
ibm.com/redbooks

Business-to-Business Integration
Using MQSeries and MQSI
Patterns for e-business Series

Indran Naick
Mark Berkhoff

Daniel Verdugo Bosnich

Select topologies and mappings to build
B2B Integration e-business solutions

Gain insight into available
products and design guidelines

Learn from an
implementation example

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Business-to-Business Integration
Using MQSeries and MQSI
Patterns for e-business Series

December 2000

SG24-6010-00

International Technical Support Organization

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (December 2000)

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix D, “Special notices” on page 317.

Take Note!

Contents

Figures . xiii

Tables. xvii

Preface .xix
The team that wrote this redbook. xix
Comments welcome. xxi

Part 1. Introduction . 1

Chapter 1. e-business and B2B integration . 3
1.1 About e-business . 3

1.1.1 Business transformation and Innovation . 4
1.1.2 e-business value . 6

1.2 e-business applications: A simplified classification scheme 7
1.2.1 Intra-business applications . 8
1.2.2 Inter-business applications . 9

1.3 Inter-business: B2Bi . 12
1.3.1 EDI and B2B Integration . 12
1.3.2 B2B and A2A (Application-to-Application) 13
1.3.3 B2B integration challenges . 13
1.3.4 B2B integration solution components . 14

1.4 Summary . 16

Chapter 2. Introduction to business patterns . 17
2.1 Patterns for e-business . 17

2.1.1 Patterns for e-business and design patterns 18
2.1.2 Components of the patterns for e-business. 19
2.1.3 Defined patterns for e-business . 19
2.1.4 How to use these patterns . 22
2.1.5 Patterns for e-business Web sites . 22

2.2 The Business-to-Business Integration pattern 23
2.3 The Application Framework for e-business . 25
2.4 Structure of this redbook . 25

Chapter 3. Choosing the application topology 27
3.1 Influencing factors . 27

3.1.1 Business context . 28
3.1.2 Functional components. 28

3.2 Application topology overview . 28
3.3 Application Topology 1: Document exchange 30
© Copyright IBM Corp. 2000 iii

3.3.1 Business driver . 31
3.3.2 Considerations . 31
3.3.3 Examples . 31

3.4 Topology 2: Direct with adapter/bridge . 32
3.4.1 Business driver . 33
3.4.2 Considerations . 33
3.4.3 Examples . 33

3.5 Topology 3: Message broker . 34
3.5.1 Business driver . 34
3.5.2 Considerations . 34
3.5.3 Examples . 35

3.6 Topology 4: Managed business protocol . 35
3.6.1 Business driver . 36
3.6.2 Considerations . 37
3.6.3 Examples . 37

3.7 Topology 5: Managed business protocol and process 37
3.7.1 Business driver . 39
3.7.2 Considerations . 39
3.7.3 Examples . 40

3.8 Topologies summary . 40

Chapter 4. Choosing the runtime topology. 41
4.1 Runtime topologies. 41
4.2 Topology 1: Document exchange . 42

4.2.1 Illustrative Example 1: Document runtime topology. 42
4.2.2 Illustrative Example 2: EDI - Internet Runtime topology 44
4.2.3 Summary . 46

4.3 Topology 2 - Direct with adapter/bridge . 46
4.3.1 Illustrative Example 1- Shared middleware 47
4.3.2 Illustrative Example 2- Open standards 49
4.3.3 Summary . 50

4.4 Topology 3 - Message broker . 51
4.4.1 Illustrative Example 1- Shared middleware 52
4.4.2 Illustrative Example 2 - Open standards 52
4.4.3 Summary . 53

4.5 An introduction to the node types . 53
4.5.1 Extranet . 53
4.5.2 Intranet . 54
4.5.3 DMZ . 54
4.5.4 EDI translation package . 54
4.5.5 VAN . 55
4.5.6 VAN access point . 55
4.5.7 VAN mailbox. 55
iv Business-to-Business Integration Using MQSeries and MQSI

4.5.8 EDI/MIME translator . 55
4.5.9 SMTP server . 56
4.5.10 Internet gateway . 56
4.5.11 Directory and security services . 56
4.5.12 Queue manager . 58
4.5.13 Virtual Private Network (VPN). 59
4.5.14 Protocol domain firewall nodes . 59
4.5.15 Public Key Infrastructure (PKI) . 59
4.5.16 Domain Name Service (DNS) node. 60
4.5.17 Existing applications and data node . 60
4.5.18 Message broker . 60
4.5.19 HTTPS adapter for MQ middleware . 60
4.5.20 MQ server . 61
4.5.21 MQ adapter . 61
4.5.22 Web application server . 61
4.5.23 Database server node . 62
4.5.24 Load balancer node . 62
4.5.25 Web server redirector node . 62
4.5.26 Application server node . 63
4.5.27 Other open standards adapters . 63
4.5.28 Communication Interface . 63
4.5.29 Adapter node . 64

4.6 Summary . 64

Chapter 5. Technology options . 67
5.1 Introduction . 67
5.2 Classifying technologies . 67

5.2.1 Framework categories . 69
5.2.2 Identifying key technology selection influences. 70

5.3 Partner (Client). 70
5.3.1 Choosing the partner technologies . 71
5.3.2 XML and the partner . 71

5.4 Web application server . 72
5.4.1 Internet/Web services . 72
5.4.2 Application services . 73
5.4.3 Illustrative examples . 74

5.5 Network-based infrastructure services . 76
5.5.1 Illustrative examples . 77

5.6 Integration services . 78
5.6.1 Database connectivity . 79
5.6.2 Packaged application API integration . 79
5.6.3 Middleware integration . 79
5.6.4 Component model integration . 79
v

5.6.5 Custom integration service development kit 79
5.6.6 Application integration approaches . 79
5.6.7 Illustrative examples . 81

5.7 Web application programming model . 81
5.7.1 Influence of the component model . 82
5.7.2 Influence of architectural design patterns 82
5.7.3 Illustrative examples . 83

5.8 e-business application services . 83
5.8.1 Illustrative examples . 84

5.9 Systems management . 84
5.9.1 System management model . 85
5.9.2 Cross-enterprise systems management 86
5.9.3 Illustrative examples . 87

5.10 The development environment . 88
5.10.1 e-business application development team roles 88

Chapter 6. B2B integration protocols and standards 89
6.1 Overview . 89

6.1.1 Transporting the messages . 89
6.1.2 Content . 90
6.1.3 Business processes . 90

6.2 B2B Frameworks . 90
6.3 More on protocols . 94

6.3.1 OBI. 94
6.3.2 Rosettanet . 95
6.3.3 cXML . 96
6.3.4 Simple Object Access Protocol (SOAP) 96
6.3.5 SET . 97
6.3.6 Commerce Business Library (CBL). 97
6.3.7 Product Information Exchange (PIX). 98
6.3.8 Information and Content Exchange (ICE) 98
6.3.9 Internet Open Trading Protocol (IOTP) . 98
6.3.10 Open Financial Exchange (OFX) . 98
6.3.11 Platform for Privacy Preferences Project (P3P) 98
6.3.12 Open Trading Protocol (OTP) . 98
6.3.13 XML/EDI . 99

Chapter 7. IBM product guide . 101
7.1 Foundation . 102

7.1.1 WebSphere Application Server . 102
7.1.2 MQSeries . 102

7.2 Foundation extensions . 102
7.2.1 VisualAge for Java . 103
vi Business-to-Business Integration Using MQSeries and MQSI

7.2.2 VisualAge Application Rules . 103
7.2.3 VisualAge Generator . 103
7.2.4 WebSphere Studio . 103
7.2.5 WebSphere Homepage Builder . 104
7.2.6 WebSphere Business Components. 104
7.2.7 WebSphere Transcoding Publisher. 104
7.2.8 WebSphere Voice Server . 104
7.2.9 WebSphere Portal Server . 104
7.2.10 WebSphere Everyplace Suite . 105
7.2.11 WebSphere Personalization . 105
7.2.12 MQSeries Integrator . 105
7.2.13 WebSphere Edge Server . 105
7.2.14 WebSphere Site Analyzer . 105
7.2.15 WebSphere Host Integration Solution 106
7.2.16 Tivoli Policy Director . 106

7.3 Application Accelerators . 106
7.3.1 WebSphere Commerce Suite . 106
7.3.2 Lotus Domino . 107
7.3.3 MQSeries WorkFlow . 107
7.3.4 WebSphere Business-to-Business Integrator 107
7.3.5 Universal Description, Discovery, and Integration (UDDI) 107

7.4 Customer and partner applications . 108

Chapter 8. MQSeries and MQSeries integrator 109
8.1 Business integration and the MQSeries Family 110
8.2 MQSeries primer . 111
8.3 What is Messaging and Queuing? . 112
8.4 About messages. 114

8.4.1 Message segmenting and grouping . 115
8.4.2 Distribution lists . 115
8.4.3 Message types . 115
8.4.4 Persistent and non-persistent messages 116
8.4.5 The message descriptor . 116

8.5 About the Queue Manager . 118
8.6 About Queue Manager clusters . 120
8.7 About Queue Manager objects . 122

8.7.1 Queues. 123
8.7.2 Channels . 123

8.8 About message queues . 124
8.8.1 Local queue . 125
8.8.2 Cluster queue . 125
8.8.3 Remote queue . 125
8.8.4 Transmission queue . 126
vii

8.8.5 Dynamic queue . 126
8.8.6 Alias queue . 126
8.8.7 Model queue. 127
8.8.8 Initiation queue . 127
8.8.9 Reply-to-queue . 127
8.8.10 Dead-letter queue. 127
8.8.11 Repository queue . 128
8.8.12 Creating a Queue Manager . 128

8.9 Manipulating Queue Manager objects . 129
8.10 Clients and servers. 130
8.11 How MQSeries works . 132
8.12 Communication between queue managers 134

8.12.1 How to define a connection between two systems 135
8.12.2 How to start communication manually. 137

8.13 How to trigger applications . 140
8.14 Communication between client and server 142

8.14.1 How to define a client/server connection. 142
8.14.2 How a Client/Server connection works 143
8.14.3 How a Client sends a request . 144
8.14.4 How the server receives a request . 145
8.14.5 How the server sends a reply . 146
8.14.6 How the client receives a reply . 146

