as shown below:

<application-client xmins="http://java.sun.com/xml/ns/j2ee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/application-
client_5_0.xsd"
version="5.0">

</application-client>

The instance documents may indicate the published version of
the schema using the xsi:schemalocation attribute for J2EE

211

212

namespace with the following Tocation:

http://java.sun.com/xml/ns/j2ee/application-client_5_0.xsd

</xsd:documentation>
</xsd:annotation>

<xsd:annotation>
<xsd:documentation>

The following conventions apply to all J2EE

deployment descriptor elements unless indicated otherwise.

- In elements that specify a pathname to a file within the

same JAR file, relative filenames (i.e., those not
starting with "/") are considered relative to the root of
the JAR file’s namespace. Absolute filenames (i.e., those
starting with "/") also specify names in the root of the
JAR file’s namespace. In general, relative names are
preferred. The exception is .war files where absolute
names are preferred for consistency with the Serviet API.

</xsd:documentation>
</xsd:annotation>

<xsd:include schemalLocation="j2ee_5_0.xsd"/>

<l--

Fededefhdedededefhddde NN hddde N Nhdde RN hddde N hddd N dhddefRhdddehdd

-—>

<xsd:element name="application-client" type="j2ee:application-

clientType">

<xsd:annotation>
<xsd:documentation>

The application-client element is the root element of an

application client deployment descriptor.

The application

client deployment descriptor describes the EJB components
and external resources referenced by the application

client.

</xsd:documentation>
</xsd:annotation>

Public Review

J2EE APPLICATION CLIENT XML SCHEMA

<xsd:unique name="env-entry-name-uniqueness'>

<xsd:annotation>
<xsd:documentation>

The env-entry-name element contains the name of an
application client’s environment entry. The name is a JINDI
name relative to the java:comp/env context. The name must
be unique within an application client.

</xsd:documentation>
</xsd:annotation>

<xsd:selector xpath="j2ee:env-entry"/>
<xsd:field xpath="j2ee:env-entry-name" />
</xsd:unique>
<xsd:unique name="ejb-ref-name-uniqueness'>

<xsd:annotation>
<xsd:documentation>

The ejb-ref-name element contains the name of an EJB
reference. The EJB reference is an entry in the application
client’s environment and is relative to the

java:comp/env context. The name must be unique within the
application client.

It is recommended that name is prefixed with "ejb/".

</xsd:documentation>
</xsd:annotation>

<xsd:selector xpath="j2ee:ejb-ref"/>
<xsd:field xpath="j2ee:ejb-ref-name" />
</xsd:unique>
<xsd:unique name="res-ref-name-uniqueness">

<xsd:annotation>
<xsd:documentation>

The res-ref-name element specifies the name of a
resource manager connection factory reference.The name
is a JNDI name relative to the java:comp/env context.

213

214

The name must be unique within an application client.

</xsd:documentation>
</Xsd:annotation>

<xsd:selector xpath="j2ee:resource-ref"/>
<xsd:field xpath="j2ee:res-ref-name" />
</xsd:unique>
<xsd:unique name="resource-env-ref-uniqueness">

<xsd:annotation>
<xsd:documentation>

The resource-env-ref-name element specifies the name of
a resource environment reference; its value is the
environment entry name used in the application client
code. The name is a JNDI name relative to the
java:comp/env context and must be unique within an
application client.

</xsd:documentation>
</xsd:annotation>

<xsd:selector xpath="j2ee:resource-env-ref"/>
<xsd:field xpath="j2ee:resource-env-ref-name"/>
</xsd:unique>
<xsd:unique name="message-destination-ref-uniqueness">

<xsd:annotation>
<xsd:documentation>

The message-destination-ref-name element specifies the
name of a message destination reference; its value is
the message destination reference name used in the
application client code. The name is a JNDI name
relative to the java:comp/env context and must be unique
within an application client.

</xsd:documentation>
</Xsd:annotation>

<xsd:selector xpath="j2ee:message-destination-ref"/>
<xsd:field xpath="j2ee:message-destination-ref-name"/>

Public Review

J2EE APPLICATION CLIENT XML SCHEMA

</xsd:unique>
</xsd:element>

Fededede

<!l--

<xsd:complexType name="application-clientType'>
<xsd:sequence>

<xsd:
<xsd:

<xsd

<xsd
<xsd

<xsd

<xsd

<xsd

group ref="j2ee:descriptionGroup"/>

element name="env-entry"
type="j2ee:env-entryType"
minOccurs="0" maxOccurs="unbounded" />

:element name="ejb-ref"

type="j2ee:ejb-refType"
minOccurs="0" maxOccurs="unbounded" />

:group ref="j2ee:service-refGroup"/>
:element name="resource-ref"

type="j2ee:resource-refType"
minOccurs="0" maxOccurs="unbounded" />

:eTement name="resource-env-ref"

type="j2ee:resource-env-refType"
minOccurs="0" maxOccurs="unbounded" />

:element name="message-destination-ref"

type="j2ee:message-destination-refType"
minOccurs="0"
maxOccurs="unbounded" />

:element name="callback-handler"

type="j2ee:fully-qualified-classType"
minOccurs="0">

<xsd:annotation>
<xsd:documentation>

The callback-handler element names a class provided by
the application. The class must have a no args
constructor and must implement the
javax.security.auth.callback.CallbackHandler
interface. The class will be instantiated by the
application client container and used by the container
to collect authentication information from the user.

</xsd:documentation>
</xsd:annotation>

</xsd:element>

215

216

<xsd:element name="message-destination"

type="j2ee:message-destinationType’
minOccurs="0"
maxOccurs="unbounded" />

</xsd:sequence>

<xsd:attribute name="version"
type="j2ee:dewey-versionType"
fixed="5.0"
use="required">

<xsd:annotation>
<xsd:documentation>

The required value for the version is 5.0.

</xsd:documentation>
</xsd:annotation>

</xsd:attribute>
<xsd:attribute name="full" type="xsd:boolean">

<xsd:annotation>
<xsd:documentation>

The full attribute defines whether this deployment
descriptor is complete, or whether the class files
of the application should be examined for annotations
that specify deployment information.

If full is set to "true", the J2EE deployment tool
must ignore any J2EE annotations present in the
class files of the application.

If full is not specified or is set to '"false", the J2EE
deployment tool must examine the class files of the
application for annotations, as specified by the J2EE

specifications.

</xsd:documentation>
</xsd:annotation>

</xsd:attribute>

Public Review

J2EE APPLICATION CLIENT XML SCHEMA 217

<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:complexType>

</xsd:schema>

218

Public Review

curerend2EEL10

Service Provider Interface

The Java™ 2 Platform, Enterprise Edition (J2EE) includes the J2EE Connector
Architecture and the Java A uthorization Service Provider Contract for Containersas
itsservice provider interfaces. The Connector API defines how resource adaptersare
packaged and integrated with any J2EE product. All J2EE products must support
the Connector APIs, as specified in the Connector specification. The JACC
specification defines the contract between a J2EE container and an authorization
policy provider.

The Connector specification isavailable at http://java.sun.com/j2ee/
connector. The JACC specificationisavailable at http://jcp.org/jsr/detail/
115.jsp.

219

220

Public Review

PPN 24 = = |

" Compatibility and Migration

This chapter is aplaceholder. In future drafts this chapter will discuss compatibility
with, and migration from, previous versions of J2EE.

221

222

Public Review

cunerend2EE.12

Future Directions

Thisversion of the Java™ 2 Platform, Enterprise Edition (J2EE) specification
includes most of the facilities needed by enterprise applications. Still, thereis
aways more to be done. This chapter briefly describes our plans for future versions
of this specification. Please keep in mind that all of thisis subject to change. Your
feedback is encouraged.

The following sections describe additional facilities we would like to include
in future versions of this specification. Many of the APIsincluded in the 2EE
platform will continue to evolve on their own and we will include the latest
version of each API.

J2EE.12.1 JNLP (Java™ Web Start)

The Java Network Launch Protocol defines amechanism for deploying Java
applications on a server and launching them from aclient. A future version of this
specification may require that J2EE products be able to deploy application clientsin
away that allows them to be launched by a INLP client, and that application client
containers be able to launch application clients deployed using the INLP
technology. Java™ Web Start is the reference implementation of a INLP client.

More information on INLP is available at http://jcp.org/en/jsr/
detail?id=056; more information on Java Web Start is available at http://
java.sun.com/products/javawebstart.

223

224

J2EE.12.2 J2EE SPI

Many of the APIs that make up the J2EE platform include an SPI layer that allows
service providers or other system level components to be plugged in. This
specification does not describe the execution environment for all such service
providers, nor the packaging and deployment requirements for all service providers.
However, the J2EE Connector Architecture does define the requirements for certain
types of service providers called resource adapters, and the Java Authorization
Contract for Containers defines requirements for security service providers. Future
versions of this specification will more fully define the J2EE SPI.

J2EE.12.3 Security APIs

Itisagoal of the J2EE platform to separate security from businesslogic, providing
declarative security controls for application components. However, some
applications need more control over security than can be provided by this approach.
A future version of this specification may expand the set of APIsavailableto control
authentication and authorization, and to alow the integration of new security
technologies. In particular, we expect that the Java™ Authentication Service
Provider Interface for Containers (JSR-196) will be required in the next version of
this specification. More information on JSR-196 isavailable at http://jcp.org/
en/jsr/detail?id=196.

Public Review

ceeenon JZEELA

PreviousVersion Depl oymenf
Descriptors

This appendix contains Document Type Definitions and XML schemas for
Deployment Descriptors from previous versions of the J2EE specification. All J2EE
products are required to support these DTDs and schemas as well as the schemas
specified in this version of the specification. Thisensuresthat applicationswritten to
previous versions of this specification can be deployed on products supporting the
current version of this specification. In addition, there are no restrictions on mixing
versions of deployment descriptorsin asingle application; any combination of valid
deployment descriptor versions must be supported.

J2EE.A.1 J2EE 1.4 Application XML Schema

This section providesthe XML Schemafor the J2EE application deployment
descriptor. The XML grammar for a J2EE application deployment descriptor is
defined by the J2EE :app1ication schema. The granularity of composition for 2EE
application assembly isthe J2EE module. A J2EE:application deployment
descriptor contains a name and description for the application and the URI of a Ul
icon for the application, aswell alist of the 2EE modules that comprise the
application. The content of the XML elementsisin general case sengitive. This
means, for example, that <role-name>Manager</role-name> isadifferent role than
<role-name>manager</role-name>.

A valid J2EE application deployment descriptors may conform to the XML
Schema definition below. The deployment descriptor must be named META-INF/
application.xml inthe .ear file. Note that this nameis case-sensitive.

225

226

Figure J2EE.O-1 shows a graphic representation of the structure of the J2EE
application XML Schema.

[
g
=

e
gt

Figure J2EE.0-1 J2EE Application XML Schema Structure

The XML Schemathat follows defines the XML grammar for a J2EE
application deployment descriptor.

<?xm1 version="1.0" encoding="UTF-8"?7>

<xsd:schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://java.sun.com/xml/ns/j2ee"
xmIns:j2ee="http://java.sun.com/xml/ns/j2ee"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified"
version="1.4">

<xsd:annotation>
<xsd:documentation>

@(#)application_1_4.xsds 1.13 02/11/03

</xsd:documentation>
</xsd:annotation>

Public Review

227

<xsd:annotation>
<xsd:documentation>

This is the XML Schema for the application 1.4 deployment
descriptor. The deployment descriptor must be named
"META-INF/application.xm1" in the application’s ear file.
All application deployment descriptors must indicate

the application schema by using the J2EE namespace:

http://java.sun.com/xml/ns/j2ee

and indicate the version of the schema by
using the version element as shown below:

<application xmins="http://java.sun.com/xml/ns/j2ee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/application_1_4.xsd"
version="1.4">

</application>

The instance documents may indicate the published version of
the schema using the xsi:schemalocation attribute for J2EE
namespace with the following Tlocation:

http://java.sun.com/xml/ns/j2ee/application_1_4.xsd

</xsd:documentation>
</xsd:annotation>

<xsd:annotation>
<xsd:documentation>

The following conventions apply to all J2EE
deployment descriptor elements unless indicated otherwise.

- In elements that specify a pathname to a file within the
same JAR file, relative filenames (i.e., those not
starting with "/") are considered relative to the root of
the JAR file’s namespace. Absolute filenames (i.e., those
starting with "/") also specify names in the root of the
JAR file’s namespace. In general, relative names are

228

preferred. The exception is .war files where absolute
names are preferred for consistency with the Servilet API.

</xsd:documentation>
</xsd:annotation>

<xsd:include schemalLocation="j2ee_1_4.xsd"/>

R R R R R R R R O R R kR R R L

N
<xsd:element name="application" type='"j2ee:applicationType'>

-—>
<xsd:annotation>
<xsd:documentation>

The application element is the root element of a J2EE
application deployment descriptor.

</xsd:documentation>
</xsd:annotation>

<xsd:unique name="context-root-uniqueness'>

<xsd:annotation>
<xsd:documentation>

The context-root element content must be unique
in the ear.

</xsd:documentation>
</xsd:annotation>

<xsd:selector xpath="j2ee:module/j2ee:web"/>
<xsd:field xpath="j2ee:context-root"/>
</xsd:unique>
<xsd:unique name="security-role-uniqueness">

<xsd:annotation>
<xsd:documentation>

The security-role-name element content
must be unique in the ear.

Public Review

229

</xsd:documentation>
</xsd:annotation>

<xsd:selector xpath="j2ee:security-role"/>
<xsd:field xpath="j2ee:role-name" />
</xsd:unique>
</xsd:element>

<| FTedededefhdhdeded R hddde NN hddde N hhddedhNddde R hddd R hdde N Nhdddnhd >

<xsd:complexType name="applicationType'>

<xsd:annotation>
<xsd:documentation>

The applicationType defines the structure of the
application.

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:group ref="j2ee:descriptionGroup"/>
<xsd:element name="module"
type="j2ee:moduleType"
max0Occurs="unbounded">

<xsd:annotation>
<xsd:documentation>

The application deployment descriptor must have one
module element for each J2EE module in the
application package. A module element is defined
by moduleType definition.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name="security-role"
type="j2ee:security-roleType"
minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>

230

<xsd:attribute name="version"
type="j2ee:dewey-versionType"
fixed="1.4"
use="required">

<xsd:annotation>
<xsd:documentation>

The required value for the version is 1.4.

</xsd:documentation>
</xsd:annotation>

</xsd:attribute>
<xsd:attribute name="id" type="xsd:ID"/>
</xsd:complexType>

< | o Fededededededehededededededededefdefdddeddefdhdehdhdhddfddhddedd v hdhdhdd ——>

<xsd:complexType name="moduleType">

<xsd:annotation>
<xsd:documentation>

The moduleType defines a single J2EE module and contains a
connector, ejb, java, or web element, which indicates the
module type and contains a path to the module file, and an
optional alt-dd element, which specifies an optional URI to
the post-assembly version of the deployment descriptor.

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:choice>
<xsd:element name="connector"
type="j2ee:pathType">

<xsd:annotation>
<xsd:documentation>

The connector element specifies the URI of a

resource adapter archive file, relative to the
top Tlevel of the application package.

