
Stránka 1Update: An Introduction to the Java EE 5 Platform

03. 11. 2006 12:56:29http://developers.sun.com/prodtech/index.html

Java Solaris Communities Sun Store Join SDN My Profile Why Join?

Try It Out!

Get started with the Java

EE 5 platform preview:

Download the Java EE

5 SDK.

Use the NetBeans IDE

5.5 with NetBeans

Enterprise Pack 5.5

package.

Explore the source

with ProjectGlassFish.

Read the Java EE 5

Tutorial.

Developers Home > Products & Technologies > Java Technology > Java Platform, Enterprise Edition (Java EE) >

Article

Update: An Introduction to the Java EE 5 Platform

 Print-friendly Version

By John Stearns, Roberto Chinnici, and Sahoo, May 2006

Articles Index

This white paper is based on the article "Introduction to the Java EE 5 Platform," which originally

appeared on the java.sun.com site in February 2006. This version includes data from two studies

that compared development on Java 2 Platform, Enterprise Edition (J2EE) 1.4 with Java Platform,

Enterprise Edition (Java EE) 5 and a new section on packaging Java EE 5 platform applications.

The sections on web service support and JavaServer Faces technology have been greatly

expanded, with two new JAXB 2.0 examples and an extensive JavaServer Faces example.

With version 5 of the Java Platform, Enterprise Edition (Java EE,

formerly referred to as J2EE), development of Java enterprise

applications has never been easier or faster. J2EE 1.4, the

predecessor to the Java EE 5 platform, has many powerful

features. The aim of the Java EE 5 platform design has been to

streamline these features and add convenience, improve

performance, reduce development time, and help developers get

products to market that much sooner. Here are a few of the

significant changes:

Most boilerplate requirements have been eliminated, and

XML descriptors are now optional. For example, the ejb-

jar.xml descriptor is no longer necessary in most cases.

More defaults are available, with a special emphasis on

making them meaningful. Developers now have fewer

details to remember.

Web service support is simpler, and the number of

supported standards has increased.

The EJB software programming model is significantly simpler.

The new Java Persistence API is available to all Java platform applications, including those

based on EJB technology.

JavaServer Faces technology has been added to make web application design more

convenient.

Contents

- Enterprise Application Development Made Easy

- Packaging Java EE 5 Platform Applications

- Streamlined EJB Software Development

- Easier Access to Resources Through Dependency Injection

- Lightweight Java Persistence API Model

- Simpler, Broader Web Service Support

- Convenient Web Application Design With JavaServer Faces Technology

- JavaServer Pages Standard Tag Library (JSTL)

- Trying Out the Java EE 5 Platform

Enterprise Application Development Made Easy

Stránka 2Update: An Introduction to the Java EE 5 Platform

03. 11. 2006 12:56:29http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/

The Java EE 5 platform introduces a simplified programming model and eliminates much of the

boilerplate that earlier releases required. With Java EE 5 technology, XML deployment descriptors

-- that is, side files for defining components and specifying deployment instructions -- are now

optional. Instead, you enter the information as an annotation directly into a plain old Java object

(POJO) without leaving your source editor. Annotations are a new feature, originally introduced in

Java 2 Platform, Standard Edition (J2SE) 5.0. They are a form of metadata with a very simple

syntax and recognizable because they begin with a leading at sign (@).

Annotations are generally used to embed in a program data that would otherwise be furnished in a

side file. With annotations, you put the specification information right in your code next to the

program element that it affects. This is a more intuitive and convenient approach.

The Java EE 5 platform provides annotations for the following tasks, among others:

Defining and using web services

Developing EJB software applications

Mapping Java technology classes to XML

Mapping Java technology classes to databases

Mapping methods to operations

Specifying external dependencies

Specifying deployment information, including security attributes

Annotations typically contain several optional elements to allow detailed customization of an

application. Also, the annotation framework is completely extensible, so future versions of the Java

EE platform can expand the existing annotations and define new ones.

One immediate benefit of annotations for web services is that many formerly required markers,

such as the extends java.rmi.Remote and throws java.rmi.RemoteException that

were borrowed from remote method invocation (RMI), are no longer necessary.

Additionally, application packaging has been simplified in ways that go beyond what annotations

allow. For instance, a Java EE 5 platform application is no longer required to contain an

application.xml descriptor. If the descriptor is missing, the server automatically determines

the type of each contained module through inspection and use of sensible defaults based on the

file extension and contents.

Another example is the common task of bundling a number of library JAR files with an application.

By default, the lib directory under the application root is reserved for library files. Previously, you

had to add a manifest entry to the application module, which could be a tedious task.

Recently, engineers from the Oracle Corporation undertook two studies to measure the efficiency

gain from using the Java EE 5 platform. Debu Panda, a product manager at Oracle, migrated a

well-known application, AdventureBuilder from the Java BluePrints program, from the J2EE 1.4 to

the Java EE 5 platform. See "An Adventure with J2EE 1.4 Blueprints" on TheServerSide.com.

Raghu Kodali, consulting product manager and Service-Oriented Architecture (SOA) evangelist for

Oracle, took a publicly available demo application called RosterApp that is included with the J2EE

1.4 tutorial and migrated the application to EJB 3.0 software. See the article "The Simplicity of EJB

3.0" published in JDJ. Table 1 summarizes the studies' results.

Table 1: Summary of Findings

Application Name Item Measured J2EE 1.4

Platform

Java EE 5

Platform

Improvement

AdventureBuilder Number of classes 67 43 36% fewer classes

Lines of code 3,284 2,777 15% fewer lines of code

Stránka 3Update: An Introduction to the Java EE 5 Platform

03. 11. 2006 12:56:29http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/

RosterApp Number of classes 17 7 59% fewer classes

Lines of code 987 716 27% fewer lines of code

Number of XML files 9 2 78% fewer XML files

Lines of XML code 792 26 97% fewer lines of XML

code

Packaging Java EE 5 Platform Applications

The rules and conventions for packaging enterprise applications have been made much simpler in

the Java EE 5 platform:

Web applications use .war files.