8.15 The Message Queuing Interface (MQI) . 147
8.16 A code fragment . 148
8.17 MQSeries integrator components . 151

8.17.1 The Configuration Manager . 153
8.17.2 The Control Center . 154
8.17.3 The Message Broker . 156
8.17.4 Controller . 159
8.17.5 The User Name Server . 161
8.17.6 Security subsystem . 162
8.17.7 Databases . 162
8.17.8 Dependencies . 162
8.17.9 Message domains, message sets, message types 164

8.18 XML and MQSeries . 166
8.18.1 Importance for the MQSeries family . 166
8.18.2 Use of XML within MQSeries Integrator 167

Part 2. B2B integration guidelines. 169

Chapter 9. Application design guidelines . 171
9.1 Application elements . 171
9.2 Communicating between applications. 173
viii Business-to-Business Integration Using MQSeries and MQSI

9.2.1 Synchronous communication . 174
9.2.2 Asynchronous communication . 174
9.2.3 Synchronous and asynchronous communication 174
9.2.4 Comparison in a two-system update . 175

9.3 General principles . 179
9.4 Connecting to a store and forward mechanism 180

9.4.1 Invasive insertion . 180
9.4.2 Passive adaptation . 180
9.4.3 Placing the adapter . 181
9.4.4 The role of the adapter . 182

9.5 Hub and Spoke integration architecture . 184
9.5.1 Where to do the transformation . 188

9.6 Application design summary. 189
9.7 Using MQSeries . 189
9.8 Connecting to the business application using MQSeries or MQSI. . . 190

9.8.1 Application types . 190
9.8.2 The MQSeries Adapter Offering . 192

9.9 General MQSeries guidelines . 194
9.10 Application style . 195
9.11 Application Programming Interface options. 196

9.11.1 MQI . 196
9.11.2 AMI. 197
9.11.3 Java-based APIs . 197

9.12 Considerations for the Partner Interface using MQSeries 200
9.12.1 MQ Queue to MQ Queue: Intercommunication 200
9.12.2 Summary of interface options . 206

9.13 Building the hub and spoke architecture using MQSI 206
9.13.1 MQSeries Integrator applications . 208
9.13.2 Multiple hubs? . 209
9.13.3 Database resilience . 209
9.13.4 Message routing - Basis . 210

Chapter 10. Application development guidelines. 213
10.1 The development process . 213
10.2 The scope of this chapter . 214
10.3 The application and architecture domains 215
10.4 Solution outline . 216
10.5 Macro design . 217
10.6 Micro design. 218
10.7 Build cycle . 219
10.8 Deployment . 220
10.9 Developing MQSeries applications . 221

10.9.1 Message Queue Interface (MQI). 221
ix

10.9.2 MQSeries classes for Java and MQSeries classes for JMS . . 221
10.9.3 AMI. 222

10.10 Application development for MQSeries Integrator 224
10.10.1 Terminology . 224
10.10.2 Overview of the requirements for a plug-in 225

Chapter 11. Performance guidelines . 229
11.1 MQSeries and MQSI tuning, capacity planning, and performance . 230

11.1.1 Hardware and capacity . 230
11.1.2 MQSeries and MQSI application performance 230
11.1.3 Additional performance information . 231

Chapter 12. Systems management . 235
12.1 Managing MQ?. 235

12.1.1 What should be managed in MQSeries networks? 236
12.1.2 MQSeries Systems management products 237

12.2 Security . 238
12.2.1 MQSeries security functions . 238
12.2.2 MQSeries messages . 240
12.2.3 Point-to-point security. 240
12.2.4 End-to-end security . 241
12.2.5 Where to find more information. 242

Part 3. An application example . 243

Chapter 13. Getting a single customer view with MQSeries 245
13.1 Outbound flow . 246

13.1.1 RB_SCV_1message flow . 246
13.1.2 RB_SCV_Request_Endow message flow 267
13.1.3 RB_SCV_Request_House message flow 290
13.1.4 RB_SCV_Request_Motor message flow 293

13.2 Inbound flow. 298
13.2.1 RB_SCV_Backend_Reply message flow 299
13.2.2 RB_SCV_Backend_Reply_House&Motor message flow 301

Appendix A. Hardware and software specifications 305

Appendix B. MQSeries Internet pass-thru . 307
B.1 Introduction . 307
B.2 Overview of how Internet pass-thru works . 310
B.3 HTTP support . 311
B.4 Supported channel configurations . 312
13.3 Normal termination and failure conditions . 313
x Business-to-Business Integration Using MQSeries and MQSI

B.5 Security considerations. 313

Appendix C. Using the additional material . 315
C.1 Locating the additional material on the Internet 315
C.2 Using the Web material . 315

C.2.1 System requirements for downloading the Web material 315
C.2.2 How to use the Web material . 315

Appendix D. Special notices . 317

Appendix E. Related publications . 321
E.1 IBM Redbooks . 321
E.2 IBM Redbooks collections. 321
E.3 Other resources . 322
E.4 Referenced Web sites. 323

How to get IBM Redbooks . 325
IBM Redbooks fax order form . 326

Glossary . 327

Abbreviations and acronyms . 335

Index . 337

IBM Redbooks review . 343
xi

xii Business-to-Business Integration Using MQSeries and MQSI

Figures

1. e-business adoption process . 5
2. The e-business applications classification schema 8
3. Separation between e-Markets and Hubs . 10
4. B2BI Solution Components . 15
5. Patterns for e-business . 19
6. e-business integration . 21
7. General B2Bi pattern . 24
8. Diagram conventions for B2Bi . 29
9. Application Topology 1 - EDI . 30
10. Topology 2 - Direct connection with adapter/bridge. 32
11. Application Topology 3 - Message broker . 34
12. Application Topology 4 - Managed Business Protocol. 36
13. Managed Business Protocol and Process . 38
14. Application Topology 1: Runtime topology. 42
15. Runtime topology: VAN-Document . 43
16. Runtime topology: EDI - Internet . 45
17. Application Topology 2 - Runtime topology . 47
18. Illustrative example of topology two using shared middleware 49
19. Illustrative example of topology two using open standards 50
20. Application Topology 3: Runtime topology. 51
21. Illustrative example of Topology 3 using shared middleware 52
22. Illustrative example of topology 3 using open standards 53
23. Elements of a B2BI architecture . 68
24. Application integration approaches . 80
25. System management model . 85
26. OBI information flow. 94
27. IBM product suite . 101
28. Runtime topology 2 . 109
29. The MQSeries family for business integration . 111
30. MQSeries at run time . 112
31. Messages and Queues . 114
32. Program-to-program communication - One system. 118
33. Program-to-program communication - Two systems 118
34. MQPUT to a remote queue . 120
35. MQPUT to a cluster queue . 121
36. Accessing cluster queues . 122
37. MQSeries channels . 124
38. MQI and message channels . 131
39. MQSeries - Parts and logic . 132
40. Communication between two queue managers. 136
© Copyright IBM Corp. 2000 xiii

41. Triggering channels . 139
42. Triggering an application . 140
43. MQSeries application trigger choices . 141
44. Client/Server connection . 142
45. Clients and server communicating. 145
46. A code fragment. 150
47. Overview of MQSeries integrator. 152
48. Relationship between the Control Center and Configuration Manager . . 154
49. Overview of a broker . 156
50. Role of the User Name Server. 161
51. Application topology 3: Runtime topology . 172
52. Application to application communication . 173
53. Synch communication:Distributed transaction with two phase commit . . 176
54. Asynch communication:Distributed transaction with two phase commit . 177
55. Distributed Systems: General principles . 179
56. Placing the adapter . 181
57. Process for a passive adapter . 182
58. Number of connections for 3, 4 and 10 integrated systems. 184
59. Number of Hub systems for 3, 4, and 10 integrated systems 185
60. Complexity of Direct Connected Systems vs. Hub Connected Systems . 186
61. Comparison of direct connected systems vs hub connected systems. . . 187
62. Application to application communication . 190
63. Adapter Interface classification and differentiation 191
64. Adapter builder tool . 193
65. Overview of the components of distributed queuing 201
66. Sending messages . 203
67. Sending messages in both directions . 204
68. Mutiple application with multiple partners . 207
69. Development process overview . 214
70. Domain concept in IBM Global Services methodology 216
71. Application topology 3, the runtime components 229
72. Component overview . 245
73. RB_SCV_1 message flow . 246
74. SessReq MQInput node: Basic tab . 248
75. SessReq MQInput node: Default tab . 248
76. SessReqFail MQOutput node . 249
77. FilterRequest Filter node . 250
78. FilterReqFail MQOutput node . 251
79. FilterReqUnknown MQOutput node. 251
80. NoInfo Compute node . 252
81. NoInfo Compute node ESQL . 253
82. Node: FilterEndow . 254
83. FilterEndowFail MQOutput node . 255
xiv Business-to-Business Integration Using MQSeries and MQSI

84. FilterEndowUnknown MQOutput node . 255
85. FilterHouse Filter node. 256
86. FilterHouseFail MQOutput node . 257
87. FilterHouseUnknown MQOutput node . 257
88. FilterMotor Filter node . 258
89. FilterMotorFail MQOutput node . 259
90. FilterMotorUnknown MQOutput node . 260
91. MergerTrigger Compute node . 261
92. MergerTrigger Compute node ESQL . 262
93. MergerTrigger Compute node ESQL (continued) 263
94. MergerTrigger Compute node ESQL (continued) 263
95. MergerTrigger Compute node ESQL (continued) 264
96. MergerTrigger Compute node ESQL (continued) 264
97. MergerTrigger Compute node ESQL (continued) 265
98. MergerTriggerFail MQOutput node . 266
99. MergerTriggerTrace Trace node . 266
100.MergerTriggerQ MQOutput node . 267
101.Flow RB_SCV_Request_Endow . 268
102.RequestEndow node . 269
103.The Compute node Properties pull-down menu 269
104.Copying messasge headers only . 270
105.The Compute node add input task . 271
106.Adding input sources to a Compute node . 272
107.Adding a database table as a Compute node input source. 273
108.Entering data source and table names to the Compute node input 274
109.Selecting the MRM output message of the Compute node. 275
110.Selecting an MRM message as the output of the Compute node 276
111.Selecting a Compute node output message from the MRM 277
112.Compute node with inputs and outputs selected. 278
113.Compute node, generated ESQL . 279
114.ESQL to populate SCV_ENDOW_BACKEND_MSG properties 280
115.ESQL to populate SCV_ENDOW_BACKEND_MSG MQMD 281
116.Compute node simple EQSL. 282
117.Calculating an output message field value . 283
118.Using the Compute node ESQL to populate a list 284
119.Initializing unused repeating structure iterations 285
120.Configuring a Trace node . 286
121.Configuring the Trace node: Selecting the trace destination. 286
122.Configuring the Trace node: Identifying the destination file 287
123.Configuring the Trace node: what to print in the trace 288
124.RB_SCV_Request_House message flow . 290
125.RequestEndow Compute node ESQL. 292
126.ReqHouseFail MQOutput node . 292
xv

