
Java™ 2 Platform
Enterprise Edition Specification, v5.0

Please send comments to: j2ee-spec-feedback@sun.com

Pu
bli

c

Rev
iew

Public Review - 6/20/05 Bill Shannon

Public Review

ii

 iii
Java™ 2 Platform, Enterprise Edition 5.0 (J2EE™ 5.0) Specification ("Specification")
Version: 2.0
Status: Pre-FCS, Public Review
Release: Monday, June 20, 2005
Copyright 2005 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054, U.S.A.
All rights reserved.

LIMITED EVALUATION LICENSE

Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide,
limited license (without the right to sublicense), under Sun’s applicable intellectual property rights to view,
download, use and reproduce the Specification only for the purpose of internal evaluation. This includes (i)
developing applications intended to run on an implementation of the Specification, provided that such appli-
cations do not themselves implement any portion(s) of the Specification, and (ii) excerpting brief portions of
the Specification in oral or written communications which discuss the Specification provided that such
excerpts do not in the aggregate constitute a significant portion of the Technology. No license of any kind is
granted hereunder for any other purpose including, for example, creating and distributing implementations of
the Specification, modifying the Specification (other than to the extent of your fair use rights), or distributing
the Specification to third parties. Also, no right, title, or interest in or to any trademarks, service marks, or
trade names of Sun or Sun’s licensors is granted hereunder. If you wish to create and distribute an implemen-
tation of the Specification, a license for that purpose is available at http://www.jcp.org. The foregoing license
is expressly conditioned on your acting within its scope, and will terminate immediately without notice from
Sun if you breach the Agreement or act outside the scope of the licenses granted above. Java, and Java-
related logos, marks and names are trademarks or registered trademarks of Sun Microsystems, Inc. in the
U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WARRAN-
TIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT (INCLUD-
ING AS A CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTATION OF THE SPECIFICATION),
OR THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE. This
document does not represent any commitment to release or implement any portion of the Specification in any
product. In addition, the Specification could include technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS
OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAM-
AGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, RELATED IN
ANY WAY TO YOUR HAVING OR USING THE SPECIFICATION, EVEN IF SUN AND/OR ITS
LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the
U.S. Government or by a U.S. Government prime contractor or subcontractor (at any tier), then the Govern-
ment’s rights in the Software and accompanying documentation shall be only as set forth in this license; this

Pu

iv
is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisi-
tions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Sun with any comments or suggestions concerning the Specification ("Feedback"), you
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii)
grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to subli-
cense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feed-
back for any purpose.

GOVERNING LAW

Any action relating to or arising out of this Agreement will be governed by California law and controlling
U.S. federal law. The U.N. Convention for the International Sale of Goods and the choice of law rules of any
jurisdiction will not apply.

Rev. May 9 2005
blic Review

Contents

Java™ 2 Platform
Enterprise Edition Specification, v5.0 i

J2EE.1 Introduction .1
J2EE.1.1 Acknowledgements. 2
J2EE.1.2 Acknowledgements for Version 1.3 . 2
J2EE.1.3 Acknowledgements for Version 1.4 . 3
J2EE.1.4 Acknowledgements for Version 5.0 . 3

J2EE.2 Platform Overview .5
J2EE.2.1 Architecture . 5
J2EE.2.2 Application Components . 6

J2EE.2.2.1 J2EE Server Support for Application Components 7
J2EE.2.3 Containers . 8

J2EE.2.3.1 Container Requirements . 8
J2EE.2.3.2 J2EE Servers . 9

J2EE.2.4 Resource Adapters . 9
J2EE.2.5 Database . 9
J2EE.2.6 J2EE Standard Services . 9

J2EE.2.6.1 HTTP . 10
J2EE.2.6.2 HTTPS . 10
J2EE.2.6.3 Java™ Transaction API (JTA) 10
J2EE.2.6.4 RMI-IIOP. 10
J2EE.2.6.5 Java IDL . 11
J2EE.2.6.6 JDBC™ API . 11
J2EE.2.6.7 Java™ Persistence API . 11
J2EE.2.6.8 Java™ Message Service (JMS) 11
v

Pu

vi
J2EE.2.6.9 Java Naming and Directory Interface™ (JNDI) 12
J2EE.2.6.10 JavaMail™ . 12
J2EE.2.6.11 JavaBeans™ Activation Framework (JAF). 12
J2EE.2.6.12 XML Processing . 12
J2EE.2.6.13 J2EE™ Connector Architecture 12
J2EE.2.6.14 Security Services . 13
J2EE.2.6.15 Web Services . 14
J2EE.2.6.16 Management . 14
J2EE.2.6.17 Deployment . 14

J2EE.2.7 Interoperability . 15
J2EE.2.8 Flexibility of Product Requirements . 16
J2EE.2.9 J2EE Product Extensions . 16
J2EE.2.10 Platform Roles . 17

J2EE.2.10.1 J2EE Product Provider . 17
J2EE.2.10.2 Application Component Provider 18
J2EE.2.10.3 Application Assembler . 18
J2EE.2.10.4 Deployer . 18
J2EE.2.10.5 System Administrator . 19
J2EE.2.10.6 Tool Provider. 19
J2EE.2.10.7 System Component Provider. 19

J2EE.2.11 Platform Contracts . 20
J2EE.2.11.1 J2EE APIs . 20
J2EE.2.11.2 J2EE Service Provider Interfaces (SPIs) 20
J2EE.2.11.3 Network Protocols . 20
J2EE.2.11.4 Deployment Descriptors and Annotations 21

J2EE.2.12 Changes in J2EE 1.3. 21
J2EE.2.13 Changes in J2EE 1.4. 21
J2EE.2.14 Changes in J2EE 5.0. 22

J2EE.3 Security .25
J2EE.3.1 Introduction . 25
J2EE.3.2 A Simple Example . 26
J2EE.3.3 Security Architecture . 30

J2EE.3.3.1 Goals . 30
J2EE.3.3.2 Non Goals . 31
J2EE.3.3.3 Terminology . 32
J2EE.3.3.4 Container Based Security . 33
J2EE.3.3.5 Distributed Security. 34
J2EE.3.3.6 Authorization Model . 35
blic Review

 vii
J2EE.3.3.7 HTTP Login Gateways . 36
J2EE.3.3.8 User Authentication. 36
J2EE.3.3.9 Lazy Authentication . 39

J2EE.3.4 User Authentication Requirements. 39
J2EE.3.4.1 Login Sessions. 39
J2EE.3.4.2 Required Login Mechanisms. 40
J2EE.3.4.3 Unauthenticated Users . 41
J2EE.3.4.4 Application Client User Authentication 42
J2EE.3.4.5 Resource Authentication Requirements 43

J2EE.3.5 Authorization Requirements. 44
J2EE.3.5.1 Code Authorization . 44
J2EE.3.5.2 Caller Authorization . 45
J2EE.3.5.3 Propagated Caller Identities. 45
J2EE.3.5.4 Run As Identities . 45

J2EE.3.6 Deployment Requirements . 46
J2EE.3.7 Future Directions . 46

J2EE.3.7.1 Auditing . 46
J2EE.3.7.2 Instance-based Access Control 47
J2EE.3.7.3 User Registration . 47

J2EE.4 Transaction Management. .49
J2EE.4.1 Overview. 49
J2EE.4.2 Requirements . 51

J2EE.4.2.1 Web Components . 51
J2EE.4.2.2 Transactions in Web Component Life Cycles 52
J2EE.4.2.3 Transactions and Threads . 53
J2EE.4.2.4 Enterprise JavaBeans™ Components 54
J2EE.4.2.5 Application Clients . 54
J2EE.4.2.6 Applet Clients . 54
J2EE.4.2.7 Transactional JDBC™ Technology Support 54
J2EE.4.2.8 Transactional JMS Support . 54
J2EE.4.2.9 Transactional Resource Adapter (Connector) Support 55

J2EE.4.3 Transaction Interoperability . 55
J2EE.4.3.1 Multiple J2EE Platform Interoperability 55
J2EE.4.3.2 Support for Transactional Resource Managers 55

J2EE.4.4 Local Transaction Optimization . 56
J2EE.4.4.1 Requirements . 56
J2EE.4.4.2 A Possible Design . 56

J2EE.4.5 Connection Sharing . 57

Pu

viii
J2EE.4.6 JDBC and JMS Deployment Issues . 58
J2EE.4.7 Two-Phase Commit Support . 59
J2EE.4.8 System Administration Tools . 59

J2EE.5 Resources, Naming, and Injection .61
J2EE.5.1 Overview . 61

J2EE.5.1.1 Chapter Organization . 62
J2EE.5.1.2 Required Access to the JNDI Naming Environment. . 63

J2EE.5.2 JNDI Naming Context . 63
J2EE.5.2.1 The Application Component’s Environment 63
J2EE.5.2.2 Sharing of Environment Entries 64
J2EE.5.2.3 Annotations and Resource Injection 65
J2EE.5.2.4 Annotations and Deployment Descriptors 67

J2EE.5.3 Responsibilities by J2EE Role . 68
J2EE.5.3.1 Application Component Provider’s Responsibilities . 68
J2EE.5.3.2 Application Assembler’s Responsibilities. 69
J2EE.5.3.3 Deployer’s Responsibilities. 69
J2EE.5.3.4 J2EE Product Provider’s Responsibilities 69

J2EE.5.4 Simple Environment Entries. 70
J2EE.5.4.1 Application Component Provider’s Responsibilities . 70

J2EE.5.5 Enterprise JavaBeans™ (EJB) References. 75
J2EE.5.5.1 Application Component Provider’s Responsibilities . 76
J2EE.5.5.2 Application Assembler’s Responsibilities. 79
J2EE.5.5.3 Deployer’s Responsibilities. 81
J2EE.5.5.4 J2EE Product Provider’s Responsibilities 81

J2EE.5.6 Resource Manager Connection Factory References. 82
J2EE.5.6.1 Application Component Provider’s Responsibilities . 83
J2EE.5.6.2 Deployer’s Responsibilities. 87
J2EE.5.6.3 J2EE Product Provider’s Responsibilities 88
J2EE.5.6.4 System Administrator’s Responsibilities 89

J2EE.5.7 Resource Environment References. 90
J2EE.5.7.1 Application Component Provider’s Responsibilities . 90
J2EE.5.7.2 Deployer’s Responsibilities. 91
J2EE.5.7.3 J2EE Product Provider’s Responsibilities 92

J2EE.5.8 Message Destination References . 92
J2EE.5.8.1 Application Component Provider’s Responsibilities . 92
J2EE.5.8.2 Application Assembler’s Responsibilities. 95
J2EE.5.8.3 Deployer’s Responsibilities. 97
J2EE.5.8.4 J2EE Product Provider’s Responsibilities 97
blic Review

 ix
J2EE.5.9 UserTransaction References . 97
J2EE.5.9.1 Application Component Provider’s Responsibilities . 99
J2EE.5.9.2 J2EE Product Provider’s Responsibilities 99

J2EE.5.10 ORB References . 99
J2EE.5.10.1 Application Component Provider’s Responsibilities 100
J2EE.5.10.2 J2EE Product Provider’s Responsibilities 101

J2EE.6 Application Programming Interface103
J2EE.6.1 Required APIs. 103

J2EE.6.1.1 Java Compatible APIs . 103
J2EE.6.1.2 Java Optional Packages . 104

J2EE.6.2 Java 2 Platform, Standard Edition (J2SE) Requirements 106
J2EE.6.2.1 Programming Restrictions . 106
J2EE.6.2.2 The J2EE Security Permissions Set. 106
J2EE.6.2.3 Listing of the J2EE Security Permissions Set 107
J2EE.6.2.4 Additional Requirements . 108

J2EE.6.3 Enterprise JavaBeans™ (EJB) 3.0 Requirements. 120
J2EE.6.4 Servlet 2.4 Requirements . 120
J2EE.6.5 JavaServer Pages™ (JSP) 2.1 Requirements 122
J2EE.6.6 Java™ Message Service (JMS) 1.1 Requirements 122
J2EE.6.7 Java™ Transaction API (JTA) 1.0 Requirements 123
J2EE.6.8 JavaMail™ 1.3 Requirements. 124
J2EE.6.9 JavaBeans™ Activation Framework 1.1 Requirements 125
J2EE.6.10 J2EE™ Connector Architecture 1.5 Requirements 126
J2EE.6.11 Web Services for J2EE 1.1 Requirements 126
J2EE.6.12 Java™ API for XML-based RPC (JAX-RPC) 1.1 Requirements

127
J2EE.6.13 Java™ API for XML Web Services (JAX-WS) 2.0 Requirements

127
J2EE.6.14 Java™ Architecture for XML Binding (JAXB) 2.0 Requirements

128
J2EE.6.15 SOAP with Attachments API for Java™ (SAAJ) 1.3 128
J2EE.6.16 Java™ API for XML Registries (JAXR) 1.0 Requirements . 128
J2EE.6.17 Java™ 2 Platform, Enterprise Edition Management API 1.0 Re-

quirements. 129
J2EE.6.18 Java™ 2 Platform, Enterprise Edition Deployment API 1.1 Re-

quirements. 129
J2EE.6.19 Java™ Authorization Service Provider Contract for Containers

Pu

x

(JACC) 1.0 Requirements . 129
J2EE.6.20 Debugging Support for Other Languages (JSR-45) Requirements

130
J2EE.6.21 Standard Tag Library for JavaServer Pages™ (JSTL) 1.1 Re-

quirements . 130
J2EE.6.22 Web Services Metadata for the Java™ Platform 1.0 Require-

ments. 130
J2EE.6.23 JavaServer Faces™ 1.2 Requirements 130
J2EE.6.24 Common Annotations for the Java™ Platform 1.0 Requirements

131
J2EE.6.25 Streaming API for XML (StAX) 1.0 Requirements. 132
J2EE.6.26 Java Persistence API 1.0. 132

J2EE.7 Interoperability .133
J2EE.7.1 Introduction to Interoperability . 133
J2EE.7.2 Interoperability Protocols . 134

J2EE.7.2.1 Internet and Web Protocols . 134
J2EE.7.2.2 OMG Protocols . 135
J2EE.7.2.3 Java Technology Protocols . 136
J2EE.7.2.4 Data Formats . 136

J2EE.8 Application Assembly and Deployment 139
J2EE.8.1 Application Development Life Cycle. 140

J2EE.8.1.1 Component Creation . 141
J2EE.8.1.2 Application Assembly . 142
J2EE.8.1.3 Deployment . 143

J2EE.8.2 Library Support . 143
J2EE.8.2.1 Bundled Libraries . 143
J2EE.8.2.2 Installed Libraries . 144
J2EE.8.2.3 Library Conflicts . 145
J2EE.8.2.4 Library Resources . 145
J2EE.8.2.5 Dynamic Class Loading . 146
J2EE.8.2.6 Examples . 147

J2EE.8.3 Application Assembly . 148
J2EE.8.3.1 Assembling a J2EE Application 148
J2EE.8.3.2 Adding and Removing Modules 151

J2EE.8.4 Deployment . 151
J2EE.8.4.1 Deploying a Stand-Alone J2EE Module 153
J2EE.8.4.2 Deploying a J2EE Application 154
blic Review

 xi
J2EE.8.4.3 Deploying a Library. 156
J2EE.8.5 J2EE Application XML Schema . 156
J2EE.8.6 Common J2EE XML Schema Definitions 165

J2EE.9 Application Clients .205
J2EE.9.1 Overview. 205
J2EE.9.2 Security . 205
J2EE.9.3 Transactions . 206
J2EE.9.4 Resources, Naming, and Injection . 207
J2EE.9.5 Application Programming Interfaces 207
J2EE.9.6 Packaging and Deployment . 207
J2EE.9.7 J2EE Application Client XML Schema 209

J2EE.10 Service Provider Interface .219

J2EE.11 Compatibility and Migration. .221

J2EE.12 Future Directions .223
J2EE.12.1 JNLP (Java™ Web Start) . 223
J2EE.12.2 J2EE SPI . 224
J2EE.12.3 Security APIs . 224

Appendix J2EE.A: Previous Version Deployment Descriptors. . . . 225
J2EE.A.1 J2EE 1.4 Application XML Schema 225
J2EE.A.2 Common J2EE 1.4 XML Schema Definitions 233
J2EE.A.3 J2EE:application 1.3 XML DTD . 270
J2EE.A.4 J2EE:application 1.2 XML DTD . 276
J2EE.A.5 J2EE 1.4 Application Client XML Schema 281
J2EE.A.6 J2EE:application-client 1.3 XML DTD 289
J2EE.A.7 J2EE:application-client 1.2 XML DTD 299

Appendix J2EE.B: Revision History . 307
J2EE.B.1 Changes in Expert Draft 1 . 307

J2EE.B.1.1 Additional Requirements . 307
J2EE.B.1.2 Removed Requirements. 307
J2EE.B.1.3 Editorial Changes . 307

J2EE.B.2 Changes in Expert Draft 2 . 308
J2EE.B.2.1 Additional Requirements . 308
J2EE.B.2.2 Removed Requirements. 308
J2EE.B.2.3 Editorial Changes . 308

Pu

xii
J2EE.B.3 Changes in Early Draft Review 1 . 309
J2EE.B.3.1 Additional Requirements. 309
J2EE.B.3.2 Removed Requirements . 309
J2EE.B.3.3 Editorial Changes . 309

J2EE.B.4 Changes in Early Draft Review 2 . 309
J2EE.B.4.1 Additional Requirements. 309
J2EE.B.4.2 Removed Requirements . 310
J2EE.B.4.3 Editorial Changes . 310

J2EE.B.5 Changes in Public Review Draft . 310
J2EE.B.5.1 Additional Requirements. 310
J2EE.B.5.2 Removed Requirements . 310
J2EE.B.5.3 Editorial Changes . 310

Appendix J2EE.C: Related Documents .313
blic Review

C H A P T E R J2EE.1

Introduction

Enterprises today need to extend their reach, reduce their costs, and lower the
response times of their services to customers, employees, and suppliers.

Typically, applications that provide these services must combine existing
enterprise information systems (EISs) with new business functions that deliver
services to a broad range of users. The services need to be:

• Highly available, to meet the needs of today’s global business environment.

• Secure, to protect the privacy of users and the integrity of the enterprise.

• Reliable and scalable, to ensure that business transactions are accurately and
promptly processed.

In most cases, enterprise services are implemented as multitier applications.
The middle tiers integrate existing EISs with the business functions and data of
the new service. Maturing web technologies are used to provide first tier users
with easy access to business complexities, and eliminate or drastically reduce user
administration and training.

The Java™ 2 Platform, Enterprise Edition (J2EE™) reduces the cost and
complexity of developing multitier, enterprise services. J2EE applications can be
rapidly deployed and easily enhanced as the enterprise responds to competitive
pressures.

J2EE achieves these benefits by defining a standard architecture with the
following elements:

• J2EE Platform - A standard platform for hosting J2EE applications.

• J2EE Compatibility Test Suite - A suite of compatibility tests for verifying
that a J2EE platform product complies with the J2EE platform standard.
1

Pu

2

• J2EE Reference Implementation - A reference implementation for proto-
typing J2EE applications and for providing an operational definition of the
J2EE platform.

• J2EE BluePrints - A set of best practices for developing multitier, thin-client
services.

This document is the J2EE platform specification. It sets out the requirements
that a J2EE platform product must meet.

J2EE.1.1 Acknowledgements

This specification is the work of many people. Vlada Matena wrote the first draft as
well as the Transaction Management and Naming chapters. Sekhar Vajjhala, Kevin
Osborn, and Ron Monzillo wrote the Security chapter. Hans Hrasna wrote the
Application Assembly and Deployment chapter. Seth White wrote the JDBC API
requirements. Jim Inscore, Eric Jendrock, and Beth Stearns provided editorial
assistance. Shel Finkelstein, Mark Hapner, Danny Coward, Tom Kincaid, and Tony
Ng provided feedback on many drafts. And of course this specification was formed
and molded based on conversations with and review feedback from our many
industry partners.

J2EE.1.2 Acknowledgements for Version 1.3

Version 1.3 of this specification grew out of discussions with our partners during the
creation of version 1.2, as well as meetings with those partners subsequent to the
final release of version 1.2. Version 1.3 was created under the Java Community
Process as JSR-058. The JSR-058 Expert Group included representatives from the
following companies and organizations: Allaire, BEA Systems, Bluestone Software,
Borland, Bull S.A., Exoffice, Fujitsu Limited, GemStone Systems, Inc., IBM, Inline
Software, IONA Technologies, iPlanet, jGuru.com, Orion Application Server,
Persistence, POET Software, SilverStream, Sun, and Sybase. In addition, most of
the people who helped with the previous version continued to help with this version,
along with Jon Ellis and Ram Jeyaraman. Alfred Towell provided significant
editorial assistance with this version.
blic Review

 ACKNOWLEDGEMENTS FOR VERSION 1.4 3
J2EE.1.3 Acknowledgements for Version 1.4

Version 1.4 of this specification was created under the Java Community Process as
JSR-151. The JSR-151 Expert Group included the following members: Larry W.
Allen (SilverStream Software), Karl Avedal (Individual), Charlton Barreto
(Borland Software Corporation), Edward Cobb (BEA), Alan Davies (SeeBeyond
Technology Corporation), Sreeram Duvvuru (iPlanet), B.J. Fesq (Individual),
Mark Field (Macromedia), Mark Hapner (Sun Microsystems, Inc.), Pierce Hickey
(IONA), Hemant Khandelwal (Pramati Technologies), Jim Knutson (IBM), Elika
S. Kohen (Individual), Ramesh Loganathan (Pramati Technologies), Jasen Minton
(Oracle Corporation), Jeff Mischkinsky (Oracle Corporation), Richard Monson-
Haefel (Individual), Sean Neville (Macromedia), Bill Shannon (Sun Microsystems,
Inc.), Simon Tuffs (Lutris Technologies), Jeffrey Wang (Persistence Software,
Inc.), and Ingo Zenz (SAP AG). My colleagues at Sun provided invaluable
assistance: Umit Yalcinalp converted the deployment descriptors to XML Schema;
Tony Ng and Sanjeev Krishnan helped with transaction requirements; Jonathan
Bruce helped with JDBC requirements; Suzette Pelouch, Eric Jendrock, and Ian
Evans provided editorial assistance. Thanks also to all the external reviewers,
including Jeff Estefan (Adecco Technical Services).

J2EE.1.4 Acknowledgements for Version 5.0

Version 5.0 (originally known as version 1.5) of this specification was created under
the Java Commuinity Process as JSR-244. The JSR-244 Expert Group included the
following members: Kilinc Alkan (Individual), Rama Murthy Amar Pratap
(Individual), Charlton Barreto (Individual), Michael Bechauf (SAP AG), Florent
Benoit (INRIA), Muralidharan Chandrasekaran (Individual), Yongmin Chen
(Novell, Inc.), Jun Ho Cho (TmaxSoft), Ed Cobb (BEA), Ugo Corda (SeeBeyond
Technology Corporation), Scott Crawford (Individual), Arulazi Dhesiaseelan
(Hewlett-Packard Company), Bill Dudney (Individual), Francois Exertier (INRIA),
Evan Ireland (Sybase, Inc.), Michael Keith (Orcale Corporation), Jim Knutson
(IBM), Elika Kohen (Individual), Felipe Leme (Individual), Geir Magnusson Jr.
(The Apache Software Foundation), Scott Marlow (Novell, Inc.), Jasen Minton
(Oracle Corporation), Jishnu Mitra (Borland Software Corp), David Morandi
(E.piphany), Nathan Pahucki (Novell, Inc.), Ricardo Morin (Intel Corporation),
Matt Raible (Individual), Dirk Reinshagen (Individual), Narinder Sahota (Cap
Gemini), Suneet Shah (Individual), Bill Shannon (Sun Microsystems, Inc.), Rajiv

Pu

4

Shivane (Pramati Technologies), Scott Stark (Jboss, Inc), Hani Suleiman (Ironflare
AB), Kresten Krab Thorup (Trifork), Ashish Tiwari (Individual), Sivasundaram
Umapathy (Individual), Steve Weston (Cap Gemini), and Umit Yalcinalp (SAP
AG). Once again, my colleagues at Sun provided invaluable assistance: Roberto
Chinnici provided draft proposals for many issues related to resource injection.
blic Review

C H A P T E R J2EE.2

Platform Overview

This chapter provides an overview of the Java™ 2 Platform, Enterprise Edition
(J2EE™).

J2EE.2.1 Architecture

The required relationships of architectural elements of the J2EE platform are shown
in Figure J2EE.2-1. Note that this figure shows the logical relationships of the
elements; it is not meant to imply a physical partitioning of the elements into
separate machines, processes, address spaces, or virtual machines.

The Containers, denoted by the separate rectangles, are J2EE runtime
environments that provide required services to the application components
represented in the upper half of the rectangle. The services provided are denoted
by the boxes in the lower half of the rectangle. For example, the Application
Client Container provides Java Message Service (JMS) APIs to Application
Clients, as well as the other services represented. All these services are explained
below. See Section J2EE.2.6, “J2EE Standard Services”.

The arrows represent required access to other parts of the J2EE platform. The
Application Client Container provides Application Clients with direct access to
the J2EE required Database through the Java API for connectivity with database
systems, the JDBCTM API. Similar access to databases is provided to JSP pages
and servlets by the Web Container, and to enterprise beans by the EJB Container.

As indicated, the APIs of the JavaTM 2 Platform, Standard Edition (J2SETM),
are supported by J2SE runtime environments for each type of application
component.
5

Pu

6

Figure J2EE.2-1 J2EE Architecture Diagram

The following sections describe the J2EE Platform requirements for each kind
of J2EE platform element.

J2EE.2.2 Application Components

The J2EE runtime environment defines four application component types that a
J2EE product must support:

• Application clients are Java programming language programs that are typically
GUI programs that execute on a desktop computer. Application clients offer a
user experience similar to that of native applications, and have access to all of
the facilities of the J2EE middle tier.

• Applets are GUI components that typically execute in a web browser, but can
execute in a variety of other applications or devices that support the applet

J2SE

HTTP

SSL

Database

Web Container

J2SE

ServletJSP

EJB Container

J2SE

EJB

Applet Container

J2SE

Applet
HTTP

SSL

Application Client

Container

Application
Client

New in J2EE 5.0

W
eb S

ervices

JM
S

C
onnectors

JT
A

JA
X

R

JA
C

C

S
tA

X

W
S

 M
etadata

M
anagem

ent

Java
Mail

JAF

Java P
ersistence

JA
X

-R
P

C

SAAJ

JA
X

-W
S

Java
Mail

JAF

JM
S

C
onnectors

JT
A

JA
X

R

W
S

 M
etadata

S
tA

X

JS
F

JS
T

L

M
anagem

ent

W
eb S

ervices

JA
C

C

Java P
ersistence

JA
X

-R
P

C

SAAJ

JA
X

-W
S

JA
X

R

JM
S

W
eb S

ervices

S
tA

X

M
anagem

ent
Java P

ersistence

JA
X

-R
P

C

SAAJ

JA
X

-W
S

W
S

 M
etadata
blic Review

 APPLICATION COMPONENTS 7
programming model. Applets can be used to provide a powerful user interface
for J2EE applications. (Simple HTML pages can also be used to provide a
more limited user interface for J2EE applications.)

• Servlets, JSP pages, JSF applications, filters, and web event listeners typically
execute in a web container and may respond to HTTP requests from web cli-
ents. Servlets, JSP pages, JSF applications, and filters may be used to generate
HTML pages that are an application’s user interface. They may also be used
to generate XML or other format data that is consumed by other application
components. A special kind of servlet provides support for web services using
the SOAP/HTTP protocol. Servlets, pages created with the JavaServer Pag-
es™ technology or JavaServer™ Faces technology, web filters, and web event
listeners are referred to collectively in this specification as “web components.”
Web applications are composed of web components and other data such as
HTML pages. Web components execute in a web container. A web server in-
cludes a web container and other protocol support, security support, and so
on, as required by J2EE specifications.

• Enterprise JavaBeans™ (EJB) components execute in a managed environment
that supports transactions. Enterprise beans typically contain the business logic
for a J2EE application. Enterprise beans may directly provide web services us-
ing the SOAP/HTTP protocol.

J2EE.2.2.1 J2EE Server Support for Application Components

The J2EE servers provide deployment, management, and execution support for
conforming application components. Application components can be divided into
three categories according to their dependence on a J2EE server:

• Components that are deployed, managed, and executed on a J2EE server.
These components include web components and Enterprise JavaBeans compo-
nents. See the separate specifications for these components.

• Components that are deployed and managed on a J2EE server, but are loaded
to and executed on a client machine. These components include web resourc-
es such as HTML pages and applets embedded in HTML pages.

• Components whose deployment and management is not completely defined by
this specification. Application Clients fall into this category. Future versions
of this specification may more fully define deployment and management of
Application Clients. See Chapter J2EE.9, “Application Clients” for a descrip-

Pu

8

tion of Application Clients.

J2EE.2.3 Containers

Containers provide the runtime support for J2EE application components.
Containers provide a federated view of the underlying J2EE APIs to the application
components. J2EE application components never interact directly with other J2EE
application components. They use the protocols and methods of the container for
interacting with each other and with platform services. Interposing a container
between the application components and the J2EE services allows the container to
transparently inject the services required by the component, such as declarative
transaction management, security checks, resource pooling, and state management.

A typical J2EE product will provide a container for each application
component type: application client container, applet container, web component
container, and enterprise bean container.

J2EE.2.3.1 Container Requirements

This specification requires that containers provide a Java Compatible™ runtime
environment, as defined by the Java 2 Platform, Standard Edition, v5.0 specification
(J2SE). The applet container may use the Java Plugin product to provide this
environment, or it may provide it natively. The use of applet containers providing
JDK™ 1.1 APIs is outside the scope of this specification.

The container tools must understand the file formats for the packaging of
application components for deployment.

The containers are implemented by a J2EE Product Provider. See the
description of the Product Provider role in Section J2EE.2.10.1, “J2EE Product
Provider“.

This specification defines a set of standard services that each J2EE product
must support. These standard services are described below. The J2EE containers
provide the APIs that application components use to access these services. This
specification also describes standard ways to extend J2EE services with
connectors to other non-J2EE application systems, such as mainframe systems
and ERP systems.
blic Review

 RESOURCE ADAPTERS 9
J2EE.2.3.2 J2EE Servers

Underlying a J2EE container is the server of which it is a part. A J2EE Product
Provider typically implements the J2EE server-side functionality using an existing
transaction processing infrastructure in combination with Java 2 Platform, Standard
Edition (J2SE) technology. The J2EE client functionality is typically built on J2SE
technology.

J2EE.2.4 Resource Adapters

A resource adapter is a system-level software component that typically implements
network connectivity to an external resource manager. A resource adapter can
extend the functionality of the J2EE platform either by implementing one of the
J2EE standard service APIs (such as a JDBC™ driver), or by defining and
implementing a resource adapter for a connector to an external application system.
Resource adapters may also provide services that are entirely local, perhaps
interacting with native resources. Resource adapters interface with the J2EE
platform through the J2EE service provider interfaces (J2EE SPI). A resource
adapter that uses the J2EE SPIs to attach to the J2EE platform will be able to work
with all J2EE products.

J2EE.2.5 Database

The J2EE platform requires a database, accessible through the JDBC API, for the
storage of business data. The database is accessible from web components,
enterprise beans, and application client components. The database need not be
accessible from applets.

J2EE.2.6 J2EE Standard Services

The J2EE standard services include the following (specified in more detail later in
this document). Some of these standard services are actually provided by J2SE.

Pu

10
J2EE.2.6.1 HTTP

The HTTP client-side API is defined by the java.net package. The HTTP server-
side API is defined by the servlet, JSP, and JSF interfaces and by the web services
support that is a part of the J2EE platform.

J2EE.2.6.2 HTTPS

Use of the HTTP protocol over the SSL protocol is supported by the same client and
server APIs as HTTP.

J2EE.2.6.3 Java™ Transaction API (JTA)

The Java Transaction API consists of two parts:

• An application-level demarcation interface that is used by the container and
application components to demarcate transaction boundaries.

• An interface between the transaction manager and a resource manager used at
the J2EE SPI level (in a future release).

J2EE.2.6.4 RMI-IIOP

The RMI-IIOP subsystem is composed of APIs that allow for the use of RMI-style
programming that is independent of the underlying protocol, as well as an
implementation of those APIs that supports both the J2SE native RMI protocol
(JRMP) and the CORBA IIOP protocol. J2EE applications can use RMI-IIOP, with
IIOP protocol support, to access CORBA services that are compatible with the RMI
programming restrictions (see the RMI-IIOP spec for details). Such CORBA
services would typically be defined by components that live outside of a J2EE
product, usually in a legacy system. Only J2EE application clients are required to be
able to define their own CORBA services directly, using the RMI-IIOP APIs.
Typically such CORBA objects would be used for callbacks when accessing other
CORBA objects.

J2EE applications are required to use the RMI-IIOP APIs, specifically the
narrow method of javax.rmi.PortableRemoteObject, when accessing Enterprise
JavaBeans components, as described in the EJB specification. This allows
enterprise beans to be protocol independent. Note that the most common use of
the narrow method is not needed when using resource injection instead of JNDI
blic Review

 J2EE STANDARD SERVICES 11
lookups; the container will perform the narrow for the application before injecting
the object reference. J2EE products must be capable of exporting enterprise beans
using the IIOP protocol, and accessing enterprise beans using the IIOP protocol,
as specified in the EJB specification. The ability to use the IIOP protocol is
required to enable interoperability between J2EE products, however a J2EE
product may also use other protocols.

J2EE.2.6.5 Java IDL

Java IDL allows J2EE application components to invoke external CORBA objects
using the IIOP protocol. These CORBA objects may be written in any language and
typically live outside a J2EE product. J2EE applications may use Java IDL to act as
clients of CORBA services, but only J2EE application clients are required to be
allowed to use Java IDL directly to present CORBA services themselves.

J2EE.2.6.6 JDBC™ API

The JDBC API is the API for connectivity with relational database systems. The
JDBC API has two parts: an application-level interface used by the application
components to access a database, and a service provider interface to attach a JDBC
driver to the J2EE platform. Support for the service provider interface is not
required in J2EE products. Instead, JDBC drivers should be packaged as resource
adapters that use the facilities of the Connector API to interface with a J2EE
product.

J2EE.2.6.7 Java™ Persistence API

Note – Need to fill this in with a description of the Java Persistence API being
developed by the EJB 3.0 expert group.

J2EE.2.6.8 Java™ Message Service (JMS)

The Java Message Service is a standard API for messaging that supports reliable
point-to-point messaging as well as the publish-subscribe model. This specification
requires a JMS provider that implements both point-to-point messaging as well as
publish-subscribe messaging.

Pu

12
J2EE.2.6.9 Java Naming and Directory Interface™ (JNDI)

The JNDI API is the standard API for naming and directory access. The JNDI API
has two parts: an application-level interface used by the application components to
access naming and directory services and a service provider interface to attach a
provider of a naming and directory service.

J2EE.2.6.10 JavaMail™

Many Internet applications require the ability to send email notifications, so the
J2EE platform includes the JavaMail API along with a JavaMail service provider
that allows an application component to send Internet mail. The JavaMail API has
two parts: an application-level interface used by the application components to send
mail, and a service provider interface used at the J2EE SPI level.

J2EE.2.6.11 JavaBeans™ Activation Framework (JAF)

The JAF API provides a framework for handling data in different MIME types,
originating in different formats and locations. The JavaMail API makes use of the
JAF API, so it must be included as well.

J2EE.2.6.12 XML Processing

The Java™ API for XML Processing (JAXP) provides support for the industry
standard SAX and DOM APIs for parsing XML documents, as well as support for
XSLT transform engines. The Streaming API for XML (StAX) provides a pull-
parsing API for XML.

J2EE.2.6.13 J2EE™ Connector Architecture

The Connector architecture is a J2EE SPI that allows resource adapters that support
access to Enterprise Information Systems to be plugged in to any J2EE product. The
Connector architecture defines a standard set of system-level contracts between a
J2EE server and a resource adapter. The standard contracts include:

• A connection management contract that lets a J2EE server pool connections to
an underlying EIS, and lets application components connect to an EIS. This
blic Review

 J2EE STANDARD SERVICES 13
leads to a scalable application environment that can support a large number of
clients requiring access to EIS systems.

• A transaction management contract between the transaction manager and an
EIS that supports transactional access to EIS resource managers. This contract
lets a J2EE server use a transaction manager to manage transactions across
multiple resource managers. This contract also supports transactions that are
managed internal to an EIS resource manager without the necessity of involv-
ing an external transaction manager.

• A security contract that enables secure access to an EIS. This contract pro-
vides support for a secure application environment, which reduces security
threats to the EIS and protects valuable information resources managed by the
EIS.

• A thread management contract that allows a resource adapter to delegate work
to other threads and allows the application server to manage a pool of threads.
The resource adapter can control the security context and transaction context
used by the worker thread.

• A contract that allows a resource adapter to deliver messages to message driv-
en beans independent of the specific messaging style, messaging semantics,
and messaging infrastructure used to deliver messages. This contract also
serves as the standard message provider pluggability contract that allows a
message provider to be plugged into any J2EE server via a resource adapter.

• A contract that allows a resource adapter to propagate an imported transaction
context to the J2EE server such that its interactions with the server and any
application components are part of the imported transaction. This contract
preserves the ACID (atomicity, consistency, isolation, durability) properties of
the imported transaction.

• An optional contract providing a generic command interface between an appli-
cation program and a resource adapter.

J2EE.2.6.14 Security Services

The Java™ Authentication and Authorization Service (JAAS) enables services to
authenticate and enforce access controls upon users. It implements a Java
technology version of the standard Plugable Authentication Module (PAM)
framework and supports user-based authorization. The Java™ Authorization
Service Provider Contract for Containers (JACC) defines a contract between a J2EE

Pu

14
application server and an authorization service provider, allowing custom
authorization service providers to be plugged into any J2EE product.

J2EE.2.6.15 Web Services

J2EE provides full support for both clients of web services as well as web service
endpoints. Several Java technologies work together to provide support for web
services. The Java API for XML Web Services (JAX-WS) and the Java API for
XML-based RPC (JAX-RPC) both provide support for web service calls using the
SOAP/HTTP protocol. JAX-WS is the primary API for web services and is a
follow-on to JAX-RPC. JAX-WS offers extensive web services functionality, with
support for multiple bindings/protocols and RESTful web services. JAX-WS and
JAX-RPC are fully interoperable when using the SOAP 1.1 over HTTP protocol as
constrained by the WS-I Basic Profile specification.

JAX-WS and the Java Architecture for XML Binding (JAXB) define the
mapping between Java classes and XML as used in SOAP calls, and provides
support for 100% of XML Schema. The SOAP with Attachments API for Java
(SAAJ) provides support for manipulating low level SOAP messages. The Web
Services for J2EE specification fully defines the deployment of web service
clients and web service endpoints in J2EE, as well as the implementation of web
service endpoints using enterprise beans. The Web Services Metadata
specification defines Java language annotations that make it easier to develop web
services. The Java API for XML Registries (JAXR) provides client access to
XML registry servers.

J2EE.2.6.16 Management

The Java 2 Platform, Enterprise Edition Management Specification defines APIs for
managing J2EE servers using a special management enterprise bean. The Java™
Management Extensions (JMX) API is also used to provide some management
support.

J2EE.2.6.17 Deployment

The Java 2 Platform, Enterprise Edition Deployment Specification defines a contract
between deployment tools and J2EE products. The J2EE products provide plug-in
components that run in the deployment tool and allow the deployment tool to deploy
blic Review

 INTEROPERABILITY 15
applications into the J2EE product. The deployment tool provides services used by
these plug-in components.

J2EE.2.7 Interoperability

Many of the APIs described above provide interoperability with components that
are not a part of the J2EE platform, such as external web or CORBA services.

Figure J2EE.2-2 illustrates the interoperability facilities of the J2EE platform.
(The directions of the arrows indicate the client/server relationships of the
components.)

Figure J2EE.2-2 J2EE Interoperability

J2EE Platform

Database

Applet
Container

HTTP
SSL

IIOP

JRMP

Web
Container

EJB
Container

HTTP
SSL

SOAP
HTTP

JRMP

Application
Client

Container

EJB / IIOP / SSL

IIOP

JRMP

HTTP
SSL

SOAP
HTTP

IIOP

JRMP

HTTP
SSL

SOAP
HTTP

IIOP

Pu

16
J2EE.2.8 Flexibility of Product Requirements

This specification doesn’t require that a J2EE product be implemented by a single
program, a single server, or even a single machine. In general, this specification
doesn’t describe the partitioning of services or functions between machines, servers,
or processes. As long as the requirements in this specification are met, J2EE Product
Providers can partition the functionality however they see fit. A J2EE product must
be able to deploy application components that execute with the semantics described
by this specification.

A typical low end J2EE product will support applets using the Java Plugin in
one of the popular browsers, application clients each in their own Java virtual
machine, and will provide a single server that supports both web components and
enterprise beans. A high end J2EE product might split the server components into
multiple servers, each of which can be distributed and load-balanced across a
collection of machines. This specification does not prescribe or preclude any of
these configurations.

A wide variety of J2EE product configurations and implementations, all of
which meet the requirements of this specification, are possible. A portable J2EE
application will function correctly when successfully deployed in any of these
products.

J2EE.2.9 J2EE Product Extensions

This specification describes a minimum set of facilities that all J2EE products must
provide. Most J2EE products will provide facilities beyond the minimum required
by this specification. This specification includes only a few limits to the ability of a
product to provide extensions. In particular, it includes the same restrictions as J2SE
on extensions to Java APIs. A J2EE product may not add classes to the Java
programming language packages included in this specification, and may not add
methods or otherwise alter the signatures of the specified classes.

However, many other extensions are allowed. A J2EE product may provide
additional Java APIs, either other Java optional packages or other (appropriately
named) packages. A J2EE product may include support for additional protocols or
services not specified here. A J2EE product may support applications written in
other languages, or may support connectivity to other platforms or applications.

Of course, portable applications will not make use of any platform extensions.
Applications that do make use of facilities not required by this specification will
blic Review

 PLATFORM ROLES 17
be less portable. Depending on the facility used, the loss of portability may be
minor or it may be significant. The document Designing Enterprise Applications
with the Java 2 Platform, Enterprise Edition supplies information to help
application developers construct portable applications, and contains advice on
how best to manage the use of non-portable code when the use of such facilities is
necessary.

We expect J2EE products to vary widely and compete vigorously on various
aspects of quality of service. Products will provide different levels of
performance, scalability, robustness, availability, and security. In some cases this
specification requires minimum levels of service. Future versions of this
specification may allow applications to describe their requirements in these areas.

J2EE.2.10 Platform Roles

This section describes typical Java 2 Platform, Enterprise Edition roles. In an actual
instance, an organization may divide role functionality differently to match that
organization’s application development and deployment workflow.

The roles are described in greater detail in later sections of this specification.
Relevant subsets of these roles are described in the EJB, JSP, and servlet
specifications included herein as parts of the J2EE specification.

J2EE.2.10.1 J2EE Product Provider

A J2EE Product Provider is the implementor and supplier of a J2EE product that
includes the component containers, J2EE platform APIs, and other features defined
in this specification. A J2EE Product Provider is typically an operating system
vendor, a database system vendor, an application server vendor, or a web server
vendor. A J2EE Product Provider must make available the J2EE APIs to the
application components through containers. A Product Provider frequently bases
their implementation on an existing infrastructure.

A J2EE Product Provider must provide the mapping of the application
components to the network protocols as specified by this specification. A J2EE
product is free to implement interfaces that are not specified by this specification
in an implementation-specific way.

A J2EE Product Provider must provide application deployment and
management tools. Deployment tools enable a Deployer (see Section J2EE.2.10.4,
“Deployer”) to deploy application components on the J2EE product. Management

Pu

18
tools allow a System Administrator (see Section J2EE.2.10.5, “System
Administrator”) to manage the J2EE product and the applications deployed on the
J2EE product. The form of these tools is not prescribed by this specification.

J2EE.2.10.2 Application Component Provider

There are multiple roles for Application Component Providers, including HTML
document designers, document programmers, and enterprise bean developers. These
roles use tools to produce J2EE applications and components.

J2EE.2.10.3 Application Assembler

The Application Assembler takes a set of components developed by Application
Component Providers and assembles them into a complete J2EE application
delivered in the form of an Enterprise Archive (.ear) file. The Application
Assembler will generally use GUI tools provided by either a Platform Provider or
Tool Provider. The Application Assembler is responsible for providing assembly
instructions describing external dependencies of the application that the Deployer
must resolve in the deployment process.

J2EE.2.10.4 Deployer

The Deployer is responsible for deploying application clients, web applications, and
Enterprise JavaBeans components into a specific operational environment. The
Deployer uses tools supplied by the J2EE Product Provider to carry out deployment
tasks. Deployment is typically a three-stage process:

1. During Installation the Deployer moves application media to the server, gen-
erates the additional container-specific classes and interfaces that enable the
container to manage the application components at runtime, and installs appli-
cation components, and additional classes and interfaces, into the appropriate
J2EE containers.

2. During Configuration, external dependencies declared by the Application
Component Provider are resolved and application assembly instructions de-
fined by the Application Assembler are followed. For example, the Deployer
is responsible for mapping security roles defined by the Application Assem-
bler onto user groups and accounts that exist in the target operational environ-
ment.
blic Review

 PLATFORM ROLES 19
3. Finally, the Deployer starts up Execution of the newly installed and config-
ured application.

In some cases, a specially qualified Deployer may customize the business
logic of the application’s components at deployment time. For example, using
tools provided with a J2EE product, the Deployer may provide simple application
code that wraps an enterprise bean’s business methods, or customizes the
appearance of a JSP page.

The Deployer’s output is web applications, enterprise beans, applets, and
application clients that have been customized for the target operational
environment and are deployed in a specific J2EE container.

J2EE.2.10.5 System Administrator

The System Administrator is responsible for the configuration and administration of
the enterprise’s computing and networking infrastructure. The System
Administrator is also responsible for overseeing the runtime well-being of the
deployed J2EE applications. The System Administrator typically uses runtime
monitoring and management tools provided by the J2EE Product Provider to
accomplish these tasks.

J2EE.2.10.6 Tool Provider

A Tool Provider provides tools used for the development and packaging of
application components. A variety of tools are anticipated, corresponding to the
types of application components supported by the J2EE platform. Platform
independent tools can be used for all phases of development through the deployment
of an application and the management and monitoring of an application server.

J2EE.2.10.7 System Component Provider

A variety of system level components may be provided by System Component
Providers. The Connector Architecture defines the primary APIs used to provide
resource adapters of many types. These resource adapters may connect to existing
enterprise information systems of many types, including databases and messaging
systems. Another type of system component is an authorization policy provider as
defined by the Java Authorization Service Provider Contract for Containers
specification.

Pu

20
J2EE.2.11 Platform Contracts

This section describes the Java 2 Platform, Enterprise Edition contracts that must be
fulfilled by the J2EE Product Provider.

J2EE.2.11.1 J2EE APIs

The J2EE APIs define the contract between the J2EE application components and
the J2EE platform. The contract specifies both the runtime and deployment
interfaces.

The J2EE Product Provider must implement the J2EE APIs in a way that
supports the semantics and policies described in this specification. The
Application Component Provider provides components that conform to these
APIs and policies.

J2EE.2.11.2 J2EE Service Provider Interfaces (SPIs)

The J2EE Service Provider Interfaces (SPIs) define the contract between the J2EE
platform and service providers that may be plugged into a J2EE product. The
Connector APIs define service provider interfaces for integrating resource adapters
with a J2EE application server. Resource adapter components implementing the
Connector APIs are called Connectors. The J2EE Authorization APIs define service
provider interfaces for integrating security authorization mechanisms with a J2EE
application server.

The J2EE Product Provider must implement the J2EE SPIs in a way that
supports the semantics and policies described in this specification. A provider of
Service Provider components (for example, a Connector Provider) should provide
components that conform to these SPIs and policies.

J2EE.2.11.3 Network Protocols

This specification defines the mapping of application components to industry-
standard network protocols. The mapping allows client access to the application
components from systems that have not installed J2EE product technology. See
Chapter J2EE.7, “Interoperability” for details on the network protocol support
required for interoperability.