Resource adapters use .rar files.

The lib directory contains shared .jar files.

A .jar file with Main-Class is considered to be an application client.

A .jar file with the @Stateless annotation is considered to be an EJB application.

Many simple applications, such as the following application types, no longer require deployment

descriptors:

EJB applications (.jar files)

Web applications that use JavaServer Pages (JSP) technology only

Application clients

Enterprise applications (.ear files)

For example, a simple web application that provides a web service and an index page that

describes the web service might contain only the following files:

index.jsp

image/logo.gif

WEB-INF/classes/MyWebService.class

No web.xml, webservices.xml, or Java API for XML-based RPC (JAX-RPC) files are required.

In similar fashion, an enterprise application example might contain only the following files:

lib/shared.jar

ui/web.war

ui/client.jar

biz/ejb.jar

And no META-INF/application.xml file is required.

Streamlined EJB Software Development

The EJB 3.0 API has been dramatically simplified. Effectively, the container does more work, so

there is less work for the developer. The new version of the EJB API provides these benefits:

Fewer required classes and interfaces. For example, EJB home and object interfaces are no

longer required. Instead of a home interface, you now can supply a business interface only.

There is no longer a requirement to implement the javax.ejb.SessionBean interface.

Business methods need not declare that they throw checked exceptions any longer, which

results in cleaner code.

Optional deploymentdescriptors. Component definition and dependency injection are now

possible through the use of annotations, removing the need for deployment descriptors.

Stránka 4Update: An Introduction to the Java EE 5 Platform

03. 11. 2006 12:56:29http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/

Simple lookups. Java Naming and Directory Interface (JNDI) APIs are no longer necessary

on either the server or the client. Instead, a simple look-up method has been added to the

EJBContext interface, enabling you to look up an object dynamically within the JNDI name

space.

Simplified, lightweight persistence for object-relational mapping. The new Java

Persistence API has greatly simplified entity bean persistence. The new entity objects are

POJOs that provide an object-oriented view of the data stored in a relational database. The

specification also standardizes how such object-relational mapping information is provided.

Interceptors. Interceptors are objects that can intercept a call to a business method. If you are

familiar with aspect-oriented programming, you will recognize that the implementation of

interceptors is a limited form of that concept.

In earlier versions of EJB software, callbacks from the container into the bean were supported

through javax.ejb.SessionBean and javax.ejb.MessageDrivenBean implementations.

Unfortunately, this approach adds clutter to the code when callbacks are not needed. With EJB 3.0

software, you can annotate methods to behave as callbacks. This removes the need for skeletal

implementations of the life-cycle methods: ejbRemove, setMessage, setSessionContext,

ejbActivate, and ejbPassivate.

Here are just a few of the annotations that can be used in EJB 3.0 software:

@Stateless, @Stateful. Used to annotate a class as being either a stateless session bean

component or a stateful session bean component.

@PostConstruct, @PreDestroy, @PostActivate, @PrePassivate. Used to annotate a

method as a life-cycle event callback.

@EJB. Used on the client to reference the business interfaces of other beans and the home

interfaces, for EJB 2.1 or older beans.

@PersistenceUnit. Used to express a dependency on an EntityManagerFactory.

@PersistenceContext. Used to express a dependency on an EntityManager.

@WebServiceRef. Used on the client to reference web services.

@Resource. Used for all other resources not covered by @EJB or @WebServiceRef

annotations.

@Timeout. Specifies a timeout method on a component that uses container-managed timer

services.

@MessageDriven. Specifies a message-driven bean. A message-driven bean is a message

consumer that can be called by its container.

@TransactionAttribute. Applies a transaction attribute to all methods of a business

interface or to individual business methods on a bean class.

@TransactionManagement. Declares whether a bean will have container-managed or

bean-managed transactions.

@RolesAllowed, @PermitAll, and @DenyAll. Declare method permissions.

@RolesReferenced. Declares security roles referenced in the bean's code.

@RunAs. Uses the caller principal assigned to the specified security role to execute a method.

Examples From EJB 3.0 and EJB 2.1 Software

To show the benefits of the new programming model in EJB 3.0 software, let's compare how to

implement the same code under both models. Example 1A shows the Java technology code for a

hypothetical session bean using EJB 2.1 software.

Example 1A: Session Bean in EJB 2.1 Software -- Java Source Code

public class PayrollBean

implements javax.ejb.SessionBean {

 SessionContext ctx;

 DataSource empDB;

 public void setSessionContext(SessionContext ctx) {

 this.ctx = ctx;

 }

 public void ejbCreate() {

 empDB = (DataSource)ctx.lookup(

Stránka 5Update: An Introduction to the Java EE 5 Platform

03. 11. 2006 12:56:29http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/

 "jdbc/empDB");

 }

 public void ejbActivate() { }

 public void ejbPassivate() { }

 public void ejbRemove() { }

 public void setBenefitsDeduction(int empId,

 double deduction) {

 ...

 Connection conn = empDB.getConnection();

 ...

 }

 ...

}

The same session bean can now be programmed using EJB 3.0 software as shown in Example

1B, with new features shown in bold.

Example 1B: Session Bean in EJB 3.0 Technology -- Java Source Code

@Stateless

public class PayrollBean implements Payroll

{

 @Resource private DataSource empDB;

 public void setBenefitsDeduction(int empId,

 double deduction) {

 ...