127.ReqHouseTrace Trace node . 293
128.HouseBackend MQOutput node . 293
129.RB_SCV_Request_Motor message flow . 294
130.RequestMotor Compute node properties . 295
131.RequestMotor Compute node ESQL. 296
132.ReqMotorFail MQOutput node . 297
133.RequestMotorTrace Trace node . 297
134.MQOutput node. 298
135.RB_SCV_Backend_Reply message flow . 299
136.HouseBackendReply MQInput node default properties 300
137.RB_SCV_Backend_Reply_House&Motor message flow 301
138.FormatHouse&Motor Compute node . 302
139.FormatHouse&Motor Compute node ESQL . 303
140.FormatHouse&Motor Compute node ESQL . 303
141.FormatHouse&Motor Compute node ESQL . 303
142.FormatHouse&Motor Compute node ESQL . 304
143.Example of MQIPT as a channel concentrator . 308
144.Example of MQIPT with a “demilitarized zone” . 309
145.Example of MQIPT and HTTP tunneling . 309
xvi Business-to-Business Integration Using MQSeries and MQSI

Tables

1. Patterns for e-business and e-business solutions 21
2. Web application server technology examples . 74
3. Network-based infrastructure technology examples 77
4. Integration technology examples . 81
5. Programming model technology examples . 83
6. e-business application service technology examples 84
7. Systems management technology examples . 87
8. XML B2B framework initiatives . 91
9. Attributes of the message descriptor . 116
10. Queue types and their purposes . 124
11. MQSeries Objects defining connection between two queue managers. . 136
12. MQSeries APIs and their purposes . 147
© Copyright IBM Corp. 2000 xvii

xviii Business-to-Business Integration Using MQSeries and MQSI

Preface

Patterns for e-business is a group of proven, reusable assets that can help
speed up the process of developing applications. The pattern discussed in
this book, Business-to-Business Integration patterns 2 and 3, forms the basis
for many of the more complex and functional B2B patterns. It is relevant to all
enterprises dealing with partner integration issues over the Internet.

This redbook discusses two application topologies of the
Business-to-Business patterns. Application topology 2 describes a scenario
in which messages are passed between two enterprise applications and no
routing is performed. Topology 3 extends topology 2 to describe the scenario
in which routing is required for multiple cross enterprise applications to
communicate.

Part 1., “Introduction” on page 1, takes you through the process of choosing
an application topology and a runtime topology. It then gives you possible
product mappings for implementation of the chosen runtime topology. This
part introduces all the topologies, even though only two of the patterns are
covered in this book.

Part 2., “B2B integration guidelines” on page 169, is a set of guidelines based
on topologies 2 and 3 for building your e-business application. It includes
information about application design, technology options, application
development, performance, and security.

Part 3., “An application example” on page 243, takes you through a working
example showing the simple implementation of an integration pattern using
application topology 3.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Indran Naick is a Project Leader and Senior IT Specialist at the International
Technical Support Organization, Austin Center. He has 10 years of industry
experience. He writes extensively and teaches IBM classes worldwide on a
number of client/server topics. Before joining the ITSO in 1999, Indran
worked for the IBM Software Group, Southern Africa, as a Software Solutions
Architect. He holds a Bachelors degree in Computer Science from the
University of the Witwatersrand in South Africa.
© Copyright IBM Corp. 2000 xix

Mark Berkhoff is an IT Architect in the Netherlands with over 10 years
experience in several positions in the IT industry. He holds a degree in Computer
Science, and his areas of expertise include the Internet, security, and cryptology.
He has written extensively on Public Key Infrastructure (PKI) issues.

Daniel Verdugo Bosnich is an e-Business IT/Architect in Chile. He has four
years of experience on e-business multi-platform integration projects and has
worked at IBM for six years. His areas of expertise include Object Oriented
Design and MQSeries and Websphere solution design.

Part three of this book was produced by a team of specialists working at the
International Technical Support Organization, Raleigh Center. We would like
to thank Colin Brett, Paul Sehorne, Sharon Stubblebine, and Geert Van de
Putte for their contribution.

Special thanks go to the following people:

Keith Edwards, who provided much of the material that makes up the design
chapter

Dieter Wackerow, who provided the introduction for the MQSeries chapter
reproduced in this book

Kareem Yusuf, who provided invaluable guidance and input on all the
subjects throughout the course of this project

Thanks to the following people for their invaluable contributions to this
project:

Ron Aguirre, Milos Radosavljevic
International Technical Support Organization, Austin Center

Carla Sadler, Geert Van de Putte
International Technical Support Organization, Raleigh Center

Luis Ennser
International Technical Support Organization, San Jose Center

Barbara Van Laeken
IBM U.S., Dallas

David Hardcastle, Pete Murphy, Rodric Yates
IBM UK

Jonathan Adams, Joel Farrell
IBM
xx Business-to-Business Integration Using MQSeries and MQSI

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks review” on page 343 to
the fax number shown on the form.

• Use the online evaluation form found at ibm.com/redbooks

• Send your comments in an Internet note to redbook@us.ibm.com
xxi

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xxii Business-to-Business Integration Using MQSeries and MQSI

Part 1. Introduction

The following chapters describe business-to-business concepts and their
effect on the business and technology dimensions of an organization. This is
a vast topic, and the information presented here is in no way comprehensive.
The intent is to serve as an introduction and cover concepts that are used
later in the book.

Chapter 1, “e-business and B2B integration” on page 3, defines B2B
Integration in the context of the broader B2B and e-business marketplace. It
also describes the components of a B2BI interaction.

Chapter 2, “Introduction to business patterns” on page 17, describes the
patterns for e-business and the different business topologies. Each business
topology has an associated application topology which in-turn has an
associated runtime topology. A mapping of the chapters within this book is
also described in this chapter.

Chapter 3, “Choosing the application topology” on page 27, introduces all the
application topologies for the Business-to-Business Integration pattern. With
very accessible notation, these application topologies capture the essential
“shape” of the application solution.

Chapter 4, “Choosing the runtime topology” on page 41, discusses the
runtime topologies for these application topologies. It includes discussions of
variations of these topologies that are appropriate for scalability and
availability.

Chapter 5, “Technology options” on page 67, maps the runtime topology to
various technology components. These components are required to satisfy
the functional requirements within the runtime topology.

Chapter 6, “B2B integration protocols and standards” on page 89, goes on to
further describe some of the protocols and the standards that are prevalent in
the B2B Integration space.

Chapter 7, “IBM product guide” on page 101, provides a high-level
description of the IBM Suite of products. These are described in the context
of their operation and functional aspects.

Chapter 8, “MQSeries and MQSeries integrator” on page 109, describes
MQSeries and MQSeries Integrator in some detail. An understanding of these
components is essential because they form the core of IBM offerings for
topologies 2 and 3.
© Copyright IBM Corp. 2000 1

2 Business-to-Business Integration Using MQSeries and MQSI

Chapter 1. e-business and B2B integration

This chapter provides an introduction to the e-business model and its many
components. Within this model we focus on business-to-business (B2B)
commerce. B2B solutions focus on using the Internet and/or extranet to
improve partnerships and transform inter-organizational relationships.

These interactions can be classified by the properties of the relationship
between the businesses.

This book focuses on B2B Integration, which is a subset of the B2B
commerce model. The distinction between these two markets will become
more clear in the chapters that follow.

1.1 About e-business

At the beginning of the Internet era, IBM invented the term e-business to give
a proper name to a new class of powerful software applications and services
that, in its vision, needed to be developed in the following years. This class of
applications derive their power from combining the universal access and
standards of the Internet with the reliability, security, and availability of
existing content, core business processes, and applications.

In very simplified terms, e-business refers to the usage of Internet
technologies to improve and transform key enterprise processes. Most
organizations understand this and have begun the transformation from
traditional applications to their e-business counterparts.This transformation
has begun to Web-enable core processes to strengthen customer service
operations, streamline supply chains, and reach existing and new customers.

Probably one of the well-known applications of e-business is e-commerce,
which refers to buying and selling activities over a digital medium. However,
as we will soon clarify, e-business embraces e-commerce and includes
Intranet applications. e-business is the overall strategy, although e-commerce
is an extremely important subset of e-business.

In what ways does e-business differ from the old order? Some characteristics
of the e-business model that set it apart from legacy business systems are:

• e-business facilitates transactions with a much wider group of
respondents.

• Communication and other transactions are instantaneous.

• Customers are empowered.
© Copyright IBM Corp. 2000 3

• Competition is fierce.

• Customer communities will emerge.

Companies that are creating value when they implement e-business realize it
is not simply a matter of establishing a Web site or a single, discrete, online
application. It arises from an e-business vision and an e-business roadmap
that begins with an initial solution that is extendable into other high-value
areas of the business. e-business is not just about e-commerce transactions;
it is about redefining old business models with the aid of technology.

To summarize, an e-business is an organization that connects critical
business systems directly to their customers, employees, partners, and
suppliers, via intranet, extranet, and the Web. As customers, employees,
suppliers, and distributors are connected to the business systems and
information they need, e-business actually transforms, innovates, and
integrates key business processes.

1.1.1 Business transformation and Innovation
The convergence of Internet technologies, IT systems, and business
processes creates new business models – e-business models that is. Thus,
e-business poses the most significant challenge to the traditional business
model. Computers have increased business speed by automating tasks, but
they have not fundamentally altered the business foundation; e-business has.
If any entity in the value chain begins to do business electronically, similar
companies must follow suit or risk being eliminated. Rethinking and
redesigning the business model is not an option but a necessary step to
surviving in the information age.

Companies have found that success in e-business is typically based on
building efficient, value-added relationships with their customers. Those
companies exhibiting the highest degree of satisfaction and success with
e-business consistently focus their strategy on improving their performance
for customers. Whether simply making it efficient for a customer to place an
order for a product or service, Web-linking and customizing access for a
supplier network, or integrating a real-time collaborative product
design/development process, the goal is to serve customers better.