The J2EE Product Provider is required to publish the installed application
components on the industry-standard protocols. This specification defines the
blic Review

 CHANGES IN J2EE 1.3 21
mapping of servlets and JSP pages to the HTTP and HTTPS protocols, and the
mapping of EJB components to IIOP and SOAP protocols.

J2EE.2.11.4 Deployment Descriptors and Annotations

Deployment descriptors and Java language annotations are used to communicate the
needs of application components to the Deployer. The deployment descriptor and
class file annotations are a contract between the Application Component Provider or
Assembler and the Deployer. The Application Component Provider or Assembler is
required to specify the application component’s external resource requirements,
security requirements, environment parameters, and so forth in the component’s
deployment descriptor or through class file annotations. The J2EE Product Provider
is required to provide a deployment tool that interprets the J2EE deployment
descriptors and class file annotations and allows the Deployer to map the application
component’s requirements to the capabilities of a specific J2EE product and
environment.

J2EE.2.12 Changes in J2EE 1.3

The J2EE 1.3 specification extends the J2EE platform with additional enterprise
integration facilities. The Connector API supports integration with external
enterprise information systems. A JMS provider is now required. The JAXP API
provides support for processing XML documents. The JAAS API provides security
support for the Connector API. The EJB specification now requires support for
interoperability using the IIOP protocol.

Significant changes have been made to the EJB specification. The EJB
specification has a new container-managed persistence model, support for
message driven beans, and support for local enterprise beans.

Other existing J2EE APIs have been updated as well. See the individual API
specifications for details. Finally, J2EE 1.3 requires support for J2SE 1.3.

J2EE.2.13 Changes in J2EE 1.4

The primary focus of J2EE 1.4 is support for web services. The JAX-RPC and
SAAJ APIs provide the basic web services interoperability support. The Web
Services for J2EE specification describes the packaging and deployment
requirements for J2EE applications that provide and use web services. The EJB

Pu

22
specification was also extended to support implementing web services using
stateless session beans. The JAXR API supports access to registries and
repositories.

Several other APIs have been added to J2EE 1.4. The J2EE Management and
J2EE Deployment APIs enable enhanced tool support for J2EE products. The
JMX API supports the J2EE Management API. The J2EE Authorization Contract
for Containers provides an SPI for security providers.

Many of the existing J2EE APIs have been enhanced in J2EE 1.4. J2EE 1.4
builds on J2SE 1.4. The JSP specification has been enhanced to simplify the
development of web applications. The Connector API now supports integration
with asynchronous messaging systems, including the ability to plug in JMS
providers.

Changes in this J2EE platform specification include support for deploying
class libraries independently of any application and the conversion of deployment
descriptor DTDs to XML Schemas.

Other J2EE APIs have been enhanced as well. For additional details, see each
of the referenced specifications.

J2EE.2.14 Changes in J2EE 5.0

The focus of J2EE 5.0 is ease of development. To simplify the development process
for programmers just starting with J2EE, or developing small to medium
applications, we’ve made extensive use of Java language annotations that were
introduced by J2SE 5.0. Annotations reduce or eliminate the need to deal with J2EE
deployment descriptors in many cases. Even large applications can benefit from the
simplifications provided by annotations.

One of the major uses of annotations is to specify injection of resources into
J2EE components. Resource injection augments the existing JNDI lookup
capability to provide a new simplified model for applications to gain access to the
resources needed from the operational environment. Resource injection also
works with deployment descriptors to allow the deployer to customize or override
resource settings specified in the application’s source code.

Annotations are made even more effective by providing better defaults. Better
default behavior and better default configuration allows most applications to get
what they want most of the time, without the use of either annotations or
deployment descriptors in many cases. When the default is not what the
blic Review

 CHANGES IN J2EE 5.0 23
application wants, a simple annotation can be used to specify the required
behavior or configuration.

Major additions to J2EE 5.0 include the JSTL and JSF technologies that
simplify development of web applications, and the Java Persistence API being
developed by the EJB 3.0 expert group that greatly simplifies mapping Java
objects to databases.

Note – This section needs to be expanded.

Pu

24
blic Review

C H A P T E R J2EE.3

Security

This chapter describes the security requirements for the Java™ 2 Platform,
Enterprise Edition (J2EE) that must be satisfied by J2EE products.

In addition to the J2EE requirements, each J2EE Product Provider will
determine the level of security and security assurances that will be provided by
their implementation.

J2EE.3.1 Introduction

Almost every enterprise has security requirements and specific mechanisms and
infrastructure to meet them. Sensitive resources that can be accessed by many users,
or that often traverse unprotected open networks (such as the Internet) need to be
protected.

Although the quality assurances and implementation details may vary, they all
share some of the following characteristics:

• Authentication: The means by which communicating entities (for example,
client and server) prove to one another that they are acting on behalf of specific
identities that are authorized for access.

• Access control for resources: The means by which interactions with resourc-
es are limited to collections of users or programs for the purpose of enforcing
integrity, confidentiality, or availability constraints.

• Data integrity: The means used to prove that information has not been modi-
fied by a third party (some entity other than the source of the information).
For example, a recipient of data sent over an open network must be able to de-
tect and discard messages that were modified after they were sent.
25

Pu

26
• Confidentiality or Data Privacy: The means used to ensure that information
is made available only to users who are authorized to access it.

• Non-repudiation: The means used to prove that a user performed some ac-
tion such that the user cannot reasonably deny having done so.

• Auditing: The means used to capture a tamper-resistant record of security re-
lated events for the purpose of being able to evaluate the effectiveness of secu-
rity policies and mechanisms.

This chapter specifies how J2EE platform requirements address security
requirements, and identifies requirements that may be addressed by J2EE Product
Providers. Finally, issues being considered for future versions of this specification
are briefly mentioned in Section J2EE.3.7, “Future Directions”.

J2EE.3.2 A Simple Example

The security behavior of a J2EE environment may be better understood by
examining what happens in a simple application with a web client, a JSP user
interface, and enterprise bean business logic. (The example is not meant to specify
requirements.)

In this example, the web client relies on the web server to act as its
authentication proxy by collecting user authentication data from the client and
using it to establish an authenticated session.

Step 1: Initial Request
The web client requests the main application URL, shown in Figure J2EE.3-
1.

Figure J2EE.3-1 Initial Request

Since the client has not yet authenticated itself to the application environment,
the server responsible for delivering the web portion of the application (here-
after referred to as “web server”) detects this and invokes the appropriate
authentication mechanism for this resource.

Web Client
Web Server

Request access to
protected resource
blic Review

 A SIMPLE EXAMPLE 27
Step 2: Initial Authentication

The web server returns a form that the web client uses to collect authentica-
tion data (for example, username and password) from the user. The web client
forwards the authentication data to the web server, where it is validated by the
web server, as shown in Figure J2EE.3-2.

Figure J2EE.3-2 Initial Authentication

The validation mechanism may be local to the server, or it may leverage the
underlying security services. On the basis of the validation, the web server
sets a credential for the user.

Step 3: URL Authorization

The credential is used for future determinations of whether the user is autho-
rized to access restricted resources it may request. The web server consults
the security policy (derived from the deployment descriptor) associated with
the web resource to determine the security roles that are permitted access to
the resource. The web container then tests the user’s credential against each
role to determine if it can map the user to the role. Figure J2EE.3-3 shows
this process.

Figure J2EE.3-3 URL Authorization

The web server’s evaluation stops with an “is authorized” outcome when the
web server is able to map the user to a role. A “not authorized” outcome is
reached if the web server is unable to map the user to any of the permitted

Web Client

Web Server

credential

Authentication data

Form

Web Client

Request access to
protected resource

Web Server

credential

Session
Context

A
uthorization

JSP/servlet
Object

Pu

28
roles.
blic Review

 A SIMPLE EXAMPLE 29
Step 4: Fulfilling the Original Request

If the user is authorized, the web server returns the result of the original URL-
request, as shown in Figure J2EE.3-4.

Figure J2EE.3-4 Fulfilling the Original Request

In our example, the response URL of a JSP page is returned, enabling the user
to post form data that needs to be handled by the business logic component of
the application.

Step 5: Invoking Enterprise Bean Business Methods

The JSP page performs the remote method call to the enterprise bean, using
the user’s credential to establish a secure association between the JSP page
and the enterprise bean (as shown in Figure J2EE.3-5). The association is
implemented as two related security contexts, one in the web server and one
in the EJB container.

Figure J2EE.3-5 Invoking an Enterprise Bean Business Method

The EJB container is responsible for enforcing access control on the
enterprise bean method. It consults the security policy (derived from the
deployment descriptor) associated with the enterprise bean to determine the
security roles that are permitted access to the method. For each role, the EJB

Web Client

Web Server

credential

Session
Context

 JSP/Servlet
Object

Post to business logic

Result of request

Web Client

Web Server

credential

Session
Context

JSP/servlet
Object

EJB Container

EJB

A
uthorization

 Credential used to
establish security association

remote call

Security
Context

Security
Context

Pu

30
container uses the security context associated with the call to determine if it can
map the caller to the role.

The container’s evaluation stops with an “is authorized” outcome when the
container is able to map the caller’s credential to a role. A “not authorized”
outcome is reached if the container is unable to map the caller to any of the
permitted roles. A “not authorized” result causes an exception to be thrown by the
container, and propagated back to the calling JSP page.

If the call “is authorized”, the container dispatches control to the enterprise
bean method. The result of the bean’s execution of the call is returned to the JSP,
and ultimately to the user by the web server and the web client.

J2EE.3.3 Security Architecture

This section describes the J2EE security architecture on which the security
requirements defined by this specification are based.

J2EE.3.3.1 Goals

The following are goals for the J2EE security architecture:

1. Portability: The J2EE security architecture must support the Write Once, Run
Anywhere™ application property.

2. Transparency: Application Component Providers should not have to know
anything about security to write an application.

3. Isolation: The J2EE platform should be able to perform authentication and ac-
cess control according to instructions established by the Deployer using de-
ployment attributes, and managed by the System Administrator.

Note that divorcing the application from responsibility for security ensures
greater portability of J2EE applications.

4. Extensibility: The use of platform services by security aware-applications
must not compromise application portability.

This specification provides APIs in the component programming model for
interacting with container/server security information. Applications that
restrict their interactions to the provided APIs will retain portability.

5. Flexibility: The security mechanisms and declarations used by applications un-
der this specification should not impose a particular security policy, but facil-
blic Review

 SECURITY ARCHITECTURE 31
itate the implementation of security policies specific to the particular J2EE
installation or application.

6. Abstraction: An application component’s security requirements will be logi-
cally specified using deployment descriptors. Deployment descriptors will
specify how security roles and access requirements are to be mapped into en-
vironment-specific security roles, users, and policies. A Deployer may choose
to modify the security properties in ways consistent with the deployment envi-
ronment. The deployment descriptor should document which security proper-
ties can be modified and which cannot.

7. Independence: Required security behaviors and deployment contracts should
be implementable using a variety of popular security technologies.

8. Compatibility testing: The J2EE security requirements architecture must be
expressed in a manner that allows for an unambiguous determination of wheth-
er or not an implementation is compatible.

9. Secure interoperability: Application components executing in a J2EE product
must be able to invoke services provided in a J2EE product from a different
vendor, whether with the same or a different security policy. The services may
be provided by web components or enterprise beans.

J2EE.3.3.2 Non Goals

The following are not goals for the J2EE security architecture:

1. This specification does not dictate a specific security policy. Security policies
for applications and for enterprise information systems vary for many reasons
unconnected with this specification. Product Providers can provide the tech-
nology needed to implement and administer desired security policies while ad-
hering to the requirements of this specification.

2. This specification does not mandate a specific security technology, such as
Kerberos, PK, NIS+, or NTLM.

3. This specification does not require that the J2EE security behaviors be univer-
sally implementable using any or all security technologies.

4. This specification does not provide any warranty or assurance of the effective
security of a J2EE product.

Pu

32
J2EE.3.3.3 Terminology

This section introduces the terminology that is used to describe the security
requirements of the J2EE platform.

Principal

A principal is an entity that can be authenticated by an authentication protocol
in a security service that is deployed in an enterprise. A principal is identified
using a principal name and authenticated using authentication data. The con-
tent and format of the principal name and the authentication data can vary
depending upon the authentication protocol.

Security Policy Domain

A security policy domain, also referred to as a security domain, is a scope
over which a common security policy is defined and enforced by the security
administrator of the security service.

A security policy domain is also sometimes referred to as a realm. This speci-
fication uses the security policy domain, or security domain, terminology.

Security Technology Domain

A security technology domain is the scope over which the same security
mechanism (for example Kerberos) is used to enforce a security policy.

A single security technology domain may include multiple security policy
domains, for example.

Security Attributes

A set of security attributes is associated with every principal. The security
attributes have many uses (for example, access to protected resources and
auditing of users). Security attributes can be associated with a principal by an
authentication protocol and/or by the J2EE Product Provider.

The J2EE platform does not specify what security attributes are associated
with a principal.

Credential

A credential contains or references information (security attributes) used to
authenticate a principal for J2EE product services. A principal acquires a cre-
dential upon authentication, or from another principal that allows its creden-
blic Review

 SECURITY ARCHITECTURE 33
tial to be used (delegation).

This specification does not specify the contents or the format of a credential.
The contents and format of a credential can vary widely.

J2EE.3.3.4 Container Based Security

Security for components is provided by their containers in order to achieve the goals
for security specified above in a J2EE environment. A container provides two kinds
of security (discussed in the following sections):

• Declarative security

• Programmatic security

J2EE.3.3.4.1 Declarative Security

Declarative security refers to the means of expressing an application’s security
structure, including security roles, access control, and authentication requirements
in a form external to the application. The deployment descriptor is the primary
vehicle for declarative security in the J2EE platform.

A deployment descriptor is a contract between an Application Component
Provider and a Deployer or Application Assembler. It can be used by an
application programmer to represent an application’s security related
environmental requirements. A deployment descriptor can be associated with
groups of components.

A Deployer maps the deployment descriptor’s representation of the
application’s security policy to a security structure specific to the particular
environment. A Deployer uses a deployment tool to process the deployment
descriptor.

At runtime, the container uses the security policy security structure derived
from the deployment descriptor and configured by the Deployer to enforce
authorization (see Section J2EE.3.3.6, “Authorization Model”).

J2EE.3.3.4.2 Programmatic Security

Programmatic security refers to security decisions made by security aware
applications. Programmatic security is useful when declarative security alone is not
sufficient to express the security model of the application. The API for
programmatic security required by this specification consists of two methods of the

Pu

34
EJB EJBContext interface and two methods of the servlet HttpServletRequest
interface:

• isCallerInRole (EJBContext)

• getCallerPrincipal (EJBContext)

• isUserInRole (HttpServletRequest)

• getUserPrincipal (HttpServletRequest)

These methods allow components to make business logic decisions based on
the security role of the caller or remote user. For example they allow the
component to determine the principal name of the caller or remote user to use as a
database key. (Note that the form and content of principal names will vary widely
between products and enterprises, and portable components will not depend on
the actual contents of a principal name. Due to principal name mapping, the same
logical principal may have different names in different containers, although
usually it will be possible to configure a single product to use consistent principal
names. In particular, if a principal name is used as a key into a database table, and
that database table is accessed from multiple components, containers, or products,
the same logical principal may map to different entries in the database.)

J2EE.3.3.5 Distributed Security

Some Product Providers may produce J2EE products in which the containers for
various component types are distributed. In a distributed environment,
communication between J2EE components can be subject to security attacks (for
example, data modification and replay attacks).

Such threats can be countered by using a secure association to secure
communications. A secure association is shared security state information that
establishes the basis of a secure communication between components.
Establishing a secure association could involve several steps, such as:

1. Authenticating the target principal to the client and/or authenticating the client
to the target principal.

2. Negotiating a quality of protection, such as confidentiality or integrity.

3. Setting up a security context for the association between the components.

Since a container provides security in J2EE, secure associations for a
component are typically established by a container. Secure associations for web
blic Review

 SECURITY ARCHITECTURE 35
access are specified here. Secure associations for access to enterprise beans are
described in the EJB specification.

Product Providers may allow for control over the quality of protection or other
aspects of secure association at deployment time. Applications can specify their
requirements for access to web resources using elements in their deployment
descriptor.

This specification does not define mechanisms that an Application
Component Provider can use to communicate requirements for secure
associations with an enterprise bean.

J2EE.3.3.6 Authorization Model

The J2EE authorization model is based on the concept of security roles. A security
role is a logical grouping of users that is defined by an Application Component
Provider or Assembler. A Deployer maps roles to security identities (for example
principals, and groups) in the operational environment. Security roles are used with
both declarative security and programmatic security.

Declarative authorization can be used to control access to an enterprise bean
method and is specified in the enterprise bean deployment descriptor. An
enterprise bean method can be associated with a method-permission element in
the deployment descriptor. The method-permission element contains a list of
methods that can be accessed by a given security role. If the calling principal is in
one of the security roles allowed access to a method, the principal is allowed to
execute the method. Conversely, if the calling principal is in none of the roles, the
caller is not allowed to execute the method. Access to web resources can be
protected in a similar manner.

Security roles are used in the EJBContext method isCallerInRole and the
HttpServletRequest method isUserInRole. Each method returns true if the
calling principal is in the specified security role.

J2EE.3.3.6.1 Role Mapping

Enforcement of security constraints on web resources or enterprise beans, whether
programmatic or declarative, depends upon determination of whether the principal
associated with an incoming request is in a given security role. A container makes
this determination based on the security attributes of the calling principal. For
example,

1. A Deployer may have mapped a security role to a user group in the operational

Pu

36
environment. In this case, the user group of the calling principal is retrieved
from its security attributes. The principal is in the security role if the principal’s
user group matches a user group to which the security role has been mapped.

2. A Deployer may have mapped a security role to a principal name in a security
policy domain. In this case, the principal name of the calling principal is re-
trieved from its security attributes. If this principal name is the same as a prin-
cipal name to which the security role was mapped, the calling principal is in
the security role.

The source of security attributes may vary across implementations of the
J2EE platform. Security attributes may be transmitted in the calling principal’s
credential or in the security context. In other cases, security attributes may be
retrieved from a trusted third party, such as a directory service or a security
service.

J2EE.3.3.7 HTTP Login Gateways

Secure interoperability between enterprise beans in different security policy
domains is addressed in the EJB specification. In addition, a component may choose
to log in to a foreign server via HTTP. An application component can be configured
to use SSL mutual authentication for security when accessing a remote resource
using HTTP. Applications using HTTP in this way may choose to use XML or some
other structured format, rather than HTML.

We call the use of HTTP with SSL mutual authentication to access a remote
service an HTTP Login Gateway. Requirements in this area are specified in
Section J2EE.3.3.8.1, “Authentication by Web Clients.”

J2EE.3.3.8 User Authentication

User authentication is the process by which a user proves his or her identity to the
system. This authenticated identity is then used to perform authorization decisions
for accessing J2EE application components. An end user can authenticate using
either of the two supported client types:

• Web client

• Application client
blic Review

 SECURITY ARCHITECTURE 37
J2EE.3.3.8.1 Authentication by Web Clients

It is required that a web client be able to authenticate a user to a web server using
any of the following mechanisms. The Deployer or System Administrator
determines which method to apply to an application or to a group of applications.

• HTTP Basic Authentication

HTTP Basic Authentication is the authentication mechanism supported by the
HTTP protocol. This mechanism is based on a username and password. A
web server requests a web client to authenticate the user. As part of the
request, the web server passes the realm in which the user is to be authenti-
cated. The web client obtains the username and the password from the user
and transmits them to the web server. The web server then authenticates the
user in the specified realm (referred to as HTTP Realm in this document).

HTTP Basic Authentication is not secure. Passwords are sent in simple
base64 encoding. The target server is not authenticated. Additional protection
can be applied to overcome these weaknesses. The password may be pro-
tected by applying security at the transport layer (for example HTTPS) or at
the network layer (for example, IPSEC or VPN).

Despite its limitations, the HTTP Basic Authentication mechanism is
included in this specification because it is widely used in form based applica-
tions.

• HTTPS Client Authentication

End user authentication using HTTPS (HTTP over SSL) is a strong authenti-
cation mechanism. This mechanism requires the user to possess a Public Key
Certificate (PKC). Currently, a PKC is rarely used by end users on the Inter-
net. However, it is useful for e-commerce applications and also for a single-
signon from within the browser. For these reasons, it is a required feature of
the J2EE platform.

• Form Based Authentication

The look and feel of a login screen cannot be varied using the web browser’s
built-in authentication mechanisms. This specification introduces the ability
to package standard HTML or servlet/JSP based forms for logging in, allow-
ing customization of the user interface. The form based authentication mecha-
nism introduced by this specification is described in the servlet specification.

Pu

38
HTTP Digest Authentication is not widely supported by web browsers and
hence is not required.

A web client can employ a web server as its authentication proxy. In this case,
a client’s credential is established in the server, where it may be used by the server
for various purposes: to perform authorization decisions, to act as the client in
calls to enterprise beans, or to negotiate secure associations with resources.
Current web browsers commonly rely on proxy authentication.

J2EE.3.3.8.2 Web Single Signon

HTTP is a stateless protocol. However, many web applications need support for
sessions that can maintain state across multiple requests from a client. Therefore, it
is desirable to:

1. Make login mechanisms and policies a property of the environment the web
application is deployed in.

2. Be able to use the same login session to represent a user to all the applications
that they access.

3. Require re-authentication of users only when a security policy domain bound-
ary has been crossed.

Credentials that are acquired through a web login process are associated with
a session. The container uses the credentials to establish a security context for the
session. The container uses the security context to determine authorization for
access to web resources and for the establishment of secure associations with
other components (including enterprise beans).

J2EE.3.3.8.3 Login Session

In the J2EE platform, login session support is provided by a web container. When a
user successfully authenticates with a web server, the container establishes a login
session context for the user. The login session contains the credentials associated
with the user.1

J2EE.3.3.8.4 Authentication by Application Clients

Application clients (described in detail in Chapter J2EE.9, “Application Clients) are
client programs that may interact with enterprise beans directly (that is without the
blic Review

 USER AUTHENTICATION REQUIREMENTS 39
help of a web browser and without traversing a web server. Application clients may
also access web resources.

Application clients, like the other J2EE application component types, execute
in a managed environment that is provided by an appropriate container.
Application clients are expected to have access to a graphical display and input
device, and are expected to communicate with a human user.

Application clients are used to authenticate end users to the J2EE platform,
when the users access protected web resources or enterprise beans.

J2EE.3.3.9 Lazy Authentication

There is a cost associated with authentication. For example, an authentication
process may require exchanging multiple messages across the network. Therefore, it
is desirable to use lazy authentication, that is perform authentication only when it is
needed. With lazy authentication, a user is not required to authenticate until there is
a request to access a protected resource.

Lazy authentication can be used with first-tier clients (applets, application
clients) when they request access to protected resources that require
authentication. At that point the user can be asked to provide appropriate
authentication data. If a user is successfully authenticated, the user is allowed to
access the resource.

J2EE.3.4 User Authentication Requirements

The J2EE Product Provider must meet the following requirements concerning user
authentication.

J2EE.3.4.1 Login Sessions

All J2EE web servers must maintain a login session for each web user. It must be
possible for a login session to span more than one application, allowing a user to log

1. While the client is stateless with respect to authentication, the client re-
quires that the server act as its proxy and maintain its login context. A ref-
erence to the login session state is made available to the client through
cookies or URL re-writing. If SSL mutual authentication is used as the
authentication protocol, the client can manage its own authentication
context, and need not depend on references to the login session state.

Pu

40
in once and access multiple applications. The required login session support is
described in the servlet specification. This requirement of a session for each web
user supports single signon.

Applications can remain independent of the details of implementing the
security and maintenance of login information. The J2EE Product Provider has
the flexibility to choose authentication mechanisms independent of the
applications secured by these mechanisms.

Lazy authentication must be supported by web servers for protected web
resources. When authentication is required, one of the three required login
mechanisms listed in the next section may be used.

J2EE.3.4.2 Required Login Mechanisms

All J2EE products are required to support three login mechanisms: HTTP basic
authentication, SSL mutual authentication, and form-based login. An application is
not required to use any of these mechanisms, but they are required to be available
for any application’s use.

J2EE.3.4.2.1 HTTP Basic Authentication

All J2EE products are required to support HTTP basic authentication (RFC2068).
Platform Providers are also required to support basic authentication over SSL.

J2EE.3.4.2.2 SSL Mutual Authentication

SSL 3.02 and the means to perform mutual (client and server) certificate based
authentication are required by this specification.

All J2EE products must support the following cipher suites to ensure
interoperable authentication with clients:

• TLS_RSA_WITH_RC4_128_MD5

• SSL_RSA_WITH_RC4_128_MD5

• TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

• SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

• TLS_RSA_EXPORT_WITH_RC4_40_MD5

• SSL_RSA_EXPORT_WITH_RC4_40_MD5

• TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

2. The SSL 3.0 specification is available at: http://home.netscape.com/
eng/ssl3
blic Review

 USER AUTHENTICATION REQUIREMENTS 41
• SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

These cipher suites are supported by the major web browsers and meet the
U.S. government export restrictions.

J2EE.3.4.2.3 Form Based Login

The web application deployment descriptor contains an element that causes a J2EE
product to associate an HTML form resource (perhaps dynamically generated) with
the web application. If the Deployer chooses this form of authentication (over HTTP
basic, or SSL certificate based authentication), this form must be used as the user
interface for login to the application.

The form based login mechanism and web application deployment descriptors
are described in the servlet specification.

J2EE.3.4.3 Unauthenticated Users

Web containers are required to support access to web resources by clients that have
not authenticated themselves to the container. This is the common mode of access to
web resources on the Internet.

A web container reports that no user has been authenticated by returning null
from the HttpServletRequest method getUserPrincipal. This is different than
the corresponding result for EJB containers. The EJB specification requires that
the EJBContext method getCallerPrincipal always return a valid Principal
object. The method can never return null.

Components running in a web container must be able to call enterprise beans
even when no user has been authenticated in the web container. When a call is
made in such a case from a component in a web container to an enterprise bean, a
J2EE product must provide a principal for use in the call.

A J2EE product may provide a principal for use by unauthenticated callers
using many approaches, including, but not limited to:

• Always use a single distinguished principal.

• Use a different distinguished principal per server, or per session, or per appli-
cation.

• Allow the deployer or system administrator to choose which principal to use
through the Run As capability of the web and enterprise bean containers.

Pu

42
This specification does not specify how a J2EE product should choose a
principal to represent unauthenticated users, although future versions of this
specification may add requirements in this area. Note that the EJB specification
does include requirements in this area when using the EJB interoperability
protocol. Applications are encouraged to use the Run As capability in cases where
the web component may be unauthenticated and needs to call EJB components.

J2EE.3.4.4 Application Client User Authentication

The application client container must provide authentication of application users to
satisfy the authentication and authorization constraints enforced by the enterprise
bean containers and web containers. The techniques used may vary with the
implementation of the application client container, and are beyond the control of the
application. The application client container may integrate with a J2EE product’s
authentication system, to provide a single signon capability, or the container may
authenticate the user when the application is started. The container may delay
authentication until there is a request to access a protected resource or enterprise
bean.

The container will provide an appropriate user interface for interactions with
the user to gather authentication data. In addition, an application client may
provide a class that implements the
javax.security.auth.callback.CallbackHandler interface and specify the class
name in its deployment descriptor (see Section J2EE.9.7, “J2EE Application
Client XML Schema” for details). The Deployer may override the callback
handler specified by the application and require use of the container’s default
authentication user interface instead.

If use of a callback handler has been configured by the Deployer, the
application client container must instantiate an object of this class and use it for all
authentication interactions with the user. The application’s callback handler must
support all the Callback objects specified in the javax.security.auth.callback
package.

Application clients execute in an environment controlled by a J2SE security
manager and are subject to the security permissions defined in Section J2EE.6.2,
“Java 2 Platform, Standard Edition (J2SE) Requirements.” Although this
specification does not define the relationship between the operating system
identity associated with a running application client and the authenticated user
identity, support for single signon requires that the J2EE product be able to relate
blic Review

 USER AUTHENTICATION REQUIREMENTS 43
these identities. Additional application client requirements are described in
Chapter J2EE.9.7 of this specification.

J2EE.3.4.5 Resource Authentication Requirements

Resources within an enterprise are often deployed in security policy domains
different from the security policy domain of the application component. The wide
variance of authentication mechanisms used to authenticate the caller to resources
leads to the requirement that a J2EE product provide the means to authenticate in
the security policy domain of the resource.

A Product Provider must support both of the following:

1. Configured Identity. A J2EE container must be able to authenticate for access
to the resource using a principal and authentication data specified by a Deploy-
er at deployment time.The authentication must not depend in any way on data
provided by the application components. Providing for the confidential storage
of the authentication information is the responsibility of the Product Provider.

2. Programmatic Authentication. The J2EE product must provide for specifi-
cation of the principal and authentication data for a resource by the application
component at runtime using appropriate APIs. The application may obtain the
principal and authentication data through a variety of mechanisms, including
receiving them as parameters, obtaining them from the component’s environ-
ment, and so forth.

In addition, the following techniques are recommended but not required by
this specification:

3. Principal Mapping. A resource can have a principal and attributes that are de-
termined by a mapping from the identity and security attributes of the request-
ing principal. In this case, a resource principal is not based on inheritance of
the identity or security attributes from a requesting principal, but gets its iden-
tity and security attributes based on the mapping.

4. Caller Impersonation. A resource principal acts on behalf of a requesting
principal. Acting on behalf of a caller principal requires delegation of the call-
er’s identity and credentials to the underlying resource manager. In some sce-
narios, a requesting principal can be a delegate of an initiating principal and
the resource principal is transitively impersonating an initiating principal.

The support for principal delegation is typically specific to a security mecha-

Pu

44
nism. For example, Kerberos supports a mechanism for the delegation of
authentication. (Refer to the Kerberos v5 specification for more details.)

5. Credentials Mapping. This technique may be used when an application serv-
er and an EIS support different authentication domains. For example:

a. The initiating principal may have been authenticated and have public key
certificate-based credentials.

b. The security environment for the resource manager may be configured
with the Kerberos authentication service.

The application server is configured to map the public key certificate-based
credentials associated with the initiating principal to the Kerberos credentials.

Additional information on resource authentication requirements can be found
in the Connector specification.

J2EE.3.5 Authorization Requirements

To support the authorization models described in this chapter, the following
requirements are imposed on J2EE products.

J2EE.3.5.1 Code Authorization

A J2EE product may restrict the use of certain J2SE classes and methods to secure
and ensure proper operation of the system. The minimum set of permissions that a
J2EE product is required to grant to a J2EE application is defined in
Section J2EE.6.2, “Java 2 Platform, Standard Edition (J2SE) Requirements.” All
J2EE products must be capable of deploying application components with exactly
these permissions.

A J2EE Product Provider may choose to enable selective access to resources
using the Java 2 protection model. The mechanism used is J2EE product
dependent.

A future version of the J2EE deployment descriptor definition (see
Chapter J2EE.8, “Application Assembly and Deployment”) may make it possible
to express additional permissions that a component needs for access.
blic Review

 AUTHORIZATION REQUIREMENTS 45
J2EE.3.5.2 Caller Authorization

A J2EE product must enforce the access control rules specified at deployment time
(see Section J2EE.3.6, “Deployment Requirements”) and more fully described in
the EJB and servlet specifications.

J2EE.3.5.3 Propagated Caller Identities.

It must be possible to configure a J2EE product so that a propagated caller identity is
used in all authorization decisions. With this configuration, for all calls to all
enterprise beans from a single application within a single J2EE product, the
principal name returned by the EJBContext method getCallerPrincipal must be
the same as that returned by the first enterprise bean in the call chain. If the first
enterprise bean in the call chain is called by a servlet or JSP page, the principal
name must be the same as that returned by the HttpServletRequest method
getUserPrincipal in the calling servlet or JSP page. (However, if the
HttpServletRequest method getUserPrincipal returns null, the principal used in
calls to enterprise beans is not specified by this specification, although it must still
be possible to configure enterprise beans to be callable by such components.)

Note that this does not require delegation of credentials, only identification of
the caller. A single principal must be the principal used in authorization decisions
for access to all enterprise beans in the call chain. The requirements in this section
apply only when a J2EE product has been configured to propagate caller identity.

J2EE.3.5.4 Run As Identities

J2EE products must also support the Run As capability that allows the Application
Component Provider and the Deployer to specify an identity under which an
enterprise bean or web component must run. In this case it is the Run As identity
that is propagated to subsequent EJB components, rather than the original caller
identity.

Note that this specification doesn’t specify any relationship between the Run
As identity and any underlying operating system identity that may be used to
access system resources such as files. However, the Java Authorization Contract
for Containers specification does specify the relationship between the Run As
identity and the access control context used by the J2SE security manager.

Pu

46
J2EE.3.6 Deployment Requirements

All J2EE products must implement the access control semantics described in the
EJB, JSP, and servlet specifications, and provide a means of mapping the
deployment descriptor security roles to the actual roles exposed by a J2EE product.

While most J2EE products will allow the Deployer to customize the role
mappings and change the assignment of roles to methods, all J2EE products must
support the ability to deploy applications and components using exactly the
mappings and assignments specified in their deployment descriptors.

As described in the EJB specification and the servlet specification, a J2EE
product must provide a deployment tool or tools capable of assigning the security
roles in deployment descriptors to the entities that are used to determine role
membership at authorization time.

Application developers will need to specify (in the application’s deployment
descriptors) the security requirements of an application in which some
components may be accessed by unauthenticated users as well as authenticated
users (as described above in Section J2EE.3.4.3, “Unauthenticated Users”).
Applications express their security requirements in terms of security roles, which
the Deployer maps to users (principals) in the operational environment at
deployment time. An application might define a role representing all authenticated
and unauthenticated users and configure some enterprise bean methods to be
accessible by this role.

To support such usage, this specification requires that it be possible to map an
application defined security role to the universal set of application principals
independent of authentication.

J2EE.3.7 Future Directions

J2EE.3.7.1 Auditing

This specification does not specify requirements for the auditing of security relevant
events, nor APIs for application components to generate audit records. A future
version of this specification may include such a specification for products that
choose to provide auditing.
blic Review

 FUTURE DIRECTIONS 47
J2EE.3.7.2 Instance-based Access Control

Some applications need to control access to their data based on the content of the
data, rather than simply the type of the data. We refer to this as “instance-based”
rather than “class-based” access control. We hope to address this in a future release.

J2EE.3.7.3 User Registration

Web-based internet applications often need to manage a set of customers
dynamically, allowing users to register themselves as new customers. This scenario
was widely discussed in the servlet expert group (JSR-53) but we were unable to
achieve consensus on the appropriate solution. We had to abandon this work for
J2EE 1.3, and were not able to address it for J2EE 1.4, but hope to pursue it further
in a future release.

Pu

48
blic Review

C H A P T E R J2EE.4

Transaction Management

This chapter describes the required Java™ 2 Platform, Enterprise Edition (J2EE)
transaction management and runtime environment.

Product Providers must transparently support transactions that involve
multiple components and transactional resources within a single J2EE product, as
described in this chapter. This requirement must be met regardless of whether the
J2EE product is implemented as a single process, multiple processes on the same
network node, or multiple processes on multiple network nodes.

The following components are considered transactional resources and must
behave as specified here:

• JDBC connections

• JMS sessions

• Resource adapter connections for resource adapters specifying the
XATransaction transaction level

J2EE.4.1 Overview

A J2EE Product Provider must support a transactional application comprised of
combinations of servlets or JSP pages accessing multiple enterprise beans within a
single transaction. Each component may also acquire one or more connections to
access one or more transactional resource managers.

For example, in Figure J2EE.4-1, the call tree starts from a servlet or JSP
page accessing multiple enterprise beans, which in turn may access other
enterprise beans. The components access resource managers via connections.
49

Pu

50
Figure J2EE.4-1 Servlets/JSP Pages Accessing Enterprise Beans

The Application Component Provider specifies, using a combination of
programmatic and declarative transaction demarcation APIs, how the platform
must manage transactions on behalf of the application.

For example, the application may require that all the components in Figure
J2EE.4-1 access resources as part of a single transaction. The Platform Provider
must provide the transaction capabilities to support such a scenario.

This specification does not define how the components and the resources are
partitioned or distributed within a single J2EE product. In order to achieve the
transactional semantics required by the application, the J2EE Product Provider is
free to execute the application components sharing a transaction in the same Java
virtual machine, or distribute them across multiple virtual machines.

The rest of this chapter describes the transactional requirements for a J2EE
product in more detail.

Client JSP/
servlet

EJBean

EJBean

EJBean

EJBean

EJBean

EJBean

connection

connection

connection

connection
connection

connection
connections

O
ne or m

ore transactional resource m
anagers

1a

1b

2a

2b

2c

2d

:

:

:

:

blic Review

 REQUIREMENTS 51
J2EE.4.2 Requirements

This section defines the transaction support requirements of J2EE Products that
must be supported by Product Providers.

J2EE.4.2.1 Web Components

Servlets and JSP pages demarcate a transaction using the
javax.transaction.UserTransaction interface which is defined in the JTA
specification. They may access multiple resource managers and invoke multiple
enterprise beans within a single transaction. The specified transaction context is
automatically propagated to the enterprise beans and transactional resource
managers. The result of the propagation may be subject to the enterprise bean
transaction attributes (for example, a bean may be required to use Container
Managed Transactions).

Servlet filters and web application event listeners must not demarcate
transactions using the javax.transaction.UserTransaction interface. Servlet
filters may use transactional resources in a local transaction mode within their
doFilter methods but should not use any transactional resources in the methods of
any objects used to wrap the request or response objects.

J2EE.4.2.1.1 Transaction Requirements

The J2EE platform must meet the following requirements:

• The J2EE platform must provide an object implementing the
javax.transaction.UserTransaction interface to all web components. The
platform must publish the UserTransaction object in the Java™ Naming and
Directory Interface (JNDI) name space available to web components under the
name java:comp/UserTransaction.

• If a web component invokes an enterprise bean from a thread associated with
a JTA transaction, the J2EE platform must propagate the transaction context
with the enterprise bean invocation. Whether the target enterprise bean will be
invoked in this transaction context or not is determined by the rules defined in
the EJB specification.

Note that this transaction propagation requirement applies only to invocations

of enterprise beans in the same J2EE product instance1 as the invoking com-
ponent. Invocations of enterprise beans in another J2EE product instance (for

Pu

52
example, using the EJB interoperability protocol) need not propagate the
transaction context. See the EJB specification for details.

• If a web component accesses a transactional resource manager from a thread
associated with a JTA transaction, the J2EE platform must ensure that the re-
source access is included as part of the JTA transaction.

• If a web component creates a thread, the J2EE platform must ensure that the
newly created thread is not associated with any JTA transaction.

J2EE.4.2.1.2 Transaction Non-Requirements

The Product Provider is not required to support the importing of a transaction
context from a client to a web component.

The Product Provider is not required to support transaction context
propagation via an HTTP request across web components. The HTTP protocol
does not support such transaction context propagation. When a web component
associated with a transaction makes an HTTP request to another web component,
the transaction context is not propagated to the target servlet or page.

However, when a web component is invoked through the RequestDispatcher
interface, any active transaction context must be propagated to the called servlet
or JSP page.

J2EE.4.2.2 Transactions in Web Component Life Cycles

Transactions may not span web requests from a client. A web component starts a
transaction in the service method of a servlet (or, for a JSP page, the service
method of the equivalent JSP page Implementation Class) and it must be completed
before the service method returns. Returning from the service method with an

1. A product instance corresponds to a single installation of a J2EE product.
A single product instance might use multiple operating system processes,
or might support multiple host machines as part of a distributed contain-
er. In contrast, it might be possible to run multiple instances of a product
on a single host machine, or possibly even in a single Java virtual ma-
chine, for example, as part of a virtual hosting solution. The transaction
propagation requirement applies within a single product instance and is
independent of the number of Java virtual machines, operating system
processes, or host machines used by the product instance.
blic Review

 REQUIREMENTS 53
active transaction context is an error. The web container is required to detect this
error and abort the transaction.

J2EE.4.2.3 Transactions and Threads

There are many subtle and complex interactions between the use of transactional
resources and threads. To ensure correct operation, web components should obey
the following guidelines, and the web container must support at least these usages.

• JTA transactions should be started and completed in the thread in which the
service method is called. Additional threads that are created for any purpose
should not attempt to start JTA transactions.

• Transactional resources may be acquired and released by a thread other than
the service method thread, but should not be shared between threads.

• Transactional resource objects (for example, JDBC Connection objects)
should not be stored in static fields. Such objects can only be associated with
one transaction at a time. Storing them in static fields would make it easy to
erroneously share them between threads in different transactions.

• Web components implementing SingleThreadModel may store top-level
transactional resource objects in class instance fields. A top-level object is one
acquired directly from a container managed connection factory object (for ex-
ample, a JDBC Connection acquired from a JDBC ConnectionFactory), as
opposed to other objects acquired from these top-level objects (for example, a
JDBC Statement acquired from a JDBC Connection). The web container en-
sures that requests to a SingleThreadModel servlet are serialized and thus only
one thread and one transaction will be able to use the object at a time, and that
the top-level object will be enlisted in any new transaction started by the com-
ponent.

• In web components not implementing SingleThreadModel, transactional re-
source objects should not be stored in class instance fields, and should be ac-
quired and released within the same invocation of the service method.

• Web components that are called by other web components (using the forward
or include methods) should not store transactional resource objects in class
instance fields.

• Enterprise beans may be invoked from any thread used by a web component.
Transaction context propagation requirements are described above and in the
EJB specification.

Pu

54
J2EE.4.2.4 Enterprise JavaBeans™ Components

The J2EE Product Provider must provide support for transactions as defined in the
EJB specification.

J2EE.4.2.5 Application Clients

The J2EE Product Provider is not required to provide transaction management
support for application clients.

J2EE.4.2.6 Applet Clients

The J2EE Product Provider is not required to provide transaction management
support for applets.

J2EE.4.2.7 Transactional JDBC™ Technology Support

A J2EE product must support a JDBC technology database as a transactional
resource manager. The platform must enable transactional JDBC API access from
web components and enterprise beans.

It must be possible to access the JDBC technology database from multiple
application components within a single transaction. For example, a servlet may
wish to start a transaction, access a database, invoke an enterprise bean that
accesses the same database as part of the same transaction, and, finally, commit
the transaction.

A J2EE product must provide a transaction manager that is capable of
coordinating two-phase commit operations across multiple XA-capable JDBC
databases. If a JDBC driver supports the Java Transaction API’s XA interfaces (in
the javax.transaction.xa package), then the J2EE product must be capable of
using the XA interfaces provided by the JDBC driver to accomplish two-phase
commit operations. The J2EE product may discover the XA capabilities of JDBC
drivers through product-specific means, although normally such JDBC drivers
would be delivered as resource adapters using the Connector API.

J2EE.4.2.8 Transactional JMS Support

A J2EE product must support a JMS provider as a transactional resource manager.
The platform must enable transactional JMS access from servlets, JSP pages, and
enterprise beans.
blic Review

 TRANSACTION INTEROPERABILITY 55
It must be possible to access the JMS provider from multiple application
components within a single transaction. For example, a servlet may wish to start a
transaction, send a JMS message, invoke an enterprise bean that also sends a JMS
message as part of the same transaction, and, finally, commit the transaction.

J2EE.4.2.9 Transactional Resource Adapter (Connector) Support

A J2EE product must support resource adapters that use XATransaction mode as
transactional resource managers. The platform must enable transactional access to
the resource adapter from servlets, JSP pages, and enterprise beans.

It must be possible to access the resource adapter from multiple application
components within a single transaction. For example, a servlet may wish to start a
transaction, access the resource adapter, invoke an enterprise bean that also
accesses the resource adapter as part of the same transaction, and, finally, commit
the transaction.

J2EE.4.3 Transaction Interoperability

J2EE.4.3.1 Multiple J2EE Platform Interoperability

This specification does not require the Product Provider to implement any particular
protocol for transaction interoperability across multiple J2EE products. J2EE
compatibility requires neither interoperability among identical J2EE products from
the same Product Provider, nor among heterogeneous J2EE products from multiple
Product Providers.

We recommend that J2EE Product Providers use the IIOP transaction
propagation protocol defined by OMG and described in the OTS specification
(and implemented by the Java Transaction Service), for transaction
interoperability when using the EJB interoperability protocol based on RMI-IIOP.
We plan to require the IIOP transaction propagation protocol as the EJB server
transaction interoperability protocol in a future release of this specification.

J2EE.4.3.2 Support for Transactional Resource Managers

This specification requires all J2EE products to support the
javax.transaction.xa.XAResource interface, as specified in the Connector
specification. This specification also requires all J2EE products to support the

Pu

56
javax.transaction.xa.XAResource interface for performing two-phase commit
operations on JDBC drivers that support the JTA XA APIs. This specification does
not require that JDBC drivers or JMS providers use the
javax.transaction.xa.XAResource interface, although they may use this interface
and in all cases they must meet the transactional resource manager requirements
described in this chapter. In particular, it must be possible to combine operations on
one or more JDBC databases, one or more JMS sessions, one or more enterprise
beans, and multiple resource adapters supporting the XATransaction mode in a
single JTA transaction.

J2EE.4.4 Local Transaction Optimization

J2EE.4.4.1 Requirements

If a transaction uses a single resource manager, performance may be improved by
using a resource manager specific local optimization. A local transaction is typically
more efficient than a global transaction and provides better performance. Local
optimization is not available for transactions that are imported from a different
container.

Containers may choose to provide local transaction optimization, but are not
required to do so. Local transaction optimization must be transparent to a J2EE
application.

The following section describes a possible mechanism for local transaction
optimization by containers.

J2EE.4.4.2 A Possible Design

This section illustrates how the previously described requirements might be
implemented.

When the first connection to a resource manager is established as part of the
transaction, a resource manager specific local transaction is started on the
connection. Any subsequent connection acquired as part of the transaction that
can share the local transaction on the first connection is allowed to share the local
transaction.

A global transaction is started lazily under the following conditions:
blic Review

 CONNECTION SHARING 57
• When a subsequent connection cannot share the resource manager local trans-
action on the first connection, or if it uses a different resource manager.

• When a transaction is exported to a different container.

After the lazy start of a global transaction, any subsequent connection
acquired may either share the local transaction on the first connection, or be part
of the global transaction, depending on the resource manager it accesses.

When a transaction completion (commit or rollback) is attempted, there are
two possibilities:

• If only a single resource manager had been accessed as part of the transaction,
the transaction is completed using the resource manager specific local transac-
tion mechanism.

• If a global transaction had been started, the transaction is completed treating
the resource manager local transaction as a last resource in the global 2-phase
commit protocol, that is using the last resource 2-phase commit optimization.

J2EE.4.5 Connection Sharing

When multiple connections acquired by a J2EE application use the same resource
manager, containers may choose to provide connection sharing within the same
transaction scope. Sharing connections typically results in efficient usage of
resources and better performance. Containers are required to provide connection
sharing in certain situations; see the Connector specification for details..

Connections to resource managers acquired by J2EE applications are
considered potentially shared or shareable. A J2EE application component that
intends to use a connection in an unshareable way must provide deployment
information to that effect, to prevent the connection from being shared by the
container. Examples of when this may be needed include situations with changed
security attributes, isolation levels, character settings, and localization
configuration. Containers must not attempt to share connections that are marked
unshareable. If a connection is not marked unshareable, it must be transparent to
the application whether the connection is actually shared or not.

J2EE application components may use the optional deployment descriptor
element res-sharing-scope to indicate whether a connection to a resource
manager is shareable or unshareable. Containers must assume connections to be
shareable if no deployment hint is provided. Section J2EE.9.7, “J2EE Application

Pu

58
Client XML Schema”, the EJB specification, and the servlet specification provide
descriptions of the deployment descriptor element.

J2EE application components may cache connection objects and reuse them
across multiple transactions. Containers that provide connection sharing must
transparently switch such cached connection objects (at dispatch time) to point to
an appropriate shared connection with the correct transaction scope. Refer to the
Connector specification for a detailed description of connection sharing.

J2EE.4.6 JDBC and JMS Deployment Issues

The JDBC transaction requirements in Section J2EE.4.2.7, “Transactional JDBC™
Technology Support” and the JMS transaction requirements in Section J2EE.4.2.8,
“Transactional JMS Support” may impose some restrictions on a Deployer’s
configuration of an application’s JDBC and JMS resources. J2EE Product Providers
may impose the restrictions described in this section to meet these requirements.