Public Review

231

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name="ejb"
type="j2ee:pathType">

<xsd:annotation>
<xsd:documentation>

The ejb element specifies the URI of an ejb-jar,
relative to the top level of the application
package.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name="java"
type="j2ee:pathType">

<xsd:annotation>
<xsd:documentation>

The java element specifies the URI of a java
application client module, relative to the top
level of the application package.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name="web"
type="j2ee:webType" />
</xsd:choice>
<xsd:element name="alt-dd"
type="j2ee:pathType"
minOccurs="0">

<xsd:annotation>
<xsd:documentation>

The alt-dd element specifies an optional URI to the

232

post-assembly version of the deployment descriptor
file for a particular J2EE module. The URI must
specify the full pathname of the deployment
descriptor file relative to the application’s root
directory. If alt-dd is not specified, the deployer
must read the deployment descriptor from the default
location and file name required by the respective
component specification.

</xsd:documentation>
</xsd:annotation>

</xsd:element>

</xsd:sequence>
<xsd:attribute name="1id" type="xsd:ID"/>

</xsd:complexType>

A A R R R R R OO ROROROROROSOROROROROROOOIOROROROROROROSONOSOROROROROION)

< | . wmddedddededhfdefdefdefdehdeRdehdehdedfdfdde Nl fdehdedehdehddddfd Nl ——>
<xsd:complexType name="webType'>

<xsd:annotation>
<xsd:documentation>

The webType defines the web-uri and context-root of
a web application module.

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:element name="web-uri"
type="j2ee:pathType">

<xsd:annotation>
<xsd:documentation>

The web-uri element specifies the URI of a web
application file, relative to the top level of the

application package.

</xsd:documentation>
</xsd:annotation>

Public Review

233

</xsd:element>
<xsd:element name="context-root"
type="j2ee:string">

<xsd:annotation>
<xsd:documentation>

The context-root element specifies the context root
of a web application.

</xsd:documentation>
</xsd:annotation>

</xsd:element>

</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID"/>

</xsd:complexType>

</xsd:schema>

J2EE.A.2 Common J2EE 1.4 XML Schema Definitions

Thefollowing XML Schema defines types that are used by many other J2EE 1.4
deployment descriptor schemas, both in this specification and in other
specifications.

<?xm1 version="1.0" encoding="UTF-8"7>

<xsd:schema
targetNamespace="http://java.sun.com/xml/ns/j2ee"
xmIns:j2ee="http://java.sun.com/xml/ns/j2ee"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified"
version="1.4">

<xsd:annotation>
<xsd:documentation>

@(#)j2ee_1_4.xsds 1.43 03/09/16

234

</xsd:documentation>
</xsd:annotation>

<xsd:annotation>
<xsd:documentation>

The following definitions that appear in the common
shareable schema(s) of J2EE deployment descriptors should be
interpreted with respect to the context they are included:

Deployment Component may indicate one of the following:
j2ee application;
application client;
web application;
enterprise bean;
resource adapter;

Deployment File may indicate one of the following:
ear file;
war file;
jar file;
rar file;

</xsd:documentation>
</xsd:annotation>

<xsd:import namespace="http://www.w3.0rg/XML/1998/namespace"
schemaLocation="http://www.w3.0rg/2001/xml.xsd" />
<xsd:include schemalocation=
"http://www.ibm.com/webservices/xsd/
j2ee_web_services_client_1_1.xsd"/>
<l oo deddedddedededdddedddded kb ke ek e ek ke
<xsd:group name="descriptionGroup'>

<xsd:annotation>
<xsd:documentation>

This group keeps the usage of the contained description related
elements consistent across J2EE deployment descriptors.

All elements may occur multiple times with different Tlanguages,
to support localization of the content.

Public Review

235

</xsd:documentation>
</Xsd:annotation>

<xsd:sequence>
<xsd:element name="description"
type="j2ee:descriptionType"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="display-name"
type="j2ee:display-nameType"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="1icon"
type="j2ee:iconType"
minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:group>

Fedededefhhdedede NN hdde NN hdde NN hhdde NN Nhdd SN Nddd NNl

<!l--
<xsd:complexType name="descriptionType'>

<xsd:annotation>
<xsd:documentation>

The description type is used by a description element to
provide text describing the parent element. The elements
that use this type should include any information that the
Deployment Component’s Deployment File file producer wants
to provide to the consumer of the Deployment Component’s
Deployment File (i.e., to the Deployer). Typically, the
tools used by such a Deployment File consumer will display
the description when processing the parent element that
contains the description.

The lang attribute defines the language that the
description is provided in. The default value is "en" (English).

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:extension base="j2ee:xsdStringType">

236

<xsd:attribute ref="xml:lang"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

< | —— wERdkddRkddeRkded kel dd e ddfRdeddwdkd i dkddkddwhd ikl S
<xsd:simpleType name="dewey-versionType''>
<xsd:annotation>
<xsd:documentation>
This type defines a dewey decimal which is used
to describe versions of documents.
</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:decimal">
<xsd:whiteSpace value="collapse"/>
</xsd:restriction>
</xsd:simpleType>
< | —_ %% S

<xsd:complexType name="display-nameType''>

<xsd:annotation>
<xsd:documentation>

The display-name type contains a short name that is intended
to be displayed by tools. It is used by display-name
elements. The display name need not be unique.

Example:

<display-name xml:lang="en">Employee Self Service</display-
name>

The value of the xml:lang attribute is "en" (English) by default.

</xsd:documentation>
</xsd:annotation>

Public Review

237

<xsd:simpTleContent>
<xsd:extension base="j2ee:string">
<xsd:attribute ref="xml:lang"/>
</xsd:extension>
</xsd:simpTleContent>
</xsd:complexType>
< | o wmdedldefdehdefdehdehdehfhfh Nl Nl dhdhdedhdehfhfh Nl dddhdh
<xsd:complexType name="ejb-1inkType'>

<xsd:annotation>
<xsd:documentation>

The ejb-1inkType is used by ejb-Tink
elements in the ejb-ref or ejb-local-ref elements to specify
that an EJB reference is linked to enterprise bean.

The value of the ejb-Tink element must be the ejb-name of an
enterprise bean in the same ejb-jar file or in another ejb-jar
file in the same J2EE application unit.

Alternatively, the name in the ejb-1ink element may be
composed of a path name specifying the ejb-jar containing the
referenced enterprise bean with the ejb-name of the target
bean appended and separated from the path name by "#". The

path name is relative to the Deployment File containing
Deployment Component that is referencing the enterprise
bean. This allows multiple enterprise beans with the same
ejb-name to be uniquely identified.

Examples:
<ejb-Tink>EmployeeRecord</ejb-11ink>
<ejb-Tink>. ./products/product. jar#ProductEJB</ejb-11ink>

</xsd:documentation>
</xsd:annotation>

<xsd:simpTeContent>
<xsd:restriction base="j2ee:string"/>
</xsd:simpleContent>
</xsd:complexType>

238

< | o Fededededededehedededededededdefdefdddeddefdhdehdhdhdddddhddedd N hdhdhdd ——>

<xsd:complexType name="ejb-local-refType">

<xsd:annotation>
<xsd:documentation>

The ejb-Tlocal-refType is used by ejb-local-ref elements for
the declaration of a reference to an enterprise bean’s Tlocal
home. The declaration consists of:

- an optional description

- the EJB reference name used in the code of the Deployment
Component that’s referencing the enterprise bean

- the expected type of the referenced enterprise bean

- the expected Tocal home and local interfaces of the
referenced enterprise bean

- optional ejb-1ink information, used to specify the
referenced enterprise bean

</xsd:documentation>
</Xsd:annotation>

<xsd:sequence>
<xsd:element name="description"
type="j2ee:descriptionType"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="ejb-ref-name"
type="j2ee:ejb-ref-nameType" />
<xsd:element name="ejb-ref-type"
type="j2ee:ejb-ref-typeType"/>
<xsd:element name="1local-home"
type="j2ee:Tocal-homeType" />
<xsd:element name="1local"
type="j2ee:TocalType"/>
<xsd:element name="ejb-Tink"
type="j2ee:ejb-1inkType"
minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:complexType>

Public Review

239

<l oo Fdewddedndkddi kel kdedwkdd ki dd R kdedfkdedfkddddkddwdkddwidhdn (S

<xsd:complexType name="ejb-ref-nameType">

<xsd:annotation>
<xsd:documentation>

The ejb-ref-name element contains the name of an EJB
reference. The EJB reference is an entry in the

Deployment Component’s environment and is relative to the
java:comp/env context. The name must be unique within the
Deployment Component.

It is recommended that name is prefixed with "ejb/".
Example:
<ejb-ref-name>ejb/Payroll</ejb-ref-name>

</xsd:documentation>
</xsd:annotation>

<xsd:simpTleContent>
<xsd:restriction base="j2ee:jndi-nameType"/>
</xsd:simpleContent>
</xsd:complexType>
<!__ Fedededededdded S hdehdddhddeddeNdhddehdehdhdehddfdhfdddeNdNdhdhdhd —_—>
<xsd:complexType name="ejb-ref-typeType'>

<xsd:annotation>
<xsd:documentation>

The ejb-ref-typeType contains the expected type of the
referenced enterprise bean.

The ejb-ref-type designates a value
that must be one of the following:

Entity
Session

</xsd:documentation>
</xsd:annotation>

240

<xsd:simpleContent>
<xsd:restriction base="j2ee:string">
<xsd:enumeration value="Entity"/>
<xsd:enumeration value="Session"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>
< l —— Fhdehdehd
<xsd:complexType name="ejb-refType">

<xsd:annotation>
<xsd:documentation>

The ejb-refType is used by ejb-ref elements for the
declaration of a reference to an enterprise bean’s home. The
declaration consists of:

- an optional description
- the EJB reference name used in the code of
the Deployment Component that’s referencing the enterprise

bean

- the expected type of the referenced enterprise bean

- the expected home and remote interfaces of the referenced
enterprise bean

- optional ejb-T1ink information, used to specify the
referenced enterprise bean

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>

<xsd:element name="description"
type="j2ee:descriptionType"
minOccurs="0"
maxOccurs="unbounded" />

<xsd:element name="ejb-ref-name"
type="j2ee:ejb-ref-nameType" />

<xsd:element name="ejb-ref-type"
type="j2ee:ejb-ref-typeType"/>

<xsd:element name='"home"
type="j2ee:homeType" />

<xsd:element name="remote"

Public Review

type="j2ee:remoteType" />
<xsd:element name="ejb-1ink"
type="j2ee:ejb-1inkType"
minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:complexType>
<!__ Fededdedhhdn
<xsd:complexType name="emptyType">

<xsd:annotation>
<xsd:documentation>

This type is used to designate an empty
element when used.

</xsd:documentation>
</Xsd:annotation>

<xsd:attribute name="id" type="xsd:ID"/>
</xsd:complexType>

Fedededefhdddennh

<!l--

<xsd:complexType name="env-entry-type-valuesType'>

<xsd:annotation>
<xsd:documentation>

This type contains the fully-qualified Java type of the
environment entry value that is expected by the
application’s code.

The following are the legal values of env-entry-type-valuesType:

java. lang.Boolean
java.lang.Byte
java. lang.Character
java.lang.String
java. lang. Short
java. lang.Integer
java.lang.Long
java.lang.Float

241

242

java.lang.Double

Example:

<env-entry-type>java.lang.Boolean</env-entry-type>

</xsd:documentation>
</Xsd:annotation>

<xsd:simpTeContent>

<xsd:restriction base="j2ee:string">

<xsd:enumeration value="java.lang.Boolean"/>
<xsd:enumeration value="java.lang.Byte"/>
<xsd:enumeration value="java.lang.Character"/>
<xsd:enumeration value="java.lang.String"/>
<xsd:enumeration value="java.lang.Short"/>
<xsd:enumeration value="java.lang.Integer"/>
<xsd:enumeration value="java.lang.Long"/>
<xsd:enumeration value="java.lang.Float"/>
<xsd:enumeration value="java.lang.Double"/>

</Xxsd:restriction>
</xsd:simpTeContent>
</xsd:complexType>

<l--

Fededefhddedede R dddef N ddde N hhddd Nk

FTedededefhddedefhddde N hddd Rk

<xsd:complexType name="env-entryType'>

-—>

<xsd:annotation>
<xsd:documentation>

The env-entryType is used to declare an application’s
environment entry. The declaration consists of an optional
description, the name of the environment entry, and an
optional value. If a value is not specified, one must be
supplied during deployment.

It is used by env-entry elements.

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:element name="description"

Public Review

243

type="j2ee:descriptionType"
minOccurs="0"
max0Occurs="unbounded" />
<xsd:element name="env-entry-name"
type="j2ee:jndi-nameType">

<xsd:annotation>
<xsd:documentation>

The env-entry-name element contains the name of a
Deployment Component’s environment entry. The name
is a JNDI name relative to the java:comp/env
context. The name must be unique within a
Deployment Component. The uniqueness

constraints must be defined within the declared
context.

Example:
<env-entry-name>minAmount</env-entry-name>

</xsd:documentation>
</xsd:annotation>

</xsd:element>

<xsd:element name="env-entry-type"
type="j2ee:env-entry-type-valuesType"/>

<xsd:element name="env-entry-value"
type="j2ee:xsdStringType"
minOccurs="0">

<xsd:annotation>
<xsd:documentation>

The env-entry-value designates the value of a
Deployment Component’s environment entry. The value
must be a String that is valid for the

constructor of the specified type that takes a
single String parameter, or for java.lang.Character,
a single character.

Example:

244

<env-entry-value>100.00</env-entry-value>

</xsd:documentation>
</xsd:annotation>

</xsd:element>
</xsd:sequence>
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:complexType>
<!__ Fehdeddehfh NNl Rl hdhdndhdehdhfh N Nd Nl A hddhdehddfh NNl Nk —>
<xsd:complexType name="fully-qualified-classType'">

<xsd:annotation>
<xsd:documentation>

The elements that use this type designate the name of a
Java class or interface. The name is in the form of a
"binary name", as defined in the JLS. This is the form
of name used in Class.forName(). Tools that need the
canonical name (the name used in source code) will need
to convert this binary name to the canonical name.

</xsd:documentation>
</Xsd:annotation>

<xsd:simpleContent>
<xsd:restriction base="j2ee:string"/>
</xsd:simpleContent>
</xsd:complexType>
<!__ Tedededehdededdefhfdefd N hdehdefdhfehdhfhddefdefdhfdhdefdhdhdhdhdt ——>
<xsd:complexType name="generic-booleanType">

<xsd:annotation>
<xsd:documentation>

This type defines four different values which can designate
boolean values. This includes values yes and no which are
not designated by xsd:boolean

</xsd:documentation>
</Xsd:annotation>

Public Review

245

<xsd:simpTleContent>
<xsd:restriction base="j2ee:string">
<xsd:enumeration value="true"/>
<xsd:enumeration value="false"/>
<xsd:enumeration value="yes"/>
<xsd:enumeration value="no"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>

o wdedededededefefefedededede e fededededehhffedededehhfdededede e fdedededehhddedddn —
< e e e e Yo o e Yo Yo oo e Yo v oo v v o6 vo v v vo o6 o v vo o6 o v o 76 v v v 76 o v v o6 o ¥ o o6 o ¥ o 76 o % ¥ o o % >

<xsd:complexType name="homeType'>

<xsd:annotation>
<xsd:documentation>

The homeType defines the fully-qualified name of
an enterprise bean’s home interface.