 Connection conn = empDB.getConnection();

 ...

 }

 ...

}

Notice how the unused life-cycle methods can be eliminated from the code in the software's 3.0

version. Also observe how the @Stateless annotation is used to declare the class as a stateless

bean component.

The implements javax.ejb.SessionBean statement is no longer needed. Instead, the bean

class, PayrollBean in this case, implements the business interface, that is, Payroll. The @

Resource annotation allows dependencies to be injected directly into the component when the

container instantiates it, removing the need for the JNDI lookups, for example, in the ejbCreate

method. Also, the @Resource annotation can be applied to a field with type SessionContext to

replace the following EJB 2.1 software code:

 public void setSessionContext(SessionContext ctx) {

 this.ctx = ctx;

 }

The code is only half of the story. With EJB 2.1 software, our hypothetical session bean would

require a deployment descriptor file, as in Example 1C.

Example 1C: Session Bean in EJB 2.1 Software -- Deployment Descriptor File

<session>

 <ejb-name>PayrollBean</ejb-name>

 <local-home>PayrollHome</local-home>

Stránka 6Update: An Introduction to the Java EE 5 Platform

03. 11. 2006 12:56:29http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/

 <local>Payroll</local>

 <ejb-class>com.example.PayrollBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 <resource-ref>

 <res-ref-name>jdbc/empDB</res-ref-name>

 <res-ref-type>javax.sql.DataSource</res-ref-type>

 <res-auth>Container</res-auth>

 </resource-ref>

</session>

...

<assembly-descriptor>...</assembly-descriptor>

But EJB 3.0 software requires no deployment descriptor file. The information previously contained

in the descriptor is now inferred by the container, which looks at the annotations present on the

component class. In many cases, the container will use meaningful defaults for the information, a

resource authorization type of "container," thus making the descriptor redundant.

Some applications will still need to look up resources dynamically in JNDI. Such lookups can now

be accomplished with a simple look-up method added to SessionContext, as in Example 2.

Example 2: Dynamic Lookup

@Resource(name="myDB", type=javax.sql.DataSource)

@Stateful public class ShoppingCartBean

 implements ShoppingCart {

 @Resource SessionContext ctx;

 public Collection startToShop (String productName) {

 ...

 DataSource productDB =

 (DataSource)ctx.lookup("myDB");

 Connection conn = myDB.getConnection():

 ...

 }

 ...

}

In this example, the resource named myDB is looked up at runtime. This approach allows an

application to decide which resources to access, based on their availability or on some other

parameter such as quality of service.

In similar fashion, annotations can be used to replace entire sections from the existing deployment

descriptors. With EJB 3.0 software, the <container-transaction> deployment descriptor

elements can be replaced by a @TransactionAttribute annotation placed directly on the

method it affects, as shown in Example 3.

Example 3: EJB 3.0 Software -- Deployment-Descriptor Transaction Attributes

@TransactionAttribute(MANDATORY)

public void setBenefitsDeduction(int empId,

 double deduction) { ... }

Easier Access to Resources Through Dependency Injection

Dependency injection is a pattern in which an object's dependencies are supplied automatically by

an entity external to that object. The object is not required to request these resources explicitly, for

example, by looking them up in a naming service. In the Java EE 5 platform, dependency injection

can be applied to all resources that a component needs, effectively hiding the creation and lookup

Stránka 7Update: An Introduction to the Java EE 5 Platform

03. 11. 2006 12:56:29http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/

of resources from application code. Dependency injection can be applied throughout Java EE 5

technology -- in EJB software containers, web containers, and clients.

To request injection of a resource, a component uses the @Resource annotation or, in the case of

some specialized resources, the @EJB and @WebServiceRef annotations. Following are some of

the many resources that can be injected:

SessionContext object

DataSources object
UserTransaction

EntityManager interface

TimerService interface

Other enterprise beans

Web services

Message queues and topics

Connection factories for resource adapters

Environment entries (for example, strings, integers, and so on)

Resource injection can be requested by any component class, that is, any class whose life cycle is

managed by the container. In the EJB software container, components that support injection

include the following:

EJB technology components

Interceptors

Message handlers for Java API for XML Web Services (JAX-WS) and Java API for XML-based

RPC (JAX-RPC)

In web containers, components that support injection are the following:

Servlets, servlet filters, event listeners

Tag handlers, tag library event listeners

Managed beans

In the client container, the main class and the login callback handler components support

injection.

Lightweight Java Persistence API Model

The Java EE 5 platform introduces the new Java Persistence API, which was developed as part of

JSR-220. Although this API was developed by the EJB 3.0 software expert group, its use is not

limited to EJB software components. The Java Persistence API can be used directly by web

applications and application clients as well. In fact, this API can also be used outside the Java EE

platform in plain Java technology programs, for example, a Java Foundation Classes/Swing (JFC/

Swing) application that talks to a database using the Java Persistence API.

The Java Persistence API has the following key features:

Entities are POJOs. Unlike EJB components that use container-managed persistence (CMP),

entity objects using the new APIs are no longer components. This approach leads to a simpler

and more lightweight programming model.

Standardized object-relational mapping. Object-relational mapping is an age-old problem in

the enterprise application world. CMP 2.x had standardized the object-modeling part of the

problem but left undefined the mapping of the object model to the relational database.

Application programmers were forced to learn each vendor's way of specifying that mapping.

The new specification standardizes the mapping. Either annotations or XML descriptors can

be used to specify object-relational mapping information. In addition, the specification defines

default values for them.

Support for inheritance and polymorphism. Because entities are POJOs, an entity class

can extend another entity class or a nonentity class. A nonentity class can extend entity

classes as well. Entities support polymorphic associations. Queries are, by default,

polymorphic.