If the deployer configures a non-XA-capable JDBC resource manager in a
transaction, then a J2EE Product Provider may restrict all JDBC access within that
transaction to that non-XA-capable JDBC resource manager. Otherwise, a J2EE
Product Provider must support use of multiple XA-capable JDBC resource
managers wthin a transaction. In addition, a J2EE Product Provider may restrict
the security configuration of all JDBC connections within a transaction to a single
user identity. A J2EE Product Provider is not required to support transactions
where more than one JDBC identity is used. Specifically, this means that
transactions that require the use of more than one JDBC security identity (which
can be done explicitly via component provided user name and password) may not
be portable.

A J2EE Product Provider may make the same restrictions as above, resulting
in a transaction being restricted to a single JMS resource manager and user
identity.

In addition, when both a JDBC resource manager and a JMS resource
manager are used in the same transaction, a J2EE Product Provider may restrict
both to a pairing that allows their combination to deliver the full transactional
semantics required by the application, and may restrict the security identity of
both to a single identity. To fully support such usage, portable applications that
wish to include JDBC and JMS access in a single global transaction must not
mark the corresponding transactional resources as “unshareable”.
blic Review

 TWO-PHASE COMMIT SUPPORT 59
Although these restrictions are allowed, it is recommended that J2EE Product
Providers support JDBC and JMS resource managers that provide full two-phase
commit functionality and, as a result, do not impose these restrictions.

J2EE.4.7 Two-Phase Commit Support

A J2EE product must support the use of multiple XA-capable resource adapters in a
single transaction. To support such a scenario, full two-phase commit support is
required. A JMS provider may be provided as an XA-capable resource adapter. In
such a case, it must be possible to include JMS operations in the same global
transaction as other resource adapters. While JDBC drivers are not required to be
XA-capable, a JDBC driver may be delivered as an XA-capable resource adapter. In
such a case, it must be possible to include JDBC operations in the same global
transaction as other XA-capable resource adapters. See also Section J2EE.4.2.7,
“Transactional JDBC™ Technology Support.”

J2EE.4.8 System Administration Tools

Although there are no compatibility requirements for system administration
capabilities, the J2EE Product Provider will typically include tools that allow the
System Administrator to perform the following tasks:

• Integrate transactional resource managers with the platform.

• Configure the transaction management parts of the platform.

• Monitor transactions at runtime.

• Receive notifications of abnormal transaction processing conditions (such as
abnormally high number of transaction rollbacks).

Pu

60
blic Review

C H A P T E R J2EE.5

Resources, Naming, and

Injection

This chapter describes how applications declare dependencies on external
resources and configuration parameters, and how those items are represented in the
J2EE naming system and can be injected into application components. These
requirements are based on annotations defined in the Java Metadata specification
(JSR-175) and features defined in the Java Naming and Directory Interface™
(JNDI) specification. The Resource annotation described here is defined in more
detail in the Common Annotations specification (JSR-250). The EJB annotation
described here is defined in more detail in the Enterprise JavaBeans specification
(JSR-220).

J2EE.5.1 Overview

The requirements defined in this chapter address the following two issues:

• The Application Assembler and Deployer should be able to customize the be-
havior of an application’s business logic without accessing the application’s
source code. Typically this will involve specification of parameter values, con-
nection to external resources, and so on. Deployment descriptors provide this
capability

• Applications must be able to access resources and external information in their
operational environment without knowledge of how the external information
is named and organized in that environment. The JNDI naming context and
Java language annotations provide this capability.
61

Pu

62
J2EE.5.1.1 Chapter Organization

The following sections contain the J2EE platform solutions to the above issues:

• Section J2EE.5.2, “JNDI Naming Context” defines general rules for the use of
the JNDI naming context and its interaction with Java language annotations
that reference entries in the naming context.

• Section J2EE.5.3, “Responsibilities by J2EE Role” defines the general re-
sponsibilities for each of the J2EE roles such as Application Component Pro-
vider, Application Assembler, Deployer, and J2EE Product Provider.

• Section J2EE.5.4, “Simple Environment Entries” defines the basic interfaces
that specify and access the application component’s naming environment. The
section illustrates the use of the application component’s naming environment
for generic customization of the application component’s business logic.

• Section J2EE.5.5, “Enterprise JavaBeans™ (EJB) References” defines the in-
terfaces for obtaining the home interface or an instance of an enterprise bean
using an EJB reference. An EJB reference is a special entry in the application
component’s environment.

• Section J2EE.5.6, “Resource Manager Connection Factory References” de-
fines the interfaces for obtaining a resource manager connection factory using
a resource manager connection factory reference. A resource manager con-
nection factory reference is a special entry in the application component’s en-
vironment.

• Section J2EE.5.7, “Resource Environment References” defines the interfaces
for obtaining an administered object that is associated with a resource using a
resource environment reference. A resource environment reference is a spe-
cial entry in the application component’s environment.

• Section J2EE.5.8, “Message Destination References” defines the interfaces
for declaring and using message destination references.

• Section J2EE.5.9, “UserTransaction References” describes the use by eligible
application components of references to a UserTransaction object in the
component’s environment to start, commit, and abort transactions.

• Section J2EE.5.10, “ORB References” describes the use by eligible applica-
tion components of references to a CORBA ORB object in the component’s en-
vironment.
blic Review

 JNDI NAMING CONTEXT 63
J2EE.5.1.2 Required Access to the JNDI Naming Environment

J2EE application clients, enterprise beans, and web components are required to have
access to a JNDI naming environment. The containers for these application
component types are required to provide the naming environment support described
here.

Annotations and deployment descriptors are the main vehicles for conveying
access information to the Application Assembler and Deployer about application
components’ requirements for customization of business logic and access to
external information. The annotations decscribed here are available for use by all
application component types. The deployment descriptor entries described here
are present in identical form in the deployment descriptor schemas for each of
these application component types. See the corresponding specification of each
application component type for the details.

J2EE.5.2 JNDI Naming Context

The application component’s naming environment is a mechanism that allows
customization of the application component’s business logic during deployment or
assembly. Use of the application component’s environment allows the application
component to be customized without the need to access or change the application
component’s source code.

J2EE.5.2.1 The Application Component’s Environment

The container implements the application component’s environment, and
provides it to the application component instance as a JNDI naming context. The
application component’s environment is used as follows:

1. The application component’s business methods make use of entries from the
environment. The business methods may access the environment using the
JNDI interfaces or lookup methods on component-specific context objects. Al-
so, entries from the environment may be injected into the application compo-
nent’s fields or methods. The Application Component Provider declares in the
deployment descriptor, or via annotations, all the environment entries that the
application component expects to be provided in its environment at runtime.

2. The container provides an implementation of the JNDI naming context that
stores the application component environment. The container also provides the

Pu

64
tools that allow the Deployer to create and manage the environment of each ap-
plication component.

3. The Deployer uses the tools provided by the container to initialize the environ-
ment entries that are declared in the application component’s deployment de-
scriptor or via annotations. The Deployer can set and modify the values of the
environment entries.

4. The container injects entries from the environment into application component
fields or methods as specified by the application component’s deployment de-
scriptor or by annotations on the application component class.

5. The container also makes the environment naming context available to the ap-
plication component instances at runtime. The application component’s in-
stances may use the JNDI interfaces or component context lookup methods to
obtain the values of the environment entries.

J2EE.5.2.2 Sharing of Environment Entries

Each application component defines its own set of dependencies that must
appear as entries in the application component’s environment. All instances of an
application component within the same container share the same environment
entries. Application component instances are not allowed to modify the
environment at runtime.

In general, lookups of objects in the JNDI java: namespace are required to
return a new instance of the requested object every time. Exceptions are allowed
for the following:

• The container knows the object is immutable (for example, objects of type
java.lang.String), or knows that the application can’t change the state of the
object.

• The object is defined to be a singleton, such that only one instance of the ob-
ject may exist in the JVM.

• The name used for the lookup is defined to return an instance of the object that
might be shared. The name java:comp/ORB is such a name.

In these cases, a shared instance of the object may be returned. In all other
cases, a new instance of the requested object must be returned on each lookup.
Note that, in the case of resource adapter connection objects, it is the resource
blic Review

 JNDI NAMING CONTEXT 65
adapter’s ManagedConnectionFactory implementation that is responsible for
satisfying this requirement.

Each injection of an object corresponds to a JNDI lookup. Whether a new
instance of the requested object is injected, or whether a shared instance is
injected, is determined by the rules described above.

J2EE.5.2.3 Annotations and Resource Injection

As described in the following sections, a field or method of certain container-
managed component classes may be annotated to request that an entry from the
application component’s environment be injected into the class. Any of the types
of resources described in this chapter may be injected. Injection may also be
requested using entries in the deployment descriptor corresponding to each of
these resource types. The field or method may have any access qualifier (public,
private, etc.). For all classes except application client main classes, the fields or
methods must not be static. Because application clients use the same lifecycle as
J2SE applications, no instance of the application client main class is created by
the application client container. Instead, the static main method is invoked. To
support injection for the application client main class, the fields or methods
annotated for injection must be static.

A field of a class may be the target of injection. The field may not be final.
By default, the name of the field is combined with the fully qualified name of the
class and used directly as the name in the application component’s naming
context. For example, a field named myDatabase in the class MyApp in the package
com.example would correspond to the JNDI name java:comp/env/
com.example.MyApp/myDatabase. The annotation also allows the JNDI name to be
specified explicitly. When a deployment descriptor entry is used to specify
injection, the JNDI name and the field name are both specified explicitly. Note
that the JNDI name is always relative to the java:comp/env naming context.

Environment entries may also be injected into a class through methods that
follow the naming conventions for JavaBeans properties. The annotation is
applied to the set method for the property, which is the method that’s called to
inject the environment entry into the class. The JavaBeans property name (not the
method name) is used as the default JNDI name. For example, a method named
setMyDatabase in the same MyApp class would correspond to the same JNDI name
java:comp/env/com.example.MyApp/myDatabase as the field myDatabase.

Each resource may only be injected into a single field or method of a given
name in a given class. Requesting injection of the java:comp/env/

Pu

66
com.example.MyApp/myDatabase resource into both the setMyDatabase method
and the myDatabase field is an error; a development tool that processes such
annotations must detect this error. Note, however, that either the field or the
method could request injection of a resource of a different (non-default) name. By
explicitly specifying the JNDI name of a resource, a single resource may be
injected into multiple fields or methods of multiple classes.

The specifications for the various application component types describe
which classes may be annotated for injection, as summarized in Table J2EE.5-1.
They also describe when injection occurs in the lifecycle of the component.
Typically injection will occur after an instance of the class is constructed, but
before any business methods are called. If the container fails to find a resource
needed for injection, initialization of the class must fail, and the class must not be
put into service.

Table J2EE.5-1 Component classes supporting injection

Container Spec Classes supporting injection

web container Servlet servlets
servlet filters
event listeners

JSP tag handlers
tag library event listeners

JSF managed beans

JAX-RPC service endpoints
handlers

JAX-WS service endpoints
handlers

EJB container EJB beans
callback listeners
interceptors

JAX-RPC service endpoints
handlers

JAX-WS service endpoints
handlers

application client container J2EE
platform

main class (static)
login callback handler
blic Review

 JNDI NAMING CONTEXT 67
Annotations may also be applied to the class itself. These annotations declare
an entry in the application component’s environment but do not cause the resource
to be injected. Instead, the application component is expected to use JNDI or a
component context lookup method to lookup the entry. When the annotation is
applied to the class, the JNDI name and the environment entry type must be
specified explicitly.

Resource annotations may appear on any of the classes listed above, or on any
superclass of any class listed above. A resource annotation on any class in the
inheritance hierarchy defines a resource needed by the application component.
However, injection of resources follows the Java language overriding rules for
visibility of fields and methods. A field or method definition that overrides a field
or method on a superclass defines the resource, if any, to be injected into that field
or method. An overriding field or method may request injection even though the
superclass field or method does not request injection, it may request injection of a
different resource than is requested by the superclass, or it may request no
injection even though the superclass field or method requests injection.

In addition, fields or methods that are not visible in or are hidden (as opposed
to overridden) by a subclass may still request injection. This allows, for example,
a private field to be the target of injection and that field to be used in the
implementation of the superclass, even though the subclass has no visibility into
that field and doesn’t know that the implementation of the superclass is using an
injected resource.

In some cases a class may need to perform initialization of its own after all
resources have been injected. To support this case, one method of the class may be
annotated with the InjectionComplete annotation. This method will be called
after all resource injections have occured and before the class is put into service.
This method will be called even if the class doesn’t request any resources to be
injected.

J2EE.5.2.4 Annotations and Deployment Descriptors

Environment entries may be declared by use of annotations, without need for any
deployment descriptor entries. Environment entries may also be declared by
deployment descriptor entries. The same environment entry may be declared using
both an annotation and a deployment descriptor entry. In this case, the information
in the deployment descriptor entry may be used to override some of the information
provided in the annotation. This approach may be used by an Application
Assembler or Deployer to override information provided by the Application

Pu

68
Component Developer. Applications should not use deployment descriptor entries
to request injection of a resource into a field or method that has not been annotated
for injection

The following list describes the rules for how a deployment descriptor entry
may override a Resource annotation.

• The relevant deployment descriptor entry is located based on the JNDI name
used with the annotation (either defaulted or provided explicitly).

• The type specified in the deployment descriptor must be assignable to the type
of the field or property.

• The description, if specified, overrides the description element of the annota-
tion.

• The injection target, if specified, must name exactly the annotated field or
property method.

• The res-sharing-scope element, if specified, overrides the shareable ele-
ment of the annotation.

• The res-auth element, if specified, overrides the authenticationType ele-
ment of the annotation.

The rules for how a deployment descriptor entry may override an EJB
annotation are included in the EJB specification. The rules for how a deployment
descriptor entry may override a WebServiceRef annotation are included in the
Web Services for J2EE specification.

J2EE.5.3 Responsibilities by J2EE Role

This section describes the responsibilities for each J2EE role that apply to all uses of
the J2EE naming context. The sections that follow describe the responsibilities that
are specific to the different types of objects that may be stored in the naming
context.

J2EE.5.3.1 Application Component Provider’s Responsibilities

The Application Component Provider may make use of three techniques for
accessing and managing the naming context. First, the Application Component
Provider may use Java language annotations to request injection of a resource from
blic Review

 RESPONSIBILITIES BY J2EE ROLE 69
the naming context, or to declare elements that are needed in the naming context.
Second, the component may use the JNDI APIs to access entries in the naming
context. Third, deployment descriptor entries may be used to declare entries needed
in the naming context, and to request injection of these entries into application
components. Deployment descriptor entries may also be used to override
information provided by annotations.

J2EE.5.3.2 Application Assembler’s Responsibilities

The Application Assembler is allowed to modify the entries in the naming context
set by the Application Component Provider, and is allowed to set the values of those
entries for which the Application Component Provider has not specified any values.
The Application Assembler may use the deployment descriptor to override settings
made by the Application Component Provider in the source code using annotations.

J2EE.5.3.3 Deployer’s Responsibilities

The Deployer must ensure that all the entries declared by an application component
are created and properly initialized.

The Deployer can modify the entries that have been previously set by the
Application Component Provider and/or Application Assembler, and must set the
values of those entries for which a required value has not been specified.

The description deployment descriptor elements and annotation elements
provided by the Application Component Provider or Application Assembler help
the Deployer with this task.

J2EE.5.3.4 J2EE Product Provider’s Responsibilities

The J2EE Product Provider has the following responsibilities:

• Provide a deployment tool that allows the Deployer to set and modify the en-
tries of the application component’s naming context.

• Implement the java:comp/env environment naming context, and provide it to
the application component instances at runtime. The naming context must in-
clude all the entries declared by the Application Component Provider, with
their values supplied in the deployment descriptor or set by the Deployer. The
environment naming context must allow the Deployer to create subcontexts if
they are needed by an application component.

Pu

70
• Inject entries from the naming environment into the application component,
as specified by the deployment descriptor or annotations on the application
component classes.

• The container must ensure that the application component instances have only
read access to their naming context. The container must throw the
javax.naming.OperationNotSupportedException from all the methods of the
javax.naming.Context interface that modify the environment naming context
and its subcontexts.

J2EE.5.4 Simple Environment Entries

A simple environment entry is a configuration parameter used to customize an
application component’s business logic. The environment entry values may be one
of the following Java types: String, Character, Byte, Short, Integer, Long,
Boolean, Double, and Float.

The following subsections describe the responsibilities of each J2EE Role.

J2EE.5.4.1 Application Component Provider’s Responsibilities

This section describes the Application Component Provider’s view of the
application component’s environment, and defines his or her responsibilities. It does
so in three sections, the first describing annotations for injecting environment
entries, the second describing the API for accessing environment entries, and the
third describing syntax for declaring the environment entries in a deployment
descriptor.

J2EE.5.4.1.1 Injection of Simple Environment Entries

A field or a method of an application component may be annotated with the
Resource annotation. The name and type of the environment entry are as described
above. Note that the container will unbox the environment entry as required to
match it to a primitive type used for the injection field or method. The
authenticationType and shareable elements of the Resource annotation must not
be specified; simple environment entries are not shareable and do not require
authentication.

The following code example illustrates how an application component uses
annotations to declare environment entries.
blic Review

 SIMPLE ENVIRONMENT ENTRIES 71
// The maximum number of tax exemptions, configured by the Deployer.

@Resource int maxExemptions;

// The minimum number of tax exemptions, configured by the Deployer.

@Resource int minExemptions;

public void setTaxInfo(int numberOfExemptions,...)

throws InvalidNumberOfExemptionsException {

...

// Use the environment entries to

// customize business logic.

if (numberOfExemptions > maxExemptions ||

numberOfExemptions < minExemptions)

throw new InvalidNumberOfExemptionsException();

...

}

J2EE.5.4.1.2 Programming Interfaces for Accessing Simple Environment
Entries

In addition to the injection based approach described above, an application
component may access environment entries dynamically. An application component
instance locates the environment naming context using the JNDI interfaces. An
instance creates a javax.naming.InitialContext object by using the constructor
with no arguments, and looks up the naming environment via the InitialContext
under the name java:comp/env. The application component’s environment entries
are stored directly in the environment naming context, or in its direct or indirect
subcontexts.

Environment entries have the Java programming language type declared by
the Application Component Provider in the deployment descriptor.

The following code example illustrates how an application component
accesses its environment entries.

public void setTaxInfo(int numberOfExemptions,...)

throws InvalidNumberOfExemptionsException {

...

// Obtain the application component’s

// environment naming context.

Context initCtx = new InitialContext();

Context myEnv = (Context)initCtx.lookup(“java:comp/env”);

// Obtain the maximum number of tax exemptions

Pu

72
// configured by the Deployer.

Integer max = (Integer)myEnv.lookup(“maxExemptions”);

// Obtain the minimum number of tax exemptions

// configured by the Deployer.

Integer min = (Integer)myEnv.lookup(“minExemptions”);

// Use the environment entries to

// customize business logic.

if (numberOfExemptions > max.intValue() ||

numberOfExemptions < min.intValue())

throw new InvalidNumberOfExemptionsException();

// Get some more environment entries. These environment

// entries are stored in subcontexts.

String val1 = (String)myEnv.lookup(“foo/name1”);

Boolean val2 = (Boolean)myEnv.lookup(“foo/bar/name2”);

// The application component can also

// lookup using full pathnames.

Integer val3 = (Integer)initCtx.lookup(“java:comp/env/name3”);

Integer val4 =

(Integer)initCtx.lookup(“java:comp/env/foo/name4”);

...

}

J2EE.5.4.1.3 Declaration of Simple Environment Entries

The Application Component Provider must declare all the environment entries
accessed from the application component’s code. The environment entries are
declared using either annotations on the application component’s code, or using the
env-entry elements in the deployment descriptor. Each env-entry element
describes a single environment entry. The env-entry element consists of an optional
description of the environment entry, the environment entry name relative to the
java:comp/env context, the expected Java programming language type of the
environment entry value (the type of the object returned from the JNDI lookup
method), and an optional environment entry value.

An environment entry is scoped to the application component whose
declaration contains the env-entry element. This means that the environment
entry is not accessible from other application components at runtime, and that
blic Review

 SIMPLE ENVIRONMENT ENTRIES 73
other application components may define env-entry elements with the same env-
entry-name without causing a name conflict.

If the Application Component Provider provides a value for an environment
entry using the env-entry-value element, the value can be changed later by the
Application Assembler or Deployer. The value must be a string that is valid for the
constructor of the specified type that takes a single String parameter, or in the
case of Character, a single character.

The following example is the declaration of environment entries used by the
application component whose code was illustrated in the previous subsection.

...

<env-entry>

<description>

The maximum number of tax exemptions

allowed to be set.

</description>

<env-entry-name>maxExemptions</env-entry-name>

<env-entry-type>java.lang.Integer</env-entry-type>

<env-entry-value>15</env-entry-value>

</env-entry>

<env-entry>

<description>

The minimum number of tax exemptions

allowed to be set.

</description>

<env-entry-name>minExemptions</env-entry-name>

<env-entry-type>java.lang.Integer</env-entry-type>

<env-entry-value>1</env-entry-value>

</env-entry>

<env-entry>

<env-entry-name>foo/name1</env-entry-name>

<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>value1</env-entry-value>

</env-entry>

<env-entry>

<env-entry-name>foo/bar/name2</env-entry-name>

<env-entry-type>java.lang.Boolean</env-entry-type>

<env-entry-value>true</env-entry-value>

</env-entry>

<env-entry>

<description>Some description.</description>

<env-entry-name>name3</env-entry-name>

Pu

74
<env-entry-type>java.lang.Integer</env-entry-type>

</env-entry>

<env-entry>

<env-entry-name>foo/name4</env-entry-name>

<env-entry-type>java.lang.Integer</env-entry-type>

<env-entry-value>10</env-entry-value>

</env-entry>

...

Injection of environment entries may also be specified using the deployment
descriptor, without need for Java language annotations. The following example is
the declaration of environment entries corresponding to the earlier injection
example.

...

<env-entry>

<description>

The maximum number of tax exemptions

allowed to be set.

</description>

<env-entry-name>

com.example.PayrollService/maxExemptions

</env-entry-name>

<env-entry-type>java.lang.Integer</env-entry-type>

<env-entry-value>15</env-entry-value>

<injection-target>

<injection-target-class>

com.example.PayrollService

</injection-target-class>

<injection-target-name>

maxExemptions

</injection-target-name>

</injection-target>

</env-entry>

<env-entry>

<description>

The minimum number of tax exemptions

allowed to be set.

</description>

<env-entry-name>

com.example.PayrollService/minExemptions

</env-entry-name>
blic Review

 ENTERPRISE JAVABEANS™ (EJB) REFERENCES 75
<env-entry-type>java.lang.Integer</env-entry-type>

<env-entry-value>1</env-entry-value>

<injection-target>

<injection-target-class>

com.example.PayrollService

</injection-target-class>

<injection-target-name>

minExemptions

</injection-target-name>

</injection-target>

</env-entry>

It’s often convenient to declare a field or method as an injection target, but
specify a default value in the code, as illustrated in the following example.

// The maximum number of tax exemptions, configured by the Deployer.

@Resource int maxExemptions = 4; // defaults to 4

To support this case, the container must only inject a value for this resource if
the deployer has specified a value to override the default value. The env-entry-
value element in the deployment descriptor is optional when an injection target is
specified. If the element is not specified, no value will be injected. In addition, if
the element is not specified, the named resource is not initialized in the naming
context; explicit lookups of the named resource will fail.

J2EE.5.5 Enterprise JavaBeans™ (EJB) References

This section describes the programming and deployment descriptor interfaces that
allow the Application Component Provider to refer to the homes of enterprise beans
or to enterprise bean instances using “logical” names called EJB references. The
EJB references are special entries in the application component’s naming
environment. The Deployer binds the EJB references to the enterprise bean’s homes
or instances in the target operational environment.

The deployment descriptor also allows the Application Assembler to link an
EJB reference declared in one application component to an enterprise bean
contained in an ejb-jar file in the same J2EE application. The link is an instruction
to the tools used by the Deployer describing the binding of the EJB reference to
the home of the specified target enterprise bean. The same linking can also be

Pu

76
specified by the Application Component Provider using annotations in the source
code of the component.

J2EE.5.5.1 Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view and
responsibilities with respect to EJB references. It does so in three sections, the first
describing annotations for injecting EJB references, the second describing the API
for accessing EJB references, and the third describing the syntax for declaring the
EJB references in a deployment descriptor

J2EE.5.5.1.1 Injection of EJB Entries

A field or a method of an application component may be annotated with the EJB
annotation. The EJB annotation represents a reference to an EJB session bean. The
reference may be to the local or remote home interface of the session bean, or may
be to the business interface of an EJB 3 bean. If the reference is to the EJB 3
business interface, a reference to an instance of the enterprise bean will be injected.

The following example illustrates how an application component uses the EJB
annotation to reference an instance of an enterprise bean. The referenced bean is a
stateful session bean. The enterprise bean reference will have the name
java:comp/env/com.example.myCart in the naming context. The target of the
reference is not named and must be resolved by the Deployer.

@EJB private ShoppingCart myCart;

The following example illustrates use of all elements of the EJB annotation.

@EJB(

name = “ejb/shopping-cart”,

beanName = “cart1”,

beanInterface = ShoppingCart.class,

description = “The shopping cart for this application”

)

private Cart myCart;

J2EE.5.5.1.2 Programming Interfaces for EJB References

The Application Component Provider may use EJB references to locate the home
interfaces or instances of enterprise beans as follows.
blic Review

 ENTERPRISE JAVABEANS™ (EJB) REFERENCES 77
• Assign an entry in the application component’s environment to the reference.
(See subsection 5.5.1.3 for information on how EJB references are declared in
the deployment descriptor.)

• This specification recommends, but does not require, that references to enter-
prise beans be organized in the ejb subcontext of the application component’s
environment (that is, in the java:comp/env/ejb JNDI context). Note that en-
terprise bean references declared via annotations will not, by default, be in
any subcontext.

• Look up the home interface or instance of the referenced enterprise bean in the
application component’s environment using JNDI.

The following example illustrates how an application component uses an EJB
reference to locate the home interface of an enterprise bean.

public void changePhoneNumber(...) {

...

// Obtain the default initial JNDI context.

Context initCtx = new InitialContext();

// Look up the home interface of the EmployeeRecord

// enterprise bean in the environment.

Object result = initCtx.lookup("java:comp/env/ejb/EmplRecord");

// Convert the result to the proper type.

EmployeeRecordHome emplRecordHome = (EmployeeRecordHome)

javax.rmi.PortableRemoteObject.narrow(result,

EmployeeRecordHome.class);

...

}

In the example, the Application Component Provider assigned the
environment entry ejb/EmplRecord as the EJB reference name to refer to the
home of an enterprise bean.

J2EE.5.5.1.3 Declaration of EJB References

Although the EJB reference is an entry in the application component’s environment,
the Application Component Provider must not use a env-entry element to declare
it. Instead, the Application Component Provider must declare all the EJB references
using either annotations on the application component’s code or the ejb-ref or ejb-

Pu

78
local-ref elements of the deployment descriptor. This allows the consumer of the
application component’s JAR file (the Application Assembler or Deployer) to
discover all the EJB references used by the application component. Deployment
descriptor entries may also be used to specify injection of an EJB reference into an
application component.

Each ejb-ref or ejb-local-ref element describes the interface requirements
that the referencing application component has for the referenced enterprise bean.
The ejb-ref element contains a description element and the ejb-ref-name,
ejb-ref-type, home, and remote elements.

The ejb-ref-name element specifies the EJB reference name. Its value is the
environment entry name used in the application component code. The ejb-ref-
type element specifies the expected type of the enterprise bean. Its value must be
either Entity or Session. The home and remote elements specify the expected Java
programming language types of the referenced enterprise bean’s home and remote
interfaces.

An EJB reference is scoped to the application component whose declaration
contains the ejb-ref or ejb-local-ref element. This means that the EJB
reference is not accessible from other application components at runtime, and that
other application components may define ejb-ref or ejb-local-ref elements
with the same ejb-ref-name without causing a name conflict.

The following example illustrates the declaration of EJB references in the
deployment descriptor.

...

<ejb-ref>

<description>

This is a reference to the entity bean that

encapsulates access to employee records.

</description>

<ejb-ref-name>ejb/EmplRecord</ejb-ref-name>

<ejb-ref-type>Entity</ejb-ref-type>

<home>com.wombat.empl.EmployeeRecordHome</home>

<remote>com.wombat.empl.EmployeeRecord</remote>

</ejb-ref>

<ejb-ref>

<ejb-ref-name>ejb/Payroll</ejb-ref-name>

<ejb-ref-type>Entity</ejb-ref-type>

<home>com.aardvark.payroll.PayrollHome</home>

<remote>com.aardvark.payroll.Payroll</remote>
blic Review

 ENTERPRISE JAVABEANS™ (EJB) REFERENCES 79
</ejb-ref>

<ejb-ref>

<ejb-ref-name>ejb/PensionPlan</ejb-ref-name>

<ejb-ref-type>Session</ejb-ref-type>

<home>com.wombat.empl.PensionPlanHome</home>

<remote>com.wombat.empl.PensionPlan</remote>

</ejb-ref>

...

J2EE.5.5.2 Application Assembler’s Responsibilities

The Application Assembler can use the ejb-link element in the deployment
descriptor to link an EJB reference to a target enterprise bean.

The Application Assembler specifies the link to an enterprise bean as follows:

• The Application Assembler uses the optional ejb-link element of the ejb-ref
or ejb-local-ref element of the referencing application component. The val-
ue of the ejb-link element is the name of the target enterprise bean. (It is the
name defined in the ejb-name element of the target enterprise bean.) The target
enterprise bean can be in any ejb-jar file in the same J2EE application as the
referencing application component.

• Alternatively, to avoid the need to rename enterprise beans to have unique
names within an entire J2EE application, the Application Assembler may use
the following syntax in the ejb-link element of the referencing application
component. The Application Assembler specifies the path name of the ejb-jar
file containing the referenced enterprise bean and appends the ejb-name of the
target bean separated from the path name by “#”. The path name is relative to
the referencing application component JAR file. In this manner, multiple
beans with the same ejb-name may be uniquely identified when the Applica-
tion Assembler cannot change ejb-names.

• The Application Assembler must ensure that the target enterprise bean is type-
compatible with the declared EJB reference. This means that the target enter-
prise bean must be of the type indicated in the ejb-ref-type element, and that
the home and remote interfaces of the target enterprise bean must be Java type-
compatible with the interfaces declared in the EJB reference.

The following example illustrates the use of the ejb-link element in the
deployment descriptor. The enterprise bean reference should be satisfied by the

Pu

80
bean named EmployeeRecord. The EmployeeRecord enterprise bean may be
packaged in the same module as the component making this reference, or it may
be packaged in another module within the same J2EE application as the
component making this reference.

...

<ejb-ref>

<description>

This is a reference to the entity bean that

encapsulates access to employee records. It

has been linked to the entity bean named

EmployeeRecord in this application.

</description>

<ejb-ref-name>ejb/EmplRecord</ejb-ref-name>

<ejb-ref-type>Entity</ejb-ref-type>

<home>com.wombat.empl.EmployeeRecordHome</home>

<remote>com.wombat.empl.EmployeeRecord</remote>

<ejb-link>EmployeeRecord</ejb-link>

</ejb-ref>

...

The following example illustrates using the ejb-link element to indicate an
enterprise bean reference to the ProductEJB enterprise bean that is in the same
J2EE application unit but in a different ejb-jar file.

...

<ejb-ref>

<description>

This is a reference to the entity bean that

encapsulates access to a product. It

has been linked to the entity bean named

ProductEJB in the product.jar file in this

application.

</description>

<ejb-ref-name>ejb/Product</ejb-ref-name>

<ejb-ref-type>Entity</ejb-ref-type>

<home>com.acme.products.ProductHome</home>

<remote>com.acme.products.Product</remote>

<ejb-link>../products/product.jar#ProductEJB</ejb-link>

</ejb-ref>

...
blic Review

 ENTERPRISE JAVABEANS™ (EJB) REFERENCES 81
The following example illustrates using the ejb-link element to indicate an
enterprise bean reference to the ShoppingCart enterprise bean that is in the same
J2EE application unit but in a different ejb-jar file. The reference was originally
declared in the application component’s code using an annotation. The Assembler
provides only the link to the bean.

...

<ejb-ref>

<ejb-ref-name>ShoppingService/myCart</ejb-ref-name>

<ejb-link>../products/product.jar#ShoppingCart</ejb-link>

</ejb-ref>

...

J2EE.5.5.3 Deployer’s Responsibilities

The Deployer is responsible for the following:

• The Deployer must ensure that all the declared EJB references are bound to the
homes or instances of enterprise beans that exist in the operational environ-
ment. The Deployer may use, for example, the JNDI LinkRef mechanism to
create a symbolic link to the actual JNDI name of the target enterprise bean.

• The Deployer must ensure that the target enterprise bean is type-compatible
with the types declared for the EJB reference. This means that the target en-
terprise bean must be of the type indicated in the ejb-ref-type element or
specified via the EJB annotation, and that the home and remote interfaces of
the target enterprise bean must be Java type-compatible with the home and re-
mote interfaces declared in the EJB reference (if specified).

• If an EJB reference declaration includes the ejb-link element, the Deployer
should bind the enterprise bean reference to the enterprise bean specified as the
link’s target.

J2EE.5.5.4 J2EE Product Provider’s Responsibilities

The J2EE Product Provider must provide the deployment tools that allow the
Deployer to perform the tasks described in the previous subsection. The deployment
tools provided by the J2EE Product Provider must be able to process the
information supplied in class file annotations and in the ejb-ref elements in the
deployment descriptor.

Pu

82
At the minimum, the tools must be able to:

• Preserve the application assembly information in annotations or in the ejb-
link elements by binding an EJB reference to the home interface or instance
of the specified target enterprise bean.

• Inform the Deployer of any unresolved EJB references, and allow him or her
to resolve an EJB reference by binding it to a specified compatible target en-
terprise bean.

J2EE.5.6 Resource Manager Connection Factory References

A resource manager connection factory is an object that is used to create
connections to a resource manager. For example, an object that implements the
javax.sql.DataSource interface is a resource manager connection factory for
java.sql.Connection objects that implement connections to a database
management system.

This section describes the application component programming and
deployment descriptor interfaces that allow the application component code to
refer to resource factories using logical names called resource manager
connection factory references. The resource manager connection factory
references are special entries in the application component’s environment. The
Deployer binds the resource manager connection factory references to the actual
resource manager connection factories that exist in the target operational
environment. Because these resource manager connection factories allow the
Container to affect resource management, the connections acquired through the
resource manager connection factory references are called managed resources (for
example, these resource manager connection factories allow the Container to
implement connection pooling and automatic enlistment of the connection with a
transaction).

Resource manager connection factory objects accessed through the naming
environment are only valid within the component instance that performed the
lookup. See the individual component specifications for additional restrictions
that may apply.
blic Review

 RESOURCE MANAGER CONNECTION FACTORY REFERENCES 83
J2EE.5.6.1 Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view of locating
resource factories and defines his or her responsibilities. It does so in three sections,
the first describing the annotations used to inject resource manager connection
factory references, the second describing the API for accessing resource manager
connection factory references, and the thrid describing the syntax for declaring the
factory references in a deployment descriptor

J2EE.5.6.1.1 Injection of Resource Manager Connection Factory
References

A field or a method of an application component may be annotated with the
Resource annotation. The name and type of the factory are as described above. The
authenticationType and shareable elements of the Resource annotation may be
used to control the type of authentication desired for the resource and the
shareability of connection acquired from the factory, as described in the following
sections.

The following code example illustrates how an application component uses
annotations to declare resource manager connection factory references.

// The employee database.

@Resource javax.sql.DataSource employeeAppDB;

public void changePhoneNumber(...) {

...

// Invoke factory to obtain a resource. The security

// principal for the resource is not given, and

// therefore it will be configured by the Deployer.

java.sql.Connection con = employeeAppDB.getConnection();

...

}

J2EE.5.6.1.2 Programming Interfaces for Resource Manager Connection
Factory References

The Application Component Provider may use resource manager connection factory
references to obtain connections to resources as follows.

• Assign an entry in the application component’s naming environment to the re-
source manager connection factory reference. (See subsection 5.6.1.3 for in-

Pu

84
formation on how resource manager connection factory references are
declared in the deployment descriptor.)

• This specification recommends, but does not require, that all resource manag-
er connection factory references be organized in the subcontexts of the appli-
cation component’s environment, using a different subcontext for each
resource manager type. For example, all JDBC™ DataSource references
should be declared in the java:comp/env/jdbc subcontext, all JMS connec-
tion factories in the java:comp/env/jms subcontext, all JavaMail connection
factories in the java:comp/env/mail subcontext, and all URL connection fac-
tories in the java:comp/env/url subcontext. Note that resource manager con-
nection factory references declared via annotations will not, by default,
appear in any subcontext.

• Lookup the resource manager connection factory object in the application
component’s environment using the JNDI interface.

• Invoke the appropriate method on the resource manager connection factory ob-
ject to obtain a connection to the resource. The factory method is specific to
the resource type. It is possible to obtain multiple connections by calling the
factory object multiple times.

The Application Component Provider can control the shareability of the
connections acquired from the resource manager connection factory. By default,
connections to a resource manager are shareable across other application
components in the application that use the same resource in the same transaction
context. The Application Component Provider can specify that connections
obtained from a resource manager connection factory reference are not shareable
by specifying the value of the res-sharing-scope deployment descriptor element
to be Unshareable. The sharing of connections to a resource manager allows the
container to optimize the use of connections and enables the container’s use of
local transaction optimizations.

The Application Component Provider has two choices with respect to dealing
with associating a principal with the resource manager access:

• Allow the Deployer to set up principal mapping or resource manager sign on
information. In this case, the application component code invokes a resource
manager connection factory method that has no security-related parameters.

• Sign on to the resource from the application component code. In this case, the
application component invokes the appropriate resource manager connection
blic Review

 RESOURCE MANAGER CONNECTION FACTORY REFERENCES 85
factory method that takes the sign on information as method parameters.

The Application Component Provider uses the res-auth deployment
descriptor element to indicate which of the two resource authentication
approaches is used.

We expect that the first form (that is letting the Deployer set up the resource
sign on information) will be the approach used by most application components.

The following code sample illustrates obtaining a JDBC connection.

public void changePhoneNumber(...) {

...

// obtain the initial JNDI context

Context initCtx = new InitialContext();

// perform JNDI lookup to obtain resource manager

// connection factory

javax.sql.DataSource ds = (javax.sql.DataSource)

initCtx.lookup("java:comp/env/jdbc/EmployeeAppDB");

// Invoke factory to obtain a resource. The security

// principal for the resource is not given, and

// therefore it will be configured by the Deployer.

java.sql.Connection con = ds.getConnection();

...

}

J2EE.5.6.1.3 Declaration of Resource Manager Connection Factory
References in Deployment Descriptor

Although a resource manager connection factory reference is an entry in the
application component’s environment, the Application Component Provider must
not use an env-entry element to declare it.

Instead, the Application Component Provider must declare all the resource
manager connection factory references using either annotations on the application
component’s code or in the deployment descriptor using the resource-ref
elements. This allows the consumer of the application component’s JAR file (the
Application Assembler or Deployer) to discover all the resource manager
connection factory references used by an application component. Deployment

Pu

86
descriptor entries may also be used to specify injection of a resource manager
connection factory reference into an application component.

Each resource-ref element describes a single resource manager connection
factory reference. The resource-ref element consists of the description
element, the mandatory res-ref-name, res-type, and res-auth elements, and the
optional res-sharing-scope element. The res-ref-name element contains the
name of the environment entry used in the application component’s code. The
name of the environment entry is relative to the java:comp/env context (for
example, the name should be jdbc/EmployeeAppDB rather than java:comp/env/
jdbc/EmployeeAppDB). The res-type element contains the Java programming
language type of the resource manager connection factory that the application
component code expects. The res-auth element indicates whether the
application component code performs resource sign on programmatically, or
whether the container signs on to the resource based on the principal mapping
information supplied by the Deployer. The Application Component Provider
indicates the sign on responsibility by setting the value of the res-auth element to
Application or Container. The res-sharing-scope element indicates whether
connections to the resource manager obtained through the given resource manager
connection factory reference can be shared or whether connections are
unshareable. The value of the res-sharing-scope element is Shareable or
Unshareable. If the res-sharing-scope element is not specified, connections are
assumed to be shareable.

A resource manager connection factory reference is scoped to the application
component whose declaration contains the resource-ref element. This means
that the resource manager connection factory reference is not accessible from
other application components at runtime, and that other application components
may define resource-ref elements with the same res-ref-name without causing
a name conflict.

The type declaration allows the Deployer to identify the type of the resource
manager connection factory.

Note that the indicated type is the Java programming language type of the
resource manager connection factory, not the type of the connection.

The following example is the declaration of the resource reference used by the
application component illustrated in the previous subsection.

...

<resource-ref>

<description>

A data source for the database in which
blic Review

 RESOURCE MANAGER CONNECTION FACTORY REFERENCES 87
the EmployeeService enterprise bean will

record a log of all transactions.

</description>

<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

J2EE.5.6.1.4 Standard Resource Manager Connection Factory Types

The Application Component Provider must use the javax.sql.DataSource
resource manager connection factory type for obtaining JDBC API connections.

The Application Component Provider must use the
javax.jms.QueueConnectionFactory, the javax.jms.TopicConnectionFactory,
or the javax.jms.ConnectionFactory for obtaining JMS connections.

The Application Component Provider must use the javax.mail.Session
resource manager connection factory type for obtaining JavaMail API
connections.

The Application Component Provider must use the java.net.URL resource
manager connection factory type for obtaining URL connections.

It is recommended that the Application Component Provider name JDBC API
data sources in the java:comp/env/jdbc subcontext, all JMS connection factories
in the java:comp/env/jms subcontext, all JavaMail API connection factories in
the java:comp/env/mail subcontext, and all URL connection factories in the
java:comp/env/url subcontext. Note that resource manager connection factory
references declared via annotations will not, by default, appear in any subcontext.

The J2EE Connector Architecture allows an application component to use the
annotation or API described in this section to obtain resource objects that provide
access to additional back-end systems.

J2EE.5.6.2 Deployer’s Responsibilities

The Deployer uses deployment tools to bind the resource manager connection
factory references to the actual resource factories configured in the target
operational environment.

The Deployer must perform the following tasks for each resource manager
connection factory reference declared in the deployment descriptor:

Pu

88
• Bind the resource manager connection factory reference to a resource manager
connection factory that exists in the operational environment. The Deployer
may use, for example, the JNDI LinkRef mechanism to create a symbolic link
to the actual JNDI name of the resource manager connection factory. The re-
source manager connection factory type must be compatible with the type de-
clared in the res-type element.

• Provide any additional configuration information that the resource manager
needs for opening and managing the resource. The configuration mechanism
is resource manager specific, and is beyond the scope of this specification.

• If the value of the Resource annotation authenticationType element is
AuthenticationType.CONTAINER or the deployment descriptor’s res-auth ele-
ment is Container, the Deployer is responsible for configuring the sign on in-
formation for the resource manager. This is performed in a manner specific to
the container and resource manager; it is beyond the scope of this specifica-
tion.

For example, if principals must be mapped from the security domain and prin-
cipal realm used at the application component level to the security domain
and principal realm of the resource manager, the Deployer or System Admin-
istrator must define the mapping. The mapping is performed in a manner spe-
cific to the container and resource manager; it is beyond the scope of this
specification.

J2EE.5.6.3 J2EE Product Provider’s Responsibilities

The J2EE Product Provider is responsible for the following:

• Provide the deployment tools that allow the Deployer to perform the tasks de-
scribed in the previous subsection.

• Provide the implementation of the resource manager connection factory class-
es that are required by this specification.

• If the Application Component Provider set the authenticationType element
of the Resource annotation to AuthenticationType.APPLICATION or the res-
auth of a resource reference to Application, the container must allow the ap-
plication component to perform explicit programmatic sign on using the re-
source manager’s API.

• If the Application Component Provider sets the shareable element of the
Resource annotation to false or sets the res-sharing-scope of a resource
blic Review

 RESOURCE MANAGER CONNECTION FACTORY REFERENCES 89
manager connection factory reference to Unshareable, the container must not
attempt to share the connections obtained from the resource manager connec-
tion factory reference1.

• The container must provide tools that allow the Deployer to set up resource
sign on information for the resource manager references whose
authenticationType is set to AuthenticationType.CONTAINER or whose res-
auth element is set to Container. The minimum requirement is that the De-
ployer must be able to specify the username/password information for each re-
source manager connection factory reference declared by the application
component, and the container must be able to use the username/password com-
bination for user authentication when obtaining a connection by invoking the
resource manager connection factory.

Although not required by this specification, we expect that containers will
support some form of a single sign on mechanism that spans the application server
and the resource managers. The container will allow the Deployer to set up the
resources such that the principal can be propagated (directly or through principal
mapping) to a resource manager, if required by the application.

While not required by this specification, most J2EE products will provide the
following features:

• A tool to allow the System Administrator to add, remove, and configure a re-
source manager for the J2EE Server.

• A mechanism to pool resources for the application components and otherwise
manage the use of resources by the container. The pooling must be transparent
to the application components.

J2EE.5.6.4 System Administrator’s Responsibilities

The System Administrator is typically responsible for the following:

• Add, remove, and configure resource managers in the J2EE Server environ-
ment.

In some scenarios, these tasks can be performed by the Deployer.

1. Connections obtained from the same resource manager connection facto-
ry through a different resource manager connection factory reference
many be shareable.

Pu

90
J2EE.5.7 Resource Environment References

This section describes the programming and deployment descriptor interfaces that
allow the Application Component Provider to refer to administered objects that are
associated with a resource (for example, a Connector CCI InteractionSpec
instance) by using “logical” names called resource environment references. The
resource environment references are special entries in the application component’s
environment. The Deployer binds the resource environment references to
administered objects in the target operational environment.

J2EE.5.7.1 Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view and
responsibilities with respect to resource environment references.

J2EE.5.7.1.1 Injection of Resource Environment References

A field or a method of an application component may be annotated with the
Resource annotation to request injection of a resouce environment reference. The
name and type of the resource environment reference are as described earlier. The
authenticationType and shareable elements of the Resource annotation must not
be specified; resource environment entries are not shareable and do not require
authentication. The use of the Resource annotation to declare a resource
environment references differs from the use of the Resource annotation to declare
other environment references only in that the type of a resource environment
reference is not one of the Java language types used for other environment
references.

J2EE.5.7.1.2 Resource Environment Reference Programming Interfaces

The Application Component Provider may use resource environment references to
locate administered objects that are associated with resources as follows.

• Assign an entry in the application component’s environment to the reference.
(See subsection 5.7.1.3 for information on how resource environment refer-
ences are declared in the deployment descriptor.)

• This specification recommends, but does not require, that all resource envi-
ronment references be organized in the appropriate subcontext of the compo-
nent’s environment for the resource type. Note that resource environment
blic Review

 RESOURCE ENVIRONMENT REFERENCES 91
references declared via annotations will not, by default, appear in any subcon-
text.

• Look up the administered object in the application component’s environment
using JNDI.

J2EE.5.7.1.3 Declaration of Resource Environment References in
Deployment Descriptor

Although the resource environment reference is an entry in the application
component’s environment, the Application Component Provider must not use a
env-entry element to declare it. Instead, the Application Component Provider must
declare all references to administered objects associated with resources using either
annotations on the application component’s code or the resource-env-ref elements
of the deployment descriptor. This allows the application component’s JAR file
consumer to discover all the resource environment references used by the
application component. Deployment descriptor entries may also be used to specify
injection of a resource environment reference into an application component.

Each resource-env-ref element describes the requirements that the
referencing application component has for the referenced administered object.
The resource-env-ref element contains an optional description element and the
mandatory resource-env-ref-name and resource-env-ref-type elements.

The resource-env-ref-name element specifies the resource environment
reference name. Its value is the environment entry name used in the application
component code. The name of the resource environment reference is relative to
the java:comp/env context. The resource-env-ref-type element specifies the
expected type of the referenced object.

A resource environment reference is scoped to the application component
whose declaration contains the resource-env-ref element. This means that the
resource environment reference is not accessible to other application components
at runtime, and that other application components may define resource-env-ref
elements with the same resource-env-ref-name without causing a name conflict.