Regardless of size or industry, companies follow a similar pattern of
e-business adoption. Figure 1 on page 5 illustrates the typical e-business
adoption roadmap.
4 Business-to-Business Integration Using MQSeries and MQSI

Figure 1. e-business adoption process

The first two steps are the introduction to using Web technologies: Deploying
Intranet applications to communicate with employees and establishing
external Web presence with information about the company and its offerings.

This experience has led companies to take the first steps toward real
e-business: The establishment of pilots that give customers and suppliers
access to the information contained in key business systems. For example,
opening up the customer database that a service representative views and
providing this information to customers directly.

The next step in the cycle extends legacy transaction capability to customers.
The travel industry, for example, offers online bookings while retail banking
offers online banking.

The final two steps in the process offer the greatest opportunity for return as
companies transform their business processes by integrating multiple
back-end systems to create a common user experience. For example, an
airline has integrated all travel systems and customer processes for
bookings, upgrades, seat and meal selection, awards redemption, and
frequent flyer account management.

During these last two steps, not only can a customer buy/transact online
whenever they wish, but the company gains valuable insight and knowledge
about the specific needs and behavior of its customers. They can also

Awareness Presence Pilot Adoption
Process

Investment
Cross-

Process
Integration

Use the
Internet

internally

Establish
a Web site

Allow
access
to key

systems
(read only)

Allow
transactions

on key
systems

Improve key
business

process(es)

Redefine
key

process(es)
Chapter 1. e-business and B2B integration 5

segment customers from a behavioral perspective as well as from a value
perspective. However, without the initial effort to make the data
customer-ready, value for both the customer and the enterprise, although
real, would be minimal. Many companies have begun offering online
transactions to reduce their costs without considering the value for their
customers and, therefore, have not achieved sustained customer
commitment to the system.

In the process investment phase, armed with this customer knowledge and
with the integration of business intelligence tools, analyses, and insights,
companies can improve the customer relationship process by personalizing
customer interactions online and integrating the customer view for their entire
enterprise. Through these personalized interactions, customer retention and
loyalty analysis can be applied to serving the customer more effectively at the
point of need rather than integrating this information after the fact.

Cross process integration, the final phase in e-business evolution, focuses on
integrating across all the processes in an enterprise as well as across
customer processes. For the enterprise, this means integrating all the
customer touchpoints across all operational systems from supply to demand
fulfillment and through customer satisfaction. For the customer, it means
linking the systems of all the suppliers involved in their process. Airlines, for
example, have integrated their booking systems with their frequent traveler
services internally and have linked into their travel partner systems to begin
offering passengers a single convenient point of fulfillment; retail banks are
integrating their services into a much broader single service access point for
their on-line customers.

1.1.2 e-business value
There are several trends that are shaping e-business necessity and, at the
same time, its value:

• Businesses of all sizes are impacted by globalization and deregulation,
which lowers barriers to entry and dramatically reshapes the competitive
landscape.

• Customers now have a broader array of choices and, therefore, are
becoming more sophisticated and more demanding – both in what they
want from a supplier and how they choose to acquire goods and services.

• As a consequence of the fact that markets are becoming increasingly
fragmented (see the first two points above), mass marketing is fading in
importance as mass customization becomes the path to serving
discriminating customers.
6 Business-to-Business Integration Using MQSeries and MQSI

• Technology continues to evolve rapidly to support this environment. The
global reach of the World Wide Web enables companies to reach
customers anywhere and connect to employees, suppliers, and trading
partners wherever they are. This will create an expanding amount of data,
which can then be mined for insight leading to better decisions and help
create ways to know and serve your customers better and more profitably
and gain a competitive advantage.

e-business can dramatically improve competitiveness and create new paths
to customer loyalty.

1.2 e-business applications: A simplified classification scheme

e-business activities can be classified in a number of ways. In this section,
they are divided based on the scope of the applications and on the players at
each end of the transaction.

Concerning the application scope, we have two main categories:

• Intra-business applications

• Inter-business applications

The first category includes all e-business applications that have a
company/organization internal scope. These applications lie in the
company/organization boundary and are connected to internal business
activities. For example, this class includes the realization of an intranet
information Web site for company employees.

The second category includes all applications that require some kind of
interaction between the company/organization and some other external
entities, such as a customer, a company trading partner, or a financial
institution. For example, as we will see more clearly in the following sections,
an e-commerce application that models a buying/selling activity between a
company and its customers over the Internet is an Inter-business application
as well as a Web-bank application where bank customers can view their
account balances, recent transactions, and so on through the Web.
Chapter 1. e-business and B2B integration 7

Classification of e-business activities, or business processes, is described in
more detail in the following sections. It is important to note that although the
following sections make a distinction between Intra and Inter-business
applications, from the infrastructure solution point of view, this distinction can
disappears. In fact, IBM defined another convenient way to describe the
architectural nature of the e-business solutions that can be applied to both
Intra and Inter-enterprise models. As the next chapter will describe, IBM
recently introduced patterns for e-business that will allow IT architects in 80
percent of cases to quickly develop 80 percent of their required infrastructure
by the reuse of proven architecture patterns, design patterns, runtime
patterns, design, development and deployment guidelines, and code. Figure
2 illustrates the e-business application classification schema.

Figure 2. The e-business applications classification schema

1.2.1 Intra-business applications
Most Intra-enterprise solutions are based on an intranet infrastructure where
the purpose of an intranet is to share company information and computing

One could argue that, sometimes, the boundary between an Intra-business
application and an Inter-enterprise application cannot be easily defined.
However, just for the purpose of this classification, we are referring to
Intra-business applications as all applications that are interfaced/used
directly by company employees and/or other systems belonging to the
company and isolated from the external world. Complementary
inter-business applications are all those that can be interfaced by external
end-users (for example a customer) and/or external applications (trading
partner applications).

Note

Company

Trading Partners

Customers

e-business applications

Redesigned
applications

Business To
Employee

intra inter

Business To
Business

Business To
Consumer

Legacy
8 Business-to-Business Integration Using MQSeries and MQSI

resources among employees. Usually, this class of applications is known as
business-to-employee (B2E). An intranet can also be used to facilitate
working in groups and for teleconferences.

There are four general categories of Intra-business applications:

• Internal communication creates an involved and communicative
environment by making information accessible to a
company’s/organization’s employees/members.

• Knowledge management is the identification and analysis of available and
required knowledge assets and knowledge asset-related processes.
Knowledge assets are knowledge regarding markets, products,
technologies, and organizations that a business owns or needs to own and
which enable its business processes to generate profits and provide value.

Knowledge management means facilitating an environment where
knowledge, such as standards, common processes, and best practices, is
shared and exploited by any group, department, or division in an
organization. This involves the process of capturing and leveraging a
company’s intellectual capital, which is a valuable commodity in many
companies.

Knowledge management includes collaboration that exploits Web
technology to create team-oriented work environments that are more
productive, higher quality, and enjoyable.

Business intelligence means developing applications that are able to
individuate information that is conclusive, fact-based, and actionable.
Typically, Business Intelligence solutions combine consulting & services,
applications and, technologies to gather, manage and analyze data,
transform it into usable information to develop the insight and,
understanding needed to make informed decisions.

Using the latest e-business technologies, this intelligence can then be
distributed around your company or around the world helping to make
crucial and profitable decisions.

• Business process redesign means transforming inefficient practices and
processes inside the organization, from supply chain management to
internal procurement or expense reports.

1.2.2 Inter-business applications
Inter-business applications are all applications that require some kind of
interaction between a company/organization and some other external entity,
such as a customer, a company trading partner, a financial institution, or
public administration department. Inter-business applications can be divided
Chapter 1. e-business and B2B integration 9

into two main subclasses: Business-to-consumer (B2C) and
business-to-business (B2B).

B2B applications focus on using the Internet and/or extranet to improve
business-to-business partnerships and transform inter-organizational
relationships. B2B trade may be conducted between a company/organization
and its supply chain as well as between a company/organization and other
company/organization end-customers. Trading can be conducted directly
between buyers and sellers and/or supported by a third party (an
intermediary) within an eMarketPlace. B2B describes two styles of
inter-business to business: eMarketPlaces and B2Bi. Figure 3 shows the
breakdown between eMarketPlaces and B2Bi based on the number of buyers
and sellers. In the case of B2Bi there is usually a one-to-one relationship
between buyers and sellers. Any other relationship, such as one-to-many,
many-to-many, or many-to-one, would fall into the eMarketPlace category.
Each of the eMarketPlace categories has its own unique characteristics, and
these are reflected in their implementation. For example, in the case where
there is one seller and many buyers, the interaction is similar to that of a
traditional auction; so, the digital model has to allow for multiple disclosed
bids.

Figure 3. Separation between e-Markets and Hubs

Buyer

Seller

Many

Many

One

One

Auction

Aggregator

Exchange

B2Bi

e-Markets/Hubs
10 Business-to-Business Integration Using MQSeries and MQSI

1.2.2.1 B2Bi
B2Bi covers programmatic links between arms-length businesses (where a
trading partner agreement may, potentially, be appropriate). A good example
of this would be Supply/Chain applications.

The remainder of this book focuses on B2Bi. The following section is a short
description of the second style of inter-business to business. Another
redbook, due out later this year, will cover eMarketPlaces interaction.

1.2.2.2 B2M2B (eMarketPlace)
The second style covers the eMarketPlace where the model supports B2M2B.
The M represents the eMarketPlace, which supports multiple buyers and
suppliers. The buying function may be performed online or programmatically.

The traditional B2B model, centered around the buyer-seller transaction
paradigm, is showing its limitations: it is definite in scale and displays only
partial efficiency in terms of market economics. B2M2B overcomes these
limitations and leverages existing B2B applications and technology. The
eMarketPlace or online trading communities assist multiple buyers and
suppliers to exchange information and transactions.

Trading communities are Internet-based hubs that focus on specific industry
verticals (see, for example, the recent hub, Component Knowledge, launched
by IBM Global Services for the electronic components market) or specific
industry processes and use various market making mechanisms, such as
auctions, exchanges, and aggregation, to mediate any-to-any transactions
among businesses.

Through the trading communities hubs, buyers and sellers can trade
electronically with established partners and, at the same time, get access to
new markets and new parts of the supply chain. eMarketPlaces can be a
public, interactive buying and selling community where all members
participate in the open, or they can be private, invitation-only communities
whose members participate in special pricing arrangements and/or product
and service offerings. Online trading communities have the potential to create
excellent and efficient markets.