Native query support. In addition to the Java Persistence Query Language, based on EJB

Query Language, you can now express queries using the native query language of the

underlying database.

Stránka 8Update: An Introduction to the Java EE 5 Platform

03. 11. 2006 12:56:29http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/

Named queries. A named query is now a static query expressed in metadata. The query can

be either a Java Persistence API query or a native query, which improves the reuse of the

query.

Simple packaging rules. Because entity beans are simple Java technology classes, they can

be packaged virtually anywhere in a Java EE application. For example, entity beans can be

part of an EJB JAR, application-client JAR, WEB-INF/lib, WEB-INF/classes, or even part

of a utility JAR in an enterprise application archive (EAR) file. With these simple packaging

rules, you no longer have to make an EAR file to use entity beans from a web application or

application client.

Support for optimistic locking. The persistence specification supports optimistic locking --

that is, the technique that avoids a lock for the sake of performance with the recognition that

the transaction may fail due to collision with another user. The spec standardizes how to code

an entity object for use in an optimistic-locking protocol irrespective of the underlying

persistence provider. This feature is definitely good news for applications that have a higher

transactional throughput requirement.

Detached entities. Because entity beans are POJOs, they can be serialized and sent across

the network to a different address space and used in a persistence-unaware environment. As

a result, you no longer need to use data transfer objects (DTOs).

EntityManager API. Application programmers now use a standard EntityManager API to

perform Create Read Update Delete (CRUD) operations that involve entities.

Pluggability of third-party persistence providers. The specification defines a Service

Provider Interface (SPI) between a Java EE container and a persistence provider. The SPI

allows users to combine their favorite Java EE containers with their favorite persistence

providers without sacrificing the portability of their applications.

Example 4 is a simple example of entities used from a stateless EJB component.

Example 4: Creating Entities That Use the New Persistence Model

package demo;

import javax.persistence.*;

import java.util.*;

import java.io.Serializable;

@Entity

public class Employee implements Serializable {

 private String id;

 private String name;

 private Department department;

 // Every entity must have a no-arg public/protected constructor.

 public Employee(){ }

 public Employee(String name, Department dept) {

 this.name = name;

 this.department = dept;

 }

 @Id // Every entity must have an identity.

 public String getId() {

 return id;

 }

 public void setId(String id) {

 this.id = id;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 @ManyToOne

 public Department getDepartment() { return department; }

 public void setDepartment(Department department) {

Stránka 9Update: An Introduction to the Java EE 5 Platform

03. 11. 2006 12:56:29http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/

 this.department = department;

 }

}

@Entity

public class Department implements Serializable {

 private String name;

 private Set<Employee> employees = new HashSet<Employee>();

 public Department() { }

 @Id

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 @OneToMany(mappedBy="department")

 public Set<Employee> getEmployees() {

 return employees;

 }

 public void setEmployees(Set<Employee> employees) {

 this.employees = employees;

 }

}

The stateless bean that follows demonstrates how the above entities can be used. Note the use of

the @Remote annotation, which enables the bean to be used in remote interfaces and requires that

the Serializable interface be implemented.

@Stateless

public class HRMSBean implements HRMS {

 @PersistenceContext private EntityManager em;

 public Employee createEmployee(String empName, String departmentName) {

 Department dept = em.find(Department.class, empName);

 Employee emp = new Employee(empName, dept);

 // User is responsible for managing bidirectional relationships

 dept.getEmployees().add(emp);

 em.persist(emp);

 return emp;

 }

}

@Remote

public interface HRMS {

 Employee createEmployee(String empName, String departmentName);

}

Simpler, Broader Web Service Support

In the Java EE 5 platform, web services support has been greatly improved and simplified by the

use of annotations. The following specifications contributed to this area:

JSR 224, Java API for XML-Based Web Services (JAX-WS) 2.0

JSR 222, Java Architecture for XML Binding (JAXB) 2.0

JSR 181, Web Services Metadata for the Java Platform 2.0

SOAP with Attachments API for Java (SAAJ) 1.3

Stránka 10Update: An Introduction to the Java EE 5 Platform

03. 11. 2006 12:56:29http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/

JAX-WS 2.0

JAX-WS 2.0 is the new API for web services in the Java EE 5 platform. As a successor to JAX-

RPC 1.1, JAX-WS 2.0 retains the natural RPC programming model while improving on several

fronts: data binding, protocol and transport independence, support for the REST style of web

services, and ease of development.

JAX-WS 2.0 has the following key features:

Simpler programming model. Before JAX-WS 2.0 and the Java EE 5 platform, defining a

web service required long, unwieldy descriptors. Now it's as easy as placing the @

WebService annotation on a Java technology class. All the public methods on the class are

automatically published as web service operations, and all their arguments are mapped to

XML Schema data types using JAXB 2.0.

Integration with JAXB 2.0. In JAX-WS 2.0, all data binding has been delegated to JAXB 2.0.

This allows web services based on JAX-WS to use 100 percent of XML Schema, which results

in improved interoperability and ease of use. The two technologies are well integrated, so

users no longer have to juggle two sets of tools. When starting from Java technology classes,

JAXB 2.0 can generate XML Schema documents that are automatically embedded inside a

Web Services Description Language (WSDL) document, saving users from performing this

error-prone integration manually.

Protocol and transport extensibility. Extensibility has been a goal from the very beginning,

and JAX-WS 2.0 allows vendors to support additional protocols, transports, and encodings,

such as the FAST Infoset (Binary XML) for better performance or specialized applications.