J2EE.5.7.2 Deployer’s Responsibilities

The Deployer is responsible for the following:

• The Deployer must ensure that all the declared resource environment referenc-
es are bound to administered objects that exist in the operational environment.

Pu

92
The Deployer may use, for example, the JNDI LinkRef mechanism to create a
symbolic link to the actual JNDI name of the target object.

• The Deployer must ensure that the target object is type-compatible with the
type declared for the resource environment reference. This means that the tar-
get object must be of the type indicated in the Resource annotation or the
resource-env-ref-type element.

J2EE.5.7.3 J2EE Product Provider’s Responsibilities

The J2EE Product Provider must provide the deployment tools that allow the
Deployer to perform the tasks described in the previous subsection. The deployment
tools provided by the J2EE Product Provider must be able to process the
information supplied in the class file annotations and the resource-env-ref
elements in the deployment descriptor.

At the minimum, the tools must be able to inform the Deployer of any
unresolved resource environment references, and allow him or her to resolve a
resource environment reference by binding it to a specified compatible target
object in the environment.

J2EE.5.8 Message Destination References

This section describes the programming and deployment descriptor interfaces that
allow the Application Component Provider to refer to message destination objects
by using “logical” names called message destination references. Message
destination references are special entries in the application component’s
environment. The Deployer binds the message destination references to
administered message destinations in the target operational environment.

J2EE.5.8.1 Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view and
responsibilities with respect to message destination references.

J2EE.5.8.1.1 Injection of Message Destination References

A field or a method of an application component may be annotated with the
Resource annotation to request injection of a message destination reference. The
name and type of the resource environment reference are as described earlier. The
blic Review

 MESSAGE DESTINATION REFERENCES 93
authenticationType and shareable elements of the Resource annotation must not
be specified; message destination references are not shareable and do not require
authentication.

Note that when using the Resource annotation to declare a message
destination reference it is not possible to link the reference to other references to
the same message destination, or to specify whether the message desitnation is
used to produce or consume messages. The deployment descriptor entries
described later do provide a way to associate many message destination references
with a single message destination and to specify whether each message
destination reference is used to produce, consume, or both produce and consume
messages, so that the entire message flow of an application may be specified. The
Application Assembler may use these message destination links to link together
message destination references that have been declared using the Resource
anotation. A message destination reference declared via the Resource annotation
is assumed to be used to both produce and consume messages; this default may be
overridden using a deployment descriptor entry.

The following example illustrates how an application component uses the
Resource anotation to request injection of a message destination reference.

@Resource javax.jms.Queue stockQueue;

J2EE.5.8.1.2 Message Destination Reference Programming Interfaces

The Application Component Provider may use message destination references to
locate message destinations, as follows.

• Assign an entry in the application component’s environment to the reference.
(See subsection 5.8.1.3 for information on how message destination references
are declared in the deployment descriptor.)

• This specification recommends, but does not require, that all message destina-
tion references be organized in the appropriate subcontext of the component’s
environment for the resource type (for example, in the java:comp/env/jms
JNDI context for JMS Destinations). Note that message destination references
declared via annotations will not, by default, appear in any subcontext.

• Look up the administered object in the application component’s environment
using JNDI.

Pu

94
The following example illustrates how an application component uses a
message destination reference to locate a JMS Destination.

// Obtain the default initial JNDI context.

Context initCtx = new InitialContext();

// Look up the JMS StockQueue in the environment.

Object result = initCtx.lookup("java:comp/env/jms/StockQueue");

// Convert the result to the proper type.

javax.jms.Queue queue = (javax.jms.Queue)result;

In the example, the Application Component Provider assigned the
environment entry jms/StockQueue as the message destination reference name to
refer to a JMS queue.

J2EE.5.8.1.3 Declaration of Message Destination References in Deployment
Descriptor

Although the message destination reference is an entry in the application
component’s environment, the Application Component Provider must not use a
env-entry element to declare it. Instead, the Application Component Provider
should declare all references to message destinations using either the Resource
annotation in the application component’s code or the message-destination-ref
elements of the deployment descriptor. This allows the application component’s
JAR file consumer to discover all the message destination references used by the
application component. Deployment descriptor entries may also be used to specify
injection of a message destination reference into an application component.

Each message-destination-ref element describes the requirements that the
referencing application component has for the referenced destination. The
message-destination-ref element contains an optional description element and
the mandatory message-destination-ref-name, message-destination-type, and
message-destination-usage elements.

The message-destination-ref-name element specifies the message
destination reference name. Its value is the environment entry name used in the
application component code. The name of the message destination reference is
relative to the java:comp/env context (for example, the name should be jms/
StockQueue rather than java:comp/env/jms/StockQueue). The message-
destination-type element specifies the expected type of the referenced
destination. For example, in the case of a JMS Destination, its value might be
blic Review

 MESSAGE DESTINATION REFERENCES 95
javax.jms.Queue. The message-destination-usage element specifies whether
messages are consumed from the message destination, produced for the
destination, or both.

A message destination reference is scoped to the application component
whose declaration contains the message-destination-ref element. This means
that the message destination reference is not accessible to other application
components at runtime, and that other application components may define
message-destination-ref elements with the same message-destination-ref-
name without causing a name conflict.

The following example illustrates the declaration of message destination
references in the deployment descriptor.

...

<message-destination-ref>

<description>

This is a reference to a JMS queue used in the

processing of Stock info

</description>

<message-destination-ref-name>

jms/StockInfo

</message-destination-ref-name>

<message-destination-type>

javax.jms.Queue

</message-destination-type>

<message-destination-usage>

Produces

</message-destination-usage>

</message-destination-ref>

...

J2EE.5.8.2 Application Assembler’s Responsibilities

By means of linking message consumers and producers to one or more common
logical destinations specified in the enterprise bean deployment descriptor, the
Application Assembler can specify the flow of messages within an application. The
Application Assembler uses the message-destination element in an ejb-jar file, the
message-destination-link element of the message-destination-ref element,
and the message-destination-link element of an ejb-jar’s message-driven
element to link message destination references to a common logical destination.

Pu

96
The Application Assembler specifies the link between message consumers
and producers as follows:

• The Application Assembler uses the message-destination element in an ejb-
jar deployment descriptor to specify a logical message destination within the
application. The message-destination element defines a message-
destination-name, which is used for the purpose of linking.

• The Application Assembler uses the message-destination-link element of
the message-destination-ref element of an application component that pro-
duces messages to link it to the target destination. The value of the message-
destination-link element is the name of the target destination, as defined in
the message-destination-name element of the message-destination ele-
ment. The message-destination element can be in any EJB module in the
same J2EE application as the referencing component. The Application As-
sembler uses the message-destination-usage element of the message-
destination-ref element to indicate that the referencing application compo-
nent produces messages to the referenced destination.

• If the consumer of messages from the common destination is a message-driv-
en bean, the Application Assembler uses the message-destination-link ele-
ment of the message-driven element to reference the logical destination. If
the Application Assembler links a message-driven bean to its source destina-
tion, he or she should use the message-destination-type element of the
message-driven element to specify the expected destination type. Otherwise,
the Application Assembler uses the message-destination-link element of
the message-destination-ref element of the application component that
consumes messages to link to the common destination. In the latter case, the
Application Assembler uses the message-destination-usage element of the
message-destination-ref element to indicate that the application component
consumes messages from the referenced destination.

• To avoid the need to rename message destinations to have unique names with-
in an entire J2EE application, the Application Assembler may use the follow-
ing syntax in the message-destination-link element of the referencing
application component. The Application Assembler specifies the path name
of the ejb-jar file containing the referenced message destination and appends
the message-destination-name of the target destination separated from the
path name by #. The path name is relative to the referencing application com-
blic Review

 USERTRANSACTION REFERENCES 97
ponent JAR file. In this manner, multiple destinations with the same message-
destination-name may be uniquely identified.

• When linking message destinations, the Application Assembler must ensure
that the consumers and producers for the destination require a message desti-
nation of the same or compatible type, as determined by the messaging system.

J2EE.5.8.3 Deployer’s Responsibilities

The Deployer is responsible for the following:

• The Deployer must ensure that all the declared message destination references
are bound to administered objects that exist in the operational environment.
The Deployer may use, for example, the JNDI LinkRef mechanism to create a
symbolic link to the actual JNDI name of the target object.

• The Deployer must ensure that the target object is type-compatible with the
type declared for the message destination reference. This means that the target
object must be of the type indicated in the message-destination-type ele-
ment.

• The Deployer must observe the message destination links specified by the Ap-
plication Assembler.

J2EE.5.8.4 J2EE Product Provider’s Responsibilities

The J2EE Product Provider must provide the deployment tools that allow the
Deployer to perform the tasks described in the previous subsection. The deployment
tools provided by the J2EE Product Provider must be able to process the
information supplied in the message-destination-ref elements in the deployment
descriptor.

At the minimum, the tools must be able to inform the Deployer of any
unresolved message destination references, and allow him or her to resolve a
message destination reference by binding it to a specified compatible target object
in the environment.

J2EE.5.9 UserTransaction References

Certain J2EE application component types are allowed to use the JTA
UserTransaction interface to start, commit, and abort transactions. Such

Pu

98
application components can find an appropriate object implementing the
UserTransaction interface by looking up the JNDI name java:comp/
UserTransaction or by requesting injection of a UserTransaction object using the
Resource annotation. The authenticationType and shareable elements of the
Resource annotation must not be specified. The container is only required to
provide the java:comp/UserTransaction name, or inject a UserTransaction
object, for those components that can validly make use of it. Any such reference to a
UserTransaction object is only valid within the component instance that performed
the lookup. See the individual component definitions for further information.

The following example illustrates how an application component acquires and
uses a UserTransaction object via injection.

@Resource UserTransaction tx;

public void updateData(...) {

...

// Start a transaction.

tx.begin();

...

// Perform transactional operations on data.

...

// Commit the transaction.

tx.commit();

...

}

The following example illustrates how an application component acquires and
uses a UserTransaction object using a JNDI lookup.

public void updateData(...) {

...

// Obtain the default initial JNDI context.

Context initCtx = new InitialContext();

// Look up the UserTransaction object.

UserTransaction tx = (UserTransaction)initCtx.lookup(

"java:comp/UserTransaction");

// Start a transaction.

tx.begin();
blic Review

 ORB REFERENCES 99
...

// Perform transactional operations on data.

...

// Commit the transaction.

tx.commit();

...

}

A UserTransaction object reference may also be declared in a deployment
descriptor in the same way as a resource environment reference. Such a
deployment descriptor entry may be used to specify injection of a
UserTransaction object.

J2EE.5.9.1 Application Component Provider’s Responsibilities

The Application Component Provider is responsible for requesting injection of a
UserTransaction object using a Resource annotation, or using the defined name to
look up the UserTransaction object.

Only some application component types are required to be able to access a
UserTransaction object; see Table J2EE.6-1 in this specification and the EJB
specification for details.

J2EE.5.9.2 J2EE Product Provider’s Responsibilities

The J2EE Product Provider is responsible for providing an appropriate
UserTransaction object as required by this specification.

J2EE.5.10 ORB References

Some J2EE applications will need to make use of the CORBA ORB to perform
certain operations. Such applications can find an appropriate object implementing
the ORB interface by looking up the JNDI name java:comp/ORB or by requesting
injection of an ORB object. The container is required to provide the java:comp/ORB
name for all components except applets. Any such reference to a ORB object is only
valid within the component instance that performed the lookup.

The following example illustrates how an application component acquires and
uses an ORB object via injection.

Pu

100
@Resource ORB orb;

public void method(...) {

...

// Get the POA to use when creating object references.

POA rootPOA = (POA)orb.resolve_initial_references("RootPOA");

...

}

The following example illustrates how an application component acquires and
uses an ORB object using a JNDI lookup.

public void method(...) {

...

// Obtain the default initial JNDI context.

Context initCtx = new InitialContext();

// Look up the ORB object.

ORB orb = (ORB)initCtx.lookup("java:comp/ORB");

// Get the POA to use when creating object references.

POA rootPOA = (POA)orb.resolve_initial_references("RootPOA");

...

}

An ORB object reference may also be declared in a deployment descriptor in
the same way as a resource manager connection factory reference. Such a
deployment descriptor entry may be used to specify injection of an ORB object.

The ORB instance available under the JNDI name java:comp/ORB may always
be a shared instance. By default, the ORB instance injected into a component or
declared via a deployment descriptor entry may also be a shared instance.
However, the application may set the shareable element of the Resource
annotation to false, or may set the res-sharing-scope element in the deployment
descriptor to Unshareable, to request a non-shared ORB instance.

J2EE.5.10.1 Application Component Provider’s Responsibilities

The Application Component Provider is responsible for requessting injection of the
ORB object using the Resource annotation, or using the defined name to look up the
ORB object. If the shareable element of the Resource annotation is set to false, the
blic Review

 ORB REFERENCES 101
ORB object injected will not be the shared instance used by other components in the
application but instead will be a private ORB instance used only by this component.

J2EE.5.10.2 J2EE Product Provider’s Responsibilities

The J2EE Product Provider is responsible for providing an appropriate ORB object as
required by this specification.

Pu

102
blic Review

C H A P T E R J2EE.6

Application Programming

Interface

This Chapter describes API requirements for the Java™ 2 Platform, Enterprise
Edition (J2EE). J2EE requires the provision of a number of APIs for use by J2EE
applications, starting with the core Java APIs and including several Java optional
packages1.

J2EE.6.1 Required APIs

J2EE application components execute in runtime environments provided by the
containers that are a part of the J2EE platform. The J2EE platform supports four
types of containers corresponding to J2EE application component types: application
client containers, applet containers, web containers for servlets and JSP pages, and
enterprise bean containers.

J2EE.6.1.1 Java Compatible APIs

The containers provide all application components with the Java 2 Platform,
Standard Edition, v5.0 (J2SE) APIs, which include the following enterprise APIs:

1. Note that “optional packages” were previously called “standard exten-
sions”. The packages described here are optional relative to J2SE, but re-
quired for J2EE.
103

Pu

104
• Java IDL API

• JDBC API

• RMI-IIOP API

• JNDI API

• JAXP API

• JAAS API

• JMX API

In particular, the applet execution environment must be J2SE 5.0 compatible.
Since typical browsers don’t yet provide such support, J2EE products may make
use of the Java Plugin to provide the required applet execution environment. Use
of the Java Plugin is not required, but is one method of meeting the requirement to
provide a J2SE 5.0 compatible applet execution environment.

The specifications for the J2SE APIs are available at http://java.sun.com/
j2se/5.0/docs/.

J2EE.6.1.2 Java Optional Packages

The J2EE platform also requires a number of Java optional packages. Table
J2EE.6-1 indicates the required optional packages with their required versions.

Table J2EE.6-1 J2EE-Required Java Optional Packages

Optional Package App Client Applet Web EJB

EJB 3.0 Ya N Yb Y

Servlet 2.4 N N Y N

JSP 2.1 N N Y N

JMS 1.1 Y N Y Y

JTA 1.0 N N Y Y

JavaMail 1.3 Y N Y Y

JAF 1.1 Y N Y Y

Connector 1.5 N N Y Y

Web Services 1.1 Y N Y Y
blic Review

 REQUIRED APIS 105
All classes and interfaces required by the specifications for the APIs must be
provided by the J2EE containers. In some cases, a J2EE product is not required to
provide objects that implement interfaces intended to be implemented by an
application server, nevertheless, the definitions of such interfaces must be
included in the J2EE platform.

Note – Several of the included APIs are likely to be revised before J2EE 5.0 is
finalized. The table above will be updated at that time.

JAX-RPC 1.1 Y N Y Y

JAX-WS 2.0 Y N Y Y

JAXB 2.0 Y N Y Y

SAAJ 1.3 Y N Y Y

JAXR 1.0 Y N Y Y

J2EE Management 1.0 Y N Y Y

J2EE Deployment 1.1c N N N N

JACC 1.0 N N Y Y

JSP Debugging 1.0 N N Y N

JSTL 1.1 N N Y N

WebSvc Metadata 1.0 Y N Y Y

JSF 1.2 N N Y N

Common Annotations 1.0 Y N Y Y

StAX 1.0 Y N Y Y

Java Persistence 1.0 Y N Y Y

a. Client APIs only.
b. Client APIs only.
c. See section J2EE.6.18 on page 129 for details.

Table J2EE.6-1 J2EE-Required Java Optional Packages

Optional Package App Client Applet Web EJB

Pu

106
J2EE.6.2 Java 2 Platform, Standard Edition (J2SE)
Requirements

J2EE.6.2.1 Programming Restrictions

The J2EE programming model divides responsibilities between Application
Component Providers and J2EE Product Providers: Application Component
Providers focus on writing business logic and the J2EE Product Providers focus on
providing a managed system infrastructure in which the application components can
be deployed.

This division leads to a restriction on the functionality that application
components can contain. If application components contain the same functionality
provided by J2EE system infrastructure, there are clashes and mis-management of
the functionality.

For example, if enterprise beans were allowed to manage threads, the J2EE
platform could not manage the life cycle of the enterprise beans, and it could not
properly manage transactions.

Since we do not want to subset the J2SE platform, and we want J2EE Product
Providers to be able to use J2SE products without modification in the J2EE
platform, we use the J2SE security permissions mechanism to express the
programming restrictions imposed on Application Component Providers.

In this section, we specify the J2SE security permissions that the J2EE
Product Provider must provide for each application component type. We call these
permissions the J2EE security permissions set. The J2EE security permissions set
is a required part of the J2EE API contract. Portable applications will rely on only
the set of permissions specified here.

J2EE.6.2.2 The J2EE Security Permissions Set

The J2EE security permissions set defines the minimum set of permissions that
application components can expect. All J2EE products must be capable of
deploying application components that require the set of permissions described
here. The Product Provider must ensure that the application components do not use
functions that conflict with the J2EE security permission set.
blic Review

 JAVA 2 PLATFORM, STANDARD EDITION (J2SE) REQUIREMENTS 107
The exact set of security permissions for application components in use at a
particular installation is a matter of policy outside the scope of this specification.
A J2EE product may allow applications to run with no security manager at all, or
with a security manager that enforces any set of security permissions, as required
by the enterprise environment. All J2EE products must be capable of running
applications with at least the set of permissions described here. Some J2EE
products will allow the set of permissions available to a component to be
configurable, providing some components with more or fewer permissions than
those described here. A future version of this specification will allow these
security requirements to be specified in the deployment descriptor for application
components. At the present time, application components that need permissions
not in this minimal set should describe their requirements in their documentation.
Note that it may not be possible to deploy applications that require more than this
minimal set on some J2EE products.

The J2SE security permissions are fully described in http://java.sun.com/
j2se/5.0/docs/guide/security/permissions.html.

J2EE.6.2.3 Listing of the J2EE Security Permissions Set

Table J2EE.6-2 lists the J2EE security permissions set. This is the typical set of
permissions that components of each type should expect to have.

Table J2EE.6-2 J2EE Security Permissions Set

Security Permissions Target Action

Application Clients

java.awt.AWTPermission accessClipboard

java.awt.AWTPermission accessEventQueue

java.awt.AWTPermission showWindowWithout
WarningBanner

java.lang.RuntimePermission exitVM

java.lang.RuntimePermission loadLibrary

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect

Pu

108
Note that an operating system that hosts a J2EE product may impose
additional security restrictions of its own that must be taken into account. For
instance, the user identity under which a component executes is not likely to have
permission to read and write all files.

J2EE.6.2.4 Additional Requirements

J2EE.6.2.4.1 Networking

The J2SE platform includes a pluggable mechanism for supporting multiple URL
protocols through the java.net.URLStreamHandler class and the
java.net.URLStreamHandlerFactory interface.

The following URL protocols must be supported:

• file: Only reading from a file URL need be supported. That is, the corre-
sponding URLConnection object’s getOutputStream method may fail with an

java.net.SocketPermission localhost:1024- accept,listen

java.io.FilePermission * read,write

java.util.PropertyPermission * read

Applet Clients

java.net.SocketPermission codebase connect

java.util.PropertyPermission limited read

Web Components and EJB Components

java.lang.RuntimePermission loadLibrary

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect

java.io.FilePermission * read,write

java.util.PropertyPermission * read

Table J2EE.6-2 J2EE Security Permissions Set

Security Permissions Target Action
blic Review

 JAVA 2 PLATFORM, STANDARD EDITION (J2SE) REQUIREMENTS 109
UnknownServiceException. File access is restricted according to the permis-
sions described above.

• http: Version 1.1 of the HTTP protocol must be supported An http URL
must support both input and output.

• https: SSL version 3.0 and TLS version 1.0 must be supported by https URL
objects. Both input and output must be supported.

The J2SE platform also includes a mechanism for converting a URL’s byte
stream to an appropriate object, using the java.net.ContentHandler class and
java.net.ContentHandlerFactory interface. A ContentHandler object can
convert a MIME byte stream to an object. ContentHandler objects are typically
accessed indirectly using the getContent method of URL and URLConnection.

When accessing data of the following MIME types using the getContent
method, objects of the corresponding Java type listed in Table J2EE.6-3 must be
returned.

Many environments will use HTTP proxies rather than connecting directly to
HTTP servers. If HTTP proxies are being used in the local environment, the
HTTP support in the J2SE platform should be configured to use the proxy
appropriately. Application components must not be required to configure proxy
support in order to use an http URL.

Most enterprise environments will include a firewall that limits access from
the internal network (intranet) to the public Internet, and vice versa. It is typical
for access using the HTTP protocol to pass through such firewalls, perhaps by
using proxy servers. It is not typical that general TCP/IP traffic, including RMI-
JRMP, and RMI-IIOP, can pass through firewalls.

These considerations have implications on the use of various protocols to
communicate between application components. This specification requires that
HTTP access through firewalls be possible where local policy allows. Some J2EE

Table J2EE.6-3 Java Type of Objects Returned When Using the
getContent Method

MIME Type Java Type

image/gif java.awt.Image

image/jpeg java.awt.Image

image/png java.awt.Image

Pu

110
products may provide support for tunneling other communication through
firewalls, but this is neither specified nor required.

J2EE.6.2.4.2 JDBC™ API

The JDBC API, which is part of the J2SE platform, allows for access to a wide
range of data storage systems. The J2SE platform, however, does not require that a
system meeting the Java Compatible™ quality standards provide a database that is
accessible through the JDBC API.

To allow for the development of portable applications, the J2EE specification
does require that such a database be available and accessible from a J2EE product
through the JDBC API. Such a database must be accessible from web
components, enterprise beans, and application clients, but need not be accessible
from applets. In addition, the driver for the database must meet the JDBC
Compatible requirements in the JDBC specification.

J2EE applications should not attempt to load JDBC drivers directly. Instead,
they should use the technique recommended in the JDBC specification and
perform a JNDI lookup to locate a DataSource object. The JNDI name of the
DataSource object should be chosen as described in Section J2EE.5.6, “Resource
Manager Connection Factory References.” The J2EE platform must be able to
supply a DataSource that does not require the application to supply any
authentication information when obtaining a database connection. Of course,
applications may also supply a user name and password when connecting to the
database.

When a JDBC API connection is used in an enterprise bean, the transaction
characteristics will typically be controlled by the container. The component
should not attempt to change the transaction characteristics of the connection,
commit the transaction, roll back the transaction, or set autocommit mode.
Attempts to make changes that are incompatible with the current transaction
context may result in a SQLException being thrown. The EJB specification
contains the precise rules for enterprise beans.

Note that similar restrictions apply when a component creates a transaction
using the JTA UserTransaction interface. The component should not attempt
operations on the JDBC Connection object that would conflict with the
transaction context.

Drivers supporting the JDBC API in a J2EE environment must meet the
JDBC 3.0 API Compliance requirements as specified in the JDBC specification
blic Review

 JAVA 2 PLATFORM, STANDARD EDITION (J2SE) REQUIREMENTS 111
and must meet a number of additional requirements in their implementation of
JDBC APIs, as described below:

• Drivers are required to provide accurate and complete metadata through the
Connection.getMetaData method. J2EE applications should examine the
DatabaseMetaData object and adapt their behavior to the capabilities of the
current database. How this information is used to create portable applications
that are independent of the underlying database vendor and driver is beyond
the scope of this specification.

• Drivers must support stored procedures. The DatabaseMetaData method
supportsStoredProcedures must return true. The driver must also support
the full JDBC API escape syntax for calling stored procedures with the fol-
lowing methods on the Statement, PreparedStatement, and
CallableStatement classes:

■ executeUpdate

■ executeQuery

Support for calling stored procedures using the method execute on the
Statement, PreparedStatement, and CallableStatement interfaces is not
required because some databases don’t support returning more than a single
ResultSet from a stored procedure.

• Drivers must support all of the CallableStatement methods that apply to
SQL92 types, including the following:

■ getBigDecimal

■ getBoolean

■ getByte

■ getBytes

■ getDate

■ getDouble

■ getFloat

■ getInt

■ getLong

■ getObject

Pu

112
■ getShort

■ getString

■ getTime

■ getTimestamp

■ registerOutParameter

■ wasNull

Support for the new BLOB, CLOB, ARRAY, REF, STRUCT, and JAVA_OBJECT types is
not required. All parameter types (IN, OUT, and INOUT) must be supported.

• Drivers must support all of the PreparedStatement methods that apply to
SQL92 types, including the following:

■ setAsciiStream

■ setBigDecimal

■ setBinaryStream

■ setBoolean

■ setByte

■ setBytes

■ setCharacterStream

■ setDate

■ setDouble

■ setFloat

■ setInt

■ setLong

■ setNull

■ setObject

■ setShort

■ setString

■ setTime

■ setTimestamp

Support for the new BLOB, CLOB, ARRAY, REF, STRUCT, and JAVA_OBJECT types is
blic Review

 JAVA 2 PLATFORM, STANDARD EDITION (J2SE) REQUIREMENTS 113
not required. Support for the PreparedStatement method getMetaData is not
required. This method must throw an SQLException if it is not supported. Sup-
port for the PreparedStatement method getParameterMetaData is required.

• Full support for batch updates is required. This implies support for the follow-
ing methods on the Statement, PreparedStatement, and CallableStatement
classes:

■ addBatch

■ clearBatch

■ executeBatch

Drivers are free to implement these methods any way they choose (including a
non-batching implementation) as long as the semantics are correct.

• Drivers must support the ResultSet type TYPE_FORWARD_ONLY, with a concur-
rency of CONCUR_READ_ONLY. Support for other ResultSet types
TYPE_SCROLL_INSENSITIVE and TYPE_SCROLL_SENSITIVE, and concurrency
CONCUR_UPDATABLE, is not required.

• A driver must provide full support for DatabaseMetaData and
ResultSetMetaData. This implies that all of the methods in the
DatabaseMetaData interface must be implemented and must behave as speci-
fied in the JDBC specification. None of the methods in DatabaseMetaData and
ResultSetMetaData may throw an exception because they are not implement-
ed.

• The JDBC API core specification requires that JDBC compliant drivers pro-
vide support for the SQL92, Transitional Level, DROP TABLE command, full
support for the CASCADE and RESTRICT options is required. As many popular
databases do not support DROP TABLE as specified in the SQL92 specification,
the following clarification is required.

A JDBC compliant driver is required to support the DROP TABLE command as
specified by the SQL92, Transitional Level. However, support for the CASCADE
and RESTRICT options of DROP TABLE is optional. In addition, the behavior of
DROP TABLE is implementation defined when there are views or integrity con-
straints defined that reference the table that is being dropped.

• A driver must support the Statement escape syntax for the following func-
tions as specified by the JDBC specification:

Pu

114
■ CONCAT

■ SUBSTRING

■ LOCATE (two argument version only)

■ LENGTH

■ ABS

■ SQRT

■ MOD

The JDBC API includes APIs for row sets, connection naming via JNDI, connection
pooling, and distributed transaction support. The connection pooling and distributed
transaction features are intended for use by JDBC drivers to coordinate with an
application server. J2EE products are not required to support the application server
facilities described by these APIs, although they may prove useful.

The Connector architecture defines an SPI that essentially extends the
functionality of the JDBC SPI with additional security functionality, and a full
packaging and deployment functionality for resource adapters. A J2EE product
must support deploying and using a JDBC driver that has been written and
packaged as a resource adapter using the Connector architecture.

The JDBC 3.0 specification is available at http://java.sun.com/products/
jdbc/download.html.

J2EE.6.2.4.3 Java IDL

Java IDL allows applications to access any CORBA object, written in any language,
using the standard IIOP protocol. The J2EE security restrictions typically prevent all
application component types except application clients from creating and exporting
a CORBA object, but all J2EE application component types can be clients of
CORBA objects.

A J2EE product must support Java IDL as defined by chapters 1 - 8, 13, and
15 of the CORBA 2.3.1 specification, available at http://www.omg.org/cgi-bin/
doc?formal/99-10-07, and the IDL To Java Language Mapping Specification,
available at http://www.omg.org/cgi-bin/doc?ptc/2000-01-08.

The IIOP protocol supports the ability to multiplex calls over a single
connection. All J2EE products must support requests from clients that multiplex
calls on a connection to either Java IDL server objects or RMI-IIOP server objects
(such as enterprise beans). The server must allow replies to be sent in any order, to
avoid deadlocks where one call would be blocked waiting for another call to
blic Review

 JAVA 2 PLATFORM, STANDARD EDITION (J2SE) REQUIREMENTS 115
complete. J2EE clients are not required to multiplex calls, although such support
is highly recommended.

A J2EE product must provide support for a CORBA Portable Object Adapter
(POA) to support portable stub, skeleton, and tie classes. A J2EE application that
defines or uses CORBA objects other than enterprise beans must include such
portable stub, skeleton, and tie classes in the application package.

J2EE applications need to use an instance of org.omg.CORBA.ORB to perform
many Java IDL and RMI-IIOP operations. The default ORB returned by a call to
ORB.init(new String[0], null) must be usable for such purposes; an
application need not be aware of the implementation classes used for the ORB and
RMI-IIOP support.

In addition, for performance reasons it is often advantageous to share an ORB
instance among components in an application. To support such usage, all web,
enterprise bean, and application client containers are required to provide an ORB
instance in the JNDI namespace under the name java:comp/ORB. The container is
allowed, but not required, to share this instance between components. The
container may also use this ORB instance itself. To support isolation between
applications, an ORB instance should not be shared between components in
different applications. To allow this ORB instance to be safely shared between
components, portable components must restrict their usage of certain ORB APIs
and functionality:

• Do not call the ORB shutdown method.

• Do not call the org.omg.CORBA_2_3.ORB methods register_value_factory
and unregister_value_factory with an id used by the container.

A J2EE product must provide a COSNaming service to support the EJB
interoperability requirements. It must be possible to access this COSNaming
service using the Java IDL COSNaming APIs. Applications with appropriate
privileges must be able to lookup objects in the COSNaming service.
COSNaming is defined in the Interoperable Naming Service specification,
available at http://www.omg.org/cgi-bin/doc?formal/2000-06-19.

J2EE.6.2.4.4 RMI-JRMP

JRMP is the Java technology-specific Remote Method Invocation (RMI) protocol.
The J2EE security restrictions typically prevent all application component types

Pu

116
except application clients from creating and exporting an RMI object, but all J2EE
application component types can be clients of RMI objects.

J2EE.6.2.4.5 RMI-IIOP

RMI-IIOP allows objects defined using RMI style interfaces to be accessed using
the IIOP protocol. It must be possible to make any remote enterprise bean accessible
via RMI-IIOP. Some J2EE products will simply make all remote enterprise beans
always (and only) accessible via RMI-IIOP; other products might control this via an
administrative or deployment action. These and other approaches are allowed,
provided that any remote enterprise bean (or by extension, all remote enterprise
beans) can be made accessible using RMI-IIOP.

All components accessing remote enterprise beans must use the narrow
method of the javax.rmi.PortableRemoteObject class, as described in the EJB
specification. Because remote enterprise beans may be deployed using other RMI
protocols, portable applications must not depend on the characteristics of RMI-
IIOP objects (for example, the use of the Stub and Tie base classes) beyond what
is specified in the EJB specification.

The J2EE security restrictions typically prevent all application component
types, except application clients, from creating and exporting an RMI-IIOP
object. All J2EE application component types can be clients of RMI-IIOP objects.
J2EE applications should also use JNDI to lookup non-EJB RMI-IIOP objects.
The JNDI names used for such non-EJB RMI-IIOP objects should be configured
at deployment time using the standard environment entries mechanism (see
Section J2EE.5.2, “JNDI Naming Context”). The application should fetch a name
from JNDI using an environment entry, and use the name to lookup the RMI-IIOP
object. Typically such names will be configured to be names in the COSNaming
name service.

This specification does not provide a portable way for applications to bind
objects to names in a name service. Some products may support use of JNDI and
COSNaming for binding objects, but this is not required. Portable J2EE
application clients can create non-EJB RMI-IIOP server objects for use as
callback objects, or to pass in calls to other RMI-IIOP objects.

Note that while RMI-IIOP doesn’t specify how to propagate the current
security context or transaction context, the EJB interoperability specification does
define such context propagation. This specification only requires that the
propagation of context information as defined in the EJB specification be
supported in the use of RMI-IIOP to access enterprise beans. The propagation of
blic Review

 JAVA 2 PLATFORM, STANDARD EDITION (J2SE) REQUIREMENTS 117
context information is not required in the uses of RMI-IIOP to access objects
other than enterprise beans.

The RMI-IIOP specification describes how portable Stub and Tie classes can
be created. To be portable to all implementations that use a CORBA Portable
Object Adapter (POA), the Tie classes must extend the
org.omg.PortableServer.Servant class. This is typically done by using the -poa
option to the rmic command. A J2EE product must provide support for these
portable Stub and Tie classes, typically using the required CORBA POA.
However, for portability to systems that do not use a POA to implement RMI-
IIOP, applications should not depend on the fact that the Tie extends the Servant
class. A J2EE application that defines or uses RMI-IIOP objects other than
enterprise beans must include such portable Stub and Tie classes in the
application package. Stub and Tie objects for enterprise beans, however, must not
be included with the application: they will be generated, if needed, by the J2EE
product at deployment time or at run time.

RMI-IIOP is defined by chapters 5, 6, 13, 15, and section 10.6.2 of the
CORBA 2.3.1 specification, available at http://www.omg.org/cgi-bin/
doc?formal/99-10-07, and by the Java™ Language To IDL Mapping
Specification, available at http://www.omg.org/cgi-bin/doc?ptc/2000-01-06.

J2EE.6.2.4.6 JNDI

A J2EE product must be able to make the following types of objects available in the
application’s JNDI namespace: EJBHome objects, EJBLocalHome objects, JTA
UserTransaction objects, JDBC API DataSource objects, JMS
ConnectionFactory and Destination objects, JavaMail Session objects, URL
objects, resource manager ConnectionFactory objects (as specified in the
Connector specification), ORB objects, EntityManager objects, and other Java
language objects as described in Chapter J2EE.5, “Resources, Naming, and
Injection.” The JNDI implementation in a J2EE product must be capable of
supporting all of these uses in a single application component using a single JNDI
InitialContext. Application components will generally create a JNDI
InitialContext using the default constructor with no arguments. The application
component may then perform lookups on that InitialContext to find objects as
specified above.

The names used to perform lookups for J2EE objects are application
dependent. The application component’s deployment descriptor is used to list the
names and types of objects expected. The Deployer configures the JNDI

Pu

118
namespace to make appropriate components available. The JNDI names used to
lookup such objects must be in the JNDI java: namespace. See Chapter J2EE.5,
“Resources, Naming, and Injection” for details.

Two particular names are defined by this specification. For all application
components that have access to the JTA UserTransaction interface, the
appropriate UserTransaction object can be found using the name java:comp/
UserTransaction. In all containers except the applet container, application
components may lookup a CORBA ORB instance using the name java:comp/ORB.

The name used to lookup a particular J2EE object may be different in
different application components. In general, JNDI names can not be
meaningfully passed as arguments in remote calls from one application
component to another remote component (for example, in a call to an enterprise
bean).

The JNDI java: namespace is commonly implemented as symbolic links to
other naming systems. Different underlying naming services may be used to store
different kinds of objects, or even different instances of objects. It is up to a J2EE
product to provide the necessary JNDI service providers for accessing the various
objects defined in this specification.

This specification requires that the J2EE platform provide the ability to
perform lookup operations as described above. Different JNDI service providers
may provide different capabilities, for instance, some service providers may
provide only read-only access to the data in the name service.

All J2EE products must provide a COSNaming name service to meet the EJB
interoperability requirements. In addition, a COSNaming JNDI service provider
must be available through the web, EJB, and application client containers. It will
also typically be available in the applet container, but this is not required.

A COSNaming JNDI service provider is a part of the J2SE 5.0 SDK and JRE
from Sun, but is not a required component of the J2SE specification. The
COSNaming JNDI service provider specification is available at http://
java.sun.com/j2se/5.0/docs/guide/jndi/jndi-cos.html.

See Chapter J2EE.5, “Resources, Naming, and Injection” for the complete
naming requirements for the J2EE platform. The JNDI specification is available at
http://java.sun.com/products/jndi/docs.html.

J2EE.6.2.4.7 Context Class Loader

This specification requires that J2EE containers provide a per thread context class
loader for the use of system or library classes in dynamically loading classes
blic Review

 JAVA 2 PLATFORM, STANDARD EDITION (J2SE) REQUIREMENTS 119
provided by the application. The EJB specification requires that all EJB client
containers provide a per thread context class loader for dynamically loading system
value classes. The per thread context class loader is accessed using the Thread
method getContextClassLoader.

The classes used by an application will typically be loaded by a hierarchy of
class loaders. There may be a top level application class loader, an extension class
loader, and so on, down to a system class loader. The top level application class
loader delegates to the lower class loaders as needed. Classes loaded by lower
class loaders, such as portable EJB system value classes, need to be able to
discover the top level application class loader used to dynamically load
application classes.

This specification requires that containers provide a per thread context class
loader that can be used to load top level application classes as described above.
See Section J2EE.8.2.5, “Dynamic Class Loading” for recommendations for
libraries that dynamically load classes.

J2EE.6.2.4.8 Java™ Authentication and Authorization Service (JAAS)
Requirements

All EJB containers and all web containers must support the use of the JAAS APIs as
specified in the Connector specification. All application client containers must
support use of the JAAS APIs as specified in Chapter J2EE.9, “Application Clients.”

The JAAS specification is available at http://java.sun.com/products/jaas.

J2EE.6.2.4.9 Logging API Requirements

The Logging API provides classes and interfaces in the java.util.logging
package that are the Java™ 2 platform’s core logging facilities. This specification
does not require any additional support for logging. A J2EE application typically
will not have the LoggingPermission necessary to control the logging
configuration, but may use the logging API to produce log records. A future version
of this specification may require that the J2EE containers use the logging API to log
certain events.

J2EE.6.2.4.10 Preferences API Requirements

The Preferences API in the java.util.prefs package allows applications to store
and retrieve user and system preference and configuration data. A J2EE application
typically will not have the RuntimePermission("preferences") necessary to use

Pu

120
the Preferences API. This specification does not define any relationship between the
principal used by a J2EE application and the user preferences tree defined by the
Preferences API. A future version of this specification may define the use of the
Preferences API by J2EE applications.

J2EE.6.3 Enterprise JavaBeans™ (EJB) 3.0 Requirements

This specification requires that a J2EE product provide support for enterprise beans
as specified in the EJB specification. The EJB specification is available at http://
java.sun.com/products/ejb/docs.html.

This specification does not impose any additional requirements at this time.
Note that the EJB specification includes the specification of the EJB
interoperability protocol based on RMI-IIOP. All containers that support EJB
clients must be capable of using the EJB interoperability protocol to invoke
enterprise beans. All EJB containers must support the invocation of enterprise
beans using the EJB interoperability protocol. A J2EE product may also support
other protocols for the invocation of enterprise beans.

A J2EE product may support multiple object systems (for example, RMI-
IIOP and RMI-JRMP). It may not always be possible to pass object references
from one object system to objects in another object system. However, when an
enterprise bean is using the RMI-IIOP protocol, it must be possible to pass object
references for RMI-IIOP or Java IDL objects as arguments to methods on such an
enterprise bean, and to return such object references as return values of a method
on such an enterprise bean. In addition, it must be possible to pass a reference to
an RMI-IIOP-based enterprise bean’s Home or Remote interface to a method on
an RMI-IIOP or Java IDL object, or to return such an enterprise bean object
reference as a return value from such an RMI-IIOP or Java IDL object.

The EJB container and the web container are both required to support access
to local enterprise beans. No support is provided for access to local enterprise
beans from the application client container or the applet container.

J2EE.6.4 Servlet 2.4 Requirements

The servlet specification defines the packaging and deployment of web applications,
whether standalone or as part of a J2EE application. The servlet specification also
blic Review

 SERVLET 2.4 REQUIREMENTS 121
addresses security, both standalone and within the J2EE platform. These optional
components of the servlet specification are requirements of the J2EE platform.

The servlet specification includes additional requirements for web containers
that are part of a J2EE product and a J2EE product must meet these requirements
as well.

The servlet specification defines distributable web applications. To support
J2EE applications that are distributable, this specification adds the following
requirements.

Web containers must support J2EE distributable web applications placing
objects of any of the following types into a javax.servlet.http.HttpSession
object using the setAttribute or putValue methods:

• java.io.Serializable

• javax.ejb.EJBObject

• javax.ejb.EJBHome

• javax.ejb.EJBLocalObject

• javax.ejb.EJBLocalHome

• javax.transaction.UserTransaction

• a javax.naming.Context object for the java:comp/env context

• a reference to an EJB 3 local or remote business interface

Web containers may support objects of other types as well. Web containers
must throw a java.lang.IllegalArgumentException if an object that is not one of
the above types, or another type supported by the container, is passed to the
setAttribute or putValue methods of an HttpSession object corresponding to a
J2EE distributable session. This exception indicates to the programmer that the
web container does not support moving the object between VMs. A web container
that supports multi-VM operation must ensure that, when a session is moved from
one VM to another, all objects of supported types are accurately recreated on the
target VM.

The servlet specification defines access to local enterprise beans as an
optional feature. This specification requires that all J2EE products provide support
for access to local enterprise beans from the web container.

The servlet specification is available at http://java.sun.com/products/
servlet.

Pu

122
J2EE.6.5 JavaServer Pages™ (JSP) 2.1 Requirements

The JSP specification depends on and builds on the servlet framework. A J2EE
product must support the entire JSP specification.

The JSP specification is available at http://java.sun.com/products/jsp.

J2EE.6.6 Java™ Message Service (JMS) 1.1 Requirements

A Java Message Service provider must be included in a J2EE product. The JMS
implementation must provide support for both JMS point-to-point and publish/
subscribe messaging, and thus must make those facilities available using the
ConnectionFactory and Destination APIs.

The JMS specification defines several interfaces intended for integration with
an application server. A J2EE product need not provide objects that implement
these interfaces, and portable J2EE applications must not use the following
interfaces:

• javax.jms.ServerSession

• javax.jms.ServerSessionPool

• javax.jms.ConnectionConsumer

• all javax.jms XA interfaces

The following methods may only be used by application components
executing in the application client container:
blic Review

 JAVA™ TRANSACTION API (JTA) 1.0 REQUIREMENTS 123
• javax.jms.Session method setMessageListener

• javax.jms.Session method getMessageListener

• javax.jms.Session method run

• javax.jms.QueueConnection method createConnectionConsumer

• javax.jms.TopicConnection method createConnectionConsumer

• javax.jms.TopicConnection method createDurableConnectionConsumer

• javax.jms.MessageConsumer method getMessageListener

• javax.jms.MessageConsumer method setMessageListener

• javax.jms.Connection method setExceptionListener

• javax.jms.Connection method stop

• javax.jms.Connection method setClientID

A J2EE container may throw a JMSException (if allowed by the method) if the
application component violates these restrictions.

Application components in the web and EJB containers must not attempt to
create more than one active (not closed) Session object per connection. An
attempt to use the Connection object’s createSession method when an active
Session object exists for that connection should be prohibited by the container.
The container may throw a JMSException if the application component violates
this restriction. Application client containers must support the creation of multiple
sessions for each connection.

In general, the behavior of a JMS provider should be the same in both the EJB
container and the web container. The EJB specification describes restrictions on
the use of JMS in an EJB container, as well as the interaction of JMS with
transactions in an EJB container. Applications running in the web container
should follow the same restrictions.

The JMS specification is available at http://java.sun.com/products/jms.

J2EE.6.7 Java™ Transaction API (JTA) 1.0 Requirements

JTA defines the UserTransaction interface that is used by applications to start, and
commit or abort transactions. Enterprise beans are expected to get UserTransaction
objects through the EJBContext’s getUserTransaction method. Other application
components get a UserTransaction object through a JNDI lookup using the name
java:comp/UserTransaction.

Pu

124
JTA also defines a number of interfaces that are used by an application server
to communicate with a transaction manager, and for a transaction manager to
interact with a resource manager. These interfaces must be supported as described
in the Connector specification. In addition, support for other transaction facilities
may be provided transparently to the application by a J2EE product.

The latest JTA 1.0 specification is version 1.0.1B and is available at http://
java.sun.com/products/jta.

J2EE.6.8 JavaMail™ 1.3 Requirements

The JavaMail API allows for access to email messages contained in message stores,
and for the creation and sending of email messages using a message transport.
Specific support is included for Internet standard MIME messages. Access to
message stores and transports is through protocol providers supporting specific store
and transport protocols. The JavaMail API specification does not require any
specific protocol providers, but the JavaMail reference implementation includes an
IMAP message store provider, a POP3 message store provider, and an SMTP
message transport provider.

Configuration of the JavaMail API is typically done by setting properties in a
Properties object that is used to create a javax.mail.Session object using a
static factory method. To allow the J2EE platform to configure and manage
JavaMail API sessions, an application component that uses the JavaMail API
should request a Session object using JNDI, and should list its need for a Session
object in its deployment descriptor using a resource-ref element. A JavaMail
API Session object should be considered a resource factory, as described in
Section J2EE.5.6, “Resource Manager Connection Factory References.” This
specification requires that the J2EE platform support javax.mail.Session objects
as resource factories, as described in that section.

The J2EE platform requires that a message transport be provided that is
capable of handling addresses of type javax.mail.internet.InternetAddress
and messages of type javax.mail.internet.MimeMessage. The default message
transport must be properly configured to send such messages using the send
method of the javax.mail.Transport class. Any authentication needed by the
default transport must be handled without need for the application to provide a
javax.mail.Authenticator or to explicitly connect to the transport and supply
authentication information.
blic Review

 JAVABEANS™ ACTIVATION FRAMEWORK 1.1 REQUIREMENTS 125
This specification does not require that a J2EE product support any message
store protocols.

Note that the JavaMail API creates threads to deliver notifications of Store,
Folder, and Transport events. The use of these notification facilities may be
limited by the restrictions on the use of threads in various containers. In EJB
containers, for instance, it is typically not possible to create threads.

The JavaMail API uses the JavaBeans Activation Framework API to support
various MIME data types. The JavaMail API must include
javax.activation.DataContentHandlers for the following MIME data types,
corresponding to the Java programming language type indicated in Table J2EE.6-
4.

The JavaMail API specification is available at http://java.sun.com/
products/javamail.

J2EE.6.9 JavaBeans™ Activation Framework 1.1
Requirements

The JavaBeans Activation Framework integrates support for MIME data types into
the Java platform. MIME byte streams can be converted to and from Java
programming language objects, using javax.activation.DataContentHandler
objects. JavaBeans components can be specified for operating on MIME data, such
as viewing or editing the data. The JavaBeans Activation Framework also provides a
mechanism to map filename extensions to MIME types.

The JavaBeans Activation Framework is used by the JavaMail API to handle
the data included in email messages. Typical J2EE applications will not need to

Table J2EE.6-4 JavaMail API MIME Data Type to Java Type
Mappings

Mime Type Java Type

text/plain java.lang.String

text/html java.lang.String

text/xml java.lang.String

multipart/* javax.mail.internet.MimeMultipart

message/rfc822 javax.mail.internet.MimeMessage

Pu

126
use the JavaBeans Activation Framework directly, although applications making
sophisticated use of email may need it.

This specification requires that a J2EE product provide only the
DataContentHandlers specified above for the JavaMail API. This includes
requirement of a javax.activation.MimetypesFileTypeMap that supports the
mappings listed in Table J2EE.6-5.