Example:
<home>com. aardvark.payroll.Payrol1Home</home>

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:restriction base="j2ee:fully-qualified-classType"/>
</xsd:simpleContent>
</xsd:complexType>

<l w
<xsd:complexType name="1iconType'>

<xsd:annotation>
<xsd:documentation>

The icon type contains small-icon and large-icon elements
that specify the file names for small and large GIF or
JPEG icon images used to represent the parent element in a
GUI tool.

The xml:lang attribute defines the language that the

246

icon file names are provided in. Its value is "en" (English)
by default.

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:element name="small-icon" type="j2ee:pathType"
minOccurs="0">

<xsd:annotation>
<xsd:documentation>

The small-icon element contains the name of a file
containing a small (16 x 16) icon image. The file
name is a relative path within the Deployment
Component’s Deployment File.

The image may be either in the JPEG or GIF format.
The icon can be used by tools.

Example:
<small-icon>employee-service-iconléx16. jpg</small-icon>

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name="large-icon" type="j2ee:pathType"
minOccurs="0">

<xsd:annotation>
<xsd:documentation>

The Tlarge-icon element contains the name of a file
containing a large

(32 x 32) icon image. The file name is a relative
path within the Deployment Component’s Deployment
File.

The image may be either in the JPEG or GIF format.
The icon can be used by tools.

Public Review

247

Example:

<large-icon>employee-service-icon32x32. jpg</large-icon>

</xsd:documentation>
</xsd:annotation>

</xsd:element>
</xsd:sequence>
<xsd:attribute ref="xml:1ang"/>
<xsd:attribute name="id" type="xsd:ID"/>
</xsd:complexType>

<! Fededededede SN ddededde e fdeddeded N dedededd R ddeddededdfdededededde e dedddd

<xsd:complexType name="java-identifierType">

<xsd:annotation>
<xsd:documentation>

The java-identifierType defines a Java identifier.
The users of this type should further verify that
the content does not contain Java reserved keywords.

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:restriction base="j2ee:string">
<xsd:pattern value="($|_|p{L}) (p{L}|p{Nd}|_[$D*"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>

O

<!l--

<xsd:complexType name="java-typeType'>

<xsd:annotation>
<xsd:documentation>

This is a generic type that designates a Java primitive
type or a fully qualified name of a Java interface/type,
or an array of such types.

248

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:restriction base="j2ee:string">
<xsd:pattern value="[Ap{Z}]*"/>
</Xsd:restriction>
</xsd:simpTeContent>
</xsd:complexType>
de e e de v g e de e de de e S e de e de e g e S e de s e db e S e S e e e S e S e e e e e e e e e S

<!l--
<xsd:complexType name="jndi-nameType'>

<xsd:annotation>
<xsd:documentation>

The jndi-nameType type designates a JNDI name in the
Deployment Component’s environment and is relative to the

java:comp/env context. A JNDI name must be unique within the

Deployment Component.

</xsd:documentation>
</Xsd:annotation>

<xsd:simpTeContent>
<xsd:restriction base="j2ee:string"/>

</xsd:simpTeContent>
</xsd:complexType>

Fedededefhddededhhddd Rk el etk

<o %
<xsd:group name="jndiEnvironmentRefsGroup">

<xsd:annotation>
<xsd:documentation>

This group keeps the usage of the contained JNDI environment
reference elements consistent across J2EE deployment descriptors.

</xsd:documentation>
</Xsd:annotation>

<xsd:sequence>
<xsd:element name="env-entry'

Public Review

<xsd:element

<xsd:element

<xsd:group re
<xsd:element

<xsd:element

<xsd:element

</xsd:sequence>

</xsd:group>

<l--
<xsd:complexType

<xsd:annotation
<xsd:document

The TistenerType indicates the deployment properties for a web

FTededededehdddedefhddd

type="j2ee:env-entryType"
minOccurs="0" maxOccurs="unbounded" />
name="ejb-ref"
type="j2ee:ejb-refType"

minOccurs="0" maxOccurs="unbounded" />
name="ejb-local-ref"
type="j2ee:ejb-local-refType"
minOccurs="0" maxOccurs="unbounded" />
f="j2ee:service-refGroup"/>
name="resource-ref"
type="j2ee:resource-refType"
minOccurs="0" maxOccurs="unbounded" />
name="resource-env-ref"
type="j2ee:resource-env-refType"
minOccurs="0" maxOccurs="unbounded" />
name="message-destination-ref"

type="j2ee:message-destination-refType'

minOccurs="0" maxOccurs="unbounded" />

Fedededefhddededhddedefhhddedfhdddedhhddd Rkl

name="1istenerType'>

>
ation>

application listener bean.

</xsd:documen
</xsd:annotatio

<xsd:sequence>
<xsd:group re
<xsd:element

tation>
n>

f="j2ee:descriptionGroup"/>
name="11istener-class"
type="j2ee:fully-qualified-classType">

<xsd:annotation>

<xsd:docu

The Tistener-class element declares a class in the

mentation>

application must be registered as a web

249

250

application listener bean. The value is the fully
qualified classname of the listener class.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
</xsd:sequence>
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:complexType>
<!__ Tedehdehdehfhfh NNl dhdhddhdehdhfhfhNd Al dhdhddhdht
<xsd:complexType name="1ocal-homeType'">

-—>

<xsd:annotation>
<xsd:documentation>

The Tocal-homeType defines the fully-qualified
name of an enterprise bean’s Tlocal home interface.

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:restriction base="j2ee:fully-qualified-classType"/>
</xsd:simpTeContent>
</xsd:complexType>
<!__ Tedehdehdehfhfhfd Nl RdhdhddhdehdhfhfhNd Al A hdhddhdht
<xsd:complexType name="localType'">

-—>
<xsd:annotation>
<xsd:documentation>

The TocalType defines the fully-qualified name of an
enterprise bean’s Tlocal interface.

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:restriction base="j2ee:fully-qualified-classType"/>

Public Review

251

</xsd:simpleContent>
</xsd:complexType>

<!__ %

<xsd:complexType name="message-destination-1inkType'">

<xsd:annotation>
<xsd:documentation>

The message-destination-1inkType is used to 1ink a message
destination reference or message-driven bean to a message
destination.

The Assembler sets the value to reflect the flow of messages
between producers and consumers in the application.

The value must be the message-destination-name of a message
destination in the same Deployment File or in another
Deployment File in the same J2EE application unit.

Alternatively, the value may be composed of a path name
specifying a Deployment File containing the referenced
message destination with the message-destination-name of the
destination appended and separated from the path name by
"#'". The path name 1is relative to the Deployment File
containing Deployment Component that is referencing the
message destination. This allows multiple message
destinations with the same name to be uniquely identified.

</xsd:documentation>
</Xsd:annotation>

<xsd:simpTleContent>
<xsd:restriction base="j2ee:string"/>
</xsd:simpTleContent>
</xsd:complexType>

Fededededededede

<l--
<xsd:complexType name="message-destination-refType'>

<xsd:annotation>
<xsd:documentation>

252

The message-destination-ref element contains a declaration
of Deployment Component’s reference to a message destination
associated with a resource in Deployment Component’s
environment. It consists of:

- an optional description
- the message destination reference name
- the message destination type
- a specification as to whether the
destination is used for
consuming or producing messages, or both
- a link to the message destination

Examples:

<message-destination-ref>
<message-destination-ref-name>jms/StockQueue
</message-destination-ref-name>
<message-destination-type>javax.jms.Queue
</message-destination-type>
<message-destination-usage>Consumes
</message-destination-usage>
<message-destination-1ink>CorporateStocks
</message-destination-1ink>

</message-destination-ref>

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:element name="description"
type="j2ee:descriptionType"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="message-destination-ref-name"
type="j2ee:jndi-nameType">

<xsd:annotation>
<xsd:documentation>

The message-destination-ref-name element specifies

the name of a message destination reference; its
value is the environment entry name used in

Public Review

253

Deployment Component code. The name is a JNDI name
relative to the java:comp/env context and must be
unique within an ejb-jar (for enterprise beans) or a
Deployment File (for others).

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name="message-destination-type"
type="j2ee:message-destination-typeType"/>
<xsd:element name="message-destination-usage"
type="j2ee:message-destination-usageType" />
<xsd:element name="message-destination-1ink"
type="j2ee:message-destination-1inkType"
minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID"/>
</xsd:complexType>

Fedededefhhdeded NN hdde NN hddde NN Adde RN Nddde R hddd NN hdde NN Nhdddnnd

<l-- —->

<xsd:complexType name="message-destination-typeType'>

<xsd:annotation>
<xsd:documentation>

The message-destination-typeType specifies the type of
the destination. The type is specified by the Java interface
expected to be implemented by the destination.

Example:

<message-destination-type>javax.jms.Queue
</message-destination-type>

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:restriction base="j2ee:fully-qualified-classType"/>
</xsd:simpleContent>
</xsd:complexType>

254

< | o Fededededededehedededededededdefdefdddeddefdhdehdhdhdddddhddedd N hdhdhdd ——>

<xsd:complexType name="message-destination-usageType'>

<xsd:annotation>
<xsd:documentation>

The message-destination-usageType specifies the use of the
message destination indicated by the reference. The value
indicates whether messages are consumed from the message
destination, produced for the destination, or both. The
Assembler makes use of this information in linking producers
of a destination with its consumers.

The value of the message-destination-usage element must be
one of the following:

Consumes

Produces

ConsumesProduces

</xsd:documentation>
</Xsd:annotation>

<xsd:simpTeContent>
<xsd:restriction base="j2ee:string">
<xsd:enumeration value="Consumes"/>
<xsd:enumeration value="Produces"/>
<xsd:enumeration value="ConsumesProduces"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>

<loo
<xsd:complexType name="message-destinationType'>

<xsd:annotation>
<xsd:documentation>

The message-destinationType specifies a message
destination. The logical destination described by this

element is mapped to a physical destination by the Deployer.

The message destination element contains:

Public Review

- an optional description

- an optional display-name

- an optional icon

- a message destination name which must be unique
among message destination names within the same
Deployment File.

Example:

<message-destination>
<message-destination-name>CorporateStocks
</message-destination-name>
</message-destination>

</xsd:documentation>
</Xsd:annotation>

<xsd:sequence>
<xsd:group ref="j2ee:descriptionGroup"/>
<xsd:element name="message-destination-name"
type="j2ee:string">

<xsd:annotation>
<xsd:documentation>

The message-destination-name element specifies a
name for a message destination. This name must be
unique among the names of message destinations
within the Deployment File.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
</xsd:sequence>
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:complexType>
< | . wdedldehd
<xsd:complexType name="param-valueType">

<xsd:annotation>
<xsd:documentation>

255

256

This type is a general type that can be used to declare
parameter/value lists.

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:element name="description"
type="j2ee:descriptionType"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="param-name"
type="j2ee:string">

<xsd:annotation>
<xsd:documentation>

The param-name element contains the name of a
parameter.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name="param-value"
type="j2ee:xsdStringType">

<xsd:annotation>
<xsd:documentation>

The param-value element contains the value of a
parameter.

</xsd:documentation>
</xsd:annotation>

</xsd:element>

</xsd:sequence>
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:complexType>
<!__ Fehdehdehfh N Nd Nl Nl Nl A hdhddhdhn
<xsd:complexType name="pathType'>

Public Review

257

<xsd:annotation>
<xsd:documentation>

The elements that use this type designate either a relative
path or an absolute path starting with a "/".

In elements that specify a pathname to a file within the
same Deployment File, relative filenames (i.e., those not
starting with "/") are considered relative to the root of
the Deployment File’s namespace. Absolute filenames (i.e.,
those starting with "/") also specify names in the root of
the Deployment File’s namespace. In general, relative names
are preferred. The exception is .war files where absolute
names are preferred for consistency with the Serviet API.

</xsd:documentation>
</Xsd:annotation>

<xsd:simpTleContent>
<xsd:restriction base="j2ee:string"/>
</xsd:simpTleContent>
</xsd:complexType>

<l oo

<xsd:complexType name="remoteType'>

<xsd:annotation>
<xsd:documentation>

The remote element contains the fully-qualified name
of the enterprise bean’s remote interface.

Example:

<remote>com.wombat.empl.EmployeeService</remote>

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:restriction base="j2ee:fully-qualified-classType"/>
</xsd:simpleContent>
</xsd:complexType>

258

Fededefhddededefhddededhhdded e dddedhdddefhhdddefhdhddedhhddddhd ——>

<l--
<xsd:complexType name="res-authType'>

<xsd:annotation>
<xsd:documentation>

The res-authType specifies whether the Deployment Component
code signs on programmatically to the resource manager, or
whether the Container will sign on to the resource manager
on behalf of the Deployment Component. In the latter case,
the Container uses information that is supplied by the
Deployer.

The value must be one of the two following:

Application
Container

</xsd:documentation>
</Xxsd:annotation>

<xsd:simpleContent>
<xsd:restriction base="j2ee:string">
<xsd:enumeration value="Application"/>
<xsd:enumeration value="Container"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>

<|__ Tedededehdeeddefehddefde N hdehdehdhfehdddhddeddeddhddehdeNdhdhdhdhdt ——>

<xsd:complexType name="res-sharing-scopeType'>

<xsd:annotation>
<xsd:documentation>

The res-sharing-scope type specifies whether connections
obtained through the given resource manager connection
factory reference can be shared. The value, if specified,
must be one of the two following:

Shareable
Unshareable

Public Review

259

The default value is Shareable.

</xsd:documentation>
</Xsd:annotation>

<xsd:simpTleContent>
<xsd:restriction base="j2ee:string">
<xsd:enumeration value="Shareable"/>
<xsd:enumeration value="Unshareable"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>

< | —— Fedededededededededededededededededeedededededefehdedededefehdededededefeddedededefededededehh ——>

<xsd:complexType name="resource-env-refType'>

<xsd:annotation>
<xsd:documentation>

The resource-env-refType is used to define
resource-env-type elements. It contains a declaration of a
Deployment Component’s reference to an administered object
associated with a resource in the Deployment Component’s
environment. It consists of an optional description, the
resource environment reference name, and an indication of
the resource environment reference type expected by the
Deployment Component code.

Example:

<resource-env-ref>
<resource-env-ref-name>jms/StockQueue
</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Queue
</resource-env-ref-type>
</resource-env-ref>

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:element name="description"
type="j2ee:descriptionType"

260

minOccurs="0"

maxOccurs="unbounded" />
<xsd:element name='"resource-env-ref-name"

type="j2ee:jndi-nameType">

<xsd:annotation>
<xsd:documentation>

The resource-env-ref-name element specifies the name
of a resource environment reference; its value is
the environment entry name used in

the Deployment Component code. The name is a JNDI
name relative to the java:comp/env context and must
be unique within a Deployment Component.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name="resource-env-ref-type"
type="j2ee:fully-qualified-classType">

<xsd:annotation>
<xsd:documentation>

The resource-env-ref-type element specifies the type
of a resource environment reference. It is the
fully qualified name of a Java language class or
interface.