Extensive support for web services standards. Out of the box, JAX-WS 2.0 supports the

SOAP 1.1, SOAP 1.2, and XML/HTTP protocols. Web services that use attachments to

optimize the sending and receiving of large binary data can also take advantage of the W3C's

SOAP Message Transmission Optimization Mechanism/XML-binary Optimized Packaging

(MTOM/XOP) standard without any adverse effect on the programming model.

Asynchronous client support. JAX-WS 2.0 supports nonblocking web service invocations

without requiring the application to create and manage its own pool of threads.

Messaging layer. Advanced applications can use the low-level, messaging-based JAX-WS

2.0 API to process messages directly, all without having to duplicate any of the protocol- and

transport-level support built into the runtime.

Support for REST-style applications. Using the messaging API, it becomes possible to write

REST clients and servers using JAX-WS 2.0.

Example 5A shows a JAX-RPC 1.1 web service that is implemented using an EJB 2.1 component,

and Example 5B shows the same web services written using the new JAX-WS 2.0 annotations.

Example 5A: JAX-RPC 1.1 Web Service

public interface HelloService extends Remote {

 public String sayHello(String name) throws RemoteException;

}

public class HelloServiceBean implements SessionBean {

 public String sayHello(String name) {

 return "Hello "+ name + " from HelloServiceBean";

 }

}

Example 5B: JAX-WS 2.0 Web Service

Stránka 11Update: An Introduction to the Java EE 5 Platform

03. 11. 2006 12:56:29http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/

@WebService

public class HelloServiceBean {

 public String sayHello(String name) {

 return "Hello "+ name + " from HelloServiceBean";

 }

}

Thanks to the use of annotations to convey deployment and mapping information, no descriptors

are needed for this example.

Example 6 shows how the mapping of Java technology classes and methods to web services and

the corresponding operations can be customized by using additional annotations, such as @

WebMethod, and annotation elements, for example, name, targetNamespace, operationName,

and many others.

Example 6: Customizing the Mapping to Web Services in JAX-WS 2.0

@WebService(name="CreditRatingService",

 targetNamespace="http://example.org")

@Stateless

public class CreditRating {

 @WebMethod(operationName="getCreditScore")

 public Score getCredit(@WebParam(name="customer")

 Customer c) { ... }

}

Additionally, when packaging a web service, the WSDL description has become optional. If a

WSDL description is missing at deployment time, the WSDL code is generated automatically

following the rules in the JAX-WS 2.0 and JAXB 2.0 specifications.

Writing web service clients is now simpler too. Example 7A is an example of a JAX-RPC 1.1 client

using a web service.

Example 7A: JAX-RPC 1.1 Client

try {

 Context ic = new InitialContext();

 MyHelloService myHelloService = (MyHelloService)

 ic.lookup("java:comp/env/service/MyJAXRPCHello");

 HelloIF helloPort = myHelloService.getHelloIFPort();

 // ... Use the service. ...

} catch (NamingException ex) {

 // ...

} catch (RemoteException ex) {

 // ...

}

With JAX-WS 2.0, instead of looking up a web service in the Java Naming and Directory Interface

(JNDI), you can now avoid the need to deal with the service interface and inject the port reference

directly, resulting in a shorter, more readable alternative. Example 7B shows how to request

injection of a port reference.

Example 7B: JAX-WS 2.0 Client With Direct Port Reference

Stránka 12Update: An Introduction to the Java EE 5 Platform

03. 11. 2006 12:56:29http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/

public class MyComponent {

 @WebServiceRef(MyHelloService.class)

 HelloIF helloPort;

 public void myMethod() {

 // Use helloPort directly.

 helloPort.sayHello(); // Invoke an operation.

 }

}

Asynchronous Web Services

Because web service invocations take place over a network, such calls can take unpredictable

lengths of time. Many clients, especially interactive ones such as desktop applications based on

Java Foundation Classes/Swing (JFC/Swing), experience serious performance degradation from

having to wait for a server's response. To avoid such performance degradation, JAX-WS 2.0

provides a new asynchronous client API. With this API, application programmers no longer have to

create threads on their own. Instead, they can rely on the JAX-WS runtime to manage long-running

remote invocations for them.

Asynchronous methods can be used in conjunction with any WSDL-generated interfaces as well as

with the more dynamic Dispatch API. For your convenience, when importing a WSDL document,

you can require asynchronous methods to be generated for any of the operations defined by the

web service.

There are two usage models:

In the polling model, you make a call. When you're ready, you request the results.

In the callback model, you register a handler. As soon as the response arrives, you are

notified.

Note that asynchronous invocation support is entirely implemented on the client side, so no

changes are required to the target web service.

Example 8 shows a web service client that invokes the getCreditScore operation

asynchronously and then proceeds to do other work while the server processes the request. When

the server is ready to deal with the response, it calls the blocking Response.get method to get

the actual result.

Example 8: Polling Web Service Client

 // We assume that the application has a reference called "svc"

 // to a CreditRatingService proxy.

 Response<CreditScore> response = svc.getCreditScoreAsync(customer);

 ... do other work while waiting ...

 Score score = response.get();

 ... process the returned score ...

You can also set up a polling loop by calling a slightly different Response.get method that uses

timeout. In that case, the client waits for a response for the specified amount of time and then

goes back to other work such as updating a user interface (UI).

Messaging API

Stránka 13Update: An Introduction to the Java EE 5 Platform

03. 11. 2006 12:56:29http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/

The regular interface-based JAX-WS programming model is very powerful, but sometimes

applications need more control over the messages that are sent over the wire. The Dispatch and

Provider API classes can be used to send and receive messages directly. Dispatch is used in

client applications, and Provider is used in server applications.

On the server side, a typical use of these APIs is to write a single class that supports multiple

endpoints, for example, for a family of services that offers similar contracts or even for differing

versions of the same contract. You can use this API to write a gateway service that accepts

incoming messages and routes them to the most appropriate destination based on their contents.