The JavaBeans Activation Framework 1.1 specification is available at http://
java.sun.com/beans/glasgow/jaf.html.

J2EE.6.10 J2EE™ Connector Architecture 1.5 Requirements

All EJB containers and all web containers must support the full set of Connector
APIs. All such containers must support Resource Adapters that use any of the
specified transaction capabilities. The J2EE deployment tools must support
deployment of Resource Adapters, as defined in the Connector specification, and
must support the deployment of applications that use Resource Adapters.

The Connector specification is available at http://java.sun.com/j2ee/
connector/.

J2EE.6.11 Web Services for J2EE 1.1 Requirements

The Web Services for J2EE specification defines the capabilities a J2EE application
server must support for deployment of web service endpoints. A complete
deployment model is defined, including several new deployment descriptors. All

Table J2EE.6-5 Filename Extension to MIME Type Mappings

MIME Type Filename Extensions

text/html html htm

text/plain txt text

image/gif gif GIF

image/jpeg jpeg jpg jpe JPG

image/png png PNG
blic Review

 JAVA™ API FOR XML-BASED RPC (JAX-RPC) 1.1 REQUIREMENTS 127
J2EE products must support the deployment and execution of web services as
specified by the Web Services for J2EE 1.1 specification (JSR-109).

The Web Services for J2EE specification is available at http://jcp.org/en/
jsr/detail?id=109 and http://jcp.org/en/jsr/detail?id=921.

J2EE.6.12 Java™ API for XML-based RPC (JAX-RPC) 1.1
Requirements

The JAX-RPC specification defines client APIs for accessing web services as well
as techniques for implementing web service endpoints. The Web Services for J2EE
specification describes the deployment of JAX-RPC-based services and clients. The
EJB and servlet specifications also describe aspects of such deployment. It must be
possible to deploy JAX-RPC-based applications using any of these deployment
models.

The JAX-RPC specification describes the support for message handlers that
can process message requests and responses. In general, these message handlers
execute in the same container and with the same privileges and execution context
as the JAX-RPC client or endpoint component with which they are associated.
These message handlers have access to the same JNDI java:comp/env namespace
as their associated component. Custom serializers and deserializers, if supported,
are treated in the same way as message handlers.

The JAX-RPC specification is available at http://java.sun.com/xml/
jaxrpc.

J2EE.6.13 Java™ API for XML Web Services (JAX-WS) 2.0
Requirements

The JAX-WS specification provides support for web services that use the JAXB API
for binding XML data to Java objects. The JAX-WS specification defines client
APIs for accessing web services as well as techniques for implementing web service
endpoints. The Web Services for J2EE specification describes the deployment of
JAX-WS-based services and clients. The EJB and servlet specifications also
describe aspects of such deployment. It must be possible to deploy JAX-WS-based
applications using any of these deployment models.

The JAX-WS specification describes the support for message handlers that
can process message requests and responses. In general, these message handlers

Pu

128
execute in the same container and with the same privileges and execution context
as the JAX-WS client or endpoint component with which they are associated.
These message handlers have access to the same JNDI java:comp/env namespace
as their associated component. Custom serializers and deserializers, if supported,
are treated in the same way as message handlers.

The JAX-WS specification is available at http://java.sun.com/xml/jaxws.

J2EE.6.14 Java™ Architecture for XML Binding (JAXB) 2.0
Requirements

The Java Architecture for XML Binding (JAXB) provides a convenient way to bind
an XML schema to a representation in Java language programs. JAXB can be used
independently or in combination with JAX-WS, where it provides a standard data
binding for web service messages. All J2EE application client containers, web
conatiners, and EJB containers are required to support the JAXB API.

The Java API for XML Data Binding specification can be found at http://
jcp.org/en/jsr/detail?id=222.

J2EE.6.15 SOAP with Attachments API for Java™ (SAAJ) 1.3

The SAAJ API is used to manipulate SOAP messages. The SAAJ API is used by the
JAX-RPC API to represent XML fragments and to access the entire SOAP message
in a JAX-RPC message handler. As described in the SAAJ specification,
implementations of the SOAPConnectionFactory method newInstance may, and
typically will, throw an exception indicating that this functionality is not
implemented.

The SAAJ specification is available at http://java.sun.com/xml/saaj.

J2EE.6.16 Java™ API for XML Registries (JAXR) 1.0
Requirements

The JAXR specification defines APIs for client access to XML-based registries such
as ebXML registries and UDDI registries. J2EE products must include a JAXR
registry provider that meets at least the JAXR level 0 requirements, as well as a
registry implementation that can be accessed using that provider.

The JAXR specification is available at http://java.sun.com/xml/jaxr.
blic Review

 JAVA™ 2 PLATFORM, ENTERPRISE EDITION MANAGEMENT API 1.0 REQUIREMENTS 129
J2EE.6.17 Java™ 2 Platform, Enterprise Edition Management
API 1.0 Requirements

The J2EE Management API provides APIs for management tools to query a J2EE
application server to determine its current status, applications deployed, and so on.
All J2EE products must support this API as described in its specification.

The J2EE Management API specification is available at http://jcp.org/
jsr/detail/77.jsp.

J2EE.6.18 Java™ 2 Platform, Enterprise Edition Deployment
API 1.1 Requirements

The J2EE Deployment API defines the interfaces between the runtime environment
of a deployment tool and plug-in components provided by a J2EE application
server. These plug-in components execute in the deployment tool and implement the
J2EE product-specific deployment mechanisms. All J2EE products are required to
supply these plug-in components for use in tools from other vendors.

Note that the J2EE Deployment specification does not define new APIs for
direct use by J2EE applications. However, it would be possible to create a J2EE
application that acts as a deployment tool and provides the runtime environment
required by the J2EE Deployment specification.

The J2EE Deployment API specification is available at http://
java.sun.com/j2ee/tools/deployment.

J2EE.6.19 Java™ Authorization Service Provider Contract for
Containers (JACC) 1.0 Requirements

The JACC specification defines a contract between a J2EE application server and an
authorization policy provider. All J2EE application containers, web containers, and
enterprise bean containers are required to support this contract.

The JACC specification can be found at http://jcp.org/jsr/detail/
115.jsp.

Pu

130
J2EE.6.20 Debugging Support for Other Languages (JSR-45)
Requirements

JSP pages are usually translated into Java language pages and then compiled to
create class files. The Debugging Support for Other Languages specification
describes information that can be included in a class file to relate class file data to
data in the original source file. All J2EE products are required to be able to include
such information in class files that are generated from JSP pages.

The Debugging Support for Other Languages specification can be found at
http://jcp.org/en/jsr/detail?id=45.

J2EE.6.21 Standard Tag Library for JavaServer Pages™
(JSTL) 1.1 Requirements

JSTL defines a standard tag library that makes it easier to develop JSP pages. All
J2EE products are required to provide JSTL for use by all JSP pages.

The Standard Tag Library for JavaServer Pages specification can be found at
http://jcp.org/en/jsr/detail?id=52.

J2EE.6.22 Web Services Metadata for the Java™ Platform 1.0
Requirements

The Web Services Metadata for the Java Platform specification defines Java
language annotations that can be used to simplify the development of web services.

Note – Will need to say more about packaging and deployment.

The Web Services Metadata for the Java Platform specification can be found
at http://jcp.org/en/jsr/detail?id=181.

J2EE.6.23 JavaServer Faces™ 1.2 Requirements

JavaServer Faces technology simplifies building user interfaces for JavaServer
applications. Developers of various skill levels can quickly build web applications
by: assembling reusable UI components in a page; connecting these components to
blic Review

 COMMON ANNOTATIONS FOR THE JAVA™ PLATFORM 1.0 REQUIREMENTS 131
an application data source; and wiring client-generated events to server-side event
handlers. All J2EE web containers are required to support applications that use the
JavaServer Faces technology.

The JavaServer Faces specification can be found at http://jcp.org/en/jsr/
detail?id=252.

J2EE.6.24 Common Annotations for the Java™ Platform 1.0
Requirements

The Common Annotations specification defines Java language annotations that are
used by several other specifications, including this specification. The specifications
that use these annotations fully define the requirements for these annotations. The
applet container need not support any of these annotations. All other containers
must provide definitions for all of these annotations, and must support the semantics
of these annotations as described in the corresponding specifications and
summarized in the following table.

The Common Annotations for the Java Platform specification can be found at
http://jcp.org/en/jsr/detail?id=250.

Table J2EE.6-6 Common Annotations Support by Container

Annotation App Client Web EJB

PropertySet Y Y Y

Resource Y Y Y

Resources Y Y Y

InjectionComplete Y Y Y

Generated N N N

RunAs N N Y

RolesReferenced N N Y

RolesAllowed N N Y

PermitAll N N Y

DenyAll N N Y

Pu

132
J2EE.6.25 Streaming API for XML (StAX) 1.0 Requirements

The Streaming API for XML (StAX) specification defines a pull-parsing API for
XML. The streaming API gives parsing control to the programmer by exposing a
simple iterator based API. This allows the programmer to ask for the next event
(pull the event) and allows state to be stored in a procedural fashion. All J2EE
application client containers, web containers, and EJB containers are required to
support the StAX API.

The Streaming API for XML specification can be found at http://jcp.org/
en/jsr/detail?id=173.

J2EE.6.26 Java Persistence API 1.0

Note – The inclusion of the Java Persistence API that’s being developed by
the EJB 3.0 expert group in J2EE 5.0 is currently a contentious issue in the J2EE
expert group. Some experts believe this new technology will not be mature and
should not be included in the J2EE platform until J2EE 6.0. Other experts believe
that the advantages this technology brings to the J2EE platform are significant and
it should be included in J2EE 5.0. Sun strongly supports inclusion of the Java Per-
sistence API. Your feedback on this issue is encouraged.

Note – This section is still incomplete.
blic Review

C H A P T E R J2EE.7

Interoperability

This chapter describes the interoperability requirements for the Java™ 2 Platform,
Enterprise Edition (J2EE).

J2EE.7.1 Introduction to Interoperability

The J2EE platform will be used by enterprise environments that support clients of
many different types. The enterprise environments will add new services to existing
Enterprise Information Systems (EISs). They will be using various hardware
platforms and applications written in various languages.

In particular, the J2EE platform in enterprise environments may be used in
enterprise environments to bring together any of the following kinds of
applications:

• applications written in such languages as C++ and Visual Basic.

• applications running on a personal computer platform, or Unix® workstation.

• standalone Java technology-based applications that are not directly supported
by the J2EE platform.

It is the interoperability requirements of the J2EE platform, set out in this
chapter, that make it possible for it to provide indirect support for various types of
clients, different hardware platforms, and a multitude of software applications.
The interoperability features of the J2EE platform permit the underlying disparate
systems to work together seamlessly, while hiding much of the complexity
required to join these pieces together.

The interoperability requirements for the current J2EE platform release allow:
133

Pu

134
• J2EE applications to connect to legacy systems using CORBA or low-level
socket interfaces.

• J2EE applications to connect to other J2EE applications across multiple J2EE
products, whether from different Product Providers or from the same Provider,
and multiple J2EE platforms.

In this version of the specification, interoperability between J2EE applications
running in different platforms is accomplished through the HTTP protocol,
possibly using SSL, or the EJB interoperability protocol based on IIOP.

J2EE.7.2 Interoperability Protocols

This specification requires that a J2EE product support a standard set of protocols
and formats to ensure interoperability between J2EE applications and with other
applications that also implement these protocols and formats. The specification
requires support for the following groups of protocols and formats:

• Internet and web protocols

• OMG protocols

• Java technology protocols

• Data formats

Most of these protocols and formats are supported by J2SE and by the
underlying operating system.

J2EE.7.2.1 Internet and Web Protocols

Standards based Internet protocols are the means by which different pieces of the
platform communicate. The J2EE platform requires support for the following
Internet protocols:

• TCP/IP protocol family—This is the core component of Internet communica-
tion. TCP/IP and UDP/IP are the standard transport protocols for the Internet.
TCP/IP is supported by J2SE and the underlying operating system.

• HTTP 1.1—This is the core protocol of web communication. As with TCP/IP,
HTTP 1.1 is supported by J2SE and the underlying operating system. A J2EE
blic Review

 INTEROPERABILITY PROTOCOLS 135
web container must be capable of advertising its HTTP services on the stan-
dard HTTP port, port 80.

• SSL 3.0, TLS 1.0—SSL 3.0 (Secure Socket Layer) represents the security
layer for Web communication. It is available indirectly when using the https
URL as opposed to the http URL. A J2EE web container must be capable of
advertising its HTTPS service on the standard HTTPS port, port 443. SSL 3.0
and TLS 1.0 are also required as part of the EJB interoperability protocol in
the EJB specification.

• SOAP 1.1—SOAP is a presentation layer protocol for the exchange of XML
messages. Support for SOAP layered on HTTP is required, as described in the
JAX-RPC and JAX-WS specifications.

• SOAP 1.2—SOAP 1.2 is the version of the SOAP protocol standardized
through W3C and supported by JAX-WS.

• WS-I Basic Profile 1.1—The WS-I Basic Profile, in combination with the Sim-
ple SOAP Binding Profile and Attachment Profile, describes interoperability
requirements for the use of SOAP 1.1, WSDL 1.1, and MIME-based SOAP
with Attachments. It is required by the JAX-RPC specification.

J2EE.7.2.2 OMG Protocols

This specification requires the J2EE platform to support the following Object
Management Group (OMG) based protocols:

• IIOP (Internet Inter-ORB Protocol)—Supported by Java IDL and RMI-IIOP in
J2SE. Java IDL provides standards-based interoperability and connectivity
through the Common Object Request Broker Architecture (CORBA). CORBA
specifies the Object Request Broker (ORB) which allows applications to com-
municate with each other regardless of location. This interoperability is deliv-
ered through IIOP, and is typically found in an intranet setting. IIOP can be
used as an RMI protocol using the RMI-IIOP technology. IIOP is defined in
Chapters 13 and 15 of the CORBA 2.3.1 specification, available at http://
cgi.omg.org/cgi-bin/doc?formal/99-10-07.

• EJB interoperability protocol—The EJB interoperability protocol is based on
IIOP (GIOP 1.2) and the CSIv2 CORBA Secure Interoperability specifica-
tion. The EJB interoperability protocol is defined in the EJB specification.

• CORBA Interoperable Naming Service protocol—The COSNaming-based
INS protocol is an IIOP-based protocol for accessing a name service. The EJB

Pu

136
interoperability protocol requires the use of the INS protocol for lookup of EJB
objects using the JNDI API. In addition, it must be possible to use the Java IDL
COSNaming API to access the INS name service. All J2EE products must pro-
vide a name service that meets the requirements of the Interoperable Naming
Service specification, available at http://cgi.omg.org/cgi-bin/
doc?formal/2000-06-19. This name service may be provided as a separate
name server or as a protocol bridge or gateway to another name service. Either
approach is consistent with this specification.

J2EE.7.2.3 Java Technology Protocols

This specification requires the J2EE platform to support the JRMP protocol, which
is the Java technology-specific Remote Method Invocation (RMI) protocol. JRMP is
a required component of J2SE and is one of two required RMI protocols. (IIOP is
the other required RMI protocol, see above.)

JRMP is a distributed object model for the Java programming language.
Distributed systems, running in different address spaces and often on different
hosts, must be able to communicate with each other. JRMP permits program-level
objects in different address spaces to invoke remote objects using the semantics of
the Java programming language object model.

Complete information on the JRMP specification can be found at http://
java.sun.com/j2se/1.4/docs/guide/rmi.

J2EE.7.2.4 Data Formats

In addition to the protocols that allow communication between components, this
specification requires J2EE platform support for a number of data formats. These
formats provide the definition for data exchanged between components.

The following data formats must be supported:

• XML 1.0—The XML format can be used to construct documents, RPC mes-
sages, etc. The JAXP API provides support for processing XML format data.
The JAX-RPC API provides support for XML RPC messages, as well as a
mapping between Java classes and XML.

• HTML 3.2—This represents the minimum web browser standard document
format. While not directly supported by J2EE APIs, J2EE web clients must be
able to display HTML 3.2 documents.
blic Review

 INTEROPERABILITY PROTOCOLS 137
• Image file formats—The J2EE platform must support GIF, JPEG, and PNG
images. Support for these formats is provided by the java.awt.image APIs
(see the URL: http://java.sun.com/j2se/5.0/docs/api/java/awt/image/
package-summary.html) and by J2EE web clients.

• JAR files—JAR (Java Archive) files are the standard packaging format for
Java technology-based application components, including the ejb-jar special-
ized format, the Web application archive (WAR) format, the Resource Adapt-
er archive (RAR), and the J2EE enterprise application archive (EAR) format.
JAR is a platform-independent file format that permits many files to be aggre-
gated into one file. This allows multiple Java components to be bundled into
one JAR file and downloaded to a browser in a single HTTP transaction. JAR
file formats are supported by the java.util.jar and java.util.zip packag-
es. For complete information on the JAR specification, see http://
java.sun.com/j2se/5.0/docs/guide/jar.

• Class file format—The class file format is specified in the Java Virtual Ma-
chine specification. Each class file contains one Java programming language
type—either a class or an interface—and consists of a stream of 8-bit bytes.
For complete information on the class file format, see http://java.sun.com/
docs/books/vmspec.

Pu

138
blic Review

C H A P T E R J2EE.8

Application Assembly and

Deployment

This chapter specifies Java™ 2 Platform, Enterprise Edition (J2EE) requirements
for assembling, packaging, and deploying a J2EE application. The main goal of
these requirements is to provide scalable and modular application assembly, and
portable deployment of J2EE applications into any J2EE product.

J2EE applications are composed of one or more J2EE components and one
J2EE application deployment descriptor. The deployment descriptor lists the
application’s components as modules. A J2EE module represents the basic unit of
composition of a J2EE application. J2EE modules consist of one or more J2EE
components and an optional module level deployment descriptor. The flexibility
and extensibility of the J2EE component model facilitates the packaging and
deployment of J2EE components as individual components, component libraries,
or J2EE applications.

Figure J2EE.8-1 shows the composition model for J2EE deployment units
and includes the optional use of alternate deployment descriptors by the
application package to preserve any digital signatures of the original J2EE
modules.
139

Pu

140
Figure J2EE.8-1 J2EE Deployment

J2EE.8.1 Application Development Life Cycle

The development life cycle of a J2EE application begins with the creation of
discrete J2EE components. These components may then be packaged with a module
level deployment descriptor to create a J2EE module. J2EE modules can be
deployed as stand-alone units or can be assembled with a J2EE application
deployment descriptor and deployed as a J2EE application.

Figure J2EE.8-2 shows the life cycle of a J2EE application.

EJB

EJB

EJB

DD

2

WEB

WEB

DD

3

3

DD

2

DD

APP
DD

1

DD

DD
1

DD
2

DD
3

Deployment
Tool

Components J2EE ApplicationJ2EE
Modules

DD

1

application
client

module

Web app
module

EJB
module

DD

Resource
Adapter
module

deploy standalone modules

add/delete ingredients

DD
4

4

DD4
blic Review

 APPLICATION DEVELOPMENT LIFE CYCLE 141
Figure J2EE.8-2 J2EE Application Life Cycle

J2EE.8.1.1 Component Creation

The EJB, servlet, application client, and Connector specifications include the XML
Schema definition of the associated module level deployment descriptors and
component packaging architecture required to produce J2EE modules. (The
application client specification is found in Chapter J2EE.9 of this document.)

A J2EE module is a collection of one or more J2EE components of the same
component type (web, EJB, application client, or Connector) with an optional
module deployment descriptor of that type. Any number of components of the
same container type can be packaged together with a single J2EE deployment
descriptor appropriate to that container type to produce a J2EE module.
Components of different container types may not be mixed in a single J2EE
module.

• A J2EE module represents the basic unit of composition of a J2EE application.
In some cases a single J2EE module (not necessarily packaged into a J2EE ap-
plication package) will contain an entire application. In other cases an applica-
tion will be composed of multiple J2EE modules.

• The deployment descriptor for a J2EE module contains declarative data re-
quired to deploy the components in the module. The deployment descriptor

deploy

Deployment

Processed by
Deployer

Assembly
Assembled and
Augmented by

Application
Assembler

Created by
Component
Provider

Creation

Enterprise
Components

J2EE Container/Server

J2EE Module J2EE APP

Pu

142
for a J2EE module also contains assembly instructions that describe how the
components are composed into an application.

• Starting with version 5.0 of the J2EE platform, a web application module, an
enterprise bean module, or an application client module need not contain a de-
ployment descriptor. Instead, the deployment information may be specified by
annotations present in the class files of the module.

• An individual J2EE module can be deployed as a stand-alone J2EE module
without an application level deployment descriptor and represents a valid
J2EE application.

• J2EE modules may express dependencies on libraries as described below in
Section J2EE.8.2, “Library Support.”

J2EE.8.1.2 Application Assembly

A J2EE application may consist of one or more J2EE modules and one J2EE
application deployment descriptor. A J2EE application is packaged using the Java
Archive (JAR) file format into a file with a .ear (Enterprise ARchive) filename
extension. A minimal J2EE application package will only contain J2EE modules
and the application deployment descriptor. A J2EE application package may also
include libraries referenced by J2EE modules (using the Class-Path mechanism
described below in Section J2EE.8.2, “Library Support”), help files, and
documentation to aid the deployer.

The deployment of a portable J2EE application should not depend on any
entities that may be contained in the package other than those defined by this
specification. Deployment of a portable J2EE application must be possible using
only the application deployment descriptor and the J2EE modules (and their
dependent libraries) and descriptors listed in it.

The J2EE application deployment descriptor represents the top level view of a
J2EE application’s contents. The J2EE application deployment descriptor is
specified by an XML schema or document type definition (see Section J2EE.8.5,
“J2EE Application XML Schema”).

In certain cases, a J2EE application will need customization before it can be
deployed into the enterprise. New J2EE modules may be added to the application.
Existing modules may be removed from the application. Some J2EE modules may
need custom content created, changed, or replaced. For example, an application
consumer may need to use an HTML editor to add company graphics to a
template login page that was provided with a J2EE web application.
blic Review

 LIBRARY SUPPORT 143
J2EE.8.1.3 Deployment

During the deployment phase of an application’s life cycle, the application is
installed on the J2EE platform and then is configured and integrated into the existing
infrastructure. Each J2EE module listed in the application deployment descriptor
must be deployed according to the requirements of the specification for the
respective J2EE module type. Each module listed must be installed in the
appropriate container type and the environment properties of each module must be
set appropriately in the target container to reflect the values declared by the
deployment descriptor element for each component.

J2EE.8.2 Library Support

The J2EE platform provides several mechanisms for applications to use optional
packages and shared libraries (hereafter referred to as libraries). Libraries may be
bundled with an application or may be installed separately for use by any
application.

J2EE products are required to support the use of bundled and installed
libraries as specified in the Extension Mechanism Architecture and Optional
Package Versioning specifications (available at http://java.sun.com/j2se/5.0/
docs/guide/extensions) and the JAR File Specification (available at http://
java.sun.com/j2se/5.0/docs/guide/jar/jar.html). Using this mechanism a
J2EE JAR file can reference utility classes or other shared classes or resources
packaged in a separate .jar file or directory that is included in the same J2EE
application package, or that has been previously installed in the J2EE containers.

J2EE.8.2.1 Bundled Libraries

Libraries bundled with an application may be referenced in the following ways:

1. A JAR format file (such as a .jar file, .war file, or .rar file) may reference a
.jar file or directory by naming the referenced .jar file or directory in a
Class-Path header in the referencing JAR file’s Manifest file. The referenced
.jar file or directory is named using a URL relative to the URL of the refer-
encing JAR file. The Manifest file is named META-INF/MANIFEST.MF in the JAR
file. The Class-Path entry in the Manifest file is of the form

Class-Path: list-of-jar-files-or-directories-separated-by-spaces

Pu

144
The J2EE deployment tools must process all such referenced files and directo-
ries when processing a J2EE module. Any deployment descriptors in refer-
enced .jar files must be ignored when processing the referencing .jar file.
The deployment tool must install the .jar files and directories in a way that
preserves the relative references between the files. Typically this is done by
installing the .jar files into a directory hierarchy that matches the original
application directory hierarchy. All referenced .jar files or directories must
appear in the logical class path of the referencing JAR files at runtime.

Only JAR format files containing class files or resources to be loaded directly
by a standard class loader should be the target of a Class-Path reference; such
files are always named with a .jar extension. Top level JAR files that are pro-
cessed by a deployment tool should not contain Class-Path entries; such
entries would, by definition, reference other files external to the deployment
unit. A deployment tool is not required to process such external references.

2. A .ear file may contain a directory that contains libraries packaged in JAR
files. The library-directory element of the .ear file’s deployment descriptor
contains the name of this directory.

All files in this directory (but not subdirectories) with a .jar extension must
be made available to all components packaged in the EAR file, including
application clients. These libraries may reference other libraries, either bun-
dled with the application or installed separately, using any of the techniques
described herein.

3. A web application may include libraries in the WEB-INF/lib directory. See the
Servlet specification for details. These libraries may reference other libraries,
either bundled with the application or installed separately, using any of the
techniques described herein.

J2EE.8.2.2 Installed Libraries

Libraries that have been installed separately may be referenced in the following
way:

1. JAR format files of all types may contain an Extension-List attribute in their
Manifest file, indicating a dependency on an installed library. The JAR File
Specification defines the semantics of such attributes for use by applets; this
specification requires support for such attributes for all component types and
corresponding JAR format files. The deployment tool is required to check such
blic Review

 LIBRARY SUPPORT 145
dependency information and reject the deployment of any component for
which the dependency can not be met. Portable applications should not assume
that any installed libraries will be available to a component unless the compo-
nent’s JAR format file, or one of the containing JAR format files, expresses a
dependency on the library using the Extension-List and related attributes.

The referenced libraries must be made available to all components contained
within the referencing file, including any components contained within other
JAR format files within the referencing file. For example, if a .ear file refer-
ences an installed library, the library must be made available to all compo-
nents in all .war files, EJB .jar files, application .jar files, and resource
adapter .rar files within the .ear file.

A J2EE product is not required to support downloading of libraries (using the
<extension>-Implementation-URL header) at deployment time or runtime. A
J2EE product is also not required to support more than a single version of an
installed library at once. A J2EE product is not required to limit access to installed
libraries to only those for which the application has expressed a dependency; the
application may be given access to more installed libraries than it has requested.
In all of these cases, such support is highly recommended and may be required in
a future version of this specification. In particular, we recommend that a J2EE
product support multiple versions of an installed library, and only allow
applications to access the installed libraries for which they have expressed a
dependency.

J2EE.8.2.3 Library Conflicts

If an application includes a bundled version of a library, and the same library exists
as an installed library, the instance of the library bundled with the application should
be used in preference to any installed version of the library. This allows an
application to bundle exactly the version of a library it requires without being
influenced by any installed libraries. Note that if the library is also a required
component of the J2EE platform version on which the application is being
deployed, the platform version may (and typically will) take precedence.

J2EE.8.2.4 Library Resources

In addition to allowing access to referenced classes, as described above, any
resources contained in the referenced JAR files must also be accessible using the

Pu

146
Class and ClassLoader getResource methods, as allowed by the security
permissions of the application. An application will typically have the security
permissions required to access resources in any of the JAR files packaged with the
application.

J2EE.8.2.5 Dynamic Class Loading

Libraries that dynamically load classes must consider the class loading environment
of a J2EE application. Libraries will often be loaded by a class loader that is a parent
class loader of the class loader that is used to load application classes. A library that
only needs to dynamically load classes provided by the library itself can safely use
the Class method forName. However, libraries that need to dynamically load classes
that have been provided as a part of the application need to use the context class
loader to load the classes. Access to the context class loader requires
RuntimePermission(“getClassLoader”), which is not normally granted to
applications, but should be granted to libraries that need to dynamically load classes.
Libraries can use a method such as the following to assert their privilege when
accessing the context class loader. This technique will work in both J2SE and J2EE.

public ClassLoader getContextClassLoader() {

return AccessController.doPrivileged(

new PrivilegedAction<ClassLoader>() {

public ClassLoader run() {

ClassLoader cl = null;

try {

cl = Thread.currentThread().

getContextClassLoader();

} catch (SecurityException ex) { }

return cl;

}

 });

}

Libraries should then use the following technique to load classes.

ClassLoader cl = getContextClassLoader();

if (cl != null)

clazz = cl.loadClass(name);

else

clazz = Class.forName(name);
blic Review

 LIBRARY SUPPORT 147
J2EE.8.2.6 Examples

The following example illustrates a simple use of the bundled library mechanism to
reference a library of utility classes that are shared between enterprise beans in two
separate ejb-jar files.

app1.ear:

META-INF/application.xml

ejb1.jar Class-Path: util.jar

ejb2.jar Class-Path: util.jar

util.jar

The next example illustrates a more complex use of the Class-Path
mechanism. In this example the Developer has chosen to package the enterprise
bean client view classes in a separate JAR file and reference that JAR file from the
other JAR files that need those classes. Those classes are needed both by
ejb2.jar, packaged in the same application as ejb1.jar, and by ejb3.jar and
servlet1.jar, packaged in a different application. Those classes are also needed
by ejb1.jar itself because they define the remote interface of the enterprise beans
in ejb1.jar, and the developer has chosen the by reference model of making these
classes available, as described in the EJB spec. The deployment descriptor for
ejb1.jar names the client view JAR file in the ejb-client-jar element.

The Class-Path mechanism must be used by components in app3.ear to
reference the client view JAR file that corresponds to the enterprise beans
packaged in ejb1.jar of app2.ear. These enterprise beans are referenced by
enterprise beans in ejb3.jar and by the servlets packaged in webapp.war.

app2.ear:

META-INF/application.xml

ejb1.jar Class-Path: ejb1_client.jar

deployment descriptor contains:

<ejb-client-jar>ejb1_client.jar</ejb-client-jar>

ejb1_client.jar

ejb2.jar Class-Path: ejb1_client.jar

app3.ear:

META-INF/application.xml

ejb1_client.jar

ejb3.jar Class-Path: ejb1_client.jar

webapp.war Class-Path: ejb1_client.jar

Pu

148
WEB-INF/web.xml

WEB-INF/lib/servlet1.jar

The following example illustrates a simple use of the installed library
mechanism to reference a library of utility classes that is installed separately.

app1.ear:

META-INF/application.xml

ejb1.jar:

META-INF/MANIFEST.MF:

Extension-List: util

util-Extension-Name: com/example/util

util-Extension-Specification-Version: 1.4

META-INF/ejb-jar.xml

util.jar:

META-INF/MANIFEST.MF:

Extension-Name: com/example/util

Specification-Title: example.com’s util package

Specification-Version: 1.4

Specification-Vendor: example.com

Implementation-Version: build96

J2EE.8.3 Application Assembly

This section specifies the sequence of steps that are typically followed when
composing a J2EE application.

J2EE.8.3.1 Assembling a J2EE Application

1. Select the J2EE modules that will be used by the application.

2. Create an application directory structure.

The directory structure of an application is arbitrary, but by following some
simple conventions a deployment descriptor may not be needed. The structure
should be designed around the requirements of the contained components.

3. Reconcile J2EE module deployment descriptors.

The deployment descriptors for the J2EE modules must be edited to link inter-
blic Review

 APPLICATION ASSEMBLY 149
nally satisfied dependencies and eliminate any redundant security role names.
An optional element alt-dd (described in Section J2EE.8.5, “J2EE Applica-
tion XML Schema”) may be used when it is desirable to preserve the original
deployment descriptor. The element alt-dd specifies an alternate deployment
descriptor to use at deployment time. The edited copy of the deployment
descriptor file may be saved in the application directory tree in a location
determined by the Application Assembler. If the alt-dd element is not
present, the Deployer must read the deployment descriptor directly from the
module package.

a. Link the internally satisfied dependencies of all components in every
module contained in the application. For each component dependency,
there must only be one corresponding component that fulfills that
dependency in the scope of the application.

i. For each ejb-link, there must be only one matching ejb-name in the
scope of the entire application (see Section J2EE.5.5, “Enterprise
JavaBeans™ (EJB) References”).

ii. Dependencies that are not linked to internal components must be
handled by the Deployer as external dependencies that must be met by
resources previously installed on the platform. External dependencies
must be linked to the resources on the platform during deployment.

b. Synchronize security role-names across the application. Rename unique
role-names with redundant meaning to a common name. Rename role-
names with common names but different meanings to unique names.
Descriptions of role-names that are used by many components of the
application can be included in the application-level deployment descriptor.

c. Assign a context root for each web module included in the J2EE
application. The context root is a relative name in the web namespace for
the application. Each web module must be given a distinct and non-
overlapping name for its context root. The web modules will be assigned a
complete name in the namespace of the web server at deployment time. If
there is only one web module in the J2EE application, the context root may
be the empty string. If no deployment descriptor is included in the
application package, the context root of the web module will be the name
of the web module file relative to the root of the application package, with
the .war extension removed. See the servlet specification for detailed
requirements of context root naming.

Pu

150
d. Make sure that each component in the application properly describes any
dependencies it may have on other components in the application. A J2EE
application should not assume that all components in the application will
be available on the class path of the application at run time. Each
component might be loaded into a separate class loader with a separate
namespace. If the classes in a JAR file depend on classes in another JAR
file, the first JAR file should reference the second JAR file using the
Class-Path mechanism. A notable exception to this rule is JAR files
located in the WEB-INF/lib directory of a web application. All such JAR
files are included in the class path of the web application at runtime;
explicit references to them using the Class-Path mechanism are not
needed. Another exception to this rule is JAR files located in the library
directory (usually named lib) in the application package.

e. There must be only one version of each class in an application. If one
component depends on one version of a library, and another component
depends on another version, it may not be possible to deploy an application
containing both components. A J2EE application should not assume that
each component is loaded in a separate class loader and has a separate
namespace. All components in a single application may be loaded in a
single class loader and share a single namespace. Note, however, that it
must be possible to deploy an application such that all components of the
application are in a namespace (or namespaces) separate from that of other
applications. Typically, this will be the normal method of deployment.

4. (Optional) Create an XML deployment descriptor for the application.

The deployment descriptor must be named application.xml and must reside
in the top level of the META-INF directory of the application .ear file. The
deployment descriptor must be a valid XML document according to the XML
schema for a J2EE:application XML document. (Alternatively, the deploy-
ment descriptor may meet the requirements of previous versions of J2EE.)

Many applications that follow the conventions described below will not need
a deployment descriptor for the application. The deployment tool will deter-
mine the components of the application using some simple rules.

5. Package the application.

a. Place the J2EE modules and the deployment descriptor in the appropriate
directories.
blic Review

 DEPLOYMENT 151
b. Package the application directory hierarchy in a file using the JAR file
format. The file should be named with a .ear filename extension.

J2EE.8.3.2 Adding and Removing Modules

After the application is created, J2EE modules may be added or removed before
deployment. When adding or removing a module the following steps must be
performed:

1. Decide on a location in the application package for the new module. Optionally
create new directories in the application package hierarchy to contain any
J2EE modules that are being added to the application.

2. Copy the new J2EE modules to the desired location in the application package.
The packaged modules are inserted directly in the desired location; the mod-
ules are not unpackaged.

3. Edit the deployment descriptors for the J2EE modules to link the dependencies
which are internally satisfied by the J2EE modules included in the application.

4. Edit the J2EE application deployment descriptor (if included) to meet the con-
tent requirements of the J2EE platform and the validity requirements of the
J2EE:application XML DTD or schema.

J2EE.8.4 Deployment

The J2EE platform supports three types of deployment units:

• Stand-alone J2EE modules.

• J2EE applications, consisting of one or more J2EE modules. A J2EE applica-
tion must include one J2EE application deployment descriptor.

• Class libraries packaged as .jar files according to the Extension Mechanism
Architecture. These class libraries then become installed libraries.

Any J2EE product must be able to accept a J2EE application delivered as a
.ear file or a stand-alone J2EE module delivered as a .jar,.war, or .rar file (as
appropriate to its type). If the application is delivered as a .ear, an enterprise bean
module delivered as a .jar file, a web application delivered as a .war file, or an
application client delivered as a .jar file, the deployment tool must be able to

Pu

152
deploy the application such that the Java classes in the application are in a
separate namespace from classes in other Java applications. Typically this will
require the use of a separate class loader for each application. Standalone resource
adapters delivered in .rar files and standalone class libraries delivered in .jar
files that become installed libraries will of necessity appear in the class
namespaces of applications that use them, and may appear in the class namespace
of any application depending on the level of isolation supported by the J2EE
product.

In all cases, the deployment of a J2EE application must be complete before
the container delivers requests to any of the application’s components. When an
application is started, the container must deliver requests to enterprise bean
components immediately. Containers must deliver requests to web components
and resource adapters only after initialization of the component has completed.

The J2EE Deployment API describes how a product-independent deployment
tool accepts plugins for a specific J2EE product, and how the tool and those
plugins cooperate to deploy J2EE applications. The requirements in this
specification that refer to a deployment tool are meant to refer to the combination
of any vendor-provided product-independent deployment tool and the vendor-
specific deployment plugin for this tool, as well as any other vendor-specific
deployment tools provided with the J2EE product.

Typically a deployment tool will copy the deployed application or module to a
product-specific location, along with the configuration settings and
customizations specified by the Deployer. In some cases a deployment tool might
include Application Assembly functionality as well, allowing the Deployer to
construct, modify, or customize the application before deployment. Still, it must
be possible to deploy a portable J2EE application, module, or library containing
no product-specific deployment information without modifying the original files
or artifacts that the Deployer specified to the deployment tool.

The deployment tools for J2EE containers must validate the deployment
descriptors against the J2EE deployment descriptor schemas or DTDs that
correspond to the deployment descriptors being processed. The appropriate
schema or DTD is chosen by analyzing the deployment descriptor to determine
which version it claims to conform to. Validation errors must cause an error to be
reported to the Deployer. The deployment tool may allow the Deployer to correct
the error and continue deployment.
blic Review

 DEPLOYMENT 153
J2EE.8.4.1 Deploying a Stand-Alone J2EE Module

This section specifies the requirements for deploying a stand-alone J2EE module.

1. The deployment tool must first read the J2EE module deployment descriptor
if present in the package. See the component specifications for the required lo-
cation and name of the deployment descriptor for each component type.

2. If the deployment descriptor is absent, or is present and is a J2EE 5.0 version
descriptor and the full attribute is not set to true, the deployment tool must
examine all the class files in the application package. Any annotations that
specify deployment information must be logically merged with the informa-
tion in the deployment descriptor (if present). The correspondence of annota-
tion information with deployment descriptor information, as well as the
overriding rules, are described in this and other J2EE specifications. The result
of this logical merge process provides the deployment information used in sub-
sequent deployment steps. Note that there is no requirement for the merge pro-
cess to produce a new deployment descriptor, although that might be a
common implementation technique.

3. The deployment tool must deploy all of the components listed in the J2EE
module deployment descriptor, or marked via annotations and discovered as
described in the previous requirement, according to the deployment require-
ments of the respective J2EE component specification. If the module is a type
that contains JAR format files (for example, web and Connector modules), all
classes in .jar files within the module referenced from other JAR files within
the module using the Class-Path manifest header must be included in the de-
ployment. If the module, or any JAR format files within the module, declares
a dependency on an installed library, that dependency must be satisfied.

4. The deployment tool must allow the Deployer to configure the container to
provide the resources and configuration values needed for each component.
The required resources and configuration parameters are specified in the de-
ployment descriptor or via annotations discovered in requirement 2.

5. The deployment tool must allow the Deployer to deploy the same module mul-
tiple times, as multiple independent applications, possibly with different con-
figurations. For example, the enterprise beans in an ejb-jar file might be
deployed multiple times under different JNDI names and with different con-
figurations of their resources.

Pu

154
J2EE.8.4.2 Deploying a J2EE Application

This section specifies the requirements for deploying a J2EE application.

1. The deployment tool must first read the J2EE application deployment descrip-
tor from the application .ear file (META-INF/application.xml). If no deploy-
ment descriptor is present, the deployment tool uses the following rules to
determine the components included in the application.

a. All files in the application package with a filename extension of .war are
considered web modules. The context root of the web module is the name
of the file relative to the root of the application package, but with the .war
extension removed.

b. All files in the application package with a filename extension of .rar are
considered resource adapters.

c. A directory named lib is considered to be the library directory, as
described in Section J2EE.8.2.1, “Bundled Libraries.”

d. For all files in the application package with a filename extension of .jar,
but not contained in the lib directory, do the following:

i. If the JAR file contains a META-INF/MANIFEST.MF file with a Main-
Class attribute, or contains a META-INF/application-client.xml file,
consider the JAR file to be an application client module.

ii. If the JAR file contains a META-INF/ejb-jar.xml file, or contains any
class with an EJB component annotation (Stateless, etc.), consider the
JAR file to be an EJB module.

iii. All other JAR files are ignored unless referenced by a JAR file
discovered above using one of the JAR file reference mechanisms such
as the Class-Path header in a manifest file.

2. The deployment tool must open each of the J2EE modules listed in the J2EE
application deployment descriptor or discovered using the rules above and
read the J2EE module deployment descriptor, if present in the package. See the
Enterprise JavaBeans, servlet, J2EE Connector and application client specifi-
cations for the required location and name of the deployment descriptor for
each component type. (The application client specification is Chapter J2EE.9,
“Application Clients”.)
blic Review

 DEPLOYMENT 155
3. If the module deployment descriptor is absent, or is present and is a J2EE 5.0
version descriptor and the full attribute is not set to true, the deployment tool
must examine all the class files in the application package [XXX - and refer-
enced jar files?]. Any annotations that specify deployment information must be
logically merged with the information in the deployment descriptor (if
present). The correspondence of annotation information with deployment de-
scriptor information, as well as the overriding rules, are described in this and
other J2EE specifications. The result of this logical merge process provides the
deployment information used in subsequent deployment steps. Note that there
is no requirement for the merge process to produce a new deployment descrip-
tor, although that might be a common implementation technique.

4. The deployment tool must install all of the components described by each
module deployment descriptor, or marked via annotations and discovered as
described in the previous requirement, into the appropriate container according
to the deployment requirements of the respective J2EE component specifica-
tion. All classes in .jar files referenced from other JAR files using the Class-
Path manifest header must be included in the deployment. If the .ear file, or
any JAR format files within the .ear file, declares a dependency on an in-
stalled library, that dependency must be satisfied.

5. The deployment tool must allow the Deployer to configure the container to
provide the resources and configuration values needed for each component.
The required resources and configuration parameters are specified in the de-
ployment descriptor or via annotations discovered in requirement 3.

6. The deployment tool must allow the Deployer to deploy the same J2EE appli-
cation multiple times, as multiple independent applications, possibly with dif-
ferent configurations. For example, the enterprise beans in an ejb-jar file might
be deployed multiple times under different JNDI names and with different con-
figurations of their resources.

7. When presenting security role descriptions to the Deployer, the deployment
tool must use the descriptions in the J2EE application deployment descriptor
rather than the descriptions in any module deployment descriptors for security
roles with the same name. However, for security roles that appear in a module
deployment descriptor but do not appear in the application deployment de-
scriptor, the deployment tool must use the description provided in the module
deployment descriptor.

Pu

156
J2EE.8.4.3 Deploying a Library

This section specifies the requirements for deploying a library.

1. The deployment tool must record the extension name and version information
from the manifest file of the library JAR file. The deployment tool must make
the library available to other J2EE deployment units that request it according
to the version matching rules described in the Optional Package Versioning
specification. Note that the library itself may include dependencies on other li-
braries and these dependencies must also be satisfied.

2. The deployment tool must make the library available with at least the same se-
curity permissions as any application or module that uses it. The library may
be installed with the full security permissions of the container.

3. Not all libraries will be deployable on all J2EE products at all times. Libraries
that conflict with the operation of the J2EE product may not be deployable. For
example, an attempt to deploy an older version of a library that has subsequent-
ly been included in the J2EE platform specification may be rejected. Similarly,
deployment of a library that is also used in the implementation of the J2EE
product may be rejected. Deployment of a library that is in active use by an ap-
plication may be rejected.

J2EE.8.5 J2EE Application XML Schema

This section provides the XML Schema for the J2EE application deployment
descriptor. The XML grammar for a J2EE application deployment descriptor is
defined by the J2EE:application schema. The granularity of composition for J2EE
application assembly is the J2EE module. A J2EE:application deployment
descriptor contains a name and description for the application and the URI of a UI
icon for the application, as well a list of the J2EE modules that comprise the
application. The content of the XML elements is in general case sensitive. This
means, for example, that <role-name>Manager</role-name> is a different role than
<role-name>manager</role-name>.

All valid J2EE application deployment descriptors must conform to the XML
Schema definition below, or the DTD or schema definition from a previous
version of this specification. (See Appendix J2EE.A, “Previous Version Deploy-
ment Descriptors.”) The deployment descriptor must be named META-INF/
application.xml in the .ear file. Note that this name is case-sensitive.
blic Review

 J2EE APPLICATION XML SCHEMA 157
Figure J2EE.8-3 shows a graphic representation of the structure of the J2EE
application XML Schema.

Figure J2EE.8-3 J2EE Application XML Schema Structure

The XML Schema that follows defines the XML grammar for a J2EE
application deployment descriptor.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://java.sun.com/xml/ns/j2ee"

 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="5.0">

 <xsd:annotation>

 <xsd:documentation>

 @(#)application_5_0.xsds 1.15 01/04/05

 </xsd:documentation>

 </xsd:annotation>

application

display-name*

description*

security-role*

icon*

large-icon?

small-icon?

description*

role-name

module+

alt-dd?

web-uri

context-root

 connector | ejb | java | web

library-directory?

Pu

158
 <xsd:annotation>

 <xsd:documentation>

 This is the XML Schema for the application 5.0 deployment

 descriptor. The deployment descriptor must be named

 "META-INF/application.xml" in the application’s ear file.

 All application deployment descriptors must indicate

 the application schema by using the J2EE namespace:

 http://java.sun.com/xml/ns/j2ee

 and indicate the version of the schema by

 using the version element as shown below:

 <application xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/application_5_0.xsd"

 version="5.0">

 ...

 </application>

 The instance documents may indicate the published version of

 the schema using the xsi:schemaLocation attribute for J2EE

 namespace with the following location:

 http://java.sun.com/xml/ns/j2ee/application_5_0.xsd

 </xsd:documentation>

 </xsd:annotation>

 <xsd:annotation>

 <xsd:documentation>

 The following conventions apply to all J2EE

 deployment descriptor elements unless indicated otherwise.

 - In elements that specify a pathname to a file within the

 same JAR file, relative filenames (i.e., those not

 starting with "/") are considered relative to the root of

 the JAR file’s namespace. Absolute filenames (i.e., those

 starting with "/") also specify names in the root of the

 JAR file’s namespace. In general, relative names are
blic Review

 J2EE APPLICATION XML SCHEMA 159
 preferred. The exception is .war files where absolute

 names are preferred for consistency with the Servlet API.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:include schemaLocation="j2ee_5_0.xsd"/>

<!-- ** -->

 <xsd:element name="application" type="j2ee:applicationType">

 <xsd:annotation>

 <xsd:documentation>

 The application element is the root element of a J2EE

 application deployment descriptor.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:unique name="context-root-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The context-root element content must be unique

 in the ear.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:module/j2ee:web"/>

 <xsd:field xpath="j2ee:context-root"/>

 </xsd:unique>

 <xsd:unique name="security-role-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The security-role-name element content

 must be unique in the ear.