Among the best-known e-market makers are Chemdex, VerticalNet, Altra
Energy Technologies, Paper Exchange, Instill, PlasticsNet, and Commerce
One's Marketsite.net.
Chapter 1. e-business and B2B integration 11

1.3 Inter-business: B2Bi

B2Bi, as just described, excludes eMarketPlaces. It describes e-commerce
where the relationships between businesses is one-to-one. In the May 2000
issue of the EAI journal (http://www.eaijournal.com), Greg Olsen described
the laymen’s view of B2Bi as being one of the following:

“That’s EDI (Electronic Data Interchange). It’s about agreeing on standard
datasets using X12, EDIFACT, or XML and then exchanging the data over
Value-Added Networks (VANs) or the Internet.

B2B integration is application integration extended outside a single company.
It’s about using middleware technologies, such as distributed objects, remote
procedure calls, message queueing, data transformation, and
publish/subscribe, to connect different applications with the added
complication of getting through firewalls.

B2B Integration is about using the Web to share data across company
boundaries. B2B integration is accomplished by putting a Web front end on
your applications so information can be shared with suppliers, customers,
and partners.

As mentioned in the article, each of these perspectives may be appropriate in
certain circumstances, but each presents a narrow view and misses many
fundamental B2B integration requirements.”

1.3.1 EDI and B2B Integration
EDI is an existing example of B2B Integration that uses a more proprietary
set of technologies. Facilities, such as Electronic Data Interchange (EDI),
have successfully provided electronic document interchange between
companies and their suppliers for a number of years. However, EDI’s high
cost and inflexible structure have always proved a barrier to adoption by all
but the largest enterprises. While EDI will continue to evolve, utilizing
pervasive networks, such as the Internet, to reduce costs, complementary
technologies are emerging that are able to provide some of the key
capabilities necessary to enable dynamic business process integration. The
basis of these technologies is the formulation of:

• A “common language” that can be employed by existing or potential
trading partners to specify how they will interact

• An “electronic contract” that employs this common language in order to
define and enforce the interaction protocols with which they will do
business.
12 Business-to-Business Integration Using MQSeries and MQSI

1.3.2 B2B and A2A (Application-to-Application)
In a recent eBizQ article, Steve Scala writes: “The Drive to EAI and B2B
Convergence: a Conversation with Roy Shulte offered this recipe for B2B
integration: Start with a dependable A2A integration broker, stir in generous
portions of XML, add a pinch of security, sprinkle liberally with HTTP, and
serve up to enterprises hungry for a taste of B2B e-commerce.

There is a definite convergence between A2A or EAI and B2Bi. Both
problems are about application integration. However B2Bi does present many
challenges that are unique to itself, challenges that have never been
addressed by Application Integration.”

The articles mentioned above (available at http://eai.ebizQ.net/) offer some
insight into some of the issues that differentiate the two business problems.

1.3.3 B2B integration challenges
Several issues have to be faced in designing B2B systems. These issues are
concerned with privacy, autonomy, heterogeneity in software and platforms,
and, more importantly, managing complexity of interactions.

Some of these issues, such as the heterogeneity of programming languages
and platforms in which the application components are developed, are also
addressed in the automation of business internal processes and integrating
application components. Total knowledge and control in the design of the
business process within an organization makes this a manageable task.

Component architectures, such as CORBA and Enterprise Java Beans,
provide middleware for integrating application components written in different
languages. For the purpose of interaction, an application component needs to
know only the interfaces to other components written in a suitable middleware
integration language (for example, the Interface Definition Language or IDL in
CORBA). In such environments, typically, the applications are executed as
short ACID (atomicity, consistency, isolation, durability) transactions. The
underlying middleware provides necessary runtime services, for instance,
naming, transaction, and resource allocation.

For the automation of the B2B interactions, methodologies that automate
internal processes of individual businesses are not directly applicable. First of
all, no common, shared, underlying middleware can be assumed for
distributed applications spanning organizational boundaries and using a
public network, such as the Internet. Setting up such a common software bus
requires tight coupling of the business partners' software platforms (for
Chapter 1. e-business and B2B integration 13

example, consider the issues of security, naming, and component
registration).

Even if such a software bus can be established, ACID and/or complex
extended transaction models of stateful interactions are not appropriate for
such B2B interactions. First, implementation of such protocols necessitates
tight coupling of operational states across business applications, which is
highly undesirable. The application components in one organization may hold
locks and resources in other organizations for an extended period of time,
resulting in a loss of autonomy. Rollback and/or compensation of application
steps is no longer under the control of a single organization. Finally, in
real-world business operations, the states always move forward, and explicit
recourse actions are taken by business partners to move to a more desirable
operational state. An example is cancellation of a prior purchase or
reservation.

The invocation of application components across organizational boundaries
needs to be controlled and monitored. First, without rigorous testing and
cooperation in software development across organizations, the correct
execution of such complex distributed applications cannot be assumed.
Second, in such automated interactions, trust becomes an overarching
concern. During runtime, explicit checks are necessary to ensure that
business partners are not violating any policy constraints; for instance,
cancellation of a reservation must be within the allowable time window.

In addition, additional services for supporting long running applications, for
example, application development, asynchronous event driven execution,
compensation framework, maintaining correlation of conversations, and
logging and querying the activity on a conversation are required.

This book will not explore solutions to all the problems described here;
instead, we will focus on specific implementations and expand on the
specifics of the problems posed by those topologies.

1.3.4 B2B integration solution components
Each B2BI solution will differ based on the software, hardware, and services
selected to fulfill the system requirements. At a high level, the approach taken
in the EAI journal describes four elements as being common across most
B2B integration solutions as shown in Figure 4 on page 15.
14 Business-to-Business Integration Using MQSeries and MQSI

Figure 4. B2BI Solution Components

• External communications

This element describes the communication between trading partners.
Since B2BI implicitly involves communication with external organizations,
there are likely to be many partners, each having different requirements.

• Internal communications

For organizations with existing infrastructure, a mechanism to
communicate with existing applications is going to be a requirement. This
is usually very similar to Inter Enterprise Application Integration, where
you have an external application.

• Process/information coordination

Process /information coordination represents the heart or the logic of the
interaction between internal communication and external communication.
You can characterize this broadly as an information-brokering function.

• System and information management

For B2Bi, the ability to manage the solution is a critical success factor. The
solution will also require managing several information components,
including partner profile information, data and process definitions,
communications and security settings, and user information.

In the chapters that follow, we describe the details of some of these the
components relative to the selected topologies.

Application A

Application B

Application X

Partner

External Communications

Internal Communications

Process/information
coordination

System and information management

:
:
:

Chapter 1. e-business and B2B integration 15

1.4 Summary

e-business encompasses all transactions over a digital medium. e-business
applications can be classified broadly into two types: Inter-business and
intra-business.

Inter-business applications include two styles of business-to-business
commerce: An eMarketplace and B2B Integration. B2Bi is very similar to
internal application integration but has many of its own challenges.

Almost all large corporations and even smaller companies today are
implementing a B2BI solution. This is in addition to the large number of
enterprises currently using EDI. This number will increase as infrastructure
and standards evolve. The rate of adoption will be a function of the costs and
benefits that this new digital medium will provide. Almost all major
corporations engage in some B2BI.
16 Business-to-Business Integration Using MQSeries and MQSI

Chapter 2. Introduction to business patterns

We are all familiar with the pace of development of the computer industry
during its relatively brief history. The rapid advances in computer hardware
have been driven in no small part by the use of standards and well specified
components for assembly. The desire to apply these same approaches to
software construction gave rise to object-oriented software, design patterns
and component-based development.

The idea of design patterns has gained acceptance by software designers
and developers because it enables an efficiency in both the communication
and implementation of software design, based upon a common vocabulary
and reference. Information technology architects, encouraged by the success
of design patterns, and facing challenges in systematic and repeatable
description of systems, have also explored the idea of architectural patterns.

The Enterprise Solution Structure (ESS) work (see “Enterprise Solutions
Structure” in IBM Systems Journal, Volume 38, No. 1, 1999 at
http://www.research.ibm.com/journal/sj38-1.html) looked at patterns for
complete end-to-end system architectures. ESS is now part of the IBM Global
Services methodology.

The following publications are interesting reading for more information on
design patterns and their background:

• Design Patterns - Elements of Reusable Object-Oriented Software, ISBN
0-2016-3361-2, by E. Gamma, R. Helm, R. Johnson, J. Vlissides

• A Pattern Language, ISBN 0-1950-1919-9, by C. Alexander, S. Ishikawa,
M. Silverstein, M. Jacobson, I. Fiksdahl-King, S. Angel.

• Pattern-Oriented Software Architecture - A System of Patterns, ISBN
0-4719-5869-7, by Buschmann, et al.

• Pattern Hatching - Design Patterns Applied, ISBN 0-2014-3293-5, by J.
Vlissides

2.1 Patterns for e-business

The patterns for e-business aim is to communicate in a highly accessible
fashion the business pattern, systems architecture (application and runtime
topologies), product mappings, and guidelines required for different classes
of applications. For the some patterns there is also an associated Pattern
Development Kit, which provides sample application code to illustrate
effective use of those patterns.
© Copyright IBM Corp. 2000 17

http://www.research.ibm.com/journal/sj38-1.html

The goal is to provide the smallest number of patterns for e-business which
will allow IT architects in 80 percent of cases to quickly develop 80 percent of
their required infrastructure by the reuse of proven:

• Architecture patterns
• Design patterns
• Runtime patterns
• Application development and systems management patterns
• Design, development, and deployment guidelines
• Code

2.1.1 Patterns for e-business and design patterns
Design patterns describe atomic elements that are reused to create
architectural structures. These structures could make up part or all of an
application. Some structures are common enough to themselves constitute a
reusable pattern.

The patterns for e-business falls into the latter category of patterns. They are
made up of atomic elements and represent the 80 percent of applications that
are made up of a common set of elements.
18 Business-to-Business Integration Using MQSeries and MQSI

2.1.2 Components of the patterns for e-business

Figure 5. Patterns for e-business

Business patterns describe the interaction between the participants in an
e-business solution.

The application topology illustrates the various ways to configure the
interaction between users, applications, and data. Choosing an application
topology will lead to an underpinning runtime topology.

The runtime topology uses nodes to group functional requirements. The
nodes are interconnected to solve a business problem. An application
topology leads to an underpinning runtime topology.

Product mappings show possible combinations of products used to
instantiate the runtime topology.

The guidelines outline and define the processes used to build the e-business
application.