</xsd:documentation>
</xsd:annotation>

</xsd:element>

</xsd:sequence>
<xsd:attribute name="1id" type="xsd:ID"/>

</xsd:complexType>

<l ¥
<xsd:complexType name="resource-refType'>

<xsd:annotation>
<xsd:documentation>

Public Review

261

The resource-refType contains a declaration of a

Deployment Component’s reference to an external resource. It
consists of an optional description, the resource manager
connection factory reference name, the indication of the
resource manager connection factory type expected by the
Deployment Component code, the type of authentication
(Application or Container), and an optional specification of
the shareability of connections obtained from the resource
(Shareable or Unshareable).

Example:

<resource-ref>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:element name="description"
type="j2ee:descriptionType"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="res-ref-name"
type="j2ee:jndi-nameType">

<xsd:annotation>
<xsd:documentation>

The res-ref-name element specifies the name of a
resource manager connection factory reference.
The name is a JNDI name relative to the
java:comp/env context.

The name must be unique within a Deployment File.

</xsd:documentation>
</xsd:annotation>

</xsd:element>

262

<xsd:element name="res-type"
type="j2ee:fully-qualified-classType">

<xsd:annotation>
<xsd:documentation>

The res-type element specifies the type of the data
source. The type is specified by the fully qualified
Java language class or interface

expected to be implemented by the data source.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name="res-auth"
type="j2ee:res-authType"/>
<xsd:element name="res-sharing-scope"
type="j2ee:res-sharing-scopeType'
minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:complexType>

R e R R R R e R A A R R U L R R R A A R R R A S R R R >

<!l--
<xsd:complexType name='"role-nameType'">

<xsd:annotation>
<xsd:documentation>

The role-nameType designates the name of a security role.
The name must conform to the lexical rules for a token.

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:restriction base="j2ee:string"/>
</xsd:simpTeContent>
</xsd:complexType>

Public Review

263

Fedededededede N ddededde e ddedde SN ddeded AN dededdded e dededdedd Nl

I
<xsd:complexType name="run-asType'>

<xsd:annotation>
<xsd:documentation>

The run-asType specifies the run-as identity to be
used for the execution of a component. It contains an
optional description, and the name of a security role.

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:element name="description"
type="j2ee:descriptionType"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="role-name"
type="j2ee:role-nameType" />
</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID"/>
</xsd:complexType>
<!__ Fededdefdhdehdhfhfehdhfhfdfd R dhdedhdehdhfh Nl ddhd it
<xsd:complexType name="security-role-refType'>

<xsd:annotation>
<xsd:documentation>

The security-role-refType contains the declaration of a
security role reference in a component’s or a

Deployment Component’s code. The declaration consists of an
optional description, the security role name used in the
code, and an optional link to a security role. If the
security role is not specified, the Deployer must choose an
appropriate security role.

</xsd:documentation>
</xsd:annotation>

<xsd:sequence>
<xsd:element name="description"

264

type="j2ee:descriptionType"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="role-name"
type="j2ee:role-nameType'>

<xsd:annotation>
<xsd:documentation>

The value of the role-name element must be the String used
as the parameter to the

EJBContext.isCallerInRole(String roleName) method or the
HttpServietRequest.isUserInRole(String role) method.

</xsd:documentation>
</xsd:annotation>

</xsd:element>

<xsd:element name="role-1ink"
type="j2ee:role-nameType"
minOccurs="0">

<xsd:annotation>
<xsd:documentation>

The role-Tink element is a reference to a defined
security role. The role-1ink element must contain
the name of one of the security roles defined in the
security-role elements.

</xsd:documentation>
</xsd:annotation>

</xsd:element>

</xsd:sequence>
<xsd:attribute name="1id" type="xsd:ID"/>

</xsd:complexType>

<loo
<xsd:complexType name="security-roleType">

<xsd:annotation>
<xsd:documentation>

Public Review

265

The security-roleType contains the definition of a security
role. The definition consists of an optional description of the
security role, and the security role name.

Example:

<security-role>
<description>
This role includes all employees who are authorized
to access the employee service application.
</description>
<role-name>employee</role-name>
</security-role>

</xsd:documentation>
</Xsd:annotation>

<xsd:sequence>
<xsd:element name="description"
type="j2ee:descriptionType"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="role-name"
type="j2ee:role-nameType" />
</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID"/>
</xsd:complexType>

<!__ B
<xsd:complexType name="string'>

<xsd:annotation>
<xsd:documentation>

This is a special string datatype that is defined by J2EE as
a base type for defining collapsed strings. When schemas
require trailing/leading space elimination as well as
collapsing the existing whitespace, this base type may be
used.

</xsd:documentation>
</xsd:annotation>

266

<xsd:simpleContent>
<xsd:extension base="xsd:token">
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

<loo w3
<xsd:complexType name='"true-falseType">

<xsd:annotation>
<xsd:documentation>

This simple type designates a boolean with only two
permissible values

- true
- false

</xsd:documentation>
</Xxsd:annotation>

<xsd:simpleContent>
<xsd:restriction base="j2ee:xsdBooleanType">
<xsd:pattern value="(true|false)"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>

<l %
<xsd:complexType name="url-patternType'>

<xsd:annotation>
<xsd:documentation>

The url-patternType contains the url pattern of the mapping.
It must follow the rules specified in Section 11.2 of the
Serviet API Specification. This pattern is assumed to be in
URL-decoded form and must not contain CR(#xD) or LF(#xA).
If it contains those characters, the container must inform
the developer with a descriptive error message.

The container must preserve all characters including whitespaces.

Public Review

267

</xsd:documentation>
</Xsd:annotation>

<xsd:simpleContent>
<xsd:extension base="xsd:string"/>
</xsd:simpTleContent>
</xsd:complexType>
<!__ FededdefdhdehdhdhdehfhfhNd Nl dhddhdhfhfh NNl Nl Nl dhd
<xsd:complexType name="xsdAnyURIType">

<xsd:annotation>
<xsd:documentation>

This type adds an "id" attribute to xsd:anyURI.

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:extension base="xsd:anyURI">
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:extension>
</xsd:simpTleContent>
</xsd:complexType>

Fededededededede

<l--
<xsd:complexType name="xsdBooleanType'>

<xsd:annotation>
<xsd:documentation>

This type adds an "id" attribute to xsd:boolean.

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:extension base="xsd:boolean">
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

268

<|__ TedededehdededdefehddeddeNdhhdehdehdhdehdddhddeddeddhddehdeNdhdhdhdhd ——>

<xsd:complexType name="xsdIntegerType'>

<xsd:annotation>
<xsd:documentation>

This type adds an "id" attribute to xsd:integer.

</xsd:documentation>
</Xsd:annotation>

<xsd:simpleContent>
<xsd:extension base="xsd:integer">
<xsd:attribute name="id" type="xsd:ID"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

<|__ Tedededededededdedede N ddedehdedededdededdNddedhdededdNdhdedddededddedddNdddd ——>

<xsd:complexType name="'xsdNMTOKENType'>

<xsd:annotation>
<xsd:documentation>

This type adds an "id" attribute to xsd:NMTOKEN.

</xsd:documentation>
</Xsd:annotation>

<xsd:simpleContent>
<xsd:extension base="xsd:NMTOKEN">
<xsd:attribute name="id" type="xsd:ID"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
<!__ Tededededede el dededede e hdededededehdededededefddedededefededededefehdeddededehddddeNd ——>
<xsd:complexType name="xsdNonNegativeIntegerType'>

<xsd:annotation>
<xsd:documentation>

This type adds an "id" attribute to xsd:nonNegativelnteger.

Public Review

269

</xsd:documentation>
</Xsd:annotation>

<xsd:simpleContent>
<xsd:extension base="xsd:nonNegativeInteger">
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
< | o Fededededededdeldefdehdehddfhddeddefdfdhdehdhdehdddhfdddfdfdhdhdht
<xsd:complexType name="xsdPositiveIntegerType'>

<xsd:annotation>
<xsd:documentation>

This type adds an "id" attribute to xsd:positivelnteger.

</xsd:documentation>
</Xsd:annotation>

<xsd:simpTleContent>
<xsd:extension base="xsd:positivelnteger">
<xsd:attribute name="1id" type="xsd:ID"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

o Fdedededededfefefedededede e fdedededeh R fdededehhhfdedededefhffedededehfddeded _ _
< e e e e Yo e e Yo Yo oo e Yo v oo v v o6 o v v vo oo o v vo o6 o v o6 76 v v v 76 o v vo o6 o ¥ o o6 o ¥ o 76 o % ¥ o o % >

<xsd:complexType name="xsdQNameType'>

<xsd:annotation>
<xsd:documentation>

This type adds an "id" attribute to xsd:QName.

</xsd:documentation>
</xsd:annotation>

<xsd:simpTleContent>
<xsd:extension base="xsd:QName">
<xsd:attribute name="id" type="xsd:ID"/>
</xsd:extension>

270

</xsd:simpleContent>
</xsd:complexType>

e ey e v Y Yo Yo e v v Yo Yo Yo v v vh Yo e e o v vr vr e v o v ve v v v v v Yo v v o ¥ ¥ v e o 4% ¥ ¥ ¥ v %

<!__ Tl dedddfh Nl Nl Rl deRdeNdehdehdddhdd Nl Nl fdeRdedehdehdehdhdhn ——>
<xsd:complexType name="'xsdStringType'>

<xsd:annotation>
<xsd:documentation>

This type adds an "id" attribute to xsd:string.

</xsd:documentation>
</xsd:annotation>

<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="id" type="xsd:ID"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

</xsd:schema>

J2EE.A.3 J2EE:application 1.3 XML DTD

This section providesthe XML DTD for the J2EE 1.3 application deployment
descriptor. The XML grammar for a J2EE application deployment descriptor is
defined by the J2EE: app1ication document type definition. The granularity of
composition for J2EE application assembly isthe J2EE module. A
J2EE:application deployment descriptor contains a name and description for the
application and the URI of aUl icon for the application, aswell asalist of the J2EE
modules that comprise the application. The content of the XML elementsisin
general case sensitive. This means, for example, that <role-name>Manager</role-
name> IS adifferent role than <role-name>manager</role-name>.

A valid J2EE application deployment descriptor may contain the following
DOCTY PE declaration:

<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE
Application 1.3//EN" "http://java.sun.com/dtd/application_1_3.dtd">

Public Review

The deployment descriptor must be named META-INF/appTication.xml inthe .ear

file.

Figure J2EE.A-1 shows a graphic representation of the structure of the
J2EE:application XML DTD.

icon display-name description? module+ security-role*
small-icon large-icon connector | ejb | java | web alt-dd? description? role-name

Figure J2EE.A-1 J2EE:application XML DTD Structure

T

web-uri

context-root?

The DTD that follows defines the XML grammar for a J2EE application

deployment descriptor.

<l--

This is the XML DTD for the J2EE 1.3 application deployment

descriptor.

include a DOCTYPE of the following form:
<!DOCTYPE application PUBLIC
"-//Sun Microsystems, Inc.//DTD J2EE Application 1.3//EN"
"http://java.sun.com/dtd/application_1_3.dtd">

-—>

<l--

A11 J2EE 1.3 application deployment descriptors must

The following conventions apply to all J2EE deployment descriptor
elements unless indicated otherwise.
- In elements that contain PCDATA, leading and trailing whitespace
in the data may be qignored.
- In elements whose value is an "enumerated type", the value is
case sensitive.
- In elements that specify a pathname to a file within the same
JAR file, relative filenames (i.e., those not starting with "/")
are considered relative to the root of the JAR file’s namespace.
Absolute filenames (i.e., those starting with "/") also specify

271

272

names in the root of the JAR file’s namespace. In general, relative
names are preferred. The exception is .war files where absolute
names are preferred for consistency with the servlet API.

-——>

<!--

The application element is the root element of a J2EE application
deployment descriptor.

-—>

<!ELEMENT application (icon?, display-name, description?, module+,
security-role¥*)>

<!--

The alt-dd element specifies an optional URI to the post-assembly
version of the deployment descriptor file for a particular J2EE
module. The URI must specify the full pathname of the deployment
descriptor file relative to the application’s root directory. If alt-
dd is not specified, the deployer must read the deployment descriptor
from the default Tocation and file name required by the respective
component specification.

Used 1in: module

-—>
<!ELEMENT alt-dd (#PCDATA)>

<!--

The connector element specifies the URI of a resource adapter archive
file, relative to the top level of the application package.

Used in: module

-—>

<!ELEMENT connector (#PCDATA)>

<l--

The context-root element specifies the context root of a web
application.

Used in: web

-—>

<!ELEMENT context-root (#PCDATA)>

Public Review

273

<l--

The description element is used to provide text describing the parent
element. The description element should include any information that
the application ear file producer wants to provide to the consumer
of the application ear file (i.e., to the Deployer). Typically, the
tools used by the application ear file consumer will display the
description when processing the parent element that contains the
description.

Used 1in: application, security-role

-=>

<!ELEMENT description (#PCDATA)>

<!--

The display-name element contains a short name that is intended to
be displayed by tools. The display name need not be unique.

Used in: application

Example:

<display-name>Employee Self Service</display-name>

-——>

<!ELEMENT display-name (#PCDATA)>

<!--

The ejb element specifies the URI of an ejb-jar, relative to the top
Tlevel of the application package.

Used in: module

-—>

<!ELEMENT ejb (#PCDATA)>

<!--

The icon element contains small-icon and Targe-icon elements that
specify the file names for small and a large GIF or JPEG icon images
used to represent the parent element in a GUI tool.

Used 1in: application

-=>

<!ELEMENT -1icon (small-icon?, large-icon?)>
<l--

The java element specifies the URI of a java application client
module, relative to the top level of the application package.

274

Used in: module
-—>

<!ELEMENT java (#PCDATA)>

<!--

The large-icon element contains the name of a file containing a large
(32 x 32) dicon image. The file name is a relative path within the
application’s ear file.

The image may be either in the JPEG or GIF format. The icon can be
used by tools.

Used in: dicon

Example:

<large-icon>employee-service-icon32x32.jpg</large-icon>

-=>

<!ELEMENT Tlarge-icon (#PCDATA)>

<!--

The module element represents a single J2EE module and contains a
connector, ejb, java, or web element, which indicates the module type
and contains a path to the module file, and an optional alt-dd
element, which specifies an optional URI to the post-assembly version
of the deployment descriptor.

The application deployment descriptor must have one module element
for each J2EE module in the application package.

Used in: application

-=>

<!ELEMENT module ((connector | ejb | java | web), alt-dd?)>

<l--

The role-name element contains the name of a security role.
The name must conform to the lexical rules for an NMTOKEN.
Used in: security-role

-——>

<!ELEMENT role-name (#PCDATA)>

<!--

The security-role element contains the definition of a security role.
The definition consists of an optional description of the security
role, and the security role name.

Public Review

Used in: application
Example:
<security-role>
<description>
This role includes all employees who are authorized
to access the employee service application.
</description>
<role-name>empTloyee</role-name>
</security-role>

<!ELEMENT security-role (description?, role-name)>

<!--

The small-icon element contains the name of a file containing a small
(16 x 16) icon image. The file name is a relative path within the
application’s ear file.

The image may be either in the JPEG or GIF format. The icon can be
used by tools.

Used 1in: dicon

Example:

<small-icon>employee-service-iconl6x16.jpg</small-icon>

-=>

<!ELEMENT small-icon (#PCDATA)>

<l--

The web element contains the web-uri and context-root of a web
application module.