Pu

160
 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:security-role"/>

 <xsd:field xpath="j2ee:role-name"/>

 </xsd:unique>

 </xsd:element>

<!-- ** -->

 <xsd:complexType name="applicationType">

 <xsd:annotation>

 <xsd:documentation>

 The applicationType defines the structure of the

 application.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="j2ee:descriptionGroup"/>

 <xsd:element name="module"

 type="j2ee:moduleType"

 maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

 The application deployment descriptor must have one

 module element for each J2EE module in the

 application package. A module element is defined

 by moduleType definition.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="security-role"

 type="j2ee:security-roleType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="library-directory"
blic Review

 J2EE APPLICATION XML SCHEMA 161
 type="j2ee:pathType"

 minOccurs="0"

 maxOccurs="1">

 <xsd:annotation>

 <xsd:documentation>

 The library-directory element specifies the pathname

 of a directory within the application package, relative

 to the top level of the application package. All files

 named "*.jar" in this directory must be made available

 in the class path of all components included in this

 application package.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="version"

 type="j2ee:dewey-versionType"

 fixed="5.0"

 use="required">

 <xsd:annotation>

 <xsd:documentation>

 The required value for the version is 5.0.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="moduleType">

 <xsd:annotation>

 <xsd:documentation>

 The moduleType defines a single J2EE module and contains a

Pu

162
 connector, ejb, java, or web element, which indicates the

 module type and contains a path to the module file, and an

 optional alt-dd element, which specifies an optional URI to

 the post-assembly version of the deployment descriptor.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:choice>

 <xsd:element name="connector"

 type="j2ee:pathType">

 <xsd:annotation>

 <xsd:documentation>

 The connector element specifies the URI of a

 resource adapter archive file, relative to the

 top level of the application package.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="ejb"

 type="j2ee:pathType">

 <xsd:annotation>

 <xsd:documentation>

 The ejb element specifies the URI of an ejb-jar,

 relative to the top level of the application

 package.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="java"

 type="j2ee:pathType">

 <xsd:annotation>

 <xsd:documentation>
blic Review

 J2EE APPLICATION XML SCHEMA 163
 The java element specifies the URI of a java

 application client module, relative to the top

 level of the application package.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="web"

 type="j2ee:webType"/>

 </xsd:choice>

 <xsd:element name="alt-dd"

 type="j2ee:pathType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The alt-dd element specifies an optional URI to the

 post-assembly version of the deployment descriptor

 file for a particular J2EE module. The URI must

 specify the full pathname of the deployment

 descriptor file relative to the application’s root

 directory. If alt-dd is not specified, the deployer

 must read the deployment descriptor from the default

 location and file name required by the respective

 component specification.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="webType">

 <xsd:annotation>

 <xsd:documentation>

 The webType defines the web-uri and context-root of

Pu

164
 a web application module.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="web-uri"

 type="j2ee:pathType">

 <xsd:annotation>

 <xsd:documentation>

 The web-uri element specifies the URI of a web

 application file, relative to the top level of the

 application package.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="context-root"

 type="j2ee:string">

 <xsd:annotation>

 <xsd:documentation>

 The context-root element specifies the context root

 of a web application.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

</xsd:schema>
blic Review

 COMMON J2EE XML SCHEMA DEFINITIONS 165
J2EE.8.6 Common J2EE XML Schema Definitions

The following XML Schema defines types that are used by many other J2EE
deployment descriptor schemas, both in this specification and in other
specifications.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

 targetNamespace="http://java.sun.com/xml/ns/j2ee"

 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="5.0">

 <xsd:annotation>

 <xsd:documentation>

 @(#)j2ee_5_0.xsds 1.50 05/06/08

 </xsd:documentation>

 </xsd:annotation>

<xsd:annotation>

<xsd:documentation>

The following definitions that appear in the common

shareable schema(s) of J2EE deployment descriptors should be

interpreted with respect to the context they are included:

Deployment Component may indicate one of the following:

 j2ee application;

 application client;

 web application;

 enterprise bean;

 resource adapter;

Deployment File may indicate one of the following:

 ear file;

 war file;

 jar file;

 rar file;

Pu

166
</xsd:documentation>

</xsd:annotation>

 <xsd:import namespace="http://www.w3.org/XML/1998/namespace"

 schemaLocation="http://www.w3.org/2001/xml.xsd"/>

 <xsd:include schemaLocation=

 "http://www.ibm.com/webservices/xsd/

j2ee_web_services_client_1_1.xsd"/>

<!-- ** -->

 <xsd:group name="descriptionGroup">

 <xsd:annotation>

 <xsd:documentation>

 This group keeps the usage of the contained description related

 elements consistent across J2EE deployment descriptors.

 All elements may occur multiple times with different languages,

 to support localization of the content.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="display-name"

 type="j2ee:display-nameType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="icon"

 type="j2ee:iconType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:group>

<!-- ** -->

 <xsd:complexType name="descriptionType">
blic Review

 COMMON J2EE XML SCHEMA DEFINITIONS 167
 <xsd:annotation>

 <xsd:documentation>

 The description type is used by a description element to

 provide text describing the parent element. The elements

 that use this type should include any information that the

 Deployment Component’s Deployment File file producer wants

 to provide to the consumer of the Deployment Component’s

 Deployment File (i.e., to the Deployer). Typically, the

 tools used by such a Deployment File consumer will display

 the description when processing the parent element that

 contains the description.

 The lang attribute defines the language that the

 description is provided in. The default value is "en" (English).

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="j2ee:xsdStringType">

 <xsd:attribute ref="xml:lang"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:simpleType name="dewey-versionType">

 <xsd:annotation>

 <xsd:documentation>

 This type defines a dewey decimal that is used

 to describe versions of documents.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base="xsd:token">

 <xsd:pattern value=".?[0-9]+(.[0-9]+)*"/>

 </xsd:restriction>

 </xsd:simpleType>

Pu

168
<!-- ** -->

 <xsd:complexType name="display-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The display-name type contains a short name that is intended

 to be displayed by tools. It is used by display-name

 elements. The display name need not be unique.

 Example:

 ...

 <display-name xml:lang="en">

 Employee Self Service

 </display-name>

 The value of the xml:lang attribute is "en" (English) by default.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="j2ee:string">

 <xsd:attribute ref="xml:lang"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-linkType">

 <xsd:annotation>

 <xsd:documentation>

 The ejb-linkType is used by ejb-link

 elements in the ejb-ref or ejb-local-ref elements to specify

 that an EJB reference is linked to enterprise bean.

 The value of the ejb-link element must be the ejb-name of an

 enterprise bean in the same ejb-jar file or in another ejb-jar

 file in the same J2EE application unit.

blic Review

 COMMON J2EE XML SCHEMA DEFINITIONS 169
 Alternatively, the name in the ejb-link element may be

 composed of a path name specifying the ejb-jar containing the

 referenced enterprise bean with the ejb-name of the target

 bean appended and separated from the path name by "#". The

 path name is relative to the Deployment File containing

 Deployment Component that is referencing the enterprise

 bean. This allows multiple enterprise beans with the same

 ejb-name to be uniquely identified.

 Examples:

 <ejb-link>EmployeeRecord</ejb-link>

 <ejb-link>../products/product.jar#ProductEJB</ejb-link>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-local-refType">

 <xsd:annotation>

 <xsd:documentation>

 The ejb-local-refType is used by ejb-local-ref elements for

 the declaration of a reference to an enterprise bean’s local

 home. The declaration consists of:

 - an optional description

 - the EJB reference name used in the code of the Deployment

 Component that’s referencing the enterprise bean

 - the expected type of the referenced enterprise bean

 - the expected local home and local interfaces of the

 referenced enterprise bean

 - optional ejb-link information, used to specify the

 referenced enterprise bean

Pu

170
 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="ejb-ref-name"

 type="j2ee:ejb-ref-nameType"/>

 <xsd:element name="ejb-ref-type"

 type="j2ee:ejb-ref-typeType"/>

 <xsd:element name="local-home"

 type="j2ee:local-homeType"/>

 <xsd:element name="local"

 type="j2ee:localType"/>

 <xsd:element name="ejb-link"

 type="j2ee:ejb-linkType"

 minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-ref-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The ejb-ref-name element contains the name of an EJB

 reference. The EJB reference is an entry in the

 Deployment Component’s environment and is relative to the

 java:comp/env context. The name must be unique within the

 Deployment Component.

 It is recommended that name is prefixed with "ejb/".

 Example:

 <ejb-ref-name>ejb/Payroll</ejb-ref-name>

 </xsd:documentation>

 </xsd:annotation>
blic Review

 COMMON J2EE XML SCHEMA DEFINITIONS 171
 <xsd:simpleContent>

 <xsd:restriction base="j2ee:jndi-nameType"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-ref-typeType">

 <xsd:annotation>

 <xsd:documentation>

 The ejb-ref-typeType contains the expected type of the

 referenced enterprise bean.

 The ejb-ref-type designates a value

 that must be one of the following:

 Entity

 Session

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:enumeration value="Entity"/>

 <xsd:enumeration value="Session"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-refType">

 <xsd:annotation>

 <xsd:documentation>

 The ejb-refType is used by ejb-ref elements for the

 declaration of a reference to an enterprise bean’s home. The

 declaration consists of:

 - an optional description

 - the EJB reference name used in the code of

Pu

172
 the Deployment Component that’s referencing the enterprise

 bean

 - the expected type of the referenced enterprise bean

 - the expected home and remote interfaces of the referenced

 enterprise bean

 - optional ejb-link information, used to specify the

 referenced enterprise bean

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="ejb-ref-name"

 type="j2ee:ejb-ref-nameType"/>

 <xsd:element name="ejb-ref-type"

 type="j2ee:ejb-ref-typeType"/>

 <xsd:element name="home"

 type="j2ee:homeType"/>

 <xsd:element name="remote"

 type="j2ee:remoteType"/>

 <xsd:element name="ejb-link"

 type="j2ee:ejb-linkType"

 minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="emptyType">

 <xsd:annotation>

 <xsd:documentation>

 This type is used to designate an empty

 element when used.

 </xsd:documentation>

 </xsd:annotation>
blic Review

 COMMON J2EE XML SCHEMA DEFINITIONS 173
 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="env-entry-type-valuesType">

 <xsd:annotation>

 <xsd:documentation>

 This type contains the fully-qualified Java type of the

 environment entry value that is expected by the

 application’s code.

 The following are the legal values of env-entry-type-valuesType:

 java.lang.Boolean

 java.lang.Byte

 java.lang.Character

 java.lang.String

 java.lang.Short

 java.lang.Integer

 java.lang.Long

 java.lang.Float

 java.lang.Double

 Example:

 <env-entry-type>java.lang.Boolean</env-entry-type>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:enumeration value="java.lang.Boolean"/>

 <xsd:enumeration value="java.lang.Byte"/>

 <xsd:enumeration value="java.lang.Character"/>

 <xsd:enumeration value="java.lang.String"/>

 <xsd:enumeration value="java.lang.Short"/>

 <xsd:enumeration value="java.lang.Integer"/>

 <xsd:enumeration value="java.lang.Long"/>

 <xsd:enumeration value="java.lang.Float"/>

 <xsd:enumeration value="java.lang.Double"/>

Pu

174
 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="env-entryType">

 <xsd:annotation>

 <xsd:documentation>

 The env-entryType is used to declare an application’s

 environment entry. The declaration consists of an optional

 description, the name of the environment entry, a type

 (optional if the value is injected, otherwise required), and

 an optional value.

 It also includes optional elements to define injection of

 the named resource into fields or JavaBeans properties.

 If a value is not specified and injection is requested,

 no injection will occur and no entry of the specified name

 will be created. This allows an initial value to be

 specified in the source code without being incorrectly

 changed when no override has been specified.

 If a value is not specified and no injection is requested,

 a value must be supplied during deployment.

 This type is used by env-entry elements.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="env-entry-name"

 type="j2ee:jndi-nameType">

 <xsd:annotation>

 <xsd:documentation>
blic Review

 COMMON J2EE XML SCHEMA DEFINITIONS 175
 The env-entry-name element contains the name of a

 Deployment Component’s environment entry. The name

 is a JNDI name relative to the java:comp/env

 context. The name must be unique within a

 Deployment Component. The uniqueness

 constraints must be defined within the declared

 context.

 Example:

 <env-entry-name>minAmount</env-entry-name>

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="env-entry-type"

 type="j2ee:env-entry-type-valuesType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The env-entry-type element contains the Java language

 type of the environment entry. If an injection target

 is specified for the environment entry, the type may

 be omitted, or must match the type of the injection

 target. If no injection target is specified, the type

 is required.

 Example:

 <env-entry-type>java.lang.Integer</env-entry-type>

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="env-entry-value"

 type="j2ee:xsdStringType"

 minOccurs="0">

Pu

176
 <xsd:annotation>

 <xsd:documentation>

 The env-entry-value designates the value of a

 Deployment Component’s environment entry. The value

 must be a String that is valid for the

 constructor of the specified type that takes a

 single String parameter, or for java.lang.Character,

 a single character.

 Example:

 <env-entry-value>100.00</env-entry-value>

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="injection-target"

 type="j2ee:injection-targetType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="fully-qualified-classType">

 <xsd:annotation>

 <xsd:documentation>

 The elements that use this type designate the name of a

 Java class or interface. The name is in the form of a

 "binary name", as defined in the JLS. This is the form

 of name used in Class.forName(). Tools that need the

 canonical name (the name used in source code) will need

 to convert this binary name to the canonical name.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>
blic Review

 COMMON J2EE XML SCHEMA DEFINITIONS 177
 <xsd:restriction base="j2ee:string"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="generic-booleanType">

 <xsd:annotation>

 <xsd:documentation>

 This type defines four different values which can designate

 boolean values. This includes values yes and no which are

 not designated by xsd:boolean

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:enumeration value="true"/>

 <xsd:enumeration value="false"/>

 <xsd:enumeration value="yes"/>

 <xsd:enumeration value="no"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="homeType">

 <xsd:annotation>

 <xsd:documentation>

 The homeType defines the fully-qualified name of

 an enterprise bean’s home interface.

 Example:

 <home>com.aardvark.payroll.PayrollHome</home>

 </xsd:documentation>

 </xsd:annotation>

Pu

178
 <xsd:simpleContent>

 <xsd:restriction base="j2ee:fully-qualified-classType"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="iconType">

 <xsd:annotation>

 <xsd:documentation>

 The icon type contains small-icon and large-icon elements

 that specify the file names for small and large GIF, JPEG,

 or PNG icon images used to represent the parent element in a

 GUI tool.

 The xml:lang attribute defines the language that the

 icon file names are provided in. Its value is "en" (English)

 by default.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="small-icon" type="j2ee:pathType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The small-icon element contains the name of a file

 containing a small (16 x 16) icon image. The file

 name is a relative path within the Deployment

 Component’s Deployment File.

 The image may be in the GIF, JPEG, or PNG format.

 The icon can be used by tools.

 Example:

 <small-icon>employee-service-icon16x16.jpg</small-icon>
blic Review

 COMMON J2EE XML SCHEMA DEFINITIONS 179
 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="large-icon" type="j2ee:pathType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The large-icon element contains the name of a file

 containing a large

 (32 x 32) icon image. The file name is a relative

 path within the Deployment Component’s Deployment

 File.

 The image may be in the GIF, JPEG, or PNG format.

 The icon can be used by tools.

 Example:

 <large-icon>employee-service-icon32x32.jpg</large-icon>

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute ref="xml:lang"/>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="injection-targetType">

 <xsd:annotation>

 <xsd:documentation>

 An injection target specifies a class and a name within

 that class into which a resource should be injected.

 The injection target class specifies the fully qualified

 class name that is the target of the injection. The

Pu

180
 J2EE specifications describe which classes can be an

 injection target.

 The injection target name specifies the target within

 the specified class. The target is first looked for as a

 JavaBeans property name. If not found, the target is

 looked for as a field name.

 The specified resource will be injected into the target

 during initialization of the class by either calling the

 set method for the target property or by setting a value

 into the named field.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="injection-target-class"

 type="j2ee:fully-qualified-classType"/>

 <xsd:element name="injection-target-name"

 type="j2ee:java-identifierType"/>

 </xsd:sequence>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="java-identifierType">

 <xsd:annotation>

 <xsd:documentation>

 The java-identifierType defines a Java identifier.

 The users of this type should further verify that

 the content does not contain Java reserved keywords.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:pattern value="($|_|p{L})(p{L}|p{Nd}|_|$)*"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>
blic Review

 COMMON J2EE XML SCHEMA DEFINITIONS 181
<!-- ** -->

 <xsd:complexType name="java-typeType">

 <xsd:annotation>

 <xsd:documentation>

 This is a generic type that designates a Java primitive

 type or a fully qualified name of a Java interface/type,

 or an array of such types.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:pattern value="[^p{Z}]*"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="jndi-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The jndi-nameType type designates a JNDI name in the

 Deployment Component’s environment and is relative to the

 java:comp/env context. A JNDI name must be unique within the

 Deployment Component.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:group name="jndiEnvironmentRefsGroup">

Pu

182
 <xsd:annotation>

 <xsd:documentation>

 This group keeps the usage of the contained JNDI environment

 reference elements consistent across J2EE deployment descriptors.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="env-entry"

 type="j2ee:env-entryType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="ejb-ref"

 type="j2ee:ejb-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="ejb-local-ref"

 type="j2ee:ejb-local-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:group ref="j2ee:service-refGroup"/>

 <xsd:element name="resource-ref"

 type="j2ee:resource-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="resource-env-ref"

 type="j2ee:resource-env-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="message-destination-ref"

 type="j2ee:message-destination-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:group>

<!-- ** -->

 <xsd:complexType name="listenerType">

 <xsd:annotation>

 <xsd:documentation>

 The listenerType indicates the deployment properties for a web

 application listener bean.

 </xsd:documentation>

 </xsd:annotation>
blic Review

 COMMON J2EE XML SCHEMA DEFINITIONS 183
 <xsd:sequence>

 <xsd:group ref="j2ee:descriptionGroup"/>

 <xsd:element name="listener-class"

 type="j2ee:fully-qualified-classType">

 <xsd:annotation>

 <xsd:documentation>

 The listener-class element declares a class in the

 application must be registered as a web

 application listener bean. The value is the fully

 qualified classname of the listener class.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="local-homeType">

 <xsd:annotation>

 <xsd:documentation>

 The local-homeType defines the fully-qualified

 name of an enterprise bean’s local home interface.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:fully-qualified-classType"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="localType">

 <xsd:annotation>

 <xsd:documentation>

Pu

184
 The localType defines the fully-qualified name of an

 enterprise bean’s local interface.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:fully-qualified-classType"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="message-destination-linkType">

 <xsd:annotation>

 <xsd:documentation>

 The message-destination-linkType is used to link a message

 destination reference or message-driven bean to a message

 destination.

 The Assembler sets the value to reflect the flow of messages

 between producers and consumers in the application.

 The value must be the message-destination-name of a message

 destination in the same Deployment File or in another

 Deployment File in the same J2EE application unit.

 Alternatively, the value may be composed of a path name

 specifying a Deployment File containing the referenced

 message destination with the message-destination-name of the

 destination appended and separated from the path name by

 "#". The path name is relative to the Deployment File

 containing Deployment Component that is referencing the

 message destination. This allows multiple message

 destinations with the same name to be uniquely identified.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string"/>
blic Review

 COMMON J2EE XML SCHEMA DEFINITIONS 185
 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="message-destination-refType">

 <xsd:annotation>

 <xsd:documentation>

 The message-destination-ref element contains a declaration

 of Deployment Component’s reference to a message destination

 associated with a resource in Deployment Component’s

 environment. It consists of:

 - an optional description

 - the message destination reference name

 - an optional message destination type

 - an optional specification as to whether

 the destination is used for

 consuming or producing messages, or both.

 if not specified, "both" is assumed.

 - an optional link to the message destination

 - optional injection targets

 The message destination type must be supplied unless an

 injection target is specified, in which case the type

 of the target is used. If both are specified, the type

 must be assignment compatible with the type of the injection

 target.

 Examples:

 <message-destination-ref>

 <message-destination-ref-name>jms/StockQueue

 </message-destination-ref-name>

 <message-destination-type>javax.jms.Queue

 </message-destination-type>

 <message-destination-usage>Consumes

 </message-destination-usage>

 <message-destination-link>CorporateStocks

 </message-destination-link>

 </message-destination-ref>

Pu

186
 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="message-destination-ref-name"

 type="j2ee:jndi-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The message-destination-ref-name element specifies

 the name of a message destination reference; its

 value is the environment entry name used in

 Deployment Component code. The name is a JNDI name

 relative to the java:comp/env context and must be

 unique within an ejb-jar (for enterprise beans) or a

 Deployment File (for others).

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="message-destination-type"

 type="j2ee:message-destination-typeType"

 minOccurs="0"/>

 <xsd:element name="message-destination-usage"

 type="j2ee:message-destination-usageType"

 minOccurs="0"/>

 <xsd:element name="message-destination-link"

 type="j2ee:message-destination-linkType"

 minOccurs="0"/>

 <xsd:element name="injection-target"

 type="j2ee:injection-targetType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>
blic Review

 COMMON J2EE XML SCHEMA DEFINITIONS 187
<!-- ** -->

 <xsd:complexType name="message-destination-typeType">

 <xsd:annotation>

 <xsd:documentation>

 The message-destination-typeType specifies the type of

 the destination. The type is specified by the Java interface

 expected to be implemented by the destination.

 Example:

 <message-destination-type>javax.jms.Queue

 </message-destination-type>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:fully-qualified-classType"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="message-destination-usageType">

 <xsd:annotation>

 <xsd:documentation>

 The message-destination-usageType specifies the use of the

 message destination indicated by the reference. The value

 indicates whether messages are consumed from the message

 destination, produced for the destination, or both. The

 Assembler makes use of this information in linking producers

 of a destination with its consumers.

 The value of the message-destination-usage element must be

 one of the following:

 Consumes

 Produces

 ConsumesProduces

Pu

188
 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:enumeration value="Consumes"/>

 <xsd:enumeration value="Produces"/>

 <xsd:enumeration value="ConsumesProduces"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="message-destinationType">

 <xsd:annotation>

 <xsd:documentation>

 The message-destinationType specifies a message

 destination. The logical destination described by this

 element is mapped to a physical destination by the Deployer.

 The message destination element contains:

 - an optional description

 - an optional display-name

 - an optional icon

 - a message destination name which must be unique

 among message destination names within the same

 Deployment File.

 Example:

 <message-destination>

 <message-destination-name>CorporateStocks

 </message-destination-name>

 </message-destination>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="j2ee:descriptionGroup"/>
blic Review

 COMMON J2EE XML SCHEMA DEFINITIONS 189
 <xsd:element name="message-destination-name"

 type="j2ee:string">

 <xsd:annotation>

 <xsd:documentation>

 The message-destination-name element specifies a

 name for a message destination. This name must be

 unique among the names of message destinations

 within the Deployment File.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="param-valueType">

 <xsd:annotation>

 <xsd:documentation>

 This type is a general type that can be used to declare

 parameter/value lists.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="param-name"

 type="j2ee:string">

 <xsd:annotation>

 <xsd:documentation>

 The param-name element contains the name of a

Pu

190
 parameter.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="param-value"

 type="j2ee:xsdStringType">

 <xsd:annotation>

 <xsd:documentation>

 The param-value element contains the value of a

 parameter.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="pathType">

 <xsd:annotation>

 <xsd:documentation>

 The elements that use this type designate either a relative

 path or an absolute path starting with a "/".

 In elements that specify a pathname to a file within the

 same Deployment File, relative filenames (i.e., those not

 starting with "/") are considered relative to the root of

 the Deployment File’s namespace. Absolute filenames (i.e.,

 those starting with "/") also specify names in the root of

 the Deployment File’s namespace. In general, relative names

 are preferred. The exception is .war files where absolute

 names are preferred for consistency with the Servlet API.

 </xsd:documentation>

 </xsd:annotation>
blic Review

 COMMON J2EE XML SCHEMA DEFINITIONS 191
 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="remoteType">

 <xsd:annotation>

 <xsd:documentation>

 The remote element contains the fully-qualified name

 of the enterprise bean’s remote interface.

 Example:

 <remote>com.wombat.empl.EmployeeService</remote>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:fully-qualified-classType"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="res-authType">

 <xsd:annotation>

 <xsd:documentation>

 The res-authType specifies whether the Deployment Component

 code signs on programmatically to the resource manager, or

 whether the Container will sign on to the resource manager

 on behalf of the Deployment Component. In the latter case,

 the Container uses information that is supplied by the

 Deployer.

 The value must be one of the two following:

 Application

 Container

Pu

192
 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:enumeration value="Application"/>

 <xsd:enumeration value="Container"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="res-sharing-scopeType">

 <xsd:annotation>

 <xsd:documentation>

 The res-sharing-scope type specifies whether connections

 obtained through the given resource manager connection

 factory reference can be shared. The value, if specified,

 must be one of the two following:

 Shareable

 Unshareable

 The default value is Shareable.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:enumeration value="Shareable"/>

 <xsd:enumeration value="Unshareable"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="resource-env-refType">

 <xsd:annotation>

 <xsd:documentation>
blic Review

 COMMON J2EE XML SCHEMA DEFINITIONS 193
 The resource-env-refType is used to define

 resource-env-type elements. It contains a declaration of a

 Deployment Component’s reference to an administered object

 associated with a resource in the Deployment Component’s

 environment. It consists of an optional description, the

 resource environment reference name, and an optional

 indication of the resource environment reference type

 expected by the Deployment Component code.

 It also includes optional elements to define injection of

 the named resource into fields or JavaBeans properties.

 The resource environment type must be supplied unless an

 injection target is specified, in which case the type

 of the target is used. If both are specified, the type

 must be assignment compatible with the type of the injection

 target.

 Example:

 <resource-env-ref>

 <resource-env-ref-name>jms/StockQueue

 </resource-env-ref-name>

 <resource-env-ref-type>javax.jms.Queue

 </resource-env-ref-type>

 </resource-env-ref>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="resource-env-ref-name"

 type="j2ee:jndi-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The resource-env-ref-name element specifies the name

 of a resource environment reference; its value is

Pu

194
 the environment entry name used in

 the Deployment Component code. The name is a JNDI

 name relative to the java:comp/env context and must

 be unique within a Deployment Component.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="resource-env-ref-type"

 type="j2ee:fully-qualified-classType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The resource-env-ref-type element specifies the type

 of a resource environment reference. It is the

 fully qualified name of a Java language class or

 interface.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="injection-target"

 type="j2ee:injection-targetType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="resource-refType">

 <xsd:annotation>

 <xsd:documentation>

 The resource-refType contains a declaration of a

 Deployment Component’s reference to an external resource. It

 consists of an optional description, the resource manager

 connection factory reference name, an optional indication of
blic Review

 COMMON J2EE XML SCHEMA DEFINITIONS 195
 the resource manager connection factory type expected by the

 Deployment Component code, an optional type of authentication

 (Application or Container), and an optional specification of

 the shareability of connections obtained from the resource

 (Shareable or Unshareable).

 It also includes optional elements to define injection of

 the named resource into fields or JavaBeans properties.

 The connection factory type must be supplied unless an

 injection target is specified, in which case the type

 of the target is used. If both are specified, the type

 must be assignment compatible with the type of the injection

 target.

 Example:

 <resource-ref>

 <res-ref-name>jdbc/EmployeeAppDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 <res-sharing-scope>Shareable</res-sharing-scope>

 </resource-ref>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="res-ref-name"

 type="j2ee:jndi-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The res-ref-name element specifies the name of a

 resource manager connection factory reference.

 The name is a JNDI name relative to the

 java:comp/env context.

 The name must be unique within a Deployment File.

Pu

196
 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="res-type"

 type="j2ee:fully-qualified-classType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The res-type element specifies the type of the data

 source. The type is specified by the fully qualified

 Java language class or interface

 expected to be implemented by the data source.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="res-auth"

 type="j2ee:res-authType"

 minOccurs="0"/>

 <xsd:element name="res-sharing-scope"

 type="j2ee:res-sharing-scopeType"

 minOccurs="0"/>

 <xsd:element name="injection-target"

 type="j2ee:injection-targetType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="role-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The role-nameType designates the name of a security role.

 The name must conform to the lexical rules for a token.
blic Review

 COMMON J2EE XML SCHEMA DEFINITIONS 197
 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="run-asType">

 <xsd:annotation>

 <xsd:documentation>

 The run-asType specifies the run-as identity to be

 used for the execution of a component. It contains an

 optional description, and the name of a security role.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="role-name"

 type="j2ee:role-nameType"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="security-role-refType">

 <xsd:annotation>

 <xsd:documentation>

 The security-role-refType contains the declaration of a

 security role reference in a component’s or a

 Deployment Component’s code. The declaration consists of an

 optional description, the security role name used in the

 code, and an optional link to a security role. If the

Pu

198
 security role is not specified, the Deployer must choose an

 appropriate security role.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="role-name"

 type="j2ee:role-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The value of the role-name element must be the String used

 as the parameter to the

 EJBContext.isCallerInRole(String roleName) method or the

 HttpServletRequest.isUserInRole(String role) method.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="role-link"

 type="j2ee:role-nameType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The role-link element is a reference to a defined

 security role. The role-link element must contain

 the name of one of the security roles defined in the

 security-role elements.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>
blic Review

 COMMON J2EE XML SCHEMA DEFINITIONS 199
 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="security-roleType">

 <xsd:annotation>

 <xsd:documentation>

 The security-roleType contains the definition of a security

 role. The definition consists of an optional description of

 the security role, and the security role name.

 Example:

 <security-role>

 <description>

 This role includes all employees who are authorized

 to access the employee service application.

 </description>

 <role-name>employee</role-name>

 </security-role>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="role-name"

 type="j2ee:role-nameType"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="string">

 <xsd:annotation>

 <xsd:documentation>

Pu

200
 This is a special string datatype that is defined by J2EE as

 a base type for defining collapsed strings. When schemas

 require trailing/leading space elimination as well as

 collapsing the existing whitespace, this base type may be

 used.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:token">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="true-falseType">

 <xsd:annotation>

 <xsd:documentation>

 This simple type designates a boolean with only two

 permissible values

 - true

 - false

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:xsdBooleanType">

 <xsd:pattern value="(true|false)"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="url-patternType">

 <xsd:annotation>

 <xsd:documentation>
blic Review

 COMMON J2EE XML SCHEMA DEFINITIONS 201
 The url-patternType contains the url pattern of the mapping.

 It must follow the rules specified in Section 11.2 of the

 Servlet API Specification. This pattern is assumed to be in

 URL-decoded form and must not contain CR(#xD) or LF(#xA).

 If it contains those characters, the container must inform

 the developer with a descriptive error message.

 The container must preserve all characters including whitespaces.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="xsdAnyURIType">

 <xsd:annotation>

 <xsd:documentation>

 This type adds an "id" attribute to xsd:anyURI.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:anyURI">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="xsdBooleanType">

 <xsd:annotation>

 <xsd:documentation>

 This type adds an "id" attribute to xsd:boolean.

Pu

202
 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:boolean">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="xsdIntegerType">

 <xsd:annotation>

 <xsd:documentation>

 This type adds an "id" attribute to xsd:integer.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:integer">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="xsdNMTOKENType">

 <xsd:annotation>

 <xsd:documentation>

 This type adds an "id" attribute to xsd:NMTOKEN.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:NMTOKEN">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>
blic Review

 COMMON J2EE XML SCHEMA DEFINITIONS 203
 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="xsdNonNegativeIntegerType">

 <xsd:annotation>

 <xsd:documentation>

 This type adds an "id" attribute to xsd:nonNegativeInteger.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:nonNegativeInteger">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="xsdPositiveIntegerType">

 <xsd:annotation>

 <xsd:documentation>

 This type adds an "id" attribute to xsd:positiveInteger.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:positiveInteger">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="xsdQNameType">

Pu

204
 <xsd:annotation>

 <xsd:documentation>

 This type adds an "id" attribute to xsd:QName.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:QName">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="xsdStringType">

 <xsd:annotation>

 <xsd:documentation>

 This type adds an "id" attribute to xsd:string.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

</xsd:schema>
blic Review

C H A P T E R J2EE.9

Application Clients

This chapter describes application clients in the Java™ 2 Platform, Enterprise
Edition (J2EE).

J2EE.9.1 Overview

Application clients are first tier client programs that execute in their own Java™
virtual machines. Application clients follow the model for Java technology-based
applications: they are invoked at their main method and run until the virtual machine
is terminated. However, like other J2EE application components, application clients
depend on a container to provide system services. The application client container
may be very light-weight compared to other J2EE containers, providing only the
security and deployment services described below

J2EE.9.2 Security

The J2EE authentication requirements for application clients are the same as for
other J2EE components, and the same authentication techniques may be used as for
other J2EE application components.

No authentication is necessary when accessing unprotected web resources.
When accessing protected web resources, the usual varieties of authentication
may be used, namely HTTP Basic authentication, SSL client authentication, or
HTTP Login Form authentication. Lazy authentication may be used.

Authentication is required when accessing protected enterprise beans. The
authentication mechanisms for enterprise beans include those required in the EJB
205

Pu

206
specification for enterprise bean interoperability. Lazy authentication may be
used.

An application client makes use of an authentication service provided by the
application client container for authenticating its users. The container’s service
may be integrated with the native platform’s authentication system, so that a
single signon capability is employed. The container may authenticate the user
when the application is started, or it may use lazy authentication, authenticating
the user when a protected resource is accessed. This specification does not
describe the technique used to authenticate the user, although a later version may
do so.

If the container interacts with the user to gather authentication data, the
container must provide an appropriate user interface. In addition, an application
client may provide a class that implements the
javax.security.auth.callback.CallbackHandler interface and specify the class
name in its deployment descriptor (see Section J2EE.9.7, “J2EE Application
Client XML Schema” for details). The Deployer may override the callback
handler specified by the application and use the container’s default authentication
user interface instead.

If a callback handler is configured by the Deployer, the application client
container must instantiate an object of this class and use it for all authentication
interactions with the user. The application’s callback handler must fully support
Callback objects specified in the javax.security.auth.callback package.

Note that when HTTP Login Form authentication is used, the authentication
user interface provided by the server (in the form of an HTML page delivered in
response to an HTTP request) must be displayed by the application client.

Application clients execute in an environment with a SecurityManager
installed, and have similar security permission requirements as servlets. The
security permission requirements are described fully in Section J2EE.6.2, “Java 2
Platform, Standard Edition (J2SE) Requirements.”

J2EE.9.3 Transactions

Application clients are not required to have direct access to the transaction facilities
of the J2EE platform. A J2EE product is not required to provide a JTA
UserTransaction object for use by application clients. Application clients can
invoke enterprise beans that start transactions, and they can use the transaction
facilities of the JDBC API. If a JDBC API transaction is open when an application
blic Review

 RESOURCES, NAMING, AND INJECTION 207
client invokes an enterprise bean, the transaction context is not required to be
propagated to the EJB server.

J2EE.9.4 Resources, Naming, and Injection

As with all J2EE components, application clients use JNDI to look up enterprise
beans, get access to resource managers, reference configurable parameters set at
deployment time, and so on. Application clients use the java: JNDI namespace to
access these items (see Chapter J2EE.5, “Resources, Naming, and Injection” for
details).

Resource injection is also supported for the application client main class.
Because the application client container does not create instances of the
application client main class, but merely loads the class and invokes the static
main method, resource injection into the application client class uses static fields
and methods, unlike other J2EE components. Resource injection occurs before the
main method is called.

J2EE.9.5 Application Programming Interfaces

Application clients have all the facilities of the JavaTM 2 Platform, Standard Edition
(subject to security restrictions), as well as various standard extensions, as described
in Chapter J2EE.6 “Application Programming Interface.” Each application client
executes in its own Java virtual machine. Application clients start execution at the
main method of the class specified in the Main-Class attribute in the manifest file of
the application client’s JAR file (although note that application client container code
will typically execute before the application client itself, in order to prepare the
environment of the container, install a SecurityManager, initialize the name service
client library, and so on).

J2EE.9.6 Packaging and Deployment

Application clients are packaged in JAR format files with a .jar extension and may
include a deployment descriptor similar to other J2EE application components. The
deployment descriptor describes the enterprise beans, web services, and other types
of external resources referenced by the application. If the depoyment descriptor is
not included, or is included but not marked full, annotations on the main class of

Pu

208
the application client may also be used to describe the resources needed by the
application. As with other J2EE application components, access to resources must
be configured at deployment time, names assigned for enterprise beans and
resources, and so on.

The following table describes the cases the depoyment tool must consider
when deciding whether or not to process annotations on the application client
main class.

The tool used to deploy an application client to the client machine, and the
mechanism used to install the application client, is not specified. Very
sophisticated J2EE products may allow the application client to be deployed on a
J2EE server and automatically made available to some set of (usually intranet)
clients. Other J2EE products may require the J2EE application bundle containing
the application client to be manually deployed and installed on each client
machine. And yet another approach would be for the deployment tool on the J2EE
server to produce an installation package that could be used by each client to
install the application client. There are many possibilities here and this
specification doesn’t prescribe any one. It only defines the package format for the
application client and the things that must be possible during the deployment
process.

How an application client is invoked by an end user is unspecified. Typically a
J2EE Product Provider will provide an application launcher that integrates with
the application client machine’s native operating system, but the level of such
integration is unspecified.

Table J2EE.9-1 Deployment Descriptor Processing Requirements

Deployment descriptor full? process annotations?

application-client_1_2 N/A No

application-client_1_3 N/A No

application-client_1_4 N/A No

application-client_5_0 Yes No

application-client_5_0 No Yes

none N/A Yes
blic Review

 J2EE APPLICATION CLIENT XML SCHEMA 209
J2EE.9.7 J2EE Application Client XML Schema

The XML grammar for a J2EE application client deployment descriptor is defined
by the J2EE application-client schema. The root element of the deployment
descriptor for an application client is application-client. The content of the XML
elements is in general case sensitive. This means, for example, that <res-
auth>Container</res-auth> must be used, rather than <res-auth>container</
res-auth>.

All valid application-client deployment descriptors must conform to the
following XML Schema definition, or to a DTD or schema definition from a
previous version of this specification. (See Appendix J2EE.A, “Previous Version
Deployment Descriptors.”) The deployment descriptor must be named META-INF/
application-client.xml in the application client’s .jar file. Note that this name
is case-sensitive.

Figure J2EE.9-1 shows the structure of the J2EE application-client XML
Schema.

Pu

210

name

class
Figure J2EE.9-1 J2EE Application Client XML Schema Structure

application-client

display-name+

description*

 icon*

 ejb-ref*

resource-ref*

resource-env-ref*

 message-destination*

 callback-handler?

 env-entry*

 message-destination-ref*

description*

res-ref-name

res-type?

res-auth?

res-sharing-scope?

 message-destination-name

description*

display-name+

 icon*

small-icon?

large-icon?

resource-env-ref-type?

resource-env-ref-name

description*

description*

message-destination-ref-name

message-destination-type?

message-destination-usage?

message-destination-link?

injection-target-name

injection-target-class
injection-target*

injection-target-name

injection-target-class
injection-target*

injection-target-name

injection-target-class
injection-target*

env-entry-name

description*

env-entry-type?

env-entry-value?

injection-target-name

injection-target-class
injection-target*

description*

ejb-ref-name

ejb-ref-type?

home?

remote?

ejb-link?

injection-target-

injection-target-
injection-target*
blic Review

 J2EE APPLICATION CLIENT XML SCHEMA 211
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://java.sun.com/xml/ns/j2ee"

 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="5.0">

 <xsd:annotation>

 <xsd:documentation>

 @(#)application-client_5_0.xsds 1.19 03/15/05

 </xsd:documentation>

 </xsd:annotation>

 <xsd:annotation>

 <xsd:documentation>

 This is the XML Schema for the application client 5.0

 deployment descriptor. The deployment descriptor must

 be named "META-INF/application-client.xml" in the

 application client’s jar file. All application client

 deployment descriptors must indicate the application

 client schema by using the J2EE namespace:

 http://java.sun.com/xml/ns/j2ee

 and indicate the version of the schema by

 using the version element as shown below:

 <application-client xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/application-

client_5_0.xsd"

 version="5.0">

 ...

 </application-client>

 The instance documents may indicate the published version of

 the schema using the xsi:schemaLocation attribute for J2EE

Pu

212
 namespace with the following location:

 http://java.sun.com/xml/ns/j2ee/application-client_5_0.xsd

 </xsd:documentation>

 </xsd:annotation>

 <xsd:annotation>

 <xsd:documentation>

 The following conventions apply to all J2EE

 deployment descriptor elements unless indicated otherwise.

 - In elements that specify a pathname to a file within the

 same JAR file, relative filenames (i.e., those not

 starting with "/") are considered relative to the root of

 the JAR file’s namespace. Absolute filenames (i.e., those

 starting with "/") also specify names in the root of the

 JAR file’s namespace. In general, relative names are

 preferred. The exception is .war files where absolute

 names are preferred for consistency with the Servlet API.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:include schemaLocation="j2ee_5_0.xsd"/>

<!-- ** -->

 <xsd:element name="application-client" type="j2ee:application-

clientType">

 <xsd:annotation>

 <xsd:documentation>

 The application-client element is the root element of an

 application client deployment descriptor. The application

 client deployment descriptor describes the EJB components

 and external resources referenced by the application

 client.

 </xsd:documentation>

 </xsd:annotation>
blic Review

 J2EE APPLICATION CLIENT XML SCHEMA 213
 <xsd:unique name="env-entry-name-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The env-entry-name element contains the name of an

 application client’s environment entry. The name is a JNDI

 name relative to the java:comp/env context. The name must

 be unique within an application client.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:env-entry"/>

 <xsd:field xpath="j2ee:env-entry-name"/>

 </xsd:unique>

 <xsd:unique name="ejb-ref-name-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The ejb-ref-name element contains the name of an EJB

 reference. The EJB reference is an entry in the application

 client’s environment and is relative to the

 java:comp/env context. The name must be unique within the

 application client.

 It is recommended that name is prefixed with "ejb/".

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:ejb-ref"/>

 <xsd:field xpath="j2ee:ejb-ref-name"/>

 </xsd:unique>

 <xsd:unique name="res-ref-name-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The res-ref-name element specifies the name of a

 resource manager connection factory reference.The name

 is a JNDI name relative to the java:comp/env context.

Pu

214
 The name must be unique within an application client.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:resource-ref"/>

 <xsd:field xpath="j2ee:res-ref-name"/>

 </xsd:unique>

 <xsd:unique name="resource-env-ref-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The resource-env-ref-name element specifies the name of

 a resource environment reference; its value is the

 environment entry name used in the application client

 code. The name is a JNDI name relative to the

 java:comp/env context and must be unique within an

 application client.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:resource-env-ref"/>

 <xsd:field xpath="j2ee:resource-env-ref-name"/>

 </xsd:unique>

 <xsd:unique name="message-destination-ref-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The message-destination-ref-name element specifies the

 name of a message destination reference; its value is

 the message destination reference name used in the

 application client code. The name is a JNDI name

 relative to the java:comp/env context and must be unique

 within an application client.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:message-destination-ref"/>

 <xsd:field xpath="j2ee:message-destination-ref-name"/>
blic Review

 J2EE APPLICATION CLIENT XML SCHEMA 215
 </xsd:unique>

 </xsd:element>

<!-- ** -->

 <xsd:complexType name="application-clientType">

 <xsd:sequence>

 <xsd:group ref="j2ee:descriptionGroup"/>

 <xsd:element name="env-entry"

 type="j2ee:env-entryType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="ejb-ref"

 type="j2ee:ejb-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:group ref="j2ee:service-refGroup"/>

 <xsd:element name="resource-ref"

 type="j2ee:resource-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="resource-env-ref"

 type="j2ee:resource-env-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="message-destination-ref"

 type="j2ee:message-destination-refType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="callback-handler"

 type="j2ee:fully-qualified-classType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The callback-handler element names a class provided by

 the application. The class must have a no args

 constructor and must implement the

 javax.security.auth.callback.CallbackHandler

 interface. The class will be instantiated by the

 application client container and used by the container

 to collect authentication information from the user.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

Pu

216
 <xsd:element name="message-destination"

 type="j2ee:message-destinationType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="version"

 type="j2ee:dewey-versionType"

 fixed="5.0"

 use="required">

 <xsd:annotation>

 <xsd:documentation>

 The required value for the version is 5.0.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="full" type="xsd:boolean">

 <xsd:annotation>

 <xsd:documentation>

 The full attribute defines whether this deployment

 descriptor is complete, or whether the class files

 of the application should be examined for annotations

 that specify deployment information.

 If full is set to "true", the J2EE deployment tool

 must ignore any J2EE annotations present in the

 class files of the application.

 If full is not specified or is set to "false", the J2EE

 deployment tool must examine the class files of the

 application for annotations, as specified by the J2EE

 specifications.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>
blic Review

 J2EE APPLICATION CLIENT XML SCHEMA 217
 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

</xsd:schema>

Pu

218
blic Review

C H A P T E R J2EE.10

Service Provider Interface

The Java™ 2 Platform, Enterprise Edition (J2EE) includes the J2EE Connector
Architecture and the Java Authorization Service Provider Contract for Containers as
its service provider interfaces. The Connector API defines how resource adapters are
packaged and integrated with any J2EE product. All J2EE products must support
the Connector APIs, as specified in the Connector specification. The JACC
specification defines the contract between a J2EE container and an authorization
policy provider.

The Connector specification is available at http://java.sun.com/j2ee/
connector. The JACC specification is available at http://jcp.org/jsr/detail/
115.jsp.
219

Pu

220
blic Review

C H A P T E R J2EE.11

Compatibility and Migration

This chapter is a placeholder. In future drafts this chapter will discuss compatibility
with, and migration from, previous versions of J2EE.
221

Pu

222
blic Review

C H A P T E R J2EE.12

Future Directions

This version of the Java™ 2 Platform, Enterprise Edition (J2EE) specification
includes most of the facilities needed by enterprise applications. Still, there is
always more to be done. This chapter briefly describes our plans for future versions
of this specification. Please keep in mind that all of this is subject to change. Your
feedback is encouraged.

The following sections describe additional facilities we would like to include
in future versions of this specification. Many of the APIs included in the J2EE
platform will continue to evolve on their own and we will include the latest
version of each API.

J2EE.12.1 JNLP (Java™ Web Start)

The Java Network Launch Protocol defines a mechanism for deploying Java
applications on a server and launching them from a client. A future version of this
specification may require that J2EE products be able to deploy application clients in
a way that allows them to be launched by a JNLP client, and that application client
containers be able to launch application clients deployed using the JNLP
technology. Java™ Web Start is the reference implementation of a JNLP client.

More information on JNLP is available at http://jcp.org/en/jsr/
detail?id=056; more information on Java Web Start is available at http://
java.sun.com/products/javawebstart.
223

Pu

224
J2EE.12.2 J2EE SPI

Many of the APIs that make up the J2EE platform include an SPI layer that allows
service providers or other system level components to be plugged in. This
specification does not describe the execution environment for all such service
providers, nor the packaging and deployment requirements for all service providers.
However, the J2EE Connector Architecture does define the requirements for certain
types of service providers called resource adapters, and the Java Authorization
Contract for Containers defines requirements for security service providers. Future
versions of this specification will more fully define the J2EE SPI.

J2EE.12.3 Security APIs

It is a goal of the J2EE platform to separate security from business logic, providing
declarative security controls for application components. However, some
applications need more control over security than can be provided by this approach.
A future version of this specification may expand the set of APIs available to control
authentication and authorization, and to allow the integration of new security
technologies. In particular, we expect that the Java™ Authentication Service
Provider Interface for Containers (JSR-196) will be required in the next version of
this specification. More information on JSR-196 is available at http://jcp.org/
en/jsr/detail?id=196.
blic Review

A P P E N D I X J2EE.A

Previous Version Deployment

Descriptors

This appendix contains Document Type Definitions and XML schemas for
Deployment Descriptors from previous versions of the J2EE specification. All J2EE
products are required to support these DTDs and schemas as well as the schemas
specified in this version of the specification. This ensures that applications written to
previous versions of this specification can be deployed on products supporting the
current version of this specification. In addition, there are no restrictions on mixing
versions of deployment descriptors in a single application; any combination of valid
deployment descriptor versions must be supported.

J2EE.A.1 J2EE 1.4 Application XML Schema

This section provides the XML Schema for the J2EE application deployment
descriptor. The XML grammar for a J2EE application deployment descriptor is
defined by the J2EE:application schema. The granularity of composition for J2EE
application assembly is the J2EE module. A J2EE:application deployment
descriptor contains a name and description for the application and the URI of a UI
icon for the application, as well a list of the J2EE modules that comprise the
application. The content of the XML elements is in general case sensitive. This
means, for example, that <role-name>Manager</role-name> is a different role than
<role-name>manager</role-name>.