Similarly, clients can use Dispatch to invoke any service at runtime without having to generate

any code at development time. Typical uses include management consoles, testing tools, and all

those applications that need to adapt to a changing environment.

The big advantage of using these APIs over a low-level API such as sockets is that the JAX-WS

runtime takes care of all the details of sending and receiving messages, which lets the application

code focus on dealing with the contents of the messages. Additionally, all existing JAX-WS

message handlers can be used in conjunction with the dynamic API, so complex tasks like handling

digital signatures can be delegated to specialized code.

A particularly interesting use case for the messaging API is given by REST-style web services. In

this style, services expose a set of resources that clients can manipulate using the HTTP protocol.

The Dispatch and Provider API can be used in conjunction with the XML/HTTP binding to

implement REST clients and services, with full access to the underlying HTTP functionality.

JAXB 2.0

As the standard API used to bind XML documents to Java technology objects, JAXB 2.0

significantly reduces the complexity of processing XML documents in Java platform applications.

JAXB 2.0 offers many enhancements over its predecessor, JAXB 1.0:

Full support for XML Schema. JAXB 2.0 supports all of XML Schema, including all of the

predefined data types. This makes it possible to use JAXB to process Schema documents

ranging from simple configuration files to large, industry-standard document formats, such as

the OASIS Universal Business Language (UBL).

Ability to bind existing Java technology classes to generated XML Schema. In JAXB 2.0,

you can start with some existing classes and generate a high-quality Schema document from

them, with the ability to customize the mapping using Java technology annotations.

Smaller footprint and faster marshalling. The number and size of the Java technology

classes generated from a given Schema has been greatly reduced. Furthermore, annotation-

driven marshalling makes it possible for an application to take advantage of the latest

performance improvements in an implementation without compromising portability.

Flexible unmarshalling. JAXB 2.0 makes it possible for applications to handle documents

that are not Schema-valid by allowing recovery from errors such as out-of-order elements,

missing required elements and attributes, and unexpected elements and attributes.

Partial binding of XML documents to JAXB objects. You can now bind portions of an XML

document to Java objects using JAXB 2.0. An application can then make changes to the

bound objects without incurring the cost of unmarshalling the entire document, which could be

significant in the presence of large, complex XML documents.

Example 9 shows a Java technology class annotated for use with JAXB 2.0. Using the tools

included in every JAXB implementation, you can generate an XML Schema document.

Example 9: PurchaseOrder Class With JAXB 2.0 Annotations

Stránka 14Update: An Introduction to the Java EE 5 Platform

03. 11. 2006 12:56:29http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/

 @XmlRootElement(name="purchaseOrder")

 @XmlType(name="PurchaseOrderType")

 public class PurchaseOrder {

 public USAddress shipTo;

 public USAddress billTo;

 public CreditCardVendor creditCardVendor;

 }

The @XmlRootElement annotation marks the annotated class as being a potential root element

in XML instance documents. Consequently, the generated Schema will contain a global element

declaration for it.

A common issue in developing some Java technology classes first and defining their mapping to

Schema later is that some common Java technology types do not have a standard representation

in XML Schema. A typical example is the Map data type. Code sample 10 shows how a field of type

Map can be marshalled to a list type by using a @XmlJavaTypeAdapter annotation.

Example 10: Marshalling a Map Object

 @XmlRootElement

 @XmlType(name="ShoppingCartType")

 public class ShoppingCart {

 @XmlJavaTypeAdapter(AdapterPurchaseListToHashMap.class)

 Map basket = new HashMap();

 // ... The rest of the code goes here. ...

 }

There are two requirements on an adapter class, such as AdapterPurchaseListToHashMap:

The adapter class must extend the XmlAdapter type. In the case of

AdapterPurchaseListToHashMap, it is XmlAdapter<PurchaseList, Map> that must

be extended, because PurchaseList and Map are the two types that the adapter maps into

each other.

The adapter class must implement the appropriate marshal and unmarshal methods.

SOAP with Attachments API for Java (SAAJ) 1.3

Applications that need to manipulate SOAP messages directly use SOAP with Attachments API for

Java (SAAJ). In version 1.3, SAAJ added support for the SOAP 1.2 standard from W3C. The new

version also includes some new convenience classes and methods that make it easier to integrate

SAAJ with Java API for XML Processing (JAXP) transformations or Java Architecture for XML

Binding (JAXB) marshalling.

Streaming API for XML (StAX)

The Streaming API for XML (StAX) defines an event-based parsing API for XML using a different

paradigm than the Simple API for XML (SAX) model. StAX uses a pull approach so that the

developer requests events rather than having event information from the XML parser pushed onto

the client. This results in more natural, readable code without sacrificing performance in any way.

Convenient Web Application Design With JavaServer Faces Technology

The JavaServer Faces technology is a server-side framework that provides UI components for

building web applications. It is designed to facilitate the writing and maintenance of applications

that render a UI to a target client from a Java application server. JavaServer Faces technology

provides the following benefits:

Stránka 15Update: An Introduction to the Java EE 5 Platform

03. 11. 2006 12:56:29http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/

Lets you put together a set of reusable UI components from which you can easily construct

new UIs

Enables ready construction of custom components

Simplifies moving application data to and from the UI

Helps manage the UI state across server requests

Makes it easy to connect user-generated events to application code on the server

The JavaServer Faces technology establishes standards for component design and as a result

has created a new market for third-party JavaServer Faces technology components. These

standards benefit the range of programmers who design components and also enable tools that

generate components automatically. For example, the Sun Java Studio Creator IDE enables visual

design by providing a palette of JavaServer Faces components.