2.1.3 Defined patterns for e-business
There are currently six defined patterns for e-business.

Runtime
Topology

Application
Topology

Business
Pattern

Guidelines
Application Design Application Development

Technology ChoicesSystems Management

Product
Mappings

Pattern
Development
Kit

Reference
implementation
of application code
and products.
Chapter 2. Introduction to business patterns 19

User-to-Business is the general case of users (internal or external)
interacting with enterprise transactions and data. In particular, it is relevant to
those enterprises that deal with goods and services that cannot be listed and
sold from a catalog. It can also be thought of as covering all user to business
interactions not covered by the User-to-Online Buying pattern.

User-to-Online Buying is used to describe the special case (a subset of the
User to Business pattern) in which packaged goods, for example, are sold
through a catalog using a shopping cart, a wallet, and so on. This includes
both consumers purchasing goods or online buyers purchasing goods from a
single supplier. It can also include links to backend systems to allow for
inventory updates and credit checking.

Business-to-Business is used to describe two styles of
inter-business-to-business. (Intra-business-to business is covered under
Application Integration as follows).

The first style, B2Bi, covers programmatic links between arms-length
businesses (where, potentially, a trading partner agreement may be
appropriate). A good example of this would be Supply/Chain applications.

The second style covers the eMarketPlace where the model supports B2M2B.
The M represents the eMarketPlace, which supports multiple buyers and
suppliers. The buying function may be performed online or programmatically.

User-to-User is used to describe users collaborating with one another by
email, shared documents, and so on.

User-to-Data is used to describe users needing to take large volumes of
data, text, images, video, and so on and use tools to extract useful
information from it.

Application Integration is used to link applications together within a
business (like ERP with existing applications). This can be used within a
business pattern or between business patterns.

As the following diagram shows, IBM views e-business as an integration of
many application domains into systems that connect a business with its
customers, partners, and suppliers.
20 Business-to-Business Integration Using MQSeries and MQSI

Figure 6. e-business integration

These systems are not confined to Web interfaces, although, increasingly,
many of the user interfaces to the combined system will use Web technology.

The common set of node descriptions in the patterns for e-business enable
communication between architects and designers from very different
application domains and will suggest areas for shared nodes and
infrastructure.

This is similar to the process of using design patterns to solve a programming
design problem, where classes in the composed pattern play multiple roles
derived from the source patterns. It is different, however, in that design
pattern composition is, by nature, based on class diagrams and white box,
whereas composing architectural patterns is more component-based.

The patterns for e-business may be applied to e-business solution areas.
Table 1 is a guide to where you may find them most applicable.

Table 1. Patterns for e-business and e-business solutions

e-business solution area Business pattern

Customer relationship management User-to-Business Pattern

e-commerce User-to-Online Buying Pattern

EnterpriseEnterprise

ResourceResource

PlanningPlanning

SupplySupply

ChainChain

ManagementManagement
B

u
si

n
es

se
s

B
u

si
n

es
se

s C
u

sto
m

ers
C

u
sto

m
ers

EmployeesEmployees

InfrastructureInfrastructure

e-commercee-commerce

CollaborationCollaboration

Business IntelligenceBusiness Intelligence

Knowledge ManagementKnowledge Management

ProductProduct

DesignDesign

ManagementManagement

CustomerCustomer

RelationshipRelationship

ManagementManagement

e-business Requires Integration
Chapter 2. Introduction to business patterns 21

2.1.4 How to use these patterns
The patterns for e-business are particularly focused on addressing common
business application problems and providing answers to frequently-asked
architecture, design, and implementation questions.

You can use the patterns for e-business in a number of ways according to
your needs:

• As a starting point for an end-to-end system architecture

• As a detailed example and prescriptive approach following the product
mappings and guidance provided

• As a way of designing more complex, multi-channel systems when several
patterns are used together

As with the design patterns and ESS work, we anticipate that architects and
designers will want to combine these patterns to compose solutions to more
complex system architectures.

We recommend that you use the patterns for e-business together with an
appropriate development methodology that considers the full set of
requirements that are to be understood and implemented, whether these
requirements concern the function of the solution or its operational
characteristics, such as availability, scalability, or performance.

2.1.5 Patterns for e-business Web sites
The patterns for e-business are published on IBM developerWorks, a portal
for developers, and can be located at:

http://www.ibm.com/software/developer/web/patterns

This interactive patterns site acts as a guide to aid you in the selection of the
pattern and topologies most relevant to your needs. While you can navigate

Supply chain management,
e-Marketplace

Business-to-Business Pattern

Collaboration User-to-User Pattern

Business Intelligence; Knowledge Man-
agement

User-to-Data Pattern

Business application integration Application Integration Pattern
22 Business-to-Business Integration Using MQSeries and MQSI

http://www.ibm.com/software/developer/web/patterns

by way of shortcuts to the information you need most, the site is structured to
enable you to drill down into the material as you:

1. Select a business pattern

2. Select an application topology

3. Review runtime topologies

4. Review product mappings

5. Review guidelines

At the time of writing, the Web site has material for the user-to-business and
user-to-online buying patterns, with material for the other business patterns in
the process of development.

You can also register at this site for pattern-related updates, which will
include the Pattern Development Kit for User-to-Business when it is available.

2.2 The Business-to-Business Integration pattern

The Business-to-Business Integration Patterns address the interaction of
business processes between organizations. It can be viewed as taking
enterprise application integration one step further to the integration of
applications between businesses.

In addition to user-initiated transactions that follow patterns similar to those in
the User-to-Online-Buying scenarios, B2B integration adds programmatic
interactions that are key to automating B2B e-commerce across business
boundaries. The patterns presented here should, therefore, be considered
complementary to the User-to-Online-Buying patterns presented elsewhere.
A good example of business-to-business integration is supply chain
execution in which automated processes work across a supplier network.

The general problem addressed by these patterns is illustrated in Figure 7 on
page 24.
Chapter 2. Introduction to business patterns 23

Figure 7. General B2Bi pattern

Interactions between partners form a shared process or, potentially, multiple
distinct shared processes. Each of these must be integrated into the private
business process flows implemented by each partner. Such integration might
be as simple as passing data to a particular application or as sophisticated as
initiating or resuming a multistep workflow involving several applications and
user interactions.

The following are some industry examples where the Business-to-Business
Integration pattern would provide the appropriate application and runtime
topologies to fit each particular need.

Manufacturing
• Supply chain planning
• Supply chain execution

Travel
• Checking flight or room availability
• Making reservations
• Modifying reservations

Retail
• Checking supplier inventory
• Placing replenishment orders
• Paying suppliers automatically

Financial
• Transferring payments
• Checking account balances
24 Business-to-Business Integration Using MQSeries and MQSI

• Obtaining credit information
• Processing securities

2.3 The Application Framework for e-business

The advent of e-business, with the requirement for interoperability that it
brings, has been a major catalyst for the more rapid adoption of standards by
the industry.

The IBM Application Framework for e-business establishes:

• A recommended approach for building systems, embodied in the patterns
for e-business

• Innovative technology delivered in a rich product portfolio
• Cross-platform standards including Java and XML

The Framework, along with the standards it prescribes for e-business
systems and their components, can be applied to:

• Custom application code
• Application packages
• Software products

The patterns for e-business are an integral part of the IBM Application
Framework for e-business. The Patterns make it easy to apply the
technologies, standards, and products of the Application Framework to
provide an e-business solution.

2.4 Structure of this redbook

There are currently five logical application topologies associated with the
Business-to-Business Integration pattern. In Chapter 3, “Choosing the
application topology” on page 27, you will be given the information needed to
choose the application topology that best suits your needs.

The structure we will be following is:

Chapter 3, “Choosing the application topology” on page 27, introduces all the
application topologies for the Business-to-Business Integration pattern. With
very accessible notation, these application topologies capture the essential
“shape” of the application solution.

Chapter 4, “Choosing the runtime topology” on page 41, discusses the
runtime topologies for these application topologies. It includes a discussion of
Chapter 2. Introduction to business patterns 25

variations of these topologies that are appropriate for scalability and
availability.

Chapter 5, “Technology options” on page 67, maps the runtime topology to
various technology components. These components are required to satisfy
the functional requirements within the runtime topology.

Chapter 6, “B2B integration protocols and standards” on page 89, goes on to
further describe some of the protocols and the standards that are prevalent in
the B2B Integration space.

Chapter 7, “IBM product guide” on page 101, provides a high-level
description of the IBM suite of products. These are described in the context of
their operation and functionality.

Chapter 8, “MQSeries and MQSeries integrator” on page 109, describes in
MQSeries and MQSeries Integrator some detail. An understanding of these
components is essential because they form the core of the IBM offerings for
topologies 2 and 3.

Chapter 9, “Application design guidelines” on page 171, introduces
consideration of the functional components of the application within the
context of the runtime topologies.

Chapter 10, “Application development guidelines” on page 213, provides
guidelines for application development, considering the roles, processes, and
tools that are required.

Chapter 11, “Performance guidelines” on page 229, introduces performance
guidelines by considering the components of the topologies under discussion
that are particularly relevant to performance.

Chapter 12, “Systems management” on page 235, looks at the management
of MQSeries and related components.

Chapter 13, “Getting a single customer view with MQSeries” on page 245, the
third part of the book, looks at a solution with MQSeries, MQSeries Integrator,
WebSphere, and DB2. This solution consists of a Web application that finds
information about a customer on a number of separate systems.
26 Business-to-Business Integration Using MQSeries and MQSI

Chapter 3. Choosing the application topology

In Chapter 2, “Introduction to business patterns” on page 17, we described
the patterns for e-business and how they can be used in different situations.
This chapter describes the topologies that apply to the B2B integration
pattern. Each topology is applied based on the solution requirements of the
company.

An application topology shows the principal layout of the application, focusing
on the shape of the application, the application logic, and the associated
data. It does not show middleware or the files or databases where Web pages
may be stored. Nor is the application design described in the application
topology. For more information on application design see Chapter 9,
“Application design guidelines” on page 171.

This chapter describes the application topologies for the B2B Integration
pattern.

In Section 3.1, “Influencing factors” on page 27, we analyze the factors that
would influence the solution architecture. This is not an extensive list of
factors but some of the most common that would occur in most engagements.

In the sections that follow, we analyze how the topologies map to specific
business requirements. Current and future requirements determine the level
of function that needs to be implemented within the various components of
the solution.