Used 1in: module

-—>
<!ELEMENT web (web-uri, context-root)>

<!--

The web-uri element specifies the URI of a web application file,
relative to the top level of the application package.

Used in: web

-->

<!ELEMENT web-uri (#PCDATA)>

275

276

<l--

The ID mechanism is to allow tools that produce additional deployment
information (i.e., information beyond the standard deployment
descriptor information) to store the non-standard information in a
separate file, and easily refer from these tool-specific files to
the information in the standard deployment descriptor.

Tools are

not allowed to add the non-standard information into the

standard deployment descriptor.

-->

<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!TATTLIST
<!TATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST

J2EE.A4

alt-dd id ID #IMPLIED>
application id ID #IMPLIED>
connector id ID #IMPLIED>
context-root id ID #IMPLIED>
description id ID #IMPLIED>
display-name id ID #IMPLIED>
ejb id ID #IMPLIED>

icon id ID #IMPLIED>

java id ID #IMPLIED>
large-icon id ID #IMPLIED>
module id ID #IMPLIED>
role-name id ID #IMPLIED>
security-role id ID #IMPLIED>
small-icon id ID #IMPLIED>
web id ID #IMPLIED>

web-uri id ID #IMPLIED>

J2EE:application 1.2 XML DTD

This section providesthe XML DTD for the J2EE 1.2 version of the application
deployment descriptor. A valid J2EE application deployment descriptor may
contain the following DOCTY PE declaration:

<!DOCTYPE

application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE

Application 1.2//EN" "http://java.sun.com/j2ee/dtds/
application_1_2.dtd">

Public Review

Figure J2EE.A-2 shows a graphic representation of the structure of the

J2EE:application XML DTD.

application
icon? display-name description? module+ security-role*
small-icon? | | large-icon? ejb | java | web alt-dd? description? role-name

T

web-uri context-root

FigureJ2EE.A-2 J2EE:application XML DTD Structure

The DTD that follows defines the XML grammar for a J2EE application

deployment descriptor.

<!--

The alt-dd element specifies an optional URI to the post-assembly
version of the deployment descriptor file for a particular J2EE
moduTle.

The URI must specify the full pathname of the deployment descriptor
file relative to the application’s root directory. If alt-dd is not
specified, the deployer must read the deployment descriptor from the
default Tocation and file name required by the respective component
specification.

-=>

<!ELEMENT alt-dd (#PCDATA)>

<!l--

The application element is the root element of a J2EE application
deployment descriptor.

-—>

<!ELEMENT application (icon?, display-name, description?, module+,
security-role*)>

277

278

<!l--

The context-root element specifies the context root of a web
application

-——>

<!ELEMENT context-root (#PCDATA)>

<!--

The description element provides a human readable description of the
application.

The description element should include any information that the
application assembler wants to provide the deployer.

-—>

<!ELEMENT description (#PCDATA)>

<!--

The display-name element specifies an application name.

The application name is assigned to the application by the
application assembler and is used to identify the application to the
deployer at deployment time.

-—=>

<!ELEMENT display-name (#PCDATA)>

<!--

The ejb element specifies the URI of a ejb-jar, relative to the top
Tevel of the application package.

-—=>

<!ELEMENT ejb (#PCDATA)>

<l--

The icon element contains a small-icon and Targe-icon element which
specify the URIs for a small and a Targe GIF or JPEG icon image to
represent the application in a GUI.

-—>

<!ELEMENT -{icon (small-icon?, large-icon?)>

Public Review

279

<l--

The java element specifies the URI of a java application client
module, relative to the top level of the application package.
-—>

<!ELEMENT java (#PCDATA)>

<!l--

The large-icon element specifies the URI for a large GIF or JPEG icon
image to represent the application in a GUI.

-->

<!ELEMENT Targe-icon (#PCDATA)>

<!--

The module element represents a single J2EE module and contains an
ejb, java, or web element, which indicates the module type and
contains a path to the module file, and an optional alt-dd element,
which specifies an optional URI to the post-assembly version of the
deployment descriptor.

The application deployment descriptor must have one module element
for each J2EE module in the application package.
-->

<!ELEMENT module ((ejb | java | web), alt-dd?)>

<l--
The role-name element contains the name of a security role.
-—>

<!ELEMENT role-name (#PCDATA)>

<!--

The security-role element contains the definition of a security role
which is global to the application.

The definition consists of a description of the security role, and
the security role name.

The descriptions at this level override those in the component level
security-role definitions and must be the descriptions tool display
to the deployer.

-->

280

<!ELEMENT security-role (description?, role-name)>

<l--

The small-icon element specifies the URI for a small GIF or JPEG icon
image to represent the application in a GUI.

-

<!ELEMENT small-icon (#PCDATA)>

<l--

The web element contains the web-uri and context-root of a web
application module.

-——>

<!ELEMENT web (web-uri, context-root)>

<!--
The web-uri element specifies the URI of a web application file,
relative to the top Tlevel of the application package.

-->
<!ELEMENT web-uri (#PCDATA)>

<!--
The ID mechanism is to allow tools to easily make tool-specific
references to the elements of the deployment descriptor.

-—>

<!ATTLIST alt-dd id ID #IMPLIED>
<!ATTLIST application id ID #IMPLIED>
<!ATTLIST context-root id ID #IMPLIED>
<!ATTLIST description id ID #IMPLIED>
<!ATTLIST display-name id ID #IMPLIED>
<!ATTLIST ejb id ID #IMPLIED>
<!ATTLIST -icon id ID #IMPLIED>
<!ATTLIST java id ID #IMPLIED>
<!ATTLIST large-icon id ID #IMPLIED>
<!ATTLIST module id ID #IMPLIED>
<!ATTLIST role-name id ID #IMPLIED>
<!ATTLIST security-role id ID #IMPLIED>
<!ATTLIST small-icon id ID #IMPLIED>
<!ATTLIST web id ID #IMPLIED>
<!ATTLIST web-uri id ID #IMPLIED>

Public Review

281

J2EE.A.5 J2EE 1.4 Application Client XML Schema

The XML grammar for a J2EE application client deployment descriptor is defined
by the J2EE application-client schema. The root e ement of the deployment
descriptor for an application clientisapplication-client. The content of the XML
dementsisin general case sengitive. This means, for example, that <res-
auth>Container</res-auth> must be used, rather than <res-auth>container</
res-auth>.

A valid application-client deployment descriptors may conform to the
following XML Schema definition. The deployment descriptor must be named
META-INF/application-client.xml inthe application client’s . jar file. Note that
this name is case-sensitive.

282

Figure J2EE.O-2 shows the structure of the J2EE application-client XML

Public Review

283

il il l__?i

o o 0

]

Schema.

284

FigureJ2EE.0-2 J2EE Application Client XML Schema Structure

<?xm1 version="1.0" encoding="UTF-8"?7>

<xsd:schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://java.sun.com/xml/ns/j2ee"
xmIns:j2ee="http://java.sun.com/xml/ns/j2ee"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified"
version="1.4">

<xsd:annotation>
<xsd:documentation>

@(#)application-client_1_4.xsds 1.17 02/11/03

</xsd:documentation>
</xsd:annotation>

<xsd:annotation>
<xsd:documentation>

This is the XML Schema for the application client 1.4
deployment descriptor. The deployment descriptor must
be named "META-INF/application-client.xml" in the
application client’s jar file. All application client
deployment descriptors must indicate the application
client schema by using the J2EE namespace:

http://java.sun.com/xml/ns/j2ee

and indicate the version of the schema by
using the version element as shown below:

<application-client xmins="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/application-
client_1_4.xsd"
version="1.4">

</application-client>

Public Review

The instance documents may indicate the published version of
the schema using the xsi:schemalocation attribute for J2EE
namespace with the following Tlocation:

http://java.sun.com/xml/ns/j2ee/application-client_1_4.xsd

</xsd:documentation>
</xsd:annotation>

<xsd:annotation>
<xsd:documentation>

The following conventions apply to all J2EE
deployment descriptor elements unless indicated otherwise.

- In elements that specify a pathname to a file within the
same JAR file, relative filenames (i.e., those not
starting with "/") are considered relative to the root of
the JAR file’s namespace. Absolute filenames (i.e., those
starting with "/") also specify names in the root of the
JAR file’s namespace. In general, relative names are
preferred. The exception is .war files where absolute
names are preferred for consistency with the Serviet API.

</xsd:documentation>
</xsd:annotation>

<xsd:include schemalLocation="j2ee_1_4.xsd"/>

Fededededede SN dedddn

<l-- ¢ >
<xsd:element name="application-client" type="j2ee:application-

clientType">

<xsd:annotation>
<xsd:documentation>

The application-client element is the root element of an
application client deployment descriptor. The application
client deployment descriptor describes the EJB components
and external resources referenced by the application
client.

285

286

</xsd:documentation>
</xsd:annotation>

<xsd:unique name="env-entry-name-uniqueness">

<xsd:annotation>
<xsd:documentation>

The env-entry-name element contains the name of an
application client’s environment entry. The name is a JINDI
name relative to the java:comp/env context. The name must
be unique within an application client.

</xsd:documentation>
</xsd:annotation>

<xsd:selector xpath="j2ee:env-entry"/>
<xsd:field xpath="j2ee:env-entry-name" />
</xsd:unique>
<xsd:unique name="ejb-ref-name-uniqueness">

<xsd:annotation>
<xsd:documentation>

The ejb-ref-name element contains the name of an EJB
reference. The EJB reference is an entry in the application
client’s environment and is relative to the

java:comp/env context. The name must be unique within the
application client.

It is recommended that name is prefixed with "ejb/".

</xsd:documentation>
</xsd:annotation>

<xsd:selector xpath="j2ee:ejb-ref"/>
<xsd:field xpath="j2ee:ejb-ref-name" />
</xsd:unique>
<xsd:unique name="res-ref-name-uniqueness'">

<xsd:annotation>
<xsd:documentation>

Public Review

287

The res-ref-name element specifies the name of a
resource manager connection factory reference.The name
is a JNDI name relative to the java:comp/env context.
The name must be unique within an application client.

</xsd:documentation>
</xsd:annotation>

<xsd:selector xpath="j2ee:resource-ref"/>
<xsd:field xpath="j2ee:res-ref-name" />
</xsd:unique>
<xsd:unique name="resource-env-ref-uniqueness">

<xsd:annotation>
<xsd:documentation>

The resource-env-ref-name element specifies the name of
a resource environment reference; its value is the
environment entry name used in the application client
code. The name is a JNDI name relative to the
java:comp/env context and must be unique within an
application client.

</xsd:documentation>
</xsd:annotation>

<xsd:selector xpath="j2ee:resource-env-ref"/>
<xsd:field xpath="j2ee:resource-env-ref-name" />
</xsd:unique>
<xsd:unique name="message-destination-ref-uniqueness">

<xsd:annotation>
<xsd:documentation>

The message-destination-ref-name element specifies the
name of a message destination reference; its value is
the message destination reference name used in the
application client code. The name is a INDI name
relative to the java:comp/env context and must be unique
within an application client.

</xsd:documentation>
</xsd:annotation>

288

<xsd:selector xpath="j2ee:message-destination-ref"/>
<xsd:field xpath="j2ee:message-destination-ref-name" />
</xsd:unique>
</xsd:element>

< | —— VedededeledededededeNeNdedededeNehdededededehNededededeNNdedededeNeNdedededeNehdedededeNehNdd _ _ >
<xsd:complexType name="application-clientType">
<xsd:sequence>

<xsd:group ref="j2ee:descriptionGroup"/>

<xsd:element name="env-entry"
type="j2ee:env-entryType"
minOccurs="0" maxOccurs="unbounded" />

<xsd:element name="ejb-ref"
type="j2ee:ejb-refType"
minOccurs="0" maxOccurs="unbounded" />

<xsd:group ref="j2ee:service-refGroup"/>

<xsd:element name="resource-ref"
type="j2ee:resource-refType"
minOccurs="0" maxOccurs="unbounded" />

<xsd:element name="resource-env-ref"
type="j2ee:resource-env-refType"
minOccurs="0" maxOccurs="unbounded" />

<xsd:element name="message-destination-ref"
type="j2ee:message-destination-refType'
minOccurs="0"
maxOccurs="unbounded" />

<xsd:element name="callback-handler"
type="j2ee:fully-qualified-classType"
minOccurs="0">

<xsd:annotation>
<xsd:documentation>

The callback-handler element names a class provided by
the application. The class must have a no args
constructor and must implement the
javax.security.auth.callback.CallbackHandler
interface. The class will be instantiated by the
application client container and used by the container
to collect authentication information from the user.

</xsd:documentation>
</xsd:annotation>

Public Review

289

</xsd:element>
<xsd:element name="message-destination"
type="j2ee:message-destinationType"
minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="version"
type="7j2ee:dewey-versionType"
fixed="1.4"
use="required">

<xsd:annotation>
<xsd:documentation>

The required value for the version is 1.4.

</xsd:documentation>
</Xxsd:annotation>

</Xxsd:attribute>
<xsd:attribute name="id" type="xsd:ID"/>
</xsd:complexType>

</xsd:schema>

J2EE.A.6 J2EE:application-client 1.3 XML DTD

This section containsthe XML DTD for the J2EE 1.3 version of the application
client deployment descriptor. The XML grammar for a J2EE application client
deployment descriptor is defined by the J2EE: application-client document type
definition. The root element of the deployment descriptor for an application client is
application-client. Thecontent of the XML elementsisin genera case sensitive.
This means, for example, that <res-auth>Container</res-auth> must be used,
rather than <res-auth>container</res-auths.

A valid application-client deployment descriptor may contain the
following DOCTY PE declaration:

<!DOCTYPE application-client PUBLIC "-//Sun Microsystems, Inc.//DTD
J2EE Application Client 1.3//EN" "http://java.sun.com/dtd/
application-client_1_3.dtd">

290

The deployment descriptor must be named META-INF/application-client.xml in
the application client’s . jar file.

Figure J2EE.A-3 showsthe structure of the J2EE:application-client XML

DTD.
]

small-icon |!| large-ico

|icon| |display-nam | |description | |env-entry*| |ejb-ref*| |resource-ref*| |resource-env-ref*| |cal|back-handler |

[| | |
|description | |env-entry-name| |env-entry-type | |env-entry-va|ue? |

| | | | | |
|description | |ejb—ref—nam | |ejb—ref-type | |hom | |remote| |ejb-|ink |

|description | |res-ref-name| |res-type| |res—aut | |res-sharing—scope |
? tr ?

| description | |resource-env-ref-name | |resource-env-ref-type |

Figure J2EE.A-3 J2EE:application-client XML DTD Structure

<!--
This is the XML DTD for the J2EE 1.3 application client deployment
descriptor. Al11 J2EE 1.3 application client deployment descriptors
must include a DOCTYPE of the following form:
<!DOCTYPE application-client PUBLIC

"-//Sun Microsystems, Inc.//DTD J2EE Application Client 1.3//EN"

"http://java.sun.com/dtd/application-client_1_3.dtd">
-—>

<!--

The following conventions apply to all J2EE deployment descriptor

elements unless indicated otherwise.

- In elements that contain PCDATA, Tleading and trailing whitespace
in the data may be ignored.

- In elements whose value is an "enumerated type", the value is
case sensitive.