Elements of a JavaServer Faces Application

For the most part, JavaServer Faces applications are just like any other web application written on

the Java platform. A typical JavaServer Faces application might use the following elements:

One or more JSP technology pages

A backing bean, which is a POJO that stores component model data with bean properties and

can provide various methods for component functions such as converters, validators, and

event listeners

An application configuration resource file (faces-config.xml)

A Java EE platform web application deployment descriptor file (web.xml)

A JavaServer Faces Technology Example

A good example of a JavaServer Faces application is provided in Chapter 9, "Java Server Faces

Technology," of the Java EE 5 Tutorial. The sample application called guessnumber is a guessing

game in which the user tries to guess the number from zero to 10 that the system -- in the person of

Duke, the Java technology mascot -- has selected. Figure 1 shows how the application displays.

Figure 1: Display From the Guessnumber Application

The sample application has a default index.jsp file that the user accesses first. The

index.jsp file displays the greeting.jsp page, which displays the initial image. The

greeting.jsp file uses expressions to reference properties of UserNumberBean for displaying

the maximum and minimum values and for capturing user input. For example, the value attribute of

the following tag in the greeting.jsp page references the userNumber property of

UserNumberBean:

Stránka 16Update: An Introduction to the Java EE 5 Platform

03. 11. 2006 12:56:29http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/

 <h:inputText id="userNo" label="User Number"

 value="#{UserNumberBean.userNumber}">

 </h:inputText>

When a user enters a number in the text field that this tag represents and clicks the button, the

value that the user entered is stored in the userNumber variable of UserNumberBean.

After a successful submission, the response.jsp page is displayed. The faces-config.xml

file configures the navigation rule that specifies that the response.jsp page should be displayed

when the user clicks the button on the greeting.jsp page. This file is the central resource for

configuring the application's JavaServer Faces elements.

Excerpts of the code for these files are listed in the following subsections. See the tutorial example

description for a detailed explanation of this example.

The greeting.jsp File

The greeting.jsp file provides the first page to be displayed when the user runs the

application. The application asks the user to guess a number on this page.

<HTML xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">

 <HEAD> <title>Hello</title> </HEAD>

 <%@ page contentType="application/xhtml+xml" %>

 <%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

 <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

 <body bgcolor="white">

 <f:view>

 <h:form id="helloForm" >

 <h2>Hi. My name is Duke. I'm thinking of a number from

 <h:outputText lang="en_US" value="#{UserNumberBean.minimum}"/> to

 <h:outputText value="#{UserNumberBean.maximum}"/>.

 Can you guess it?</h2>

 <h:inputText id="userNo" label="User Number"

 value="#{UserNumberBean.userNumber}">

 </h:inputText>

 <h:commandButton id="submit" action="success" value="Submit"/>

 </h:form>

 </f:view>

 </body>

</HTML>

This file renders a simple UI containing the template text Hi. My name is Duke..., the

minimum and maximum values allowable as a guess, a text field for the user to enter a number,

and a button to submit the form.

The response.jsp File

The response.jsp file is the second page displayed after the user guesses a number that has

been successfully validated and converted.

<HTML>

 <HEAD> <title>Guess the Number</title> </HEAD>

 <%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

 <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

 <body bgcolor="white">

 <f:view>

 <h:form id="responseForm" >

 <h2><h:outputText id="result"

Stránka 17Update: An Introduction to the Java EE 5 Platform

03. 11. 2006 12:56:29http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/

 value="#{UserNumberBean.response}"/></h2>

 <h:commandButton id="back" value="Back" action="success"/><p>

 </h:form>

 </f:view>

</HTML>

This page simply displays a managed bean property called response, which will be set to a

message describing the correctness of the user's guess.

The usernumberbean.java File

The usernumberbean.java file contains the managed bean for this application.

package guessNumber;

import javax.faces.component.UIComponent;

import javax.faces.context.FacesContext;

import java.util.Random;

public class UserNumberBean {

 Integer userNumber = null;

 Integer randomInt = null;

 String response = null;

 private long maximum = 0;

 private boolean maximumSet = false;

 private long minimum = 0;

 private boolean minimumSet = false;

 public UserNumberBean() {

 Random randomGR = new Random();

 randomInt = new Integer(randomGR.nextInt(10));

 System.out.println("Duke's number: " + randomInt);

 }

 public void setUserNumber(Integer user_number) {

 userNumber = user_number;

 }

 public Integer getUserNumber() {

 return userNumber;

 }

 public String getResponse() {

 if ((userNumber != null) &&

 (userNumber.compareTo(randomInt) == 0)) {

 return "Yay! You got it!";

 } else {

 return "Sorry, " + userNumber + " is incorrect.";

 }

 }

 public long getMaximum() {

 return (this.maximum);

 }

 public void setMaximum(long maximum) {

 this.maximum = maximum;

 this.maximumSet = true;

 }

 public long getMinimum() {

 return (this.minimum);

 }

 public void setMinimum(long minimum) {

 this.minimum = minimum;

 this.minimumSet = true;

 }

}

The faces-config.XML File

Stránka 18Update: An Introduction to the Java EE 5 Platform

03. 11. 2006 12:56:29http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/

The faces-config.XML file contains application-specific information for guessnumber,

including configuration information, navigation rules, and managed-bean declarations.

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"

 version="1.2">

<navigation-rule>

 <description>

 This is the decision rule that the NavigationHandler

 uses to determine which view must be displayed after

 the current view, greeting.jsp, is processed.

 </description>

 <from-view-id>/greeting.jsp</from-view-id>

 <navigation-case>

 <description>

 This indicates to the NavigationHandler that the

 response.jsp view must be displayed if the Action

 referenced by a UICommand component on the greeting.jsp

 view returns the outcome "success."