Usually, based on the function you require, a particular topology or variation
of it will present itself. Each application topology has associated runtime
topologies. The runtime topologies are covered in greater detail in the
chapter that follows.

3.1 Influencing factors

It is clear that e-business is not just about technology. The business
component of e-business is about redefining business models, reinventing
business processes, changing corporate cultures, and raising relationships
with customers and suppliers to unprecedented levels of intimacy. The
technology component is the infrastructure put together to enable business.

In a B2B Integration solution, the business component is the business context
for which the solution is developed. The technology component of the
© Copyright IBM Corp. 2000 27

solution manifests itself as the components required to achieve the required
level of interaction for that solution.

3.1.1 Business context
By definition, B2B Integration is the exchange of data between an application
in one computer and an application in another computer. In B2B Integration,
the second computer is in another company.

The following are some of the more obvious contexts of B2B Integration
opportunities.

• Business to business integration, commerce

• Merger and acquisition integration

• Supply chain integration

• Customer relationship management integration

• Enterprise resource planning (ERP) packaged application integration

• Straight-through processing

• Web integration

3.1.2 Functional components
To create inter-company processes, a number of functional components need
to exist to enable the interaction. The location, the application interface, the
infrastructure, and so on, are all functional components.

The exact nature of each of these components is usually a function of the
relationship between the organizations wanting to interact. Existing
components, dominance, and other factors will strongly influence the
architecture of each of the functional components.

3.2 Application topology overview

The current Business-to-Business Integration practices, typified by Electronic
Data Interchange, and the emerging XML-based approaches, are formalized
in the following five application topologies. These diagram conventions,
shown in Figure 8 on page 29, are used to describe the topologies.
28 Business-to-Business Integration Using MQSeries and MQSI

Figure 8. Diagram conventions for B2Bi

The five Business-to-Business Integration application topologies are
presented here in order of increasing flexibility and sophistication. Topologies
1 and 2 focus on basic transport and data interchange. Topology 3, which
builds on topology 2, employs application integration approaches that simplify
interactions involving multiple applications. The interactions described in
these topologies are stateless. In a stateless approach, the logic performed
by the application does not depend on the state of the interaction between the
applications. That is, the application’s response to receiving a message
depends solely on the message content.

A stateless scenario may include message content transformation and
intelligent routing. Message content transformations refer to translating a
message from one format to another format. Intelligent routing refers to
controlling the message destinations. The routing decision can be based on
the message content, source (system) or type among other possibilities.

Topologies 4 and 5 add formalized management of business protocols and
other elements of the agreement between partners. They also address the
problems of integrating inter-business processes with the intra-business
processes implemented internally by each partner. These topologies
represent a more complex scenario. Here, the applications may wish to have
long-running conversations. That is, a complete transaction may be made up
of a number of messages, each message being driven by an event. These
applications may themselves be complex workflow or transaction-oriented
applications.

This introduces state into the interaction. In a stateful interaction, the
interaction logic performed by the integration mediator depends on previous
application interactions. A stateful interaction is when the integration mediator
accumulates events and sends a message to a destination application when
Chapter 3. Choosing the application topology 29

some event accumulation condition is met, such as receiving an event
sequence complete message.

As the topologies build on each other, their capabilities and reliance on
middleware increase, and they require less application development effort.

Within the application topologies, a number of atomic design patterns are
evident. They are the solutions to the problems described above. For
example, an implementation of the adapter pattern would create an interface
to a legacy application.

3.3 Application Topology 1: Document exchange

Topology 1 represents the current practice in Business-to-Business
interaction. Mechanisms that allow messages to be retrieved from a
persistent buffer exchange mutually agreed upon messages, such as
Electronic Data Interchange (EDI) transaction sets. The "Translator"
application translates the transmission format of the data into a format usable
by the internal business processes of the receiving organization. This
"Translator" application component might be rules defined to a middleware
application, as in an EDI translation system, that specifies the mapping of the
message to an internal business document format.

Figure 9. Application Topology 1 - EDI

Classical EDI was constructed without the benefit of the current Internet
infrastructure or standards. Although the topology itself can be generalized
further to include Internet standards, its representation here is that of a
classic EDI interaction.

In this topology, all the communications, process coordination, and
management is usually defined by the VAN provider. Even the internal
communications are usually tailored to meet the VAN’s translation software
specifications.
30 Business-to-Business Integration Using MQSeries and MQSI

Topology 1 has the following characteristics:

• Both partners subscribe to a VAN and communicate using the
infrastructure provided by the VAN. A VAN is a networking service that
leases communication lines to subscribers and adds extra services or
capability, such as security, error detection, guaranteed message delivery,
and a message buffer.

• All partners in the interaction develop their own interfaces to their
applications.

• Requests are usually batched.

• Mutually agreed upon messages, such as EDI transaction sets, are
exchanged via mechanisms that allow the messages to be retrieved from
a persistent buffer. The transmission format of the data is translated into a
format usable by the internal business processes of the receiving
organization. This transmission is performed by the VAN. VANs may
provide additional services or software to translate messages.

3.3.1 Business driver
Two partners are usually engaged in this application-to-application interaction
to reduce administrative costs, improve the timeliness and accuracy of data,
and promote a closer trading partner relationship.

Often, the factor driving this topology is a large EDI user placing a
requirement on its partners to use EDI over a particular Value Added Network
(VAN). Prior to the growth of the Internet, using EDI over a VAN represented
the only mechanism for the reliable exchange of information.

Although it is an inflexible topology, two partners can use this topology to
maximize the performance of the interaction, particularly by batching
requests.

3.3.2 Considerations
EDI is a well-established standard, but it is deployed by only a small number
of companies. It applies mostly to partners who need to participate in an
existing EDI-based network. For businesses that need flexibility in connecting
to multiple partners that might have different IT infrastructure capabilities, this
topology might not be appropriate.

3.3.3 Examples
A producer of automobile parts enters into an agreement to be a supplier to a
major auto manufacturer. The manufacturer manages an established EDI
Chapter 3. Choosing the application topology 31

network through which its entire supply chain operates. Because the
specification given to the parts provider includes automotive industry X12 EDI
transaction sets to be used in the EDI interactions, the supplier chooses
Topology 1 because it directly supports the EDI approach.

3.4 Topology 2: Direct with adapter/bridge

Topology 2 makes a set of applications available for direct access by outside
organizations. An extended message-based interaction includes an adapter
or bridge that converts the mutually agreed to messages into API calls to
existing applications.

Figure 10. Topology 2 - Direct connection with adapter/bridge

This integrates an existing application across organizational boundaries. New
applications, represented by Application 2, are integrated without the adapter
by directly using messaging interactions. The types of interactions are limited
by the functions and by the restrictions of the particular applications made
available to the partner. This topology has the same motivation as the
adapter design pattern - To convert from a given (server) interface into an
interface that a client expects (message transformation). In a non-intrusive
adapter design, the server application doesn’t know of the adapter. In an
intrusive adapter design, the server application is modified in some way.

The types of interactions are limited by the functions offered by the
standalone applications designated as available. More sophisticated
business interactions, however, might require several back-end applications
participating jointly in a single message exchange giving rise to the more
complex topologies described further in this chapter.

The application could have an existing EDI interface that needs to be
extended to include more open standards, or it could be an application that
had no external interface.
32 Business-to-Business Integration Using MQSeries and MQSI

This topology provides a flexible approach to exporting legacy application
services.

This topology usually requires that the partners agree on the external
communications protocols. The internal communications are the
responsibility of each of the partners. This topology usually does not have a
highly complex Process/information coordination function.

3.4.1 Business driver
For low-complexity message exchanges, Topology 2 provides interaction with
one or more specific applications. It applies when a more sophisticated
interaction between the partners is not necessary or when this interaction is a
specialized case within a larger cooperation. Because it is based on reliable
messaging, for example, message queuing, Topology 2 provides message
availability and manageability.

3.4.2 Considerations
The message definitions should be made as general as possible to promote
some flexibility in changing the interface of the application without affecting
the agreed-upon message definitions. Still, even with this abstraction, this
topology is not easily generalized to more sophisticated integration of
business processes and is sensitive to changes in the applications.

3.4.3 Examples
A small manufacturer is contracted to produce a set of parts for a major
industrial company that produces aircraft engines. The contract specifies not
only the product to be produced but the mechanisms for scheduling
production, reporting production status, and producing shipment status as
well. The aircraft engine company has an internal message queuing network
and specifies, as part of the agreement, that the partner must communicate
with it over the same message-oriented middleware. The small manufacturer
has a production scheduling application that also provides production status
and another application that generates shipping reports. These can be
integrated with message-oriented middleware using adapters. Because only
two applications are involved and the interactions with the aircraft engine
manufacturer are very limited, no additional integration approaches, such as
message brokering, are needed. Topology 2 is a simple solution to this small
manufacturer's integration problem.
Chapter 3. Choosing the application topology 33

3.5 Topology 3: Message broker

Topology 3 exposes applications or sets of applications to an outside
organization as a set of services. A message broker routes and transforms
messages as appropriate for the application or applications implementing a
service, employing adapters as necessary. This message broker maximizes
both isolation of business processes from the outside organization and the
flexibility to change the processes and the applications that implement them.
It also allows a combination of applications or business processes to handle a
single message from a partner. The “Decomp Rules” node in this topology
represents the message broker message transformation and routing
definitions supplied by the developer, based on the requirements and
capabilities of the business applications. App 1 and App 2 represent
applications that are integrated through a message-to-API adapter and a
direct messaging interaction, respectively.

Figure 11. Application Topology 3 - Message broker

3.5.1 Business driver
Message brokers and application adapters are common building blocks of
enterprise application integration. This topology leverages the investment
made in application integration to extend beyond the enterprise. It provides
independence of implementation and configuration, and, because it is based
on message queuing, it also provides availability and manageability of the
message flow.

3.5.2 Considerations
When enterprise integration approaches are extended outside the company,
additional problems must be addressed, including the enforcement of
business-to-business protocols. This might require adding handcrafted
34 Business-to-Business Integration Using MQSeries and MQSI

protocol management code to the message flow prior to routing a request to
business process applications. In addition, using message queuing
interactions between partners requires that both partners use common
message-oriented middleware.

The application topology shown in Figure 11 on page 34, embodies the
concept of a services-oriented architecture in which applications or sets of
applications are exposed to an outside organization as a set of services.
Integral to this topology is a message broker that can route and transform
messages as appropriate for the application or applications implementing a
service, employing adapters as necessary. This maximizes both isolation of
business processes from the outside organization and the flexibility to change
the processes and the applications that implement them.