- In elements that specify a pathname to a file within the same
JAR file, relative filenames (i.e., those not starting with "/")
are considered relative to the root of the JAR file’s namespace.
Absolute filenames (i.e., those starting with "/") also specify
names in the root of the JAR file’s namespace. In general, relative

Public Review

names are preferred. The exception is .war files where absolute
names are preferred for consistency with the servlet API.
-——>

<!--

The application-client element is the root element of an application
client deployment descriptor. The application client deployment
descriptor describes the EJB components and external resources
referenced by the application client.

-->

<!ELEMENT application-client (icon?, display-name, description?,
env-entry*, ejb-ref*, resource-ref*, resource-env-ref*,
callback-handler?)>

<l--

The callback-handler element names a class provided by the
application. The class must have a no args constructor and must
implement the javax.security.auth.callback.CallbackHandler
interface. The class will be instantiated by the application client
container and used by the container to collect authentication
information from the user.

Used 1in: application-client

-=>

<!ELEMENT callback-handler (#PCDATA)>

<!--

The description element is used to provide text describing the parent
element. The description element should include any information that
the application client jar file producer wants to provide to the
consumer of the application client jar file (i.e., to the Deployer).
Typically, the tools used by the application client jar file consumer
will display the description when processing the parent element that
contains the description.

Used in: application-client, ejb-ref, env-entry, resource-env-ref,
resource-ref

-=>

<!ELEMENT description (#PCDATA)>

201

292

<!--

The display-name element contains a short name that is intended to
be displayed by tools. The display name need not be unique.

Used in: application-client

Example:

<dispTlay-name>EmpTloyee Self Service</display-name>

-——>

<!ELEMENT display-name (#PCDATA)>

<!--
The ejb-Tink element is used in the ejb-ref or ejb-Tocal-ref elements
to specify that an EJB reference is linked to another enterprise
bean.
The name in the ejb-Tink element is composed of a
path name specifying the ejb-jar containing the referenced
enterprise bean with the ejb-name of the target bean appended and
separated from the path name by "#". The path name is relative to
the jar file containing the application client that is referencing
the enterprise bean. This allows multiple enterprise beans with the
same ejb-name to be uniquely identified.
Used in: ejb-ref
Examples:
<ejb-Tink>EmployeeRecord</ejb-11ink>
<ejb-Tink>../products/product.jar#ProductEJB</ejb-Tink>
-=>

<!ELEMENT ejb-11ink (#PCDATA)>

<!--
The ejb-ref element is used for the declaration of a reference to an
enterprise bean’s home. The declaration consists of:
- an optional description
- the EJB reference name used in the code of
the application client that’s referencing the enterprise bean
- the expected type of the referenced enterprise bean
- the expected home and remote interfaces of the referenced
enterprise bean
- optional ejb-1ink information, used to specify the referenced
enterprise bean
Used in: application-client
-=>

Public Review

<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,
remote, ejb-1ink?)>

<!--

The ejb-ref-name element contains the name of an EJB reference. The
EJB reference is an entry in the application client’s environment
and 1is relative to the java:comp/env context. The name must be
unique within the application client.

It is recommended that name is prefixed with "ejb/".

Used in: ejb-ref

Example:

<ejb-ref-name>ejb/Payroll</ejb-ref-name>

-—>

<!ELEMENT ejb-ref-name (#PCDATA)>

<!--

The ejb-ref-type element contains the expected type of the referenced

enterprise bean.

The ejb-ref-type element must be one of the following:
<ejb-ref-type>Entity</ejb-ref-type>
<ejb-ref-type>Session</ejb-ref-type>

Used in: ejb-ref

-=>

<!ELEMENT ejb-ref-type (#PCDATA)>

<!--

The env-entry element contains the declaration of an application
client’s environment entry. The declaration consists of an optional
description, the name of the environment entry, and an optional
value. If a value is not specified, one must be supplied during
deployment.

Used 1in: application-client

-——>

<!ELEMENT env-entry (description?, env-entry-name, env-entry-type,
env-entry-value?)>

293

294

<!--

The env-entry-name element contains the name of an application
client’s environment entry. The name is a IJNDI name relative to the
java:comp/env context. The name must be unique within an application
client.

Used in: env-entry

Example:

<env-entry-name>minAmount</env-entry-name>

-=>

<!ELEMENT env-entry-name (#PCDATA)>

<!--
The env-entry-type element contains the fully-qualified Java type of
the environment entry value that is expected by the application
client’s code.
The following are the Tegal values of env-entry-type:
java.lang.Boolean
java.lang.Byte
java.lang.Character
java.lang.String
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double
Used in: env-entry
Example:
<env-entry-type>java.lang.Boolean</env-entry-type>
-—>

<!ELEMENT env-entry-type (#PCDATA)>

<!--

The env-entry-value element contains the value of an application
client’s environment entry. The value must be a String that is valid
for the constructor of the specified type that takes a single String
parameter, or for java.lang.Character, a single character.

Used in: env-entry

Example:

<env-entry-value>100.00</env-entry-value>

-—>

Public Review

<!ELEMENT env-entry-value (#PCDATA)>

<!--

The home element contains the fully-qualified name of the enterprise
bean’s home interface.

Used 1in: ejb-ref

Example:

<home>com.aardvark.payroll.Payrol1lHome</home>

-=>

<!ELEMENT home (#PCDATA)>

<l--

The icon element contains small-icon and Targe-icon elements that
specify the file names for small and a large GIF or JPEG icon images
used to represent the parent element in a GUI tool.

Used in: application-client

-—>

<!ELEMENT 1icon (small-icon?, large-icon?)>

<!--

The Targe-icon element contains the name of a file containing a large
(32 x 32) icon image. The file name is a relative path within the

application client’s jar file.

The image may be either in the JPEG or GIF format. The icon can be
used by tools.

Used in: icon

Example:

<large-icon>employee-service-icon32x32.jpg</large-icon>

-—>

<!ELEMENT Targe-icon (#PCDATA)>

<!--

The remote element contains the fully-qualified name of the
enterprise bean’s remote interface.

Used in: ejb-ref

Example:

<remote>com.wombat.empl.EmployeeService</remote>

-->

<!ELEMENT remote (#PCDATA)>

295

296

<!--

The res-auth element specifies whether the application client code

signs on programmatically to the resource manager, or whether the

Container will sign on to the resource manager on behalf of the

application client. In the Tatter case, the Container uses

information that is supplied by the Deployer.

The value of this element must be one of the two following:
<res-auth>Application</res-auth>
<res-auth>Container</res-auth>

Used in: resource-ref

-=>

<!ELEMENT res-auth (#PCDATA)>

<!--

The res-ref-name element specifies the name of a resource manager
connection factory reference. The name is a JNDI name relative to
the java:comp/env context. The name must be unique within an
application client.

Used in: resource-ref

-——>

<!ELEMENT res-ref-name (#PCDATA)>

<!--

The res-sharing-scope element specifies whether connections obtained

through the given resource manager connection factory reference can

be shared. The value of this element, if specified, must be one of

the two following:
<res-sharing-scope>Shareable</res-sharing-scope>
<res-sharing-scope>Unshareable</res-sharing-scope>

The default value 1is Shareable.

Used in: resource-ref

-—>

<!ELEMENT res-sharing-scope (#PCDATA)>

<!--

The res-type element specifies the type of the data source. The type
is specified by the fully qualified Java language class or interface
expected to be implemented by the data source.

Used in: resource-ref

-—>

Public Review

<!ELEMENT res-type (#PCDATA)>

<!--

The resource-env-ref element contains a declaration of an

application client’s reference to an administered object associated

with a resource in the application client’s environment. It consists

of an optional description, the resource environment reference name,

and an indication of the resource environment reference type expected

by the application client code.

Used 1in: application-client

Example:

<resource-env-ref>
<resource-env-ref-name>jms/StockQueue</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>

</resource-env-ref>

-—>

<!ELEMENT resource-env-ref (description?, resource-env-ref-name,
resource-env-ref-type)>

<!--

The resource-env-ref-name element specifies the name of a resource
environment reference; its value is the environment entry name used
in the application client code. The name is a JNDI name relative to
the java:comp/env context and must be unique within an application
client.

Used 1in: resource-env-ref

-—>

<!ELEMENT resource-env-ref-name (#PCDATA)>

<!--

The resource-env-ref-type element specifies the type of a resource
environment reference. It is the fully qualified name of a Java
language class or interface.

Used 1in: resource-env-ref

-=>

<!ELEMENT resource-env-ref-type (#PCDATA)>

297

298

<!--
The resource-ref element contains a declaration of an application
client’s reference to an external resource. It consists of an
optional description, the resource manager connection factory
reference name, the indication of the resource manager connection
factory type expected by the application client code, the type of
authentication (Application or Container), and an optional
specification of the shareability of connections obtained from the
resource (Shareable or Unshareable).
Used in: application-client
Example:
<resource-ref>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope> </resource-ref>
-=>

<!ELEMENT resource-ref (description?, res-ref-name, res-type, res-
auth, res-sharing-scope?)>

<!--

The small-icon element contains the name of a file containing a small
(16 x 16) icon image. The file name is a relative path within the
application client’s jar file.

The image may be either in the JPEG or GIF format. The icon can be
used by tools.

Used in: dicon

Example:

<small-icon>employee-service-iconl6x16.jpg</small-icon>

-—>

<!ELEMENT small-icon (#PCDATA)>

<!--

The ID mechanism is to allow tools that produce additional deployment
information (i.e., information beyond the standard deployment
descriptor information) to store the non-standard information in a
separate file, and easily refer from these tool-specific files to
the information in the standard deployment descriptor.

Tools are not allowed to add the non-standard information into the
standard deployment descriptor.

-—>

Public Review

<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST

J2EE.A.7

This section containsthe XML DTD for the J2EE 1.2 version of the application
client deployment descriptor. A valid application client deployment descriptor may

application-client id ID #IMPLIED>
callback-handler id ID #IMPLIED>
description id ID #IMPLIED>
display-name id ID #IMPLIED>
ejb-Tink id ID #IMPLIED>

ejb-ref id ID #IMPLIED>
ejb-ref-name id ID #IMPLIED>
ejb-ref-type id ID #IMPLIED>
env-entry id ID #IMPLIED>
env-entry-name id ID #IMPLIED>
env-entry-type id ID #IMPLIED>
env-entry-value id ID #IMPLIED>
home id ID #IMPLIED>

icon id ID #IMPLIED>

large-icon id ID #IMPLIED>
remote id ID #IMPLIED>

res-auth id ID #IMPLIED>
res-ref-name id ID #IMPLIED>
res-sharing-scope id ID #IMPLIED>
res-type id ID #IMPLIED>
resource-env-ref id ID #IMPLIED>

resource-env-ref-name id ID #IMPLIED>
resource-env-ref-type id ID #IMPLIED>

resource-ref id ID #IMPLIED>
small-icon id ID #IMPLIED>

J2EE:application-client 1.2 XML DTD

contain the following DOCTY PE declaration:

<!DOCTYPE application-client PUBLIC "-//Sun Microsystems, Inc.//DTD
J2EE Application Client 1.2//EN" "http://java.sun.com/j2ee/dtds/ap-
plication-

client_1_2.dtd">

299

300

Figure J2EE.A-4 showsthe structure of the J2EE: application-client XML

DTD.

application-client

icon? display-name description? env-entry* ejb-ref* resource-ref*

S

small-icon? ||| large-icon?

description? | |env-entry-name env-entry-type env-entry-value?

description? ||| ejb-ref-name | |ejb-ref-type home | |remote | | ejb-link?

description? res-ref-name res-type res-auth

Figure J2EE.A-4 J2EE:application-client XML DTD Structure

<!--

The application-client element is the root element of an application
client deployment descriptor.

The application client deployment descriptor describes the EJB
components and external resources referenced by the application
client.

-=>

<!ELEMENT application-client (icon?, display-name, description?,
env-entry*, ejb-ref*, resource-ref+*)>

<!--

The description element is used to provide text describing the parent
element.

The description element should include any information that the
application-client file producer wants to provide to the consumer of
the application-client file (i.e., to the Deployer).

Public Review

Typically, the tools used by the application-client file consumer
will display the description when processing the parent element that
contains the description.

-—>

<!ELEMENT description (#PCDATA)>

<!l--

The display-name element contains a short name that is intended to
be displayed by tools.

-->

<!ELEMENT display-name (#PCDATA)>

<!--

The ejb-Tink element is used in the ejb-ref element to specify that
an EJB reference is linked to an enterprise bean in the encompassing
J2EE Application package.

The value of the ejb-Tink element must be the ejb-name of an
enterprise bean in the same J2EE Application package.

Used in: ejb-ref

Example: <ejb-Tlink>EmpToyeeRecord</ejb-Tink>

-—>
<!ELEMENT ejb-1ink (#PCDATA)>

<l--

The ejb-ref element is used for the declaration of a reference to an
enterprise bean’s home.

The declaration consists of an optional description; the EJB
reference name used in the code of the referencing application
client; the expected type of the referenced enterprise bean; the
expected home and remote interfaces of the referenced enterprise
bean; and an optional ejb-Tink information.

The optional ejb-Tink element is used to specify the referenced
enterprise bean.

-——>

<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,
remote, ejb-1ink?)>

<l--
The ejb-ref-name element contains the name of an EJB reference.

301

302

The EJB reference is an entry in the application client’s
environment.

It is recommended that name is prefixed with "ejb/".

Used in: ejb-ref

Example: <ejb-ref-name>ejb/Payroll</ejb-ref-name>

-=>

<!ELEMENT ejb-ref-name (#PCDATA)>

<!--

The ejb-ref-type element contains the expected type of the referenced

enterprise bean.

The ejb-ref-type element must be one of the following:
<ejb-ref-type>Entity</ejb-ref-type>
<ejb-ref-type>Session</ejb-ref-type>

Used in: ejb-ref

-—>

<!ELEMENT ejb-ref-type (#PCDATA)>

<!--

The env-entry element contains the declaration of an application
client’s environment entries.

The declaration consists of an optional description, the name of the
environment entry, and an optional value.

-=>

<!ELEMENT env-entry (description?, env-entry-name, env-entry-type,
env-entry-value?)>

<!--

The env-entry-name element contains the name of an application
client’s environment entry.

Used in: env-entry

Example: <env-entry-name>EmployeeAppDB</env-entry-name>

-—>

<!ELEMENT env-entry-name (#PCDATA)>

Public Review

<l--

The env-entry-type element contains the fully-qualified Java type of
the environment entry value that is expected by the application
client’s code.

The following are the legal values of env-entry-type:
java.lang.Boolean, java.lang.String, java.lang.Integer,
java.lang.Double, java.lang.Byte, java.lang.Short,java.lang.Long,
and java.lang.Float.

Used 1in: env-entry

Example:

<env-entry-type>java.lang.Boolean</env-entry-type>

-—>

<!ELEMENT env-entry-type (#PCDATA)>

<!--

The env-entry-value element contains the value of an application
client’s environment entry. The value must be a String that is valid
for the constructor of the specified type that takes a single String
parameter.

Used 1in: env-entry

Example:
<env-entry-value>/datasources/MyDatabase</env-entry-value>

-=>

<!ELEMENT env-entry-value (#PCDATA)>

<!--

The home element contains the fully-qualified name of the enterprise
bean’s home interface.