A valid J2EE application deployment descriptors may conform to the XML
Schema definition below. The deployment descriptor must be named META-INF/
application.xml in the .ear file. Note that this name is case-sensitive.
225

Pu

226
Figure J2EE.0-1 shows a graphic representation of the structure of the J2EE
application XML Schema.

Figure J2EE.0-1 J2EE Application XML Schema Structure

The XML Schema that follows defines the XML grammar for a J2EE
application deployment descriptor.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://java.sun.com/xml/ns/j2ee"

 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="1.4">

 <xsd:annotation>

 <xsd:documentation>

 @(#)application_1_4.xsds 1.13 02/11/03

 </xsd:documentation>

 </xsd:annotation>

application

display-name+

description*

security-role*

icon*

large-icon?

small-icon?

description*

role-name

module+

alt-dd?

web-uri

context-root?

 connector | ejb* | java | web
blic Review

 227
 <xsd:annotation>

 <xsd:documentation>

 This is the XML Schema for the application 1.4 deployment

 descriptor. The deployment descriptor must be named

 "META-INF/application.xml" in the application’s ear file.

 All application deployment descriptors must indicate

 the application schema by using the J2EE namespace:

 http://java.sun.com/xml/ns/j2ee

 and indicate the version of the schema by

 using the version element as shown below:

 <application xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/application_1_4.xsd"

 version="1.4">

 ...

 </application>

 The instance documents may indicate the published version of

 the schema using the xsi:schemaLocation attribute for J2EE

 namespace with the following location:

 http://java.sun.com/xml/ns/j2ee/application_1_4.xsd

 </xsd:documentation>

 </xsd:annotation>

 <xsd:annotation>

 <xsd:documentation>

 The following conventions apply to all J2EE

 deployment descriptor elements unless indicated otherwise.

 - In elements that specify a pathname to a file within the

 same JAR file, relative filenames (i.e., those not

 starting with "/") are considered relative to the root of

 the JAR file’s namespace. Absolute filenames (i.e., those

 starting with "/") also specify names in the root of the

 JAR file’s namespace. In general, relative names are

Pu

228
 preferred. The exception is .war files where absolute

 names are preferred for consistency with the Servlet API.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:include schemaLocation="j2ee_1_4.xsd"/>

<!-- ** -->

 <xsd:element name="application" type="j2ee:applicationType">

 <xsd:annotation>

 <xsd:documentation>

 The application element is the root element of a J2EE

 application deployment descriptor.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:unique name="context-root-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The context-root element content must be unique

 in the ear.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:module/j2ee:web"/>

 <xsd:field xpath="j2ee:context-root"/>

 </xsd:unique>

 <xsd:unique name="security-role-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The security-role-name element content

 must be unique in the ear.
blic Review

 229
 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:security-role"/>

 <xsd:field xpath="j2ee:role-name"/>

 </xsd:unique>

 </xsd:element>

<!-- ** -->

 <xsd:complexType name="applicationType">

 <xsd:annotation>

 <xsd:documentation>

 The applicationType defines the structure of the

 application.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="j2ee:descriptionGroup"/>

 <xsd:element name="module"

 type="j2ee:moduleType"

 maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

 The application deployment descriptor must have one

 module element for each J2EE module in the

 application package. A module element is defined

 by moduleType definition.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="security-role"

 type="j2ee:security-roleType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:sequence>

Pu

230
 <xsd:attribute name="version"

 type="j2ee:dewey-versionType"

 fixed="1.4"

 use="required">

 <xsd:annotation>

 <xsd:documentation>

 The required value for the version is 1.4.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="moduleType">

 <xsd:annotation>

 <xsd:documentation>

 The moduleType defines a single J2EE module and contains a

 connector, ejb, java, or web element, which indicates the

 module type and contains a path to the module file, and an

 optional alt-dd element, which specifies an optional URI to

 the post-assembly version of the deployment descriptor.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:choice>

 <xsd:element name="connector"

 type="j2ee:pathType">

 <xsd:annotation>

 <xsd:documentation>

 The connector element specifies the URI of a

 resource adapter archive file, relative to the

 top level of the application package.
blic Review

 231
 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="ejb"

 type="j2ee:pathType">

 <xsd:annotation>

 <xsd:documentation>

 The ejb element specifies the URI of an ejb-jar,

 relative to the top level of the application

 package.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="java"

 type="j2ee:pathType">

 <xsd:annotation>

 <xsd:documentation>

 The java element specifies the URI of a java

 application client module, relative to the top

 level of the application package.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="web"

 type="j2ee:webType"/>

 </xsd:choice>

 <xsd:element name="alt-dd"

 type="j2ee:pathType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The alt-dd element specifies an optional URI to the

Pu

232
 post-assembly version of the deployment descriptor

 file for a particular J2EE module. The URI must

 specify the full pathname of the deployment

 descriptor file relative to the application’s root

 directory. If alt-dd is not specified, the deployer

 must read the deployment descriptor from the default

 location and file name required by the respective

 component specification.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="webType">

 <xsd:annotation>

 <xsd:documentation>

 The webType defines the web-uri and context-root of

 a web application module.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="web-uri"

 type="j2ee:pathType">

 <xsd:annotation>

 <xsd:documentation>

 The web-uri element specifies the URI of a web

 application file, relative to the top level of the

 application package.

 </xsd:documentation>

 </xsd:annotation>
blic Review

 233
 </xsd:element>

 <xsd:element name="context-root"

 type="j2ee:string">

 <xsd:annotation>

 <xsd:documentation>

 The context-root element specifies the context root

 of a web application.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

</xsd:schema>

J2EE.A.2 Common J2EE 1.4 XML Schema Definitions

The following XML Schema defines types that are used by many other J2EE 1.4
deployment descriptor schemas, both in this specification and in other
specifications.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

 targetNamespace="http://java.sun.com/xml/ns/j2ee"

 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="1.4">

 <xsd:annotation>

 <xsd:documentation>

 @(#)j2ee_1_4.xsds 1.43 03/09/16

Pu

234
 </xsd:documentation>

 </xsd:annotation>

<xsd:annotation>

<xsd:documentation>

The following definitions that appear in the common

shareable schema(s) of J2EE deployment descriptors should be

interpreted with respect to the context they are included:

Deployment Component may indicate one of the following:

 j2ee application;

 application client;

 web application;

 enterprise bean;

 resource adapter;

Deployment File may indicate one of the following:

 ear file;

 war file;

 jar file;

 rar file;

</xsd:documentation>

</xsd:annotation>

 <xsd:import namespace="http://www.w3.org/XML/1998/namespace"

 schemaLocation="http://www.w3.org/2001/xml.xsd"/>

 <xsd:include schemaLocation=

 "http://www.ibm.com/webservices/xsd/

j2ee_web_services_client_1_1.xsd"/>

<!-- ** -->

 <xsd:group name="descriptionGroup">

 <xsd:annotation>

 <xsd:documentation>

 This group keeps the usage of the contained description related

 elements consistent across J2EE deployment descriptors.

 All elements may occur multiple times with different languages,

 to support localization of the content.
blic Review

 235
 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="display-name"

 type="j2ee:display-nameType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="icon"

 type="j2ee:iconType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:group>

<!-- ** -->

 <xsd:complexType name="descriptionType">

 <xsd:annotation>

 <xsd:documentation>

 The description type is used by a description element to

 provide text describing the parent element. The elements

 that use this type should include any information that the

 Deployment Component’s Deployment File file producer wants

 to provide to the consumer of the Deployment Component’s

 Deployment File (i.e., to the Deployer). Typically, the

 tools used by such a Deployment File consumer will display

 the description when processing the parent element that

 contains the description.

 The lang attribute defines the language that the

 description is provided in. The default value is "en" (English).

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="j2ee:xsdStringType">

Pu

236
 <xsd:attribute ref="xml:lang"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:simpleType name="dewey-versionType">

 <xsd:annotation>

 <xsd:documentation>

 This type defines a dewey decimal which is used

 to describe versions of documents.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base="xsd:decimal">

 <xsd:whiteSpace value="collapse"/>

 </xsd:restriction>

 </xsd:simpleType>

<!-- ** -->

 <xsd:complexType name="display-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The display-name type contains a short name that is intended

 to be displayed by tools. It is used by display-name

 elements. The display name need not be unique.

 Example:

 ...

 <display-name xml:lang="en">Employee Self Service</display-

name>

 The value of the xml:lang attribute is "en" (English) by default.

 </xsd:documentation>

 </xsd:annotation>
blic Review

 237
 <xsd:simpleContent>

 <xsd:extension base="j2ee:string">

 <xsd:attribute ref="xml:lang"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-linkType">

 <xsd:annotation>

 <xsd:documentation>

 The ejb-linkType is used by ejb-link

 elements in the ejb-ref or ejb-local-ref elements to specify

 that an EJB reference is linked to enterprise bean.

 The value of the ejb-link element must be the ejb-name of an

 enterprise bean in the same ejb-jar file or in another ejb-jar

 file in the same J2EE application unit.

 Alternatively, the name in the ejb-link element may be

 composed of a path name specifying the ejb-jar containing the

 referenced enterprise bean with the ejb-name of the target

 bean appended and separated from the path name by "#". The

 path name is relative to the Deployment File containing

 Deployment Component that is referencing the enterprise

 bean. This allows multiple enterprise beans with the same

 ejb-name to be uniquely identified.

 Examples:

 <ejb-link>EmployeeRecord</ejb-link>

 <ejb-link>../products/product.jar#ProductEJB</ejb-link>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string"/>

 </xsd:simpleContent>

 </xsd:complexType>

Pu

238
<!-- ** -->

 <xsd:complexType name="ejb-local-refType">

 <xsd:annotation>

 <xsd:documentation>

 The ejb-local-refType is used by ejb-local-ref elements for

 the declaration of a reference to an enterprise bean’s local

 home. The declaration consists of:

 - an optional description

 - the EJB reference name used in the code of the Deployment

 Component that’s referencing the enterprise bean

 - the expected type of the referenced enterprise bean

 - the expected local home and local interfaces of the

 referenced enterprise bean

 - optional ejb-link information, used to specify the

 referenced enterprise bean

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="ejb-ref-name"

 type="j2ee:ejb-ref-nameType"/>

 <xsd:element name="ejb-ref-type"

 type="j2ee:ejb-ref-typeType"/>

 <xsd:element name="local-home"

 type="j2ee:local-homeType"/>

 <xsd:element name="local"

 type="j2ee:localType"/>

 <xsd:element name="ejb-link"

 type="j2ee:ejb-linkType"

 minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>
blic Review

 239
<!-- ** -->

 <xsd:complexType name="ejb-ref-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The ejb-ref-name element contains the name of an EJB

 reference. The EJB reference is an entry in the

 Deployment Component’s environment and is relative to the

 java:comp/env context. The name must be unique within the

 Deployment Component.

 It is recommended that name is prefixed with "ejb/".

 Example:

 <ejb-ref-name>ejb/Payroll</ejb-ref-name>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:jndi-nameType"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-ref-typeType">

 <xsd:annotation>

 <xsd:documentation>

 The ejb-ref-typeType contains the expected type of the

 referenced enterprise bean.

 The ejb-ref-type designates a value

 that must be one of the following:

 Entity

 Session

 </xsd:documentation>

 </xsd:annotation>

Pu

240
 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:enumeration value="Entity"/>

 <xsd:enumeration value="Session"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-refType">

 <xsd:annotation>

 <xsd:documentation>

 The ejb-refType is used by ejb-ref elements for the

 declaration of a reference to an enterprise bean’s home. The

 declaration consists of:

 - an optional description

 - the EJB reference name used in the code of

 the Deployment Component that’s referencing the enterprise

 bean

 - the expected type of the referenced enterprise bean

 - the expected home and remote interfaces of the referenced

 enterprise bean

 - optional ejb-link information, used to specify the

 referenced enterprise bean

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="ejb-ref-name"

 type="j2ee:ejb-ref-nameType"/>

 <xsd:element name="ejb-ref-type"

 type="j2ee:ejb-ref-typeType"/>

 <xsd:element name="home"

 type="j2ee:homeType"/>

 <xsd:element name="remote"
blic Review

 241
 type="j2ee:remoteType"/>

 <xsd:element name="ejb-link"

 type="j2ee:ejb-linkType"

 minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="emptyType">

 <xsd:annotation>

 <xsd:documentation>

 This type is used to designate an empty

 element when used.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="env-entry-type-valuesType">

 <xsd:annotation>

 <xsd:documentation>

 This type contains the fully-qualified Java type of the

 environment entry value that is expected by the

 application’s code.

 The following are the legal values of env-entry-type-valuesType:

 java.lang.Boolean

 java.lang.Byte

 java.lang.Character

 java.lang.String

 java.lang.Short

 java.lang.Integer

 java.lang.Long

 java.lang.Float

Pu

242
 java.lang.Double

 Example:

 <env-entry-type>java.lang.Boolean</env-entry-type>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:enumeration value="java.lang.Boolean"/>

 <xsd:enumeration value="java.lang.Byte"/>

 <xsd:enumeration value="java.lang.Character"/>

 <xsd:enumeration value="java.lang.String"/>

 <xsd:enumeration value="java.lang.Short"/>

 <xsd:enumeration value="java.lang.Integer"/>

 <xsd:enumeration value="java.lang.Long"/>

 <xsd:enumeration value="java.lang.Float"/>

 <xsd:enumeration value="java.lang.Double"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="env-entryType">

 <xsd:annotation>

 <xsd:documentation>

 The env-entryType is used to declare an application’s

 environment entry. The declaration consists of an optional

 description, the name of the environment entry, and an

 optional value. If a value is not specified, one must be

 supplied during deployment.

 It is used by env-entry elements.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"
blic Review

 243
 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="env-entry-name"

 type="j2ee:jndi-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The env-entry-name element contains the name of a

 Deployment Component’s environment entry. The name

 is a JNDI name relative to the java:comp/env

 context. The name must be unique within a

 Deployment Component. The uniqueness

 constraints must be defined within the declared

 context.

 Example:

 <env-entry-name>minAmount</env-entry-name>

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="env-entry-type"

 type="j2ee:env-entry-type-valuesType"/>

 <xsd:element name="env-entry-value"

 type="j2ee:xsdStringType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The env-entry-value designates the value of a

 Deployment Component’s environment entry. The value

 must be a String that is valid for the

 constructor of the specified type that takes a

 single String parameter, or for java.lang.Character,

 a single character.

 Example:

Pu

244
 <env-entry-value>100.00</env-entry-value>

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="fully-qualified-classType">

 <xsd:annotation>

 <xsd:documentation>

 The elements that use this type designate the name of a

 Java class or interface. The name is in the form of a

 "binary name", as defined in the JLS. This is the form

 of name used in Class.forName(). Tools that need the

 canonical name (the name used in source code) will need

 to convert this binary name to the canonical name.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="generic-booleanType">

 <xsd:annotation>

 <xsd:documentation>

 This type defines four different values which can designate

 boolean values. This includes values yes and no which are

 not designated by xsd:boolean

 </xsd:documentation>

 </xsd:annotation>
blic Review

 245
 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:enumeration value="true"/>

 <xsd:enumeration value="false"/>

 <xsd:enumeration value="yes"/>

 <xsd:enumeration value="no"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="homeType">

 <xsd:annotation>

 <xsd:documentation>

 The homeType defines the fully-qualified name of

 an enterprise bean’s home interface.

 Example:

 <home>com.aardvark.payroll.PayrollHome</home>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:fully-qualified-classType"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="iconType">

 <xsd:annotation>

 <xsd:documentation>

 The icon type contains small-icon and large-icon elements

 that specify the file names for small and large GIF or

 JPEG icon images used to represent the parent element in a

 GUI tool.

 The xml:lang attribute defines the language that the

Pu

246
 icon file names are provided in. Its value is "en" (English)

 by default.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="small-icon" type="j2ee:pathType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The small-icon element contains the name of a file

 containing a small (16 x 16) icon image. The file

 name is a relative path within the Deployment

 Component’s Deployment File.

 The image may be either in the JPEG or GIF format.

 The icon can be used by tools.

 Example:

 <small-icon>employee-service-icon16x16.jpg</small-icon>

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="large-icon" type="j2ee:pathType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The large-icon element contains the name of a file

 containing a large

 (32 x 32) icon image. The file name is a relative

 path within the Deployment Component’s Deployment

 File.

 The image may be either in the JPEG or GIF format.

 The icon can be used by tools.
blic Review

 247

 Example:

 <large-icon>employee-service-icon32x32.jpg</large-icon>

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute ref="xml:lang"/>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="java-identifierType">

 <xsd:annotation>

 <xsd:documentation>

 The java-identifierType defines a Java identifier.

 The users of this type should further verify that

 the content does not contain Java reserved keywords.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:pattern value="($|_|p{L})(p{L}|p{Nd}|_|$)*"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="java-typeType">

 <xsd:annotation>

 <xsd:documentation>

 This is a generic type that designates a Java primitive

 type or a fully qualified name of a Java interface/type,

 or an array of such types.

Pu

248
 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:pattern value="[^p{Z}]*"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="jndi-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The jndi-nameType type designates a JNDI name in the

 Deployment Component’s environment and is relative to the

 java:comp/env context. A JNDI name must be unique within the

 Deployment Component.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:group name="jndiEnvironmentRefsGroup">

 <xsd:annotation>

 <xsd:documentation>

 This group keeps the usage of the contained JNDI environment

 reference elements consistent across J2EE deployment descriptors.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="env-entry"
blic Review

 249
 type="j2ee:env-entryType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="ejb-ref"

 type="j2ee:ejb-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="ejb-local-ref"

 type="j2ee:ejb-local-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:group ref="j2ee:service-refGroup"/>

 <xsd:element name="resource-ref"

 type="j2ee:resource-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="resource-env-ref"

 type="j2ee:resource-env-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="message-destination-ref"

 type="j2ee:message-destination-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:group>

<!-- ** -->

 <xsd:complexType name="listenerType">

 <xsd:annotation>

 <xsd:documentation>

 The listenerType indicates the deployment properties for a web

 application listener bean.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="j2ee:descriptionGroup"/>

 <xsd:element name="listener-class"

 type="j2ee:fully-qualified-classType">

 <xsd:annotation>

 <xsd:documentation>

 The listener-class element declares a class in the

 application must be registered as a web

Pu

250
 application listener bean. The value is the fully

 qualified classname of the listener class.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="local-homeType">

 <xsd:annotation>

 <xsd:documentation>

 The local-homeType defines the fully-qualified

 name of an enterprise bean’s local home interface.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:fully-qualified-classType"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="localType">

 <xsd:annotation>

 <xsd:documentation>

 The localType defines the fully-qualified name of an

 enterprise bean’s local interface.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:fully-qualified-classType"/>
blic Review

 251
 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="message-destination-linkType">

 <xsd:annotation>

 <xsd:documentation>

 The message-destination-linkType is used to link a message

 destination reference or message-driven bean to a message

 destination.

 The Assembler sets the value to reflect the flow of messages

 between producers and consumers in the application.

 The value must be the message-destination-name of a message

 destination in the same Deployment File or in another

 Deployment File in the same J2EE application unit.

 Alternatively, the value may be composed of a path name

 specifying a Deployment File containing the referenced

 message destination with the message-destination-name of the

 destination appended and separated from the path name by

 "#". The path name is relative to the Deployment File

 containing Deployment Component that is referencing the

 message destination. This allows multiple message

 destinations with the same name to be uniquely identified.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="message-destination-refType">

 <xsd:annotation>

 <xsd:documentation>

Pu

252
 The message-destination-ref element contains a declaration

 of Deployment Component’s reference to a message destination

 associated with a resource in Deployment Component’s

 environment. It consists of:

 - an optional description

 - the message destination reference name

 - the message destination type

 - a specification as to whether the

 destination is used for

 consuming or producing messages, or both

 - a link to the message destination

 Examples:

 <message-destination-ref>

 <message-destination-ref-name>jms/StockQueue

 </message-destination-ref-name>

 <message-destination-type>javax.jms.Queue

 </message-destination-type>

 <message-destination-usage>Consumes

 </message-destination-usage>

 <message-destination-link>CorporateStocks

 </message-destination-link>

 </message-destination-ref>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="message-destination-ref-name"

 type="j2ee:jndi-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The message-destination-ref-name element specifies

 the name of a message destination reference; its

 value is the environment entry name used in
blic Review

 253
 Deployment Component code. The name is a JNDI name

 relative to the java:comp/env context and must be

 unique within an ejb-jar (for enterprise beans) or a

 Deployment File (for others).

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="message-destination-type"

 type="j2ee:message-destination-typeType"/>

 <xsd:element name="message-destination-usage"

 type="j2ee:message-destination-usageType"/>

 <xsd:element name="message-destination-link"

 type="j2ee:message-destination-linkType"

 minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="message-destination-typeType">

 <xsd:annotation>

 <xsd:documentation>

 The message-destination-typeType specifies the type of

 the destination. The type is specified by the Java interface

 expected to be implemented by the destination.

 Example:

 <message-destination-type>javax.jms.Queue

 </message-destination-type>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:fully-qualified-classType"/>

 </xsd:simpleContent>

 </xsd:complexType>

Pu

254
<!-- ** -->

 <xsd:complexType name="message-destination-usageType">

 <xsd:annotation>

 <xsd:documentation>

 The message-destination-usageType specifies the use of the

 message destination indicated by the reference. The value

 indicates whether messages are consumed from the message

 destination, produced for the destination, or both. The

 Assembler makes use of this information in linking producers

 of a destination with its consumers.

 The value of the message-destination-usage element must be

 one of the following:

 Consumes

 Produces

 ConsumesProduces

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:enumeration value="Consumes"/>

 <xsd:enumeration value="Produces"/>

 <xsd:enumeration value="ConsumesProduces"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="message-destinationType">

 <xsd:annotation>

 <xsd:documentation>

 The message-destinationType specifies a message

 destination. The logical destination described by this

 element is mapped to a physical destination by the Deployer.

 The message destination element contains:

blic Review

 255
 - an optional description

 - an optional display-name

 - an optional icon

 - a message destination name which must be unique

 among message destination names within the same

 Deployment File.

 Example:

 <message-destination>

 <message-destination-name>CorporateStocks

 </message-destination-name>

 </message-destination>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="j2ee:descriptionGroup"/>

 <xsd:element name="message-destination-name"

 type="j2ee:string">

 <xsd:annotation>

 <xsd:documentation>

 The message-destination-name element specifies a

 name for a message destination. This name must be

 unique among the names of message destinations

 within the Deployment File.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="param-valueType">

 <xsd:annotation>

 <xsd:documentation>

Pu

256
 This type is a general type that can be used to declare

 parameter/value lists.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="param-name"

 type="j2ee:string">

 <xsd:annotation>

 <xsd:documentation>

 The param-name element contains the name of a

 parameter.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="param-value"

 type="j2ee:xsdStringType">

 <xsd:annotation>

 <xsd:documentation>

 The param-value element contains the value of a

 parameter.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="pathType">
blic Review

 257
 <xsd:annotation>

 <xsd:documentation>

 The elements that use this type designate either a relative

 path or an absolute path starting with a "/".

 In elements that specify a pathname to a file within the

 same Deployment File, relative filenames (i.e., those not

 starting with "/") are considered relative to the root of

 the Deployment File’s namespace. Absolute filenames (i.e.,

 those starting with "/") also specify names in the root of

 the Deployment File’s namespace. In general, relative names

 are preferred. The exception is .war files where absolute

 names are preferred for consistency with the Servlet API.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="remoteType">

 <xsd:annotation>

 <xsd:documentation>

 The remote element contains the fully-qualified name

 of the enterprise bean’s remote interface.

 Example:

 <remote>com.wombat.empl.EmployeeService</remote>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:fully-qualified-classType"/>

 </xsd:simpleContent>

 </xsd:complexType>

Pu

258
<!-- ** -->

 <xsd:complexType name="res-authType">

 <xsd:annotation>

 <xsd:documentation>

 The res-authType specifies whether the Deployment Component

 code signs on programmatically to the resource manager, or

 whether the Container will sign on to the resource manager

 on behalf of the Deployment Component. In the latter case,

 the Container uses information that is supplied by the

 Deployer.

 The value must be one of the two following:

 Application

 Container

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:enumeration value="Application"/>

 <xsd:enumeration value="Container"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="res-sharing-scopeType">

 <xsd:annotation>

 <xsd:documentation>

 The res-sharing-scope type specifies whether connections

 obtained through the given resource manager connection

 factory reference can be shared. The value, if specified,

 must be one of the two following:

 Shareable

 Unshareable

blic Review

 259
 The default value is Shareable.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:enumeration value="Shareable"/>

 <xsd:enumeration value="Unshareable"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="resource-env-refType">

 <xsd:annotation>

 <xsd:documentation>

 The resource-env-refType is used to define

 resource-env-type elements. It contains a declaration of a

 Deployment Component’s reference to an administered object

 associated with a resource in the Deployment Component’s

 environment. It consists of an optional description, the

 resource environment reference name, and an indication of

 the resource environment reference type expected by the

 Deployment Component code.

 Example:

 <resource-env-ref>

 <resource-env-ref-name>jms/StockQueue

 </resource-env-ref-name>

 <resource-env-ref-type>javax.jms.Queue

 </resource-env-ref-type>

 </resource-env-ref>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

Pu

260
 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="resource-env-ref-name"

 type="j2ee:jndi-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The resource-env-ref-name element specifies the name

 of a resource environment reference; its value is

 the environment entry name used in

 the Deployment Component code. The name is a JNDI

 name relative to the java:comp/env context and must

 be unique within a Deployment Component.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="resource-env-ref-type"

 type="j2ee:fully-qualified-classType">

 <xsd:annotation>

 <xsd:documentation>

 The resource-env-ref-type element specifies the type

 of a resource environment reference. It is the

 fully qualified name of a Java language class or

 interface.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="resource-refType">

 <xsd:annotation>

 <xsd:documentation>
blic Review

 261
 The resource-refType contains a declaration of a

 Deployment Component’s reference to an external resource. It

 consists of an optional description, the resource manager

 connection factory reference name, the indication of the

 resource manager connection factory type expected by the

 Deployment Component code, the type of authentication

 (Application or Container), and an optional specification of

 the shareability of connections obtained from the resource

 (Shareable or Unshareable).

 Example:

 <resource-ref>

 <res-ref-name>jdbc/EmployeeAppDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 <res-sharing-scope>Shareable</res-sharing-scope>

 </resource-ref>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="res-ref-name"

 type="j2ee:jndi-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The res-ref-name element specifies the name of a

 resource manager connection factory reference.

 The name is a JNDI name relative to the

 java:comp/env context.

 The name must be unique within a Deployment File.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

Pu

262
 <xsd:element name="res-type"

 type="j2ee:fully-qualified-classType">

 <xsd:annotation>

 <xsd:documentation>

 The res-type element specifies the type of the data

 source. The type is specified by the fully qualified

 Java language class or interface

 expected to be implemented by the data source.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="res-auth"

 type="j2ee:res-authType"/>

 <xsd:element name="res-sharing-scope"

 type="j2ee:res-sharing-scopeType"

 minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="role-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The role-nameType designates the name of a security role.

 The name must conform to the lexical rules for a token.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string"/>

 </xsd:simpleContent>

 </xsd:complexType>
blic Review

 263
<!-- ** -->

 <xsd:complexType name="run-asType">

 <xsd:annotation>

 <xsd:documentation>

 The run-asType specifies the run-as identity to be

 used for the execution of a component. It contains an

 optional description, and the name of a security role.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="role-name"

 type="j2ee:role-nameType"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="security-role-refType">

 <xsd:annotation>

 <xsd:documentation>

 The security-role-refType contains the declaration of a

 security role reference in a component’s or a

 Deployment Component’s code. The declaration consists of an

 optional description, the security role name used in the

 code, and an optional link to a security role. If the

 security role is not specified, the Deployer must choose an

 appropriate security role.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

Pu

264
 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="role-name"

 type="j2ee:role-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The value of the role-name element must be the String used

 as the parameter to the

 EJBContext.isCallerInRole(String roleName) method or the

 HttpServletRequest.isUserInRole(String role) method.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="role-link"

 type="j2ee:role-nameType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The role-link element is a reference to a defined

 security role. The role-link element must contain

 the name of one of the security roles defined in the

 security-role elements.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="security-roleType">

 <xsd:annotation>

 <xsd:documentation>
blic Review

 265
 The security-roleType contains the definition of a security

 role. The definition consists of an optional description of the

 security role, and the security role name.

 Example:

 <security-role>

 <description>

 This role includes all employees who are authorized

 to access the employee service application.

 </description>

 <role-name>employee</role-name>

 </security-role>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="role-name"

 type="j2ee:role-nameType"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="string">

 <xsd:annotation>

 <xsd:documentation>

 This is a special string datatype that is defined by J2EE as

 a base type for defining collapsed strings. When schemas

 require trailing/leading space elimination as well as

 collapsing the existing whitespace, this base type may be

 used.

 </xsd:documentation>

 </xsd:annotation>

Pu

266
 <xsd:simpleContent>

 <xsd:extension base="xsd:token">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="true-falseType">

 <xsd:annotation>

 <xsd:documentation>

 This simple type designates a boolean with only two

 permissible values

 - true

 - false

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:xsdBooleanType">

 <xsd:pattern value="(true|false)"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="url-patternType">

 <xsd:annotation>

 <xsd:documentation>

 The url-patternType contains the url pattern of the mapping.

 It must follow the rules specified in Section 11.2 of the

 Servlet API Specification. This pattern is assumed to be in

 URL-decoded form and must not contain CR(#xD) or LF(#xA).

 If it contains those characters, the container must inform

 the developer with a descriptive error message.

 The container must preserve all characters including whitespaces.
blic Review

 267
 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="xsdAnyURIType">

 <xsd:annotation>

 <xsd:documentation>

 This type adds an "id" attribute to xsd:anyURI.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:anyURI">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="xsdBooleanType">

 <xsd:annotation>

 <xsd:documentation>

 This type adds an "id" attribute to xsd:boolean.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:boolean">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

Pu

268
<!-- ** -->

 <xsd:complexType name="xsdIntegerType">

 <xsd:annotation>

 <xsd:documentation>

 This type adds an "id" attribute to xsd:integer.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:integer">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="xsdNMTOKENType">

 <xsd:annotation>

 <xsd:documentation>

 This type adds an "id" attribute to xsd:NMTOKEN.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:NMTOKEN">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="xsdNonNegativeIntegerType">

 <xsd:annotation>

 <xsd:documentation>

 This type adds an "id" attribute to xsd:nonNegativeInteger.
blic Review

 269
 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:nonNegativeInteger">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="xsdPositiveIntegerType">

 <xsd:annotation>

 <xsd:documentation>

 This type adds an "id" attribute to xsd:positiveInteger.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:positiveInteger">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="xsdQNameType">

 <xsd:annotation>

 <xsd:documentation>

 This type adds an "id" attribute to xsd:QName.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:QName">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

Pu

270
 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="xsdStringType">

 <xsd:annotation>

 <xsd:documentation>

 This type adds an "id" attribute to xsd:string.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

</xsd:schema>

J2EE.A.3 J2EE:application 1.3 XML DTD

This section provides the XML DTD for the J2EE 1.3 application deployment
descriptor. The XML grammar for a J2EE application deployment descriptor is
defined by the J2EE:application document type definition. The granularity of
composition for J2EE application assembly is the J2EE module. A
J2EE:application deployment descriptor contains a name and description for the
application and the URI of a UI icon for the application, as well as a list of the J2EE
modules that comprise the application. The content of the XML elements is in
general case sensitive. This means, for example, that <role-name>Manager</role-
name> is a different role than <role-name>manager</role-name>.

A valid J2EE application deployment descriptor may contain the following
DOCTYPE declaration:

 <!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE

Application 1.3//EN" "http://java.sun.com/dtd/application_1_3.dtd">
blic Review

 271
The deployment descriptor must be named META-INF/application.xml in the .ear
file.

Figure J2EE.A-1 shows a graphic representation of the structure of the
J2EE:application XML DTD.

Figure J2EE.A-1 J2EE:application XML DTD Structure

The DTD that follows defines the XML grammar for a J2EE application
deployment descriptor.

<!--

This is the XML DTD for the J2EE 1.3 application deployment

descriptor. All J2EE 1.3 application deployment descriptors must

include a DOCTYPE of the following form:

 <!DOCTYPE application PUBLIC

"-//Sun Microsystems, Inc.//DTD J2EE Application 1.3//EN"

"http://java.sun.com/dtd/application_1_3.dtd">

-->

<!--

The following conventions apply to all J2EE deployment descriptor

elements unless indicated otherwise.

- In elements that contain PCDATA, leading and trailing whitespace

 in the data may be ignored.

- In elements whose value is an "enumerated type", the value is

 case sensitive.

- In elements that specify a pathname to a file within the same

 JAR file, relative filenames (i.e., those not starting with "/")

 are considered relative to the root of the JAR file’s namespace.

 Absolute filenames (i.e., those starting with "/") also specify

application

icon display-name description? module+

connector | ejb | java | web alt-dd?large-iconsmall-icon

web-uri context-root?

security-role*

description? role-name

Pu

272
 names in the root of the JAR file’s namespace. In general, relative

 names are preferred. The exception is .war files where absolute

 names are preferred for consistency with the servlet API.

-->

<!--

The application element is the root element of a J2EE application

deployment descriptor.

-->

<!ELEMENT application (icon?, display-name, description?, module+,

security-role*)>

<!--

The alt-dd element specifies an optional URI to the post-assembly

version of the deployment descriptor file for a particular J2EE

module. The URI must specify the full pathname of the deployment

descriptor file relative to the application’s root directory. If alt-

dd is not specified, the deployer must read the deployment descriptor

from the default location and file name required by the respective

component specification.

Used in: module

-->

<!ELEMENT alt-dd (#PCDATA)>

<!--

The connector element specifies the URI of a resource adapter archive

file, relative to the top level of the application package.

Used in: module

-->

<!ELEMENT connector (#PCDATA)>

<!--

The context-root element specifies the context root of a web

application.

Used in: web

-->

<!ELEMENT context-root (#PCDATA)>
blic Review

 273
<!--

The description element is used to provide text describing the parent

element. The description element should include any information that

the application ear file producer wants to provide to the consumer

of the application ear file (i.e., to the Deployer). Typically, the

tools used by the application ear file consumer will display the

description when processing the parent element that contains the

description.

Used in: application, security-role

-->

<!ELEMENT description (#PCDATA)>

<!--

The display-name element contains a short name that is intended to

be displayed by tools. The display name need not be unique.

Used in: application

Example:

<display-name>Employee Self Service</display-name>

-->

<!ELEMENT display-name (#PCDATA)>

<!--

The ejb element specifies the URI of an ejb-jar, relative to the top

level of the application package.

Used in: module

-->

<!ELEMENT ejb (#PCDATA)>

<!--

The icon element contains small-icon and large-icon elements that

specify the file names for small and a large GIF or JPEG icon images

used to represent the parent element in a GUI tool.

Used in: application

-->

<!ELEMENT icon (small-icon?, large-icon?)>

<!--

The java element specifies the URI of a java application client

module, relative to the top level of the application package.

Pu

274
Used in: module

-->

<!ELEMENT java (#PCDATA)>

<!--

The large-icon element contains the name of a file containing a large

(32 x 32) icon image. The file name is a relative path within the

application’s ear file.

The image may be either in the JPEG or GIF format. The icon can be

used by tools.

Used in: icon

Example:

<large-icon>employee-service-icon32x32.jpg</large-icon>

-->

<!ELEMENT large-icon (#PCDATA)>

<!--

The module element represents a single J2EE module and contains a

connector, ejb, java, or web element, which indicates the module type

and contains a path to the module file, and an optional alt-dd

element, which specifies an optional URI to the post-assembly version

of the deployment descriptor.

The application deployment descriptor must have one module element

for each J2EE module in the application package.

Used in: application

-->

<!ELEMENT module ((connector | ejb | java | web), alt-dd?)>

<!--

The role-name element contains the name of a security role.

The name must conform to the lexical rules for an NMTOKEN.

Used in: security-role

-->

<!ELEMENT role-name (#PCDATA)>

<!--

The security-role element contains the definition of a security role.

The definition consists of an optional description of the security

role, and the security role name.
blic Review

 275
Used in: application

Example:

 <security-role>

<description>

 This role includes all employees who are authorized

 to access the employee service application.

</description>

<role-name>employee</role-name>

 </security-role>

-->

<!ELEMENT security-role (description?, role-name)>

<!--

The small-icon element contains the name of a file containing a small

(16 x 16) icon image. The file name is a relative path within the

application’s ear file.

The image may be either in the JPEG or GIF format. The icon can be

used by tools.

Used in: icon

Example:

<small-icon>employee-service-icon16x16.jpg</small-icon>

-->

<!ELEMENT small-icon (#PCDATA)>

<!--

The web element contains the web-uri and context-root of a web

application module.

Used in: module

-->

<!ELEMENT web (web-uri, context-root)>

<!--

The web-uri element specifies the URI of a web application file,

relative to the top level of the application package.

Used in: web

-->

<!ELEMENT web-uri (#PCDATA)>

Pu

276
<!--

The ID mechanism is to allow tools that produce additional deployment

information (i.e., information beyond the standard deployment

descriptor information) to store the non-standard information in a

separate file, and easily refer from these tool-specific files to

the information in the standard deployment descriptor.

Tools are not allowed to add the non-standard information into the

standard deployment descriptor.

-->

<!ATTLIST alt-dd id ID #IMPLIED>

<!ATTLIST application id ID #IMPLIED>

<!ATTLIST connector id ID #IMPLIED>

<!ATTLIST context-root id ID #IMPLIED>

<!ATTLIST description id ID #IMPLIED>

<!ATTLIST display-name id ID #IMPLIED>

<!ATTLIST ejb id ID #IMPLIED>

<!ATTLIST icon id ID #IMPLIED>

<!ATTLIST java id ID #IMPLIED>

<!ATTLIST large-icon id ID #IMPLIED>

<!ATTLIST module id ID #IMPLIED>

<!ATTLIST role-name id ID #IMPLIED>

<!ATTLIST security-role id ID #IMPLIED>

<!ATTLIST small-icon id ID #IMPLIED>

<!ATTLIST web id ID #IMPLIED>

<!ATTLIST web-uri id ID #IMPLIED>

J2EE.A.4 J2EE:application 1.2 XML DTD

This section provides the XML DTD for the J2EE 1.2 version of the application
deployment descriptor. A valid J2EE application deployment descriptor may
contain the following DOCTYPE declaration:

<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE

Application 1.2//EN" "http://java.sun.com/j2ee/dtds/

application_1_2.dtd">
blic Review

 277
Figure J2EE.A-2 shows a graphic representation of the structure of the
J2EE:application XML DTD.

Figure J2EE.A-2 J2EE:application XML DTD Structure

The DTD that follows defines the XML grammar for a J2EE application
deployment descriptor.

<!--

The alt-dd element specifies an optional URI to the post-assembly

version of the deployment descriptor file for a particular J2EE

module.

The URI must specify the full pathname of the deployment descriptor

file relative to the application’s root directory. If alt-dd is not
specified, the deployer must read the deployment descriptor from the

default location and file name required by the respective component

specification.

-->

<!ELEMENT alt-dd (#PCDATA)>

<!--

The application element is the root element of a J2EE application

deployment descriptor.

-->

<!ELEMENT application (icon?, display-name, description?, module+,

security-role*)>

application

icon? display-name description? module+

ejb | java | web alt-dd?large-icon?small-icon?

web-uri context-root

security-role*

 description? role-name

Pu

278
<!--

The context-root element specifies the context root of a web

application

-->

<!ELEMENT context-root (#PCDATA)>

<!--

The description element provides a human readable description of the

application.

The description element should include any information that the

application assembler wants to provide the deployer.

-->

<!ELEMENT description (#PCDATA)>

<!--

The display-name element specifies an application name.

The application name is assigned to the application by the

application assembler and is used to identify the application to the

deployer at deployment time.

-->

<!ELEMENT display-name (#PCDATA)>

<!--

The ejb element specifies the URI of a ejb-jar, relative to the top

level of the application package.

-->

<!ELEMENT ejb (#PCDATA)>

<!--

The icon element contains a small-icon and large-icon element which

specify the URIs for a small and a large GIF or JPEG icon image to

represent the application in a GUI.

-->

<!ELEMENT icon (small-icon?, large-icon?)>
blic Review

 279
<!--

The java element specifies the URI of a java application client

module, relative to the top level of the application package.

-->

<!ELEMENT java (#PCDATA)>

<!--

The large-icon element specifies the URI for a large GIF or JPEG icon

image to represent the application in a GUI.

-->

<!ELEMENT large-icon (#PCDATA)>

<!--

The module element represents a single J2EE module and contains an

ejb, java, or web element, which indicates the module type and

contains a path to the module file, and an optional alt-dd element,

which specifies an optional URI to the post-assembly version of the

deployment descriptor.

The application deployment descriptor must have one module element

for each J2EE module in the application package.

-->

<!ELEMENT module ((ejb | java | web), alt-dd?)>

<!--

The role-name element contains the name of a security role.

-->

<!ELEMENT role-name (#PCDATA)>

<!--

The security-role element contains the definition of a security role

which is global to the application.

The definition consists of a description of the security role, and

the security role name.

The descriptions at this level override those in the component level

security-role definitions and must be the descriptions tool display

to the deployer.

-->

Pu

280
<!ELEMENT security-role (description?, role-name)>

<!--

The small-icon element specifies the URI for a small GIF or JPEG icon

image to represent the application in a GUI.

-->

<!ELEMENT small-icon (#PCDATA)>

<!--

The web element contains the web-uri and context-root of a web

application module.

-->

<!ELEMENT web (web-uri, context-root)>

<!--

The web-uri element specifies the URI of a web application file,

relative to the top level of the application package.

-->

<!ELEMENT web-uri (#PCDATA)>

<!--

The ID mechanism is to allow tools to easily make tool-specific

references to the elements of the deployment descriptor.

 -->

<!ATTLIST alt-dd id ID #IMPLIED>

<!ATTLIST application id ID #IMPLIED>

<!ATTLIST context-root id ID #IMPLIED>

<!ATTLIST description id ID #IMPLIED>

<!ATTLIST display-name id ID #IMPLIED>

<!ATTLIST ejb id ID #IMPLIED>

<!ATTLIST icon id ID #IMPLIED>

<!ATTLIST java id ID #IMPLIED>

<!ATTLIST large-icon id ID #IMPLIED>

<!ATTLIST module id ID #IMPLIED>

<!ATTLIST role-name id ID #IMPLIED>

<!ATTLIST security-role id ID #IMPLIED>

<!ATTLIST small-icon id ID #IMPLIED>

<!ATTLIST web id ID #IMPLIED>

<!ATTLIST web-uri id ID #IMPLIED>
blic Review

 281
J2EE.A.5 J2EE 1.4 Application Client XML Schema

The XML grammar for a J2EE application client deployment descriptor is defined
by the J2EE application-client schema. The root element of the deployment
descriptor for an application client is application-client. The content of the XML
elements is in general case sensitive. This means, for example, that <res-
auth>Container</res-auth> must be used, rather than <res-auth>container</
res-auth>.

A valid application-client deployment descriptors may conform to the
following XML Schema definition. The deployment descriptor must be named
META-INF/application-client.xml in the application client’s .jar file. Note that
this name is case-sensitive.

Pu

282
Figure J2EE.0-2 shows the structure of the J2EE application-client XML
blic Review

 283
Schema.

application-client

display-name+

description*

 small-icon?

 large-icon?
 icon*

 ejb-ref*

description*

ejb-ref-name

ejb-ref-type

home

remote

ejb-link?

 resource-ref*

description*

res-ref-name

res-type

res-auth

res-sharing-scope?

 resource-env-ref*

resource-env-ref-type

resource-env-ref-name

description*

 message-destination*

 message-destination-name

description*

display-name+

 icon*

 callback-handler?

 env-entry*
env-entry-name

description*

env-entry-type

env-entry-value?

 message-destination-ref*

description*

 message-destination-ref-name

 message-destination-type

 message-destination-usage

 message-destination-link?

Pu

284
Figure J2EE.0-2 J2EE Application Client XML Schema Structure

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://java.sun.com/xml/ns/j2ee"

 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="1.4">

 <xsd:annotation>

 <xsd:documentation>

 @(#)application-client_1_4.xsds 1.17 02/11/03

 </xsd:documentation>

 </xsd:annotation>

 <xsd:annotation>

 <xsd:documentation>

 This is the XML Schema for the application client 1.4

 deployment descriptor. The deployment descriptor must

 be named "META-INF/application-client.xml" in the

 application client’s jar file. All application client

 deployment descriptors must indicate the application

 client schema by using the J2EE namespace:

 http://java.sun.com/xml/ns/j2ee

 and indicate the version of the schema by

 using the version element as shown below:

 <application-client xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/application-

client_1_4.xsd"

 version="1.4">

 ...

 </application-client>

blic Review

 285
 The instance documents may indicate the published version of

 the schema using the xsi:schemaLocation attribute for J2EE

 namespace with the following location:

 http://java.sun.com/xml/ns/j2ee/application-client_1_4.xsd

 </xsd:documentation>

 </xsd:annotation>

 <xsd:annotation>

 <xsd:documentation>

 The following conventions apply to all J2EE

 deployment descriptor elements unless indicated otherwise.

 - In elements that specify a pathname to a file within the

 same JAR file, relative filenames (i.e., those not

 starting with "/") are considered relative to the root of

 the JAR file’s namespace. Absolute filenames (i.e., those

 starting with "/") also specify names in the root of the

 JAR file’s namespace. In general, relative names are

 preferred. The exception is .war files where absolute

 names are preferred for consistency with the Servlet API.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:include schemaLocation="j2ee_1_4.xsd"/>

<!-- ** -->

 <xsd:element name="application-client" type="j2ee:application-

clientType">

 <xsd:annotation>

 <xsd:documentation>

 The application-client element is the root element of an

 application client deployment descriptor. The application

 client deployment descriptor describes the EJB components

 and external resources referenced by the application

 client.

Pu

286
 </xsd:documentation>

 </xsd:annotation>

 <xsd:unique name="env-entry-name-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The env-entry-name element contains the name of an

 application client’s environment entry. The name is a JNDI

 name relative to the java:comp/env context. The name must

 be unique within an application client.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:env-entry"/>

 <xsd:field xpath="j2ee:env-entry-name"/>

 </xsd:unique>

 <xsd:unique name="ejb-ref-name-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The ejb-ref-name element contains the name of an EJB

 reference. The EJB reference is an entry in the application

 client’s environment and is relative to the

 java:comp/env context. The name must be unique within the

 application client.

 It is recommended that name is prefixed with "ejb/".

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:ejb-ref"/>

 <xsd:field xpath="j2ee:ejb-ref-name"/>

 </xsd:unique>

 <xsd:unique name="res-ref-name-uniqueness">

 <xsd:annotation>

 <xsd:documentation>
blic Review

 287
 The res-ref-name element specifies the name of a

 resource manager connection factory reference.The name

 is a JNDI name relative to the java:comp/env context.

 The name must be unique within an application client.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:resource-ref"/>

 <xsd:field xpath="j2ee:res-ref-name"/>

 </xsd:unique>

 <xsd:unique name="resource-env-ref-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The resource-env-ref-name element specifies the name of

 a resource environment reference; its value is the

 environment entry name used in the application client

 code. The name is a JNDI name relative to the

 java:comp/env context and must be unique within an

 application client.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:resource-env-ref"/>

 <xsd:field xpath="j2ee:resource-env-ref-name"/>

 </xsd:unique>

 <xsd:unique name="message-destination-ref-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The message-destination-ref-name element specifies the

 name of a message destination reference; its value is

 the message destination reference name used in the

 application client code. The name is a JNDI name

 relative to the java:comp/env context and must be unique

 within an application client.

 </xsd:documentation>

 </xsd:annotation>

Pu

288
 <xsd:selector xpath="j2ee:message-destination-ref"/>

 <xsd:field xpath="j2ee:message-destination-ref-name"/>

 </xsd:unique>

 </xsd:element>

<!-- ** -->

 <xsd:complexType name="application-clientType">

 <xsd:sequence>

 <xsd:group ref="j2ee:descriptionGroup"/>

 <xsd:element name="env-entry"

 type="j2ee:env-entryType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="ejb-ref"

 type="j2ee:ejb-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:group ref="j2ee:service-refGroup"/>

 <xsd:element name="resource-ref"

 type="j2ee:resource-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="resource-env-ref"

 type="j2ee:resource-env-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="message-destination-ref"

 type="j2ee:message-destination-refType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="callback-handler"

 type="j2ee:fully-qualified-classType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The callback-handler element names a class provided by

 the application. The class must have a no args

 constructor and must implement the

 javax.security.auth.callback.CallbackHandler

 interface. The class will be instantiated by the

 application client container and used by the container

 to collect authentication information from the user.