 </description>

 <from-outcome>success</from-outcome>

 <to-view-id>/response.jsp</to-view-id>

 </navigation-case>

</navigation-rule>

<navigation-rule>

 <description>

 These are the decision rules that the NavigationHandler

 uses to determine which view must be displayed after the

 current view, response.jsp, is processed.

 </description>

 <from-view-id>/response.jsp</from-view-id>

 <navigation-case>

 <description>

 This indicates to the NavigationHandler that the

 greeting.jsp view must be displayed if the Action

 referenced by a UICommand component on the response.jsp

 view returns the outcome "success."

 </description>

 <from-outcome>success</from-outcome>

 <to-view-id>/greeting.jsp</to-view-id>

 </navigation-case>

</navigation-rule>

<managed-bean>

 <description>

 This is the backing bean that backs up the guessNumber

 web application.

 </description>

 <managed-bean-name>UserNumberBean</managed-bean-name>

 <managed-bean-class>guessNumber.UserNumberBean</managed-bean-class>

 <managed-bean-scope>session</managed-bean-scope>

 <managed-property>

 <property-name>minimum</property-name>

 <property-class>long</property-class>

 <value>0</value>

 </managed-property>

 <managed-property>

 <property-name>maximum</property-name>

 <property-class>long</property-class>

 <value>10</value>

 </managed-property>

</managed-bean>

</faces-config>

JavaServer Pages Standard Tag Library (JSTL)

JavaServer Pages Standard Tag Library (JSTL) is now a part of the Java EE 5 platform. Before

JSTL was available, a page author was faced with using the Java programming language or a

Stránka 19Update: An Introduction to the Java EE 5 Platform

03. 11. 2006 12:56:29http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/

complicated scripting language to manipulate the dynamic data within a JSP technology page.

JSTL provides an easy-to-use expression language that supplies the following features:

Expression-language support actions

Control flow actions

Tag library validators

Access to URL-based resources

Internationalization and associated text formatting

Relational database access through SQL

XML processing

For more information on JSTL, read the article "Web Tier to Go With Java EE 5: Summary of New

Features in Java Standard Tag Library (JSTL) 1.2."

Trying Out the Java EE 5 Platform

Now that you have read this article, we hope you're inspired to experience the ease of use and

speed of the new Java EE 5 platform firsthand. You can try the beta version of the Java EE 5

platform by downloading the Java EE 5 SDK. To learn more about the new SDK, see the article

"Java EE 5 SDK Preview and Sun Java System Application Server Platform Edition 9 Beta: A

Feature Summary." To get an in-depth understanding of the Java EE 5 software, read the Java EE

5 Tutorial.

For a really convenient way to experiment with the Java EE 5 software, use the preview NetBeans

IDE 5.5 with NetBeans Enterprise Pack 5.5 package, which supports the following features:

Development of Java EE 5 platform applications, including web modules and EJB 3.0 modules

Java Persistence in web, EJB, and stand-alone J2SE applications

Deployment to the bundled Sun Java System Application Server 9

Generation of Entity classes from an existing database structure

Generation of database tables based on handwritten Entity classes

Wizards for creating Entity and Persistence units

Wizards for creating complete JavaServer Faces applications or application fragments based

on Entity classes

Code completion

Documentation for all Java EE 5 platform APIs

If you're interested in exploring the source code as well, you should check out Project GlassFish,

an open-source implementation of the Java EE 5 platform, which forms the basis for the Sun Java

System Application Server 9. GlassFish is available through a Common Development and

Distribution License (CDDL) compliant with the Open Source Initiative (OSI). With GlassFish, you

can download the latest weekly builds of the binaries and will have Concurrent Versions System

(CVS) access to the source code as well. Read more about joining the GlassFish community, and

find out the latest buzz on GlassFish at The Aquarium.

For More Information

Java Platform, Enterprise Edition (Java EE) 5

Java EE 5 SDK

NetBeans 5.5 IDE with NetBeans Enterprise Pack 5.5

JSR 220: Enterprise JavaBeans 3.0

The Java EE 5 Tutorial

The "Web Tier to Go With Java EE 5" series:

Part 1: Summary of New Features in JSP 2.1 Technology

Part 2: Summary of New Features in Java Standard Tag Library (JSTL) 1.2

Part 3: Summary of New Features in JavaServer Faces 1.2 Technology

Join the GlassFish community

The Aquarium: Learn more about Project GlassFish

About the Authors

Stránka 20Update: An Introduction to the Java EE 5 Platform

03. 11. 2006 12:56:29http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/

John Stearns is a former developer and technical writer working as a senior documentation

engineer for the Sun Developer Network (SDN). He has written numerous articles and manuals for

Sun Microsystems software products.

Roberto Chinnici is a senior staff engineer at Sun focusing on web services and ease of

development in the Java EE platform. He is the specification lead for the JAX-RPC 1.1 and the

JAX-WS 2.0 technologies.

Sahoo is an engineer at Sun Microsystems, working in the Java EE application server development

engineering group, where he contributes to Project GlassFish. Previously, he worked in C++

language binding for an object database management system, developing enterprise applications

using CORBA and messaging middleware.

Rate and Review

Tell us what you think of the content of this page.

Excellent Good Fair Poor

Comments:

If you would like a reply to your comment, please submit your email address:

Note: We may not respond to all submitted comments.

 Submit »

About Sun | About This Site | Newsletters | Contact Us |

Employment

How to Buy | Licensing | Terms of Use | Privacy |

Trademarks

Copyright 1994-2006 Sun Microsystems, Inc.

A Sun Developer Network

Site

Unless otherwise licensed,

code in all technical manuals

herein (including articles,

FAQs, samples) is provided

under this License.

 Content Feeds