Used in: ejb-ref Example: <home>com.aardvark.payroll.PayrollHome</
home>

-—>
<!ELEMENT home (#PCDATA)>

<!--

The icon element contains a small-icon and Targe-icon element which
specify the URIs for a small and a large GIF or JPEG icon image used
to represent the application client in a GUI tool.

-->

<!ELEMENT 1icon (small-icon?, large-icon?)>

303

304

<!--

The large-icon element contains the name of a file containing a large
(32 x 32) dicon image. The file name is a relative path within the
application-client jar file. The image must be either in the JPEG or
GIF format, and the file name must end with the suffix ".jpg" or
".gif" respectively. The icon can be used by tools.

Example:
<large-icon>1ib/images/employee-service-icon32x32.jpg</large-icon>
-=>

<!ELEMENT Targe-icon (#PCDATA)>

<!--

The remote element contains the fully-qualified name of the
enterprise bean’s remote interface.

Used in: ejb-ref

Example:

<remote>com.wombat.empl.EmpTloyeeService</remote>

-=>

<!ELEMENT remote (#PCDATA)>

<!--

The res-auth element specifies whether the enterprise bean code signs
on programmatically to the resource manager, or whether the Container
will sign on to the resource manager on behalf of the bean. In the
Tatter case, the Container uses information that is supplied by the
Deployer.

The value of this element must be one of the two following:
<res-auth>Application</res-auth>

<res-auth>Container</res-auth>

-—>

<!ELEMENT res-auth (#PCDATA)>

<!--

The res-ref-name element specifies the name of the resource factory
reference name. The resource factory reference name is the name of
the application client’s environment entry whose value contains the
IJNDI name of the data source.

Used in: resource-ref

-—>

Public Review

305

<!ELEMENT res-ref-name (#PCDATA)>

<!--

The res-type element specifies the type of the data source. The type
is specified by the Java interface (or class) expected to be
implemented by the data source.

Used 1in: resource-ref

-=>
<!ELEMENT res-type (#PCDATA)>

<l--
The resource-ref element contains a declaration of application
clients’s reference to an external resource. It consists of an
optional description, the resource factory reference name, the
indication of the resource factory type expected by the application
client’s code, and the type of authentication (bean or container).
Example:
<resource-ref>
<res-ref-name>EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>

-=>

<!ELEMENT resource-ref (description?, res-ref-name, res-type, res-
auth)>

<!--

The small-icon element contains the name of a file containing a small
(16 x 16) icon image.

The file name is a relative path within the application-client jar
file.

The image must be either in the JPEG or GIF format, and the file name
must end with the suffix ".jpg" or ".gif" respectively.

The icon can be used by tools.

Example:
<small-icon>1ib/images/employee-service-iconl6x16.jpg</small-icon>
-->

<!ELEMENT small-icon (#PCDATA)>

306

<!--
The ID mechanism is to allow tools to easily make tool-specific
references to the elements of the deployment descriptor.

-—>

<!ATTLIST application-client id ID #IMPLIED>
<!ATTLIST description id ID #IMPLIED>
<!ATTLIST display-name id ID #IMPLIED>
<!ATTLIST ejb-1ink id ID #IMPLIED>
<!ATTLIST ejb-ref id ID #IMPLIED>
<!ATTLIST ejb-ref-name id ID #IMPLIED>
<!ATTLIST ejb-ref-type id ID #IMPLIED>
<!ATTLIST env-entry id ID #IMPLIED>
<!ATTLIST env-entry-name id ID #IMPLIED>
<!ATTLIST env-entry-type id ID #IMPLIED>
<!ATTLIST env-entry-value id ID #IMPLIED>
<!ATTLIST home id ID #IMPLIED>

<!ATTLIST -icon id ID #IMPLIED>

<!ATTLIST large-icon id ID #IMPLIED>
<!ATTLIST remote id ID #IMPLIED>
<!ATTLIST res-auth id ID #IMPLIED>
<!ATTLIST res-ref-name id ID #IMPLIED>
<!ATTLIST res-type id ID #IMPLIED>
<!ATTLIST resource-ref id ID #IMPLIED>
<!ATTLIST small-icon id ID #IMPLIED>

Public Review

ceeeno JZEE.B

Revision History

J2EE.B.1 Changesin Expert Draft 1

J2EE.B.1.1 Additional Requirements

» Updated entire specification to require J2SE 5.0, and to reflect that several op-
tional packages are now part of J2SE

» Added requirements for many new APIs, see Chapter J2EE.6, “Application
Programming Interface” for details.

J2EE.B.1.2 Removed Requirements

* None.

J2EE.B.1.3 Editorial Changes

* Incorporated J2EE 1.4 maintenance review change to make it clear that a se-
curity manager is not required.

e Updated Section J2EE.8.2, “Library Support” to make it clear that Class-
Path entries may also refer to directories.

» Removed AWT requirements, which are now fully specified in the J2SE spec-
ification.

» Made explicit the requirement that J2EE products must be able to deploy
JDBC driversthat have been packaged as resource adapters. This has always
been true; there’ s nothing special about JDBC drivers when packaged as re-
source adapters. See Section J2EE.6.2.4.2, “JDBC™ API.”

307

308

J2EE.B.2 Changesin Expert Draft 2

J2EE.B.2.1 Additional Requirements

o Updated WS-I requirement to match JAX-RPC 2.0. See Section J2EE.7.2.1,

“Internet and Web Protocols.”

EJB containers must now be capable of supporting the same security permis-
sions as the web container, including access to files. See Table J2EE.6-2.

Significant updates to Chapter J2EE.5, “ Resources, Naming, and Injection”
and Chapter J2EE.8, “Application Assembly and Deployment” to describe the
use of annotations and deployment descriptors to specify resource injection.

Update version numbers of referenced specifications in Appendix J2EE.C,
“Related Documents.”

J2EE.B.2.2 Removed Requirements

e None.

J2EE.B.2.3 Editorial Changes

Clarified that support for a CORBA Portable Object Adapter is required. See
Section J2EE.6.2.4.5, “RMI-I1OP.”

Moved J2EE 1.4 deployment descriptor schemas to Appendix J2EE.A, “Pre-
vious Version Deployment Descriptors.”

Updated application deployment descriptor to version 5.0in
Section J2EE.8.5, “J2EE Application XML Schema.”

Update application client deployment descriptor to version 5.0 in
Section J2EE.9.7, “ J2EE Application Client XML Schema”

Fixed many typos, wording problems, etc.

Public Review

309

J2EE.B.3 Changesin Early Draft Review 1

J2EE.B.3.1 Additional Requirements

» Added EJB 3.0 Persistence asaseparate entry in Chapter J2EE.6, “ Application
Programming Interface.”

» Application client fields or methods that are injection targets must be static.
See Section J2EE.5.2.3, “ Annotations and Resource I njection.”

J2EE.B.3.2 Removed Requirements

* None.

J2EE.B.3.3 Editorial Changes

» Updated figures.
* Clearly marked some of the incomplete sections.

» Added references to included specificationsin Appendix J2EE.C, “Related
Documents”

» Added note about EJB 3.0 Persistencein section Section J2EE.6.26, “ Java Per-
sistence APl 1.0.”

J2EE.B.4 Changesin Early Draft Review 2

J2EE.B.4.1 Additional Requirements

* Updated SAAJto version 1.3 in Section J2EE.6.1.2, “ Java Optional Packag-
es.”

» Added requirements for deploying application packages with no deployment
descriptor. See Section J2EE.8.4.2, “Deploying a 2EE Application.”

» Added requirement for support of image/png datain Chapter J2EE.6, “Appli-
cation Programming Interface.”

* Reverted JAX-RPC to version 1.1 and added JAX-WS 2.0 as an additional re-
quirement in Chapter J2EE.6, “Application Programming Interface.”

e Updated JAF to version 1.1 in Section J2EE.6.9, “ JavaBeans™ Activation
Framework 1.1 Requirements.”

310

» Expanded and clarified the requirements around resource injection in
Section J2EE.5.2.3, “Annotations and Resource Injection.”

* Filled in requirements for JSR-250 in Section J2EE.6.24, “ Common Annota-
tions for the Java™ Platform 1.0 Requirements.”

J2EE.B.4.2 Removed Requirements

¢ None.

J2EE.B.4.3 Editorial Changes
* Clarified responsibilities of libraries that dynamically load classes, in
Section J2EE.8.2.5, “Dynamic Class Loading.”

J2EE.B.5 Changesin Public Review Dr aft

J2EE.B.5.1 Additional Requirements

* |t must be possible to store references to EJB 3 business interfacesin an
HttpSession object. See Section J2EE.6.4, “ Servlet 2.4 Requirements.”

J2EE.B.5.2 Removed Requirements

¢ None.

J2EE.B.5.3 Editorial Changes

» EDR2 was never published to the public because Public Review is coming
only aweek later.

* Fixed some typos.

Public Review

311

312

Public Review

ceeeno JZEEL.C

Related Documenté

This specification refers to the following documents. The terms used to refer to the
documentsin this specification are included in parentheses.

Java™ 2 Platform, Enterprise Edition Specification Version 5.0 (this
specification). Available at http://java.sun.com/j2ee/docs.html.

Java™ 2 Platform, Enterprise Edition Technical Overview (J2EE
Overview). Available at http://java.sun.com/j2ee/white.html.

Java™ 2 Platform, Standard Edition, v5.0 API Specification (J2SE
specification). Available at http://java.sun.com/j2se/5.0/docs/api/
index.html.

Enterprise JavaBeans™ Specification, Version 3.0 (EJB specification).
Available at http://java.sun.com/products/ejb.

JavaServer Pages™ Specification, Version 2.1 (JSP specification).
Available at http://java.sun.com/products/jsp.

Java™ Serviet Specification, Version 2.4 (servlet specification). Available
at http://java.sun.com/products/serviet.

JDBC™ 3.0 API (JDBC specification). Available at http://java.sun.com/
products/jdbc.

Java™ Naming and Directory Interface 1.2 Specification (JNDI
specification). Available at http://java.sun.com/products/jndi.

Java™ Message Service, Version 1.1 (JMS specification). Available at
http://java.sun.com/products/jms.

313

314

Java™ Transaction API, Version 1.0.1B (JTA specification). Available at
http://java.sun.com/products/jta.

Java™ Transaction Service, Version 1.0 (JTS specification). Available at
http://java.sun.com/products/jts.

JavaMail ™ API Specification Version 1.3 (JavaMail specification).
Available at http://java.sun.com/products/javamail.

JavaBeans™ Activation Framework Specification Version 1.0 (JAF
specification). Available at http://java.sun.com/beans/glasgow/
jaf.html.

J2EE™ Connector Architecture 1.5 (Connector specification). Available at
http://java.sun.com/j2ee/connector.

Java™ API for XML Processing, Version 1.3 (JAXP specification).
Available at http://java.sun.com/xml.

Web Services for J2EE 1.1 (Web Services specification). Available at
http://jcp.org/en/jsr/detail?id=921.

Java™ API for XML-based RPC 2.0 (JAX-RPC specification). Available at
http://java.sun.com/xml/jaxrpc.

SOAP with Attachments API for Java™ 1.3 (SAAJ specification). Available
at http://java.sun.com/xml/saaj.

Java™ API for XML Registries 1.0 (JAXR specification). Available at
http://java.sun.com/xml/jaxr.

Java™ 2 Platform, Enterprise Edition Management Specification 1.0
(J2EE Management specification). Available at http://jcp.org/jsr/
detail/77.jsp.

Java™ 2 Platform, Enterprise Edition Deployment Specification 1.1 (J2EE
Deployment specification). Available at http://jcp.org/jsr/detail/
88.7sp.

Java™ Management Extensions 1.2 (JMX specification). Available at
http://java.sun.com/products/JavaManagement/.

Java™ Authorization Service Provider Contract for Containers 1.0 (JACC
specification). Available at http://jcp.org/jsr/detail/115.]sp.

Public Review

315

Java™ Authentication and Authorization Service (JAAS) 1.0 (JAAS
specification). Available at http://java.sun.com/products/jaas.

Debugging Support for Other Languages 1.0. Available at http://
jcp.org/en/jsr/detail?id=45.

Sandard Tag Library for JavaServer Pages 1.1 (JSTL specification).
Available at http://jcp.org/en/jsr/detail?id=52.

Web Services Metadata for the Java Platform 1.0. Available at http://
jcp.org/en/jsr/detail?id=181.

JavaServer Faces 1.2 (JSF specification). Available at http://jcp.org/en/
jsr/detail?id=252.

Sreaming API for XML 1.0 (StAX specification). Available at http://
jcp.org/en/jsr/detail?id=173.

Exterprise JavaBeans 3.0 Persistence API. Available at http://
java.sun.com/products/ejb.

Extension Mechanism Architecture, Available at http://java.sun.com/
j2se/5.0/docs/guide/extensions.

Optional Package Versioning, Available at http://java.sun.com/j2se/
5.0/docs/guide/extensions.

JAR File Specification, Available at http://java.sun.com/j2se/5.0/docs/
guide/jar/jar.html.

The Common Object Request Broker: Architecture and Specification
(CORBA 2.3.1 specification), Available at http://www.omg.org/cgi-
bin/doc?formal/99-10-07.

CORBA 2.6 - Chapter 26 - Secure Interoperability, Available at http://
www.omg.org/cgi-bin/doc?formal/01-12-30.

IDL To Java™ Language Mapping Specification, Available at http://
www.omg.org/cgi-bin/doc?ptc/2000-01-08.

Java™ Language To IDL Mapping Specification, Available at http://
www.omg.org/cgi-bin/doc?ptc/2000-01-06.

Interoperable Naming Service, Available at http://www.omg.org/cgi-bin/
doc?ptc/00-08-07.

316

Transaction Service Specification (OTS specification), Available at http://
www.omg.org/cgi-bin/doc?formal/2001-11-03.

Designing Enterprise Applications with the Java™ 2 Platform, Enterprise
Edition, Available at http://java.sun.com/j2ee/blueprints.

The SSL Protocol, Version 3.0. Available at http://home.netscape.com/
eng/ss13.

Public Review

317

»
We make the net work.

Sun Microsystems, Inc.