 </xsd:documentation>

 </xsd:annotation>
blic Review

 289
 </xsd:element>

 <xsd:element name="message-destination"

 type="j2ee:message-destinationType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="version"

 type="j2ee:dewey-versionType"

 fixed="1.4"

 use="required">

 <xsd:annotation>

 <xsd:documentation>

 The required value for the version is 1.4.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

</xsd:schema>

J2EE.A.6 J2EE:application-client 1.3 XML DTD

This section contains the XML DTD for the J2EE 1.3 version of the application
client deployment descriptor. The XML grammar for a J2EE application client
deployment descriptor is defined by the J2EE:application-client document type
definition. The root element of the deployment descriptor for an application client is
application-client. The content of the XML elements is in general case sensitive.
This means, for example, that <res-auth>Container</res-auth> must be used,
rather than <res-auth>container</res-auth>.

A valid application-client deployment descriptor may contain the
following DOCTYPE declaration:

<!DOCTYPE application-client PUBLIC "-//Sun Microsystems, Inc.//DTD

J2EE Application Client 1.3//EN" "http://java.sun.com/dtd/

application-client_1_3.dtd">

Pu

290
The deployment descriptor must be named META-INF/application-client.xml in
the application client’s .jar file.

Figure J2EE.A-3 shows the structure of the J2EE:application-client XML
DTD.

Figure J2EE.A-3 J2EE:application-client XML DTD Structure

<!--

This is the XML DTD for the J2EE 1.3 application client deployment

descriptor. All J2EE 1.3 application client deployment descriptors

must include a DOCTYPE of the following form:

 <!DOCTYPE application-client PUBLIC

"-//Sun Microsystems, Inc.//DTD J2EE Application Client 1.3//EN"

"http://java.sun.com/dtd/application-client_1_3.dtd">

-->

<!--

The following conventions apply to all J2EE deployment descriptor

elements unless indicated otherwise.

- In elements that contain PCDATA, leading and trailing whitespace

 in the data may be ignored.

- In elements whose value is an "enumerated type", the value is

 case sensitive.

- In elements that specify a pathname to a file within the same

 JAR file, relative filenames (i.e., those not starting with "/")

 are considered relative to the root of the JAR file’s namespace.

 Absolute filenames (i.e., those starting with "/") also specify

 names in the root of the JAR file’s namespace. In general, relative

application-client
t

icon display-nam
e

description
?

env-entry* ejb-ref* resource-ref*

small-icon large-ico
n

resource-env-ref* callback-handler
?

resource-env-ref-typeresource-env-ref-name

env-entry-namedescription
?

env-entry-type env-entry-value?

description
?

ejb-ref-nam
e

ejb-ref-type hom
e

remote ejb-link
?

description
?

res-ref-name res-type res-aut
h

description
?

res-sharing-scope
?

blic Review

 291
 names are preferred. The exception is .war files where absolute

 names are preferred for consistency with the servlet API.

-->

<!--

The application-client element is the root element of an application

client deployment descriptor. The application client deployment

descriptor describes the EJB components and external resources

referenced by the application client.

-->

<!ELEMENT application-client (icon?, display-name, description?,

env-entry*, ejb-ref*, resource-ref*, resource-env-ref*,

callback-handler?)>

<!--

The callback-handler element names a class provided by the

application. The class must have a no args constructor and must

implement the javax.security.auth.callback.CallbackHandler

interface. The class will be instantiated by the application client

container and used by the container to collect authentication

information from the user.

Used in: application-client

-->

<!ELEMENT callback-handler (#PCDATA)>

<!--

The description element is used to provide text describing the parent

element. The description element should include any information that

the application client jar file producer wants to provide to the

consumer of the application client jar file (i.e., to the Deployer).

Typically, the tools used by the application client jar file consumer

will display the description when processing the parent element that

contains the description.

Used in: application-client, ejb-ref, env-entry, resource-env-ref,

resource-ref

-->

<!ELEMENT description (#PCDATA)>

Pu

292
<!--

The display-name element contains a short name that is intended to

be displayed by tools. The display name need not be unique.

Used in: application-client

Example:

<display-name>Employee Self Service</display-name>

-->

<!ELEMENT display-name (#PCDATA)>

<!--

The ejb-link element is used in the ejb-ref or ejb-local-ref elements

to specify that an EJB reference is linked to another enterprise

bean.

The name in the ejb-link element is composed of a

path name specifying the ejb-jar containing the referenced

enterprise bean with the ejb-name of the target bean appended and

separated from the path name by "#". The path name is relative to

the jar file containing the application client that is referencing

the enterprise bean. This allows multiple enterprise beans with the

same ejb-name to be uniquely identified.

Used in: ejb-ref

Examples:

<ejb-link>EmployeeRecord</ejb-link>

<ejb-link>../products/product.jar#ProductEJB</ejb-link>

-->

<!ELEMENT ejb-link (#PCDATA)>

<!--

The ejb-ref element is used for the declaration of a reference to an

enterprise bean’s home. The declaration consists of:

- an optional description

- the EJB reference name used in the code of

 the application client that’s referencing the enterprise bean

- the expected type of the referenced enterprise bean

- the expected home and remote interfaces of the referenced

 enterprise bean

- optional ejb-link information, used to specify the referenced

 enterprise bean

Used in: application-client

-->
blic Review

 293
<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,

remote, ejb-link?)>

<!--

The ejb-ref-name element contains the name of an EJB reference. The

EJB reference is an entry in the application client’s environment

and is relative to the java:comp/env context. The name must be

unique within the application client.

It is recommended that name is prefixed with "ejb/".

Used in: ejb-ref

Example:

<ejb-ref-name>ejb/Payroll</ejb-ref-name>

-->

<!ELEMENT ejb-ref-name (#PCDATA)>

<!--

The ejb-ref-type element contains the expected type of the referenced

enterprise bean.

The ejb-ref-type element must be one of the following:

<ejb-ref-type>Entity</ejb-ref-type>

<ejb-ref-type>Session</ejb-ref-type>

Used in: ejb-ref

-->

<!ELEMENT ejb-ref-type (#PCDATA)>

<!--

The env-entry element contains the declaration of an application

client’s environment entry. The declaration consists of an optional

description, the name of the environment entry, and an optional

value. If a value is not specified, one must be supplied during

deployment.

Used in: application-client

-->

<!ELEMENT env-entry (description?, env-entry-name, env-entry-type,

env-entry-value?)>

Pu

294
<!--

The env-entry-name element contains the name of an application

client’s environment entry. The name is a JNDI name relative to the

java:comp/env context. The name must be unique within an application

client.

Used in: env-entry

Example:

<env-entry-name>minAmount</env-entry-name>

-->

<!ELEMENT env-entry-name (#PCDATA)>

<!--

The env-entry-type element contains the fully-qualified Java type of

the environment entry value that is expected by the application

client’s code.

The following are the legal values of env-entry-type:

java.lang.Boolean

java.lang.Byte

java.lang.Character

java.lang.String

java.lang.Short

java.lang.Integer

java.lang.Long

java.lang.Float

java.lang.Double

Used in: env-entry

Example:

<env-entry-type>java.lang.Boolean</env-entry-type>

-->

<!ELEMENT env-entry-type (#PCDATA)>

<!--

The env-entry-value element contains the value of an application

client’s environment entry. The value must be a String that is valid

for the constructor of the specified type that takes a single String

parameter, or for java.lang.Character, a single character.

Used in: env-entry

Example:

<env-entry-value>100.00</env-entry-value>

-->
blic Review

 295
<!ELEMENT env-entry-value (#PCDATA)>

<!--

The home element contains the fully-qualified name of the enterprise

bean’s home interface.

Used in: ejb-ref

Example:

<home>com.aardvark.payroll.PayrollHome</home>

-->

<!ELEMENT home (#PCDATA)>

<!--

The icon element contains small-icon and large-icon elements that

specify the file names for small and a large GIF or JPEG icon images

used to represent the parent element in a GUI tool.

Used in: application-client

-->

<!ELEMENT icon (small-icon?, large-icon?)>

<!--

The large-icon element contains the name of a file containing a large

(32 x 32) icon image. The file name is a relative path within the

application client’s jar file.

The image may be either in the JPEG or GIF format. The icon can be

used by tools.

Used in: icon

Example:

<large-icon>employee-service-icon32x32.jpg</large-icon>

-->

<!ELEMENT large-icon (#PCDATA)>

<!--

The remote element contains the fully-qualified name of the

enterprise bean’s remote interface.

Used in: ejb-ref

Example:

<remote>com.wombat.empl.EmployeeService</remote>

-->

<!ELEMENT remote (#PCDATA)>

Pu

296
<!--

The res-auth element specifies whether the application client code

signs on programmatically to the resource manager, or whether the

Container will sign on to the resource manager on behalf of the

application client. In the latter case, the Container uses

information that is supplied by the Deployer.

The value of this element must be one of the two following:

<res-auth>Application</res-auth>

<res-auth>Container</res-auth>

Used in: resource-ref

-->

<!ELEMENT res-auth (#PCDATA)>

<!--

The res-ref-name element specifies the name of a resource manager

connection factory reference. The name is a JNDI name relative to

the java:comp/env context. The name must be unique within an

application client.

Used in: resource-ref

-->

<!ELEMENT res-ref-name (#PCDATA)>

<!--

The res-sharing-scope element specifies whether connections obtained

through the given resource manager connection factory reference can

be shared. The value of this element, if specified, must be one of

the two following:

<res-sharing-scope>Shareable</res-sharing-scope>

<res-sharing-scope>Unshareable</res-sharing-scope>

The default value is Shareable.

Used in: resource-ref

-->

<!ELEMENT res-sharing-scope (#PCDATA)>

<!--

The res-type element specifies the type of the data source. The type

is specified by the fully qualified Java language class or interface

expected to be implemented by the data source.

Used in: resource-ref

-->
blic Review

 297
<!ELEMENT res-type (#PCDATA)>

<!--

The resource-env-ref element contains a declaration of an

application client’s reference to an administered object associated

with a resource in the application client’s environment. It consists

of an optional description, the resource environment reference name,

and an indication of the resource environment reference type expected

by the application client code.

Used in: application-client

Example:

<resource-env-ref>

 <resource-env-ref-name>jms/StockQueue</resource-env-ref-name>

 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>

</resource-env-ref>

-->

<!ELEMENT resource-env-ref (description?, resource-env-ref-name,

resource-env-ref-type)>

<!--

The resource-env-ref-name element specifies the name of a resource

environment reference; its value is the environment entry name used

in the application client code. The name is a JNDI name relative to

the java:comp/env context and must be unique within an application

client.

Used in: resource-env-ref

-->

<!ELEMENT resource-env-ref-name (#PCDATA)>

<!--

The resource-env-ref-type element specifies the type of a resource

environment reference. It is the fully qualified name of a Java

language class or interface.

Used in: resource-env-ref

-->

<!ELEMENT resource-env-ref-type (#PCDATA)>

Pu

298
<!--

The resource-ref element contains a declaration of an application

client’s reference to an external resource. It consists of an

optional description, the resource manager connection factory

reference name, the indication of the resource manager connection

factory type expected by the application client code, the type of

authentication (Application or Container), and an optional

specification of the shareability of connections obtained from the

resource (Shareable or Unshareable).

Used in: application-client

Example:

<resource-ref>

 <res-ref-name>jdbc/EmployeeAppDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 <res-sharing-scope>Shareable</res-sharing-scope> </resource-ref>

-->

<!ELEMENT resource-ref (description?, res-ref-name, res-type, res-

auth, res-sharing-scope?)>

<!--

The small-icon element contains the name of a file containing a small

(16 x 16) icon image. The file name is a relative path within the

application client’s jar file.

The image may be either in the JPEG or GIF format. The icon can be

used by tools.

Used in: icon

Example:

<small-icon>employee-service-icon16x16.jpg</small-icon>

-->

<!ELEMENT small-icon (#PCDATA)>

<!--

The ID mechanism is to allow tools that produce additional deployment

information (i.e., information beyond the standard deployment

descriptor information) to store the non-standard information in a

separate file, and easily refer from these tool-specific files to

the information in the standard deployment descriptor.

Tools are not allowed to add the non-standard information into the

standard deployment descriptor.

-->
blic Review

 299
<!ATTLIST application-client id ID #IMPLIED>

<!ATTLIST callback-handler id ID #IMPLIED>

<!ATTLIST description id ID #IMPLIED>

<!ATTLIST display-name id ID #IMPLIED>

<!ATTLIST ejb-link id ID #IMPLIED>

<!ATTLIST ejb-ref id ID #IMPLIED>

<!ATTLIST ejb-ref-name id ID #IMPLIED>

<!ATTLIST ejb-ref-type id ID #IMPLIED>

<!ATTLIST env-entry id ID #IMPLIED>

<!ATTLIST env-entry-name id ID #IMPLIED>

<!ATTLIST env-entry-type id ID #IMPLIED>

<!ATTLIST env-entry-value id ID #IMPLIED>

<!ATTLIST home id ID #IMPLIED>

<!ATTLIST icon id ID #IMPLIED>

<!ATTLIST large-icon id ID #IMPLIED>

<!ATTLIST remote id ID #IMPLIED>

<!ATTLIST res-auth id ID #IMPLIED>

<!ATTLIST res-ref-name id ID #IMPLIED>

<!ATTLIST res-sharing-scope id ID #IMPLIED>

<!ATTLIST res-type id ID #IMPLIED>

<!ATTLIST resource-env-ref id ID #IMPLIED>

<!ATTLIST resource-env-ref-name id ID #IMPLIED>

<!ATTLIST resource-env-ref-type id ID #IMPLIED>

<!ATTLIST resource-ref id ID #IMPLIED>

<!ATTLIST small-icon id ID #IMPLIED>

J2EE.A.7 J2EE:application-client 1.2 XML DTD

This section contains the XML DTD for the J2EE 1.2 version of the application
client deployment descriptor. A valid application client deployment descriptor may
contain the following DOCTYPE declaration:

<!DOCTYPE application-client PUBLIC "-//Sun Microsystems, Inc.//DTD

J2EE Application Client 1.2//EN" "http://java.sun.com/j2ee/dtds/ap-

plication-client_1_2.dtd">

Pu

300
Figure J2EE.A-4 shows the structure of the J2EE:application-client XML
DTD.

Figure J2EE.A-4 J2EE:application-client XML DTD Structure

<!--

The application-client element is the root element of an application

client deployment descriptor.

The application client deployment descriptor describes the EJB

components and external resources referenced by the application

client.

-->

<!ELEMENT application-client (icon?, display-name, description?,

env-entry*, ejb-ref*, resource-ref*)>

<!--

The description element is used to provide text describing the parent

element.

The description element should include any information that the

application-client file producer wants to provide to the consumer of

the application-client file (i.e., to the Deployer).

application-client

icon? display-name description? env-entry* ejb-ref* resource-ref*

small-icon? large-icon?

description? res-ref-name res-type

description? ejb-ref-name ejb-ref-type home remote ejb-link?

env-entry-namedescription? env-entry-type

res-auth

env-entry-value?
blic Review

 301
Typically, the tools used by the application-client file consumer

will display the description when processing the parent element that

contains the description.

-->

<!ELEMENT description (#PCDATA)>

<!--

The display-name element contains a short name that is intended to

be displayed by tools.

-->

<!ELEMENT display-name (#PCDATA)>

<!--

The ejb-link element is used in the ejb-ref element to specify that

an EJB reference is linked to an enterprise bean in the encompassing

J2EE Application package.

The value of the ejb-link element must be the ejb-name of an

enterprise bean in the same J2EE Application package.

Used in: ejb-ref

Example: <ejb-link>EmployeeRecord</ejb-link>

-->

<!ELEMENT ejb-link (#PCDATA)>

<!--

The ejb-ref element is used for the declaration of a reference to an

enterprise bean’s home.

The declaration consists of an optional description; the EJB

reference name used in the code of the referencing application

client; the expected type of the referenced enterprise bean; the

expected home and remote interfaces of the referenced enterprise

bean; and an optional ejb-link information.

The optional ejb-link element is used to specify the referenced

enterprise bean.

-->

<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,

remote, ejb-link?)>

<!--

The ejb-ref-name element contains the name of an EJB reference.

Pu

302
The EJB reference is an entry in the application client’s

environment.

It is recommended that name is prefixed with "ejb/".

Used in: ejb-ref

Example: <ejb-ref-name>ejb/Payroll</ejb-ref-name>

-->

<!ELEMENT ejb-ref-name (#PCDATA)>

<!--

The ejb-ref-type element contains the expected type of the referenced

enterprise bean.

The ejb-ref-type element must be one of the following:

<ejb-ref-type>Entity</ejb-ref-type>

<ejb-ref-type>Session</ejb-ref-type>

Used in: ejb-ref

-->

<!ELEMENT ejb-ref-type (#PCDATA)>

<!--

The env-entry element contains the declaration of an application

client’s environment entries.

The declaration consists of an optional description, the name of the

environment entry, and an optional value.

-->

<!ELEMENT env-entry (description?, env-entry-name, env-entry-type,

env-entry-value?)>

<!--

The env-entry-name element contains the name of an application

client’s environment entry.

Used in: env-entry

Example: <env-entry-name>EmployeeAppDB</env-entry-name>

-->

<!ELEMENT env-entry-name (#PCDATA)>
blic Review

 303
<!--

The env-entry-type element contains the fully-qualified Java type of

the environment entry value that is expected by the application

client’s code.

The following are the legal values of env-entry-type:

java.lang.Boolean, java.lang.String, java.lang.Integer,

java.lang.Double, java.lang.Byte, java.lang.Short,java.lang.Long,

and java.lang.Float.

Used in: env-entry

Example:

<env-entry-type>java.lang.Boolean</env-entry-type>

-->

<!ELEMENT env-entry-type (#PCDATA)>

<!--

The env-entry-value element contains the value of an application

client’s environment entry. The value must be a String that is valid

for the constructor of the specified type that takes a single String

parameter.

Used in: env-entry

Example:

<env-entry-value>/datasources/MyDatabase</env-entry-value>

-->

<!ELEMENT env-entry-value (#PCDATA)>

<!--

The home element contains the fully-qualified name of the enterprise

bean’s home interface.

Used in: ejb-ref Example: <home>com.aardvark.payroll.PayrollHome</

home>

-->

<!ELEMENT home (#PCDATA)>

<!--

The icon element contains a small-icon and large-icon element which

specify the URIs for a small and a large GIF or JPEG icon image used

to represent the application client in a GUI tool.

-->

<!ELEMENT icon (small-icon?, large-icon?)>

Pu

304
<!--

The large-icon element contains the name of a file containing a large

(32 x 32) icon image. The file name is a relative path within the

application-client jar file. The image must be either in the JPEG or

GIF format, and the file name must end with the suffix ".jpg" or

".gif" respectively. The icon can be used by tools.

Example:

<large-icon>lib/images/employee-service-icon32x32.jpg</large-icon>

-->

<!ELEMENT large-icon (#PCDATA)>

<!--

The remote element contains the fully-qualified name of the

enterprise bean’s remote interface.

Used in: ejb-ref

Example:

<remote>com.wombat.empl.EmployeeService</remote>

-->

<!ELEMENT remote (#PCDATA)>

<!--

The res-auth element specifies whether the enterprise bean code signs

on programmatically to the resource manager, or whether the Container

will sign on to the resource manager on behalf of the bean. In the

latter case, the Container uses information that is supplied by the

Deployer.

The value of this element must be one of the two following:

<res-auth>Application</res-auth>

<res-auth>Container</res-auth>

-->

<!ELEMENT res-auth (#PCDATA)>

<!--

The res-ref-name element specifies the name of the resource factory

reference name. The resource factory reference name is the name of

the application client’s environment entry whose value contains the

JNDI name of the data source.

Used in: resource-ref

-->
blic Review

 305
<!ELEMENT res-ref-name (#PCDATA)>

<!--

The res-type element specifies the type of the data source. The type

is specified by the Java interface (or class) expected to be

implemented by the data source.

Used in: resource-ref

-->

<!ELEMENT res-type (#PCDATA)>

<!--

The resource-ref element contains a declaration of application

clients’s reference to an external resource. It consists of an

optional description, the resource factory reference name, the

indication of the resource factory type expected by the application

client’s code, and the type of authentication (bean or container).

Example:

<resource-ref>

<res-ref-name>EmployeeAppDB</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

</resource-ref>

-->

<!ELEMENT resource-ref (description?, res-ref-name, res-type, res-

auth)>

<!--

The small-icon element contains the name of a file containing a small

(16 x 16) icon image.

The file name is a relative path within the application-client jar

file.

The image must be either in the JPEG or GIF format, and the file name

must end with the suffix ".jpg" or ".gif" respectively.

The icon can be used by tools.

Example:

<small-icon>lib/images/employee-service-icon16x16.jpg</small-icon>

-->

<!ELEMENT small-icon (#PCDATA)>

Pu

306
<!--

The ID mechanism is to allow tools to easily make tool-specific

references to the elements of the deployment descriptor.

 -->

<!ATTLIST application-client id ID #IMPLIED>

<!ATTLIST description id ID #IMPLIED>

<!ATTLIST display-name id ID #IMPLIED>

<!ATTLIST ejb-link id ID #IMPLIED>

<!ATTLIST ejb-ref id ID #IMPLIED>

<!ATTLIST ejb-ref-name id ID #IMPLIED>

<!ATTLIST ejb-ref-type id ID #IMPLIED>

<!ATTLIST env-entry id ID #IMPLIED>

<!ATTLIST env-entry-name id ID #IMPLIED>

<!ATTLIST env-entry-type id ID #IMPLIED>

<!ATTLIST env-entry-value id ID #IMPLIED>

<!ATTLIST home id ID #IMPLIED>

<!ATTLIST icon id ID #IMPLIED>

<!ATTLIST large-icon id ID #IMPLIED>

<!ATTLIST remote id ID #IMPLIED>

<!ATTLIST res-auth id ID #IMPLIED>

<!ATTLIST res-ref-name id ID #IMPLIED>

<!ATTLIST res-type id ID #IMPLIED>

<!ATTLIST resource-ref id ID #IMPLIED>

<!ATTLIST small-icon id ID #IMPLIED>
blic Review

 A P P E N D I X J2EE.B

Revision History

J2EE.B.1 Changes in Expert Draft 1

J2EE.B.1.1 Additional Requirements

• Updated entire specification to require J2SE 5.0, and to reflect that several op-
tional packages are now part of J2SE

• Added requirements for many new APIs, see Chapter J2EE.6, “Application
Programming Interface” for details.

J2EE.B.1.2 Removed Requirements

• None.

J2EE.B.1.3 Editorial Changes

• Incorporated J2EE 1.4 maintenance review change to make it clear that a se-
curity manager is not required.

• Updated Section J2EE.8.2, “Library Support” to make it clear that Class-
Path entries may also refer to directories.

• Removed AWT requirements, which are now fully specified in the J2SE spec-
ification.

• Made explicit the requirement that J2EE products must be able to deploy
JDBC drivers that have been packaged as resource adapters. This has always
been true; there’s nothing special about JDBC drivers when packaged as re-
source adapters. See Section J2EE.6.2.4.2, “JDBC™ API.”
307

Pu

308
J2EE.B.2 Changes in Expert Draft 2

J2EE.B.2.1 Additional Requirements

• Updated WS-I requirement to match JAX-RPC 2.0. See Section J2EE.7.2.1,
“Internet and Web Protocols.”

• EJB containers must now be capable of supporting the same security permis-
sions as the web container, including access to files. See Table J2EE.6-2.

• Significant updates to Chapter J2EE.5, “Resources, Naming, and Injection”
and Chapter J2EE.8, “Application Assembly and Deployment” to describe the
use of annotations and deployment descriptors to specify resource injection.

• Update version numbers of referenced specifications in Appendix J2EE.C,
“Related Documents.”

J2EE.B.2.2 Removed Requirements

• None.

J2EE.B.2.3 Editorial Changes

• Clarified that support for a CORBA Portable Object Adapter is required. See
Section J2EE.6.2.4.5, “RMI-IIOP.”

• Moved J2EE 1.4 deployment descriptor schemas to Appendix J2EE.A, “Pre-
vious Version Deployment Descriptors.”

• Updated application deployment descriptor to version 5.0 in
Section J2EE.8.5, “J2EE Application XML Schema.”

• Update application client deployment descriptor to version 5.0 in
Section J2EE.9.7, “J2EE Application Client XML Schema.”

• Fixed many typos, wording problems, etc.
blic Review

 309
J2EE.B.3 Changes in Early Draft Review 1

J2EE.B.3.1 Additional Requirements

• Added EJB 3.0 Persistence as a separate entry in Chapter J2EE.6, “Application
Programming Interface.”

• Application client fields or methods that are injection targets must be static.
See Section J2EE.5.2.3, “Annotations and Resource Injection.”

J2EE.B.3.2 Removed Requirements

• None.

J2EE.B.3.3 Editorial Changes

• Updated figures.

• Clearly marked some of the incomplete sections.

• Added references to included specifications in Appendix J2EE.C, “Related
Documents.”

• Added note about EJB 3.0 Persistence in section Section J2EE.6.26, “Java Per-
sistence API 1.0.”

J2EE.B.4 Changes in Early Draft Review 2

J2EE.B.4.1 Additional Requirements

• Updated SAAJ to version 1.3 in Section J2EE.6.1.2, “Java Optional Packag-
es.”

• Added requirements for deploying application packages with no deployment
descriptor. See Section J2EE.8.4.2, “Deploying a J2EE Application.”

• Added requirement for support of image/png data in Chapter J2EE.6, “Appli-
cation Programming Interface.”

• Reverted JAX-RPC to version 1.1 and added JAX-WS 2.0 as an additional re-
quirement in Chapter J2EE.6, “Application Programming Interface.”

• Updated JAF to version 1.1 in Section J2EE.6.9, “JavaBeans™ Activation
Framework 1.1 Requirements.”

Pu

310
• Expanded and clarified the requirements around resource injection in
Section J2EE.5.2.3, “Annotations and Resource Injection.”

• Filled in requirements for JSR-250 in Section J2EE.6.24, “Common Annota-
tions for the Java™ Platform 1.0 Requirements.”

J2EE.B.4.2 Removed Requirements

• None.

J2EE.B.4.3 Editorial Changes

• Clarified responsibilities of libraries that dynamically load classes, in
Section J2EE.8.2.5, “Dynamic Class Loading.”

J2EE.B.5 Changes in Public Review Draft

J2EE.B.5.1 Additional Requirements

• It must be possible to store references to EJB 3 business interfaces in an
HttpSession object. See Section J2EE.6.4, “Servlet 2.4 Requirements.”

J2EE.B.5.2 Removed Requirements

• None.

J2EE.B.5.3 Editorial Changes

• EDR2 was never published to the public because Public Review is coming
only a week later.

• Fixed some typos.
blic Review

 311

Pu

312
blic Review

A P P E N D I X J2EE.C

Related Documents

This specification refers to the following documents. The terms used to refer to the
documents in this specification are included in parentheses.

Java™ 2 Platform, Enterprise Edition Specification Version 5.0 (this
specification). Available at http://java.sun.com/j2ee/docs.html.

Java™ 2 Platform, Enterprise Edition Technical Overview (J2EE
Overview). Available at http://java.sun.com/j2ee/white.html.

Java™ 2 Platform, Standard Edition, v5.0 API Specification (J2SE
specification). Available at http://java.sun.com/j2se/5.0/docs/api/
index.html.

Enterprise JavaBeans™ Specification, Version 3.0 (EJB specification).
Available at http://java.sun.com/products/ejb.

JavaServer Pages™ Specification, Version 2.1 (JSP specification).
Available at http://java.sun.com/products/jsp.

Java™ Servlet Specification, Version 2.4 (servlet specification). Available
at http://java.sun.com/products/servlet.

JDBC™ 3.0 API (JDBC specification). Available at http://java.sun.com/
products/jdbc.

Java™ Naming and Directory Interface 1.2 Specification (JNDI
specification). Available at http://java.sun.com/products/jndi.

Java™ Message Service, Version 1.1 (JMS specification). Available at
http://java.sun.com/products/jms.
313

Pu

314
Java™ Transaction API, Version 1.0.1B (JTA specification). Available at
http://java.sun.com/products/jta.

Java™ Transaction Service, Version 1.0 (JTS specification). Available at
http://java.sun.com/products/jts.

JavaMail™ API Specification Version 1.3 (JavaMail specification).
Available at http://java.sun.com/products/javamail.

JavaBeans™ Activation Framework Specification Version 1.0 (JAF
specification). Available at http://java.sun.com/beans/glasgow/
jaf.html.

J2EE™ Connector Architecture 1.5 (Connector specification). Available at
http://java.sun.com/j2ee/connector.

Java™ API for XML Processing, Version 1.3 (JAXP specification).
Available at http://java.sun.com/xml.

Web Services for J2EE 1.1 (Web Services specification). Available at
http://jcp.org/en/jsr/detail?id=921.

Java™ API for XML-based RPC 2.0 (JAX-RPC specification). Available at
http://java.sun.com/xml/jaxrpc.

SOAP with Attachments API for Java™ 1.3 (SAAJ specification). Available
at http://java.sun.com/xml/saaj.

Java™ API for XML Registries 1.0 (JAXR specification). Available at
http://java.sun.com/xml/jaxr.

Java™ 2 Platform, Enterprise Edition Management Specification 1.0
(J2EE Management specification). Available at http://jcp.org/jsr/
detail/77.jsp.

Java™ 2 Platform, Enterprise Edition Deployment Specification 1.1 (J2EE
Deployment specification). Available at http://jcp.org/jsr/detail/
88.jsp.

Java™ Management Extensions 1.2 (JMX specification). Available at
http://java.sun.com/products/JavaManagement/.

Java™ Authorization Service Provider Contract for Containers 1.0 (JACC
specification). Available at http://jcp.org/jsr/detail/115.jsp.
blic Review

 315
Java™ Authentication and Authorization Service (JAAS) 1.0 (JAAS
specification). Available at http://java.sun.com/products/jaas.

Debugging Support for Other Languages 1.0. Available at http://
jcp.org/en/jsr/detail?id=45.

Standard Tag Library for JavaServer Pages 1.1 (JSTL specification).
Available at http://jcp.org/en/jsr/detail?id=52.

Web Services Metadata for the Java Platform 1.0. Available at http://
jcp.org/en/jsr/detail?id=181.

JavaServer Faces 1.2 (JSF specification). Available at http://jcp.org/en/
jsr/detail?id=252.

Streaming API for XML 1.0 (StAX specification). Available at http://
jcp.org/en/jsr/detail?id=173.

Exterprise JavaBeans 3.0 Persistence API. Available at http://
java.sun.com/products/ejb.

Extension Mechanism Architecture, Available at http://java.sun.com/
j2se/5.0/docs/guide/extensions.

Optional Package Versioning, Available at http://java.sun.com/j2se/
5.0/docs/guide/extensions.

JAR File Specification, Available at http://java.sun.com/j2se/5.0/docs/
guide/jar/jar.html.

The Common Object Request Broker: Architecture and Specification
(CORBA 2.3.1 specification), Available at http://www.omg.org/cgi-
bin/doc?formal/99-10-07.

CORBA 2.6 - Chapter 26 - Secure Interoperability, Available at http://
www.omg.org/cgi-bin/doc?formal/01-12-30.

IDL To Java™ Language Mapping Specification, Available at http://
www.omg.org/cgi-bin/doc?ptc/2000-01-08.

Java™ Language To IDL Mapping Specification, Available at http://
www.omg.org/cgi-bin/doc?ptc/2000-01-06.

Interoperable Naming Service, Available at http://www.omg.org/cgi-bin/
doc?ptc/00-08-07.

Pu

316
Transaction Service Specification (OTS specification), Available at http://
www.omg.org/cgi-bin/doc?formal/2001-11-03.

Designing Enterprise Applications with the Java™ 2 Platform, Enterprise
Edition, Available at http://java.sun.com/j2ee/blueprints.

The SSL Protocol, Version 3.0. Available at http://home.netscape.com/
eng/ssl3.
blic Review

 317

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, California 95054, U.S.A.
650 960-1300

For U.S. Sales Office locations, call:
800 821-4643
In California:
800 821-4642

Australia: (02) 844 5000
Belgium: 32 2 716 7911
Canada: 416 477-6745
Finland: +358-0-525561
France: (1) 30 67 50 00
Germany: (0) 89-46 00 8-0
Hong Kong: 852 802 4188
Italy: 039 60551
Japan: (03) 5717-5000
Korea: 822-563-8700
Latin America: 650 688-9464
The Netherlands: 033 501234
New Zealand: (04) 499 2344
Nordic Countries: +46 (0) 8 623 90 00
PRC: 861-849 2828
Singapore: 224 3388
Spain: (91) 5551648
Switzerland: (1) 825 71 11
Taiwan: 2-514-0567
UK: 0276 20444

Elsewhere in the world,
call Corporate Headquarters:
650 960-1300
Intercontinental Sales: 650 688-9000

	Java™ 2 Platform Enterprise Edition Specification, v5.0
	Introduction
	J2EE.1.1 Acknowledgements
	J2EE.1.2 Acknowledgements for Version 1.3
	J2EE.1.3 Acknowledgements for Version 1.4
	J2EE.1.4 Acknowledgements for Version 5.0

	Platform Overview
	J2EE.2.1 Architecture
	J2EE.2.2 Application Components
	J2EE.2.2.1 J2EE Server Support for Application Components

	J2EE.2.3 Containers
	J2EE.2.3.1 Container Requirements
	J2EE.2.3.2 J2EE Servers

	J2EE.2.4 Resource Adapters
	J2EE.2.5 Database
	J2EE.2.6 J2EE Standard Services
	J2EE.2.6.1 HTTP
	J2EE.2.6.2 HTTPS
	J2EE.2.6.3 Java™ Transaction API (JTA)
	J2EE.2.6.4 RMI-IIOP
	J2EE.2.6.5 Java IDL
	J2EE.2.6.6 JDBC™ API
	J2EE.2.6.7 Java™ Persistence API
	J2EE.2.6.8 Java™ Message Service (JMS)
	J2EE.2.6.9 Java Naming and Directory Interface™ (JNDI)
	J2EE.2.6.10 JavaMail™
	J2EE.2.6.11 JavaBeans™ Activation Framework (JAF)
	J2EE.2.6.12 XML Processing
	J2EE.2.6.13 J2EE™ Connector Architecture
	J2EE.2.6.14 Security Services
	J2EE.2.6.15 Web Services
	J2EE.2.6.16 Management
	J2EE.2.6.17 Deployment

	J2EE.2.7 Interoperability
	J2EE.2.8 Flexibility of Product Requirements
	J2EE.2.9 J2EE Product Extensions
	J2EE.2.10 Platform Roles
	J2EE.2.10.1 J2EE Product Provider
	J2EE.2.10.2 Application Component Provider
	J2EE.2.10.3 Application Assembler
	J2EE.2.10.4 Deployer
	J2EE.2.10.5 System Administrator
	J2EE.2.10.6 Tool Provider
	J2EE.2.10.7 System Component Provider

	J2EE.2.11 Platform Contracts
	J2EE.2.11.1 J2EE APIs
	J2EE.2.11.2 J2EE Service Provider Interfaces (SPIs)
	J2EE.2.11.3 Network Protocols
	J2EE.2.11.4 Deployment Descriptors and Annotations

	J2EE.2.12 Changes in J2EE 1.3
	J2EE.2.13 Changes in J2EE 1.4
	J2EE.2.14 Changes in J2EE 5.0

	Security
	J2EE.3.1 Introduction
	J2EE.3.2 A Simple Example
	J2EE.3.3 Security Architecture
	J2EE.3.3.1 Goals
	J2EE.3.3.2 Non Goals
	J2EE.3.3.3 Terminology
	J2EE.3.3.4 Container Based Security
	J2EE.3.3.4.1 Declarative Security
	J2EE.3.3.4.2 Programmatic Security

	J2EE.3.3.5 Distributed Security
	J2EE.3.3.6 Authorization Model
	J2EE.3.3.7 HTTP Login Gateways
	J2EE.3.3.8 User Authentication
	J2EE.3.3.8.2 Web Single Signon
	J2EE.3.3.8.3 Login Session
	J2EE.3.3.8.4 Authentication by Application Clients

	J2EE.3.3.9 Lazy Authentication

	J2EE.3.4 User Authentication Requirements
	J2EE.3.4.1 Login Sessions
	J2EE.3.4.2 Required Login Mechanisms
	J2EE.3.4.2.2 SSL Mutual Authentication
	J2EE.3.4.2.3 Form Based Login

	J2EE.3.4.3 Unauthenticated Users
	J2EE.3.4.4 Application Client User Authentication
	J2EE.3.4.5 Resource Authentication Requirements

	J2EE.3.5 Authorization Requirements
	J2EE.3.5.1 Code Authorization
	J2EE.3.5.2 Caller Authorization
	J2EE.3.5.3 Propagated Caller Identities.
	J2EE.3.5.4 Run As Identities

	J2EE.3.6 Deployment Requirements
	J2EE.3.7 Future Directions
	J2EE.3.7.1 Auditing
	J2EE.3.7.2 Instance-based Access Control
	J2EE.3.7.3 User Registration

	Transaction Management
	J2EE.4.1 Overview
	J2EE.4.2 Requirements
	J2EE.4.2.1 Web Components
	J2EE.4.2.1.1 Transaction Requirements
	J2EE.4.2.1.2 Transaction Non-Requirements

	J2EE.4.2.2 Transactions in Web Component Life Cycles
	J2EE.4.2.3 Transactions and Threads
	J2EE.4.2.4 Enterprise JavaBeans™ Components
	J2EE.4.2.5 Application Clients
	J2EE.4.2.6 Applet Clients
	J2EE.4.2.7 Transactional JDBC™ Technology Support
	J2EE.4.2.8 Transactional JMS Support
	J2EE.4.2.9 Transactional Resource Adapter (Connector) Support

	J2EE.4.3 Transaction Interoperability
	J2EE.4.3.1 Multiple J2EE Platform Interoperability
	J2EE.4.3.2 Support for Transactional Resource Managers

	J2EE.4.4 Local Transaction Optimization
	J2EE.4.4.1 Requirements
	J2EE.4.4.2 A Possible Design

	J2EE.4.5 Connection Sharing
	J2EE.4.6 JDBC and JMS Deployment Issues
	J2EE.4.7 Two-Phase Commit Support
	J2EE.4.8 System Administration Tools

	Resources, Naming, and Injection
	J2EE.5.1 Overview
	J2EE.5.1.1 Chapter Organization
	J2EE.5.1.2 Required Access to the JNDI Naming Environment

	J2EE.5.2 JNDI Naming Context
	J2EE.5.2.1 The Application Component’s Environment
	J2EE.5.2.2 Sharing of Environment Entries
	J2EE.5.2.3 Annotations and Resource Injection
	J2EE.5.2.4 Annotations and Deployment Descriptors

	J2EE.5.3 Responsibilities by J2EE Role
	J2EE.5.3.1 Application Component Provider’s Responsibilities
	J2EE.5.3.2 Application Assembler’s Responsibilities
	J2EE.5.3.3 Deployer’s Responsibilities
	J2EE.5.3.4 J2EE Product Provider’s Responsibilities

	J2EE.5.4 Simple Environment Entries
	J2EE.5.4.1 Application Component Provider’s Responsibilities
	J2EE.5.4.1.1 Injection of Simple Environment Entries
	J2EE.5.4.1.2 Programming Interfaces for Accessing Simple Environment Entries
	J2EE.5.4.1.3 Declaration of Simple Environment Entries

	J2EE.5.5 Enterprise JavaBeans™ (EJB) References
	J2EE.5.5.1 Application Component Provider’s Responsibilities
	J2EE.5.5.1.1 Injection of EJB Entries
	J2EE.5.5.1.3 Declaration of EJB References

	J2EE.5.5.2 Application Assembler’s Responsibilities
	J2EE.5.5.3 Deployer’s Responsibilities
	J2EE.5.5.4 J2EE Product Provider’s Responsibilities

	J2EE.5.6 Resource Manager Connection Factory References
	J2EE.5.6.1 Application Component Provider’s Responsibilities
	J2EE.5.6.1.1 Injection of Resource Manager Connection Factory References
	J2EE.5.6.1.3 Declaration of Resource Manager Connection Factory References in Deployment Descriptor
	J2EE.5.6.1.4 Standard Resource Manager Connection Factory Types

	J2EE.5.6.2 Deployer’s Responsibilities
	J2EE.5.6.3 J2EE Product Provider’s Responsibilities
	J2EE.5.6.4 System Administrator’s Responsibilities

	J2EE.5.7 Resource Environment References
	J2EE.5.7.1 Application Component Provider’s Responsibilities
	J2EE.5.7.1.1 Injection of Resource Environment References
	J2EE.5.7.1.3 Declaration of Resource Environment References in Deployment Descriptor

	J2EE.5.7.2 Deployer’s Responsibilities
	J2EE.5.7.3 J2EE Product Provider’s Responsibilities

	J2EE.5.8 Message Destination References
	J2EE.5.8.1 Application Component Provider’s Responsibilities
	J2EE.5.8.1.1 Injection of Message Destination References
	J2EE.5.8.1.3 Declaration of Message Destination References in Deployment Descriptor

	J2EE.5.8.2 Application Assembler’s Responsibilities
	J2EE.5.8.3 Deployer’s Responsibilities
	J2EE.5.8.4 J2EE Product Provider’s Responsibilities

	J2EE.5.9 UserTransaction References
	J2EE.5.9.1 Application Component Provider’s Responsibilities
	J2EE.5.9.2 J2EE Product Provider’s Responsibilities

	J2EE.5.10 ORB References
	J2EE.5.10.1 Application Component Provider’s Responsibilities
	J2EE.5.10.2 J2EE Product Provider’s Responsibilities

	Application Programming Interface
	J2EE.6.1 Required APIs
	J2EE.6.1.1 Java Compatible APIs
	J2EE.6.1.2 Java Optional Packages

	J2EE.6.2 Java 2 Platform, Standard Edition (J2SE) Requirements
	J2EE.6.2.1 Programming Restrictions
	J2EE.6.2.2 The J2EE Security Permissions Set
	J2EE.6.2.3 Listing of the J2EE Security Permissions Set
	J2EE.6.2.4 Additional Requirements
	J2EE.6.2.4.1 Networking
	J2EE.6.2.4.2 JDBC™ API
	J2EE.6.2.4.3 Java IDL
	J2EE.6.2.4.4 RMI-JRMP
	J2EE.6.2.4.5 RMI-IIOP
	J2EE.6.2.4.6 JNDI
	J2EE.6.2.4.7 Context Class Loader
	J2EE.6.2.4.8 Java™ Authentication and Authorization Service (JAAS) Requirements
	J2EE.6.2.4.9 Logging API Requirements
	J2EE.6.2.4.10 Preferences API Requirements

	J2EE.6.3 Enterprise JavaBeans™ (EJB) 3.0 Requirements
	J2EE.6.4 Servlet 2.4 Requirements
	J2EE.6.5 JavaServer Pages™ (JSP) 2.1 Requirements
	J2EE.6.6 Java™ Message Service (JMS) 1.1 Requirements
	J2EE.6.7 Java™ Transaction API (JTA) 1.0 Requirements
	J2EE.6.8 JavaMail™ 1.3 Requirements
	J2EE.6.9 JavaBeans™ Activation Framework 1.1 Requirements
	J2EE.6.10 J2EE™ Connector Architecture 1.5 Requirements
	J2EE.6.11 Web Services for J2EE 1.1 Requirements
	J2EE.6.12 Java™ API for XML-based RPC (JAX-RPC) 1.1 Requirements
	J2EE.6.13 Java™ API for XML Web Services (JAX-WS) 2.0 Requirements
	J2EE.6.14 Java™ Architecture for XML Binding (JAXB) 2.0 Requirements
	J2EE.6.15 SOAP with Attachments API for Java™ (SAAJ) 1.3
	J2EE.6.16 Java™ API for XML Registries (JAXR) 1.0 Requirements
	J2EE.6.17 Java™ 2 Platform, Enterprise Edition Management API 1.0 Requirements
	J2EE.6.18 Java™ 2 Platform, Enterprise Edition Deployment API 1.1 Requirements
	J2EE.6.19 Java™ Authorization Service Provider Contract for Containers (JACC) 1.0 Requirements
	J2EE.6.20 Debugging Support for Other Languages (JSR-45) Requirements
	J2EE.6.21 Standard Tag Library for JavaServer Pages™ (JSTL) 1.1 Requirements
	J2EE.6.22 Web Services Metadata for the Java™ Platform 1.0 Requirements
	J2EE.6.23 JavaServer Faces™ 1.2 Requirements
	J2EE.6.24 Common Annotations for the Java™ Platform 1.0 Requirements
	J2EE.6.25 Streaming API for XML (StAX) 1.0 Requirements
	J2EE.6.26 Java Persistence API 1.0

	Interoperability
	J2EE.7.1 Introduction to Interoperability
	J2EE.7.2 Interoperability Protocols
	J2EE.7.2.1 Internet and Web Protocols
	J2EE.7.2.2 OMG Protocols
	J2EE.7.2.3 Java Technology Protocols
	J2EE.7.2.4 Data Formats

	Application Assembly and Deployment
	J2EE.8.1 Application Development Life Cycle
	J2EE.8.1.1 Component Creation
	J2EE.8.1.2 Application Assembly
	J2EE.8.1.3 Deployment

	J2EE.8.2 Library Support
	J2EE.8.2.1 Bundled Libraries
	J2EE.8.2.2 Installed Libraries
	J2EE.8.2.3 Library Conflicts
	J2EE.8.2.4 Library Resources
	J2EE.8.2.5 Dynamic Class Loading
	J2EE.8.2.6 Examples

	J2EE.8.3 Application Assembly
	J2EE.8.3.1 Assembling a J2EE Application
	J2EE.8.3.2 Adding and Removing Modules

	J2EE.8.4 Deployment
	J2EE.8.4.1 Deploying a Stand-Alone J2EE Module
	J2EE.8.4.2 Deploying a J2EE Application
	J2EE.8.4.3 Deploying a Library

	J2EE.8.5 J2EE Application XML Schema
	J2EE.8.6 Common J2EE XML Schema Definitions

	Application Clients
	J2EE.9.1 Overview
	J2EE.9.2 Security
	J2EE.9.3 Transactions
	J2EE.9.4 Resources, Naming, and Injection
	J2EE.9.5 Application Programming Interfaces
	J2EE.9.6 Packaging and Deployment
	J2EE.9.7 J2EE Application Client XML Schema

	Service Provider Interface
	Compatibility and Migration
	Future Directions
	J2EE.12.1 JNLP (Java™ Web Start)
	J2EE.12.2 J2EE SPI
	J2EE.12.3 Security APIs

	Previous Version Deployment Descriptors
	J2EE.A.1 J2EE 1.4 Application XML Schema
	J2EE.A.2 Common J2EE 1.4 XML Schema Definitions
	J2EE.A.3 J2EE:application 1.3 XML DTD
	J2EE.A.4 J2EE:application 1.2 XML DTD
	J2EE.A.5 J2EE 1.4 Application Client XML Schema
	J2EE.A.6 J2EE:application-client 1.3 XML DTD
	J2EE.A.7 J2EE:application-client 1.2 XML DTD

	Revision History
	J2EE.B.1 Changes in Expert Draft 1
	J2EE.B.1.1 Additional Requirements
	J2EE.B.1.2 Removed Requirements
	J2EE.B.1.3 Editorial Changes

	J2EE.B.2 Changes in Expert Draft 2
	J2EE.B.2.1 Additional Requirements
	J2EE.B.2.2 Removed Requirements
	J2EE.B.2.3 Editorial Changes

	J2EE.B.3 Changes in Early Draft Review 1
	J2EE.B.3.1 Additional Requirements
	J2EE.B.3.2 Removed Requirements
	J2EE.B.3.3 Editorial Changes

	J2EE.B.4 Changes in Early Draft Review 2
	J2EE.B.4.1 Additional Requirements
	J2EE.B.4.2 Removed Requirements
	J2EE.B.4.3 Editorial Changes

	J2EE.B.5 Changes in Public Review Draft
	J2EE.B.5.1 Additional Requirements
	J2EE.B.5.2 Removed Requirements
	J2EE.B.5.3 Editorial Changes

	Related Documents