4150 Network Circle

Santa Clara, California 95054, U.S.A.
650 960-1300

For U.S. Sales Office locations, call:
800 821-4643
In California:
800 821-4642

Australia: (02) 844 5000
Belgium: 32 2 716 7911
Canada: 416 477-6745
Finland: +358-0-525561
France: (1) 30 67 50 00
Germany: (0) 89-46 00 8-0
Hong Kong: 852 802 4188
Italy: 039 60551

Japan: (03) 5717-5000
Korea: 822-563-8700

Latin America: 650 688-9464
The Netherlands: 033 501234
New Zealand: (04) 499 2344
Nordic Countries: +46 (0) 8 623 90 00
PRC: 861-849 2828
Singapore: 224 3388

Spain: (91) 5551648
Switzerland: (1) 825 71 11
Taiwan: 2-514-0567

UK: 0276 20444

Elsewhere in the world,

call Corporate Headquarters:

650 960-1300

Intercontinental Sales: 650 688-9000

	Java™ 2 Platform Enterprise Edition Specification, v5.0
	Introduction
	J2EE.1.1 Acknowledgements
	J2EE.1.2 Acknowledgements for Version 1.3
	J2EE.1.3 Acknowledgements for Version 1.4
	J2EE.1.4 Acknowledgements for Version 5.0

	Platform Overview
	J2EE.2.1 Architecture
	J2EE.2.2 Application Components
	J2EE.2.2.1 J2EE Server Support for Application Components

	J2EE.2.3 Containers
	J2EE.2.3.1 Container Requirements
	J2EE.2.3.2 J2EE Servers

	J2EE.2.4 Resource Adapters
	J2EE.2.5 Database
	J2EE.2.6 J2EE Standard Services
	J2EE.2.6.1 HTTP
	J2EE.2.6.2 HTTPS
	J2EE.2.6.3 Java™ Transaction API (JTA)
	J2EE.2.6.4 RMI-IIOP
	J2EE.2.6.5 Java IDL
	J2EE.2.6.6 JDBC™ API
	J2EE.2.6.7 Java™ Persistence API
	J2EE.2.6.8 Java™ Message Service (JMS)
	J2EE.2.6.9 Java Naming and Directory Interface™ (JNDI)
	J2EE.2.6.10 JavaMail™
	J2EE.2.6.11 JavaBeans™ Activation Framework (JAF)
	J2EE.2.6.12 XML Processing
	J2EE.2.6.13 J2EE™ Connector Architecture
	J2EE.2.6.14 Security Services
	J2EE.2.6.15 Web Services
	J2EE.2.6.16 Management
	J2EE.2.6.17 Deployment

	J2EE.2.7 Interoperability
	J2EE.2.8 Flexibility of Product Requirements
	J2EE.2.9 J2EE Product Extensions
	J2EE.2.10 Platform Roles
	J2EE.2.10.1 J2EE Product Provider
	J2EE.2.10.2 Application Component Provider
	J2EE.2.10.3 Application Assembler
	J2EE.2.10.4 Deployer
	J2EE.2.10.5 System Administrator
	J2EE.2.10.6 Tool Provider
	J2EE.2.10.7 System Component Provider

	J2EE.2.11 Platform Contracts
	J2EE.2.11.1 J2EE APIs
	J2EE.2.11.2 J2EE Service Provider Interfaces (SPIs)
	J2EE.2.11.3 Network Protocols
	J2EE.2.11.4 Deployment Descriptors and Annotations

	J2EE.2.12 Changes in J2EE 1.3
	J2EE.2.13 Changes in J2EE 1.4
	J2EE.2.14 Changes in J2EE 5.0

	Security
	J2EE.3.1 Introduction
	J2EE.3.2 A Simple Example
	J2EE.3.3 Security Architecture
	J2EE.3.3.1 Goals
	J2EE.3.3.2 Non Goals
	J2EE.3.3.3 Terminology
	J2EE.3.3.4 Container Based Security
	J2EE.3.3.4.1 Declarative Security
	J2EE.3.3.4.2 Programmatic Security

	J2EE.3.3.5 Distributed Security
	J2EE.3.3.6 Authorization Model
	J2EE.3.3.7 HTTP Login Gateways
	J2EE.3.3.8 User Authentication
	J2EE.3.3.8.2 Web Single Signon
	J2EE.3.3.8.3 Login Session
	J2EE.3.3.8.4 Authentication by Application Clients

	J2EE.3.3.9 Lazy Authentication

	J2EE.3.4 User Authentication Requirements
	J2EE.3.4.1 Login Sessions
	J2EE.3.4.2 Required Login Mechanisms
	J2EE.3.4.2.2 SSL Mutual Authentication
	J2EE.3.4.2.3 Form Based Login

	J2EE.3.4.3 Unauthenticated Users
	J2EE.3.4.4 Application Client User Authentication
	J2EE.3.4.5 Resource Authentication Requirements

	J2EE.3.5 Authorization Requirements
	J2EE.3.5.1 Code Authorization
	J2EE.3.5.2 Caller Authorization
	J2EE.3.5.3 Propagated Caller Identities.
	J2EE.3.5.4 Run As Identities

	J2EE.3.6 Deployment Requirements
	J2EE.3.7 Future Directions
	J2EE.3.7.1 Auditing
	J2EE.3.7.2 Instance-based Access Control
	J2EE.3.7.3 User Registration

	Transaction Management
	J2EE.4.1 Overview
	J2EE.4.2 Requirements
	J2EE.4.2.1 Web Components
	J2EE.4.2.1.1 Transaction Requirements
	J2EE.4.2.1.2 Transaction Non-Requirements

	J2EE.4.2.2 Transactions in Web Component Life Cycles
	J2EE.4.2.3 Transactions and Threads
	J2EE.4.2.4 Enterprise JavaBeans™ Components
	J2EE.4.2.5 Application Clients
	J2EE.4.2.6 Applet Clients
	J2EE.4.2.7 Transactional JDBC™ Technology Support
	J2EE.4.2.8 Transactional JMS Support
	J2EE.4.2.9 Transactional Resource Adapter (Connector) Support

	J2EE.4.3 Transaction Interoperability
	J2EE.4.3.1 Multiple J2EE Platform Interoperability
	J2EE.4.3.2 Support for Transactional Resource Managers

	J2EE.4.4 Local Transaction Optimization
	J2EE.4.4.1 Requirements
	J2EE.4.4.2 A Possible Design

	J2EE.4.5 Connection Sharing
	J2EE.4.6 JDBC and JMS Deployment Issues
	J2EE.4.7 Two-Phase Commit Support
	J2EE.4.8 System Administration Tools

	Resources, Naming, and Injection
	J2EE.5.1 Overview
	J2EE.5.1.1 Chapter Organization
	J2EE.5.1.2 Required Access to the JNDI Naming Environment

	J2EE.5.2 JNDI Naming Context
	J2EE.5.2.1 The Application Component’s Environment
	J2EE.5.2.2 Sharing of Environment Entries
	J2EE.5.2.3 Annotations and Resource Injection
	J2EE.5.2.4 Annotations and Deployment Descriptors

	J2EE.5.3 Responsibilities by J2EE Role
	J2EE.5.3.1 Application Component Provider’s Responsibilities
	J2EE.5.3.2 Application Assembler’s Responsibilities
	J2EE.5.3.3 Deployer’s Responsibilities
	J2EE.5.3.4 J2EE Product Provider’s Responsibilities

	J2EE.5.4 Simple Environment Entries
	J2EE.5.4.1 Application Component Provider’s Responsibilities
	J2EE.5.4.1.1 Injection of Simple Environment Entries
	J2EE.5.4.1.2 Programming Interfaces for Accessing Simple Environment Entries
	J2EE.5.4.1.3 Declaration of Simple Environment Entries

	J2EE.5.5 Enterprise JavaBeans™ (EJB) References
	J2EE.5.5.1 Application Component Provider’s Responsibilities
	J2EE.5.5.1.1 Injection of EJB Entries
	J2EE.5.5.1.3 Declaration of EJB References

	J2EE.5.5.2 Application Assembler’s Responsibilities
	J2EE.5.5.3 Deployer’s Responsibilities
	J2EE.5.5.4 J2EE Product Provider’s Responsibilities

	J2EE.5.6 Resource Manager Connection Factory References
	J2EE.5.6.1 Application Component Provider’s Responsibilities
	J2EE.5.6.1.1 Injection of Resource Manager Connection Factory References
	J2EE.5.6.1.3 Declaration of Resource Manager Connection Factory References in Deployment Descriptor
	J2EE.5.6.1.4 Standard Resource Manager Connection Factory Types

	J2EE.5.6.2 Deployer’s Responsibilities
	J2EE.5.6.3 J2EE Product Provider’s Responsibilities
	J2EE.5.6.4 System Administrator’s Responsibilities

	J2EE.5.7 Resource Environment References
	J2EE.5.7.1 Application Component Provider’s Responsibilities
	J2EE.5.7.1.1 Injection of Resource Environment References
	J2EE.5.7.1.3 Declaration of Resource Environment References in Deployment Descriptor

	J2EE.5.7.2 Deployer’s Responsibilities
	J2EE.5.7.3 J2EE Product Provider’s Responsibilities

	J2EE.5.8 Message Destination References
	J2EE.5.8.1 Application Component Provider’s Responsibilities
	J2EE.5.8.1.1 Injection of Message Destination References
	J2EE.5.8.1.3 Declaration of Message Destination References in Deployment Descriptor

	J2EE.5.8.2 Application Assembler’s Responsibilities
	J2EE.5.8.3 Deployer’s Responsibilities
	J2EE.5.8.4 J2EE Product Provider’s Responsibilities

	J2EE.5.9 UserTransaction References
	J2EE.5.9.1 Application Component Provider’s Responsibilities
	J2EE.5.9.2 J2EE Product Provider’s Responsibilities

	J2EE.5.10 ORB References
	J2EE.5.10.1 Application Component Provider’s Responsibilities
	J2EE.5.10.2 J2EE Product Provider’s Responsibilities

	Application Programming Interface
	J2EE.6.1 Required APIs
	J2EE.6.1.1 Java Compatible APIs
	J2EE.6.1.2 Java Optional Packages

	J2EE.6.2 Java 2 Platform, Standard Edition (J2SE) Requirements
	J2EE.6.2.1 Programming Restrictions
	J2EE.6.2.2 The J2EE Security Permissions Set
	J2EE.6.2.3 Listing of the J2EE Security Permissions Set
	J2EE.6.2.4 Additional Requirements
	J2EE.6.2.4.1 Networking
	J2EE.6.2.4.2 JDBC™ API
	J2EE.6.2.4.3 Java IDL
	J2EE.6.2.4.4 RMI-JRMP
	J2EE.6.2.4.5 RMI-IIOP
	J2EE.6.2.4.6 JNDI
	J2EE.6.2.4.7 Context Class Loader
	J2EE.6.2.4.8 Java™ Authentication and Authorization Service (JAAS) Requirements
	J2EE.6.2.4.9 Logging API Requirements
	J2EE.6.2.4.10 Preferences API Requirements

	J2EE.6.3 Enterprise JavaBeans™ (EJB) 3.0 Requirements
	J2EE.6.4 Servlet 2.4 Requirements
	J2EE.6.5 JavaServer Pages™ (JSP) 2.1 Requirements
	J2EE.6.6 Java™ Message Service (JMS) 1.1 Requirements
	J2EE.6.7 Java™ Transaction API (JTA) 1.0 Requirements
	J2EE.6.8 JavaMail™ 1.3 Requirements
	J2EE.6.9 JavaBeans™ Activation Framework 1.1 Requirements
	J2EE.6.10 J2EE™ Connector Architecture 1.5 Requirements
	J2EE.6.11 Web Services for J2EE 1.1 Requirements
	J2EE.6.12 Java™ API for XML-based RPC (JAX-RPC) 1.1 Requirements
	J2EE.6.13 Java™ API for XML Web Services (JAX-WS) 2.0 Requirements
	J2EE.6.14 Java™ Architecture for XML Binding (JAXB) 2.0 Requirements
	J2EE.6.15 SOAP with Attachments API for Java™ (SAAJ) 1.3
	J2EE.6.16 Java™ API for XML Registries (JAXR) 1.0 Requirements
	J2EE.6.17 Java™ 2 Platform, Enterprise Edition Management API 1.0 Requirements
	J2EE.6.18 Java™ 2 Platform, Enterprise Edition Deployment API 1.1 Requirements
	J2EE.6.19 Java™ Authorization Service Provider Contract for Containers (JACC) 1.0 Requirements
	J2EE.6.20 Debugging Support for Other Languages (JSR-45) Requirements
	J2EE.6.21 Standard Tag Library for JavaServer Pages™ (JSTL) 1.1 Requirements
	J2EE.6.22 Web Services Metadata for the Java™ Platform 1.0 Requirements
	J2EE.6.23 JavaServer Faces™ 1.2 Requirements
	J2EE.6.24 Common Annotations for the Java™ Platform 1.0 Requirements
	J2EE.6.25 Streaming API for XML (StAX) 1.0 Requirements
	J2EE.6.26 Java Persistence API 1.0

	Interoperability
	J2EE.7.1 Introduction to Interoperability
	J2EE.7.2 Interoperability Protocols
	J2EE.7.2.1 Internet and Web Protocols
	J2EE.7.2.2 OMG Protocols
	J2EE.7.2.3 Java Technology Protocols
	J2EE.7.2.4 Data Formats

	Application Assembly and Deployment
	J2EE.8.1 Application Development Life Cycle
	J2EE.8.1.1 Component Creation
	J2EE.8.1.2 Application Assembly
	J2EE.8.1.3 Deployment

	J2EE.8.2 Library Support
	J2EE.8.2.1 Bundled Libraries
	J2EE.8.2.2 Installed Libraries
	J2EE.8.2.3 Library Conflicts
	J2EE.8.2.4 Library Resources
	J2EE.8.2.5 Dynamic Class Loading
	J2EE.8.2.6 Examples

	J2EE.8.3 Application Assembly
	J2EE.8.3.1 Assembling a J2EE Application
	J2EE.8.3.2 Adding and Removing Modules

	J2EE.8.4 Deployment
	J2EE.8.4.1 Deploying a Stand-Alone J2EE Module
	J2EE.8.4.2 Deploying a J2EE Application
	J2EE.8.4.3 Deploying a Library

	J2EE.8.5 J2EE Application XML Schema
	J2EE.8.6 Common J2EE XML Schema Definitions

	Application Clients
	J2EE.9.1 Overview
	J2EE.9.2 Security
	J2EE.9.3 Transactions
	J2EE.9.4 Resources, Naming, and Injection
	J2EE.9.5 Application Programming Interfaces
	J2EE.9.6 Packaging and Deployment
	J2EE.9.7 J2EE Application Client XML Schema

	Service Provider Interface
	Compatibility and Migration
	Future Directions
	J2EE.12.1 JNLP (Java™ Web Start)
	J2EE.12.2 J2EE SPI
	J2EE.12.3 Security APIs

	Previous Version Deployment Descriptors
	J2EE.A.1 J2EE 1.4 Application XML Schema
	J2EE.A.2 Common J2EE 1.4 XML Schema Definitions
	J2EE.A.3 J2EE:application 1.3 XML DTD
	J2EE.A.4 J2EE:application 1.2 XML DTD
	J2EE.A.5 J2EE 1.4 Application Client XML Schema
	J2EE.A.6 J2EE:application-client 1.3 XML DTD
	J2EE.A.7 J2EE:application-client 1.2 XML DTD

	Revision History
	J2EE.B.1 Changes in Expert Draft 1
	J2EE.B.1.1 Additional Requirements
	J2EE.B.1.2 Removed Requirements
	J2EE.B.1.3 Editorial Changes

	J2EE.B.2 Changes in Expert Draft 2
	J2EE.B.2.1 Additional Requirements
	J2EE.B.2.2 Removed Requirements
	J2EE.B.2.3 Editorial Changes

	J2EE.B.3 Changes in Early Draft Review 1
	J2EE.B.3.1 Additional Requirements
	J2EE.B.3.2 Removed Requirements
	J2EE.B.3.3 Editorial Changes

	J2EE.B.4 Changes in Early Draft Review 2
	J2EE.B.4.1 Additional Requirements
	J2EE.B.4.2 Removed Requirements
	J2EE.B.4.3 Editorial Changes

	J2EE.B.5 Changes in Public Review Draft
	J2EE.B.5.1 Additional Requirements
	J2EE.B.5.2 Removed Requirements
	J2EE.B.5.3 Editorial Changes

	Related Documents