3.5.3 Examples
Because Topology 3 is closely related to Topology 2, a similar example can
be used. A small manufacturer is contracted to produce a set of parts for a
major industrial company that produces aircraft engines. The contract
specifies not only the product to be produced but the mechanisms for
scheduling production, reporting production status, and even producing
shipment status. In addition, the small manufacturer is required to participate
in the production planning process. The aircraft engine company has an
internal message queuing network and, as part of the agreement, specifies
that the partner must communicate with it over the same message-oriented
middleware. The small manufacturer has a production scheduling application
that also provides production status and another application that generates
shipping reports. The requirement to participate in production planning
requires data to be extracted on demand from several enterprise resource
planning applications. The applications can be integrated with
message-oriented middleware through adapters, but any interactions with the
partner require the participation of several applications to satisfy a single
request. This can be addressed by a message broker corresponding to the
"decomp rules" component of this topology. Topology 3 provides the extra
integration flexibility needed to address the relationship with the
manufacturing partner.

3.6 Topology 4: Managed business protocol

The Managed Business Protocol topology combines the services and broker
approach of the Message Broker topology with management of the business
protocol between the two trading partners. It includes an executable contract,
agreed to by the trading partners, that governs the business-to-business
Chapter 3. Choosing the application topology 35

interactions, specifying such things as the message protocol, security and
encryption standards to be used, and permissible message sequences. The
messages now form a conversation and are not independent.

Figure 12. Application Topology 4 - Managed Business Protocol

As in Topology 3, the implementations of service interfaces might use
brokering to interact with internal business processes.

The “Gateway App” node in this topology includes the executable contract
and services that turn the business-to-business protocol message into the
appropriate message to the back-end applications, generally, through a
message broker. The Decomp Rules node represents the message broker
message transformation and routing definitions that are supplied by the
developer based on the requirements and capabilities of the business
applications. App 1 and App 2 represent applications that are integrated
through a message-to-API adapter and direct messaging interaction,
respectively.

This topology supports multiple partners through a single “Gateway App”
node. For a specific partner, you can employ multiple business-to-business
protocols.

3.6.1 Business driver
This topology maximizes flexibility while assuring that agreed-upon
messaging protocols are followed. Like Topology 3, it leverages the
investment made in application integration to extend beyond the enterprise.
Using a gateway application, while implying additional infrastructure,
addresses business-to-business protocol handling, such as enforcing
communications and security protocols, ensuring that messages are
delivered only one time, and authenticating partners. It extends the pure
36 Business-to-Business Integration Using MQSeries and MQSI

message broker approach, enabling accommodation and control over a
variety of communications protocols, security standards, and message
choreographies without writing any additional code.

This topology maximizes flexibility while providing assurance that contractual
agreements are being met. Like message broker topology, it leverages the
investment made in application integration to extend beyond the enterprise.
The use of interaction rules, while implying additional infrastructure,
addresses the business-to-business problems not addressed by the current
practice in enterprise application integration.

3.6.2 Considerations
The contract implemented by the gateway should be based on model
contracts that correspond to standardized business-to-business protocols,
such as Open Buying on the Internet (OBI) and RossettaNet, a protocol for IT
supply chain management. Business partners have a choice of either
hand-coding a business-to-business protocol management system to ensure
compliance with the Trading Partner Agreement (TPA) or installing an
instance of the gateway, deploying the same XML script (TPA) to govern the
B2B message exchange.

3.6.3 Examples
Suppose a producer of computer components wants to integrate into the
supply chains of several personal computer manufacturers. Because the
Information Technology industry has jointly developed an IT supply chain
standard, called RosettaNet, and the PC makers it wants to supply support
this standard, the company decides to use it to integrate into these supply
chains. RosettaNet is a sophisticated B2B protocol requiring considerable
effort to implement. A B2B gateway is needed to map this protocol into
interactions with internal applications and processes. The component
producer in this example has a manageable number of applications involved,
and the business processes concerned with the supply chain interactions are
fairly simple; therefore, elaborate workflow management is not needed to
integrate with the RossettaNet processes. Topology 4 supports such a
deployment, in which the business-to-business processes are sophisticated,
but the integration with internal applications is manageable using message
decomposition.

3.7 Topology 5: Managed business protocol and process

The Managed Business Protocol and Process topology combines the
services and broker approach of the Message Broker topology with
Chapter 3. Choosing the application topology 37

management of the business protocol between the two trading partners under
the umbrella of integrated B2B and internal business workflow.

Figure 13. Managed Business Protocol and Process

Shared messaging protocol definitions (which can be encoded using
executable XML "contracts" of "Trading Partner Agreements") mediate the
instantaneous business-to-business interactions, while agreed-upon
inter-business workflows govern the long-running transactions comprising
entire business process cycles, such as Submit RFQ - Receive Price
Quotation - Issue Purchase Order - Manage Fulfillment. Major steps in the
B2B workflow are executed by business applications that can implement a
micro workflow including all human and machine interactions needed to
complete such a major step in the business process (approve Purchase
Order, for example). This micro workflow then employs application integration
techniques, including message brokering and application adapters, to
execute its function.

As in Topology 4, the Gateway App node in this topology includes the
executable contract and services that turn the business-to-business protocol
message into the appropriate message to the backend applications. The
Business Process Rules node includes the definitions of the long-running
transactions (workflow) that trading partners have agreed upon and the micro
workflow needed to execute them. This node drives the execution of
transactions. The Decomp Rules node represents the message broker
message transformation and routing definitions that are supplied by the
developer based on the requirements and capabilities of the business
applications. App 1 and App 2 represent applications integrated using a
message-to-API adapter and direct messaging interaction, respectively.
38 Business-to-Business Integration Using MQSeries and MQSI

This topology supports multiple partners. For a specific partner, you can
employ multiple business-to-business protocols and processes. Similarly,
multiple internal business processes can be integrated with B2B workflow.

3.7.1 Business driver
This topology maximizes flexibility while providing assurance that
agreed-upon messaging protocols and workflows are being followed. Similar
to Topologies 3 and 4, it leverages the investment made in application
integration to extend beyond the enterprise. The use of both messaging
protocol and business process management, while implying additional
infrastructure, addresses business-to-business integration in virtually all its
aspects. It includes enforcing agreed-upon message choreographies,
message formats, communication and security protocols, and workflow steps.
This approach also provides an extendable environment to model and deploy
business-to-business processes. The flexibility gained by the business
process definition lets you replace handcrafted business applications using
predefined application building blocks knitted together through business
workflow scripts.

The automated business process management topology also cuts down the
application code required to execute business processes by separating the
workflow logic from the modules executing business transactions. Like
message broker approaches, it provides independence of implementation
and configuration but extends this independence further to the long-running
transactions managed by a workflow engine. In integrating business
processes, workflow management provides flexibility in modeling and
changing the sequence of actions, while message routing and transformation
provides the same kind of flexibility in modeling and changing the flow and
format of communications.

3.7.2 Considerations
The messaging protocol implemented by the gateway should be based on
standardized business-to-business protocols, such as Open Buying on the
Internet (OBI) and RossettaNet, a protocol for IT supply chain management.
Tools for business process modeling define the flow of action required to
execute a business process within and across organizations. A holistic
approach begins with a description of (1) the roles and responsibilities, (2)
the task flows and processes, and (3) the data definitions and documents
underlying the joint business processes. The approach then employs a set of
tools to transform these descriptions into a consistent and coherent set of
message definitions, workflow definitions, directory entries, database
schemas, and so on, which can be deployed onto a runtime architecture
Chapter 3. Choosing the application topology 39

representing a software implementation of these processes. This "ultimate"
approach to business-to-business interactions can be modified in the future
with increasing levels of depth and technical detail.

3.7.3 Examples
Suppose a computer manufacturer needs to manage its supply chain. Just
like the supplier in the example in Topology 4, this manufacturer decides to
use the RosettaNet standard to integrate with suppliers of IT technology. This
manufacturer recognizes that RosettaNet is a sophisticated B2B protocol and
will require a B2B gateway to map this protocol into interactions with internal
applications and processes. Because the computer manufacturer has a
number of significant business processes controlling production, parts
inventory, procurement, and other critical activities, the integration of the B2B
process flows with the company's private processes requires more than
simple application mapping. Long-running inter-business workflows must be
managed, and private processes must be woven into them. This requires the
Business Process Rules application, which is a superset of the B2B gateway
needed to handle the protocol. The computer manufacturer needs the full
sophistication of Topology 5.

3.8 Topologies summary

The aforementioned topologies represent some of the most commonly used
patterns. However, they are still only a subset of the possible combinations of
solutions that could be deployed.

The five Business-to-Business Integration application topologies were
presented in order of increasing flexibility and sophistication. Topologies 1
and 2 focus on basic transport and data interchange. Topology 3, which
builds on topology 2, employs application integration approaches that simplify
interactions involving multiple applications. Topologies 4 and 5 add
formalized management of business protocols and other elements of the
agreement between partners. They also address the problems of integrating
inter-business processes with the intra-business processes implemented
internally by each partner. As the topologies build on each other, their
capabilities and reliance on middleware increase, and they require less
application development effort.
40 Business-to-Business Integration Using MQSeries and MQSI

Chapter 4. Choosing the runtime topology

Once the application topology has been chosen, it is time to choose the
runtime topology. The runtime topology uses nodes to group functional and
operational components. The nodes are interconnected to solve a business
problem. An application topology leads to an underpinning runtime topology.

This chapter is divided into a three overall sections. The first section reviews
the concept of a runtime topology and its elements.

The second section describes each of the five runtime topologies. Each of
these topologies has two illustrative examples. Since there could be endless
combinations, only two are described to illustrate the overall concept.

The third section provides an introduction to each of the nodes types.

For each topology, we introduce the topology, provide a graphical
representation, describe its structure, and list some of its characteristics.

Every description of a variation, including the basic runtime topology, is
self-contained.

4.1 Runtime topologies

Topology is defined as the arrangement in which the nodes are connected to
each other. Runtime topology refers to the nodes that will be used to provide
runtime support for the solution.

The runtime topology uses Nodes to group functional requirements, with each
node representing a functional requirement. The nodes are interconnected to
solve the business problem. The runtime topology will closely map to the
physically-deployed solution. The node functionality is usually represented by
a software and/or hardware component.

A physical hardware component, such as a server, could perform more than
one function, thereby, representing, in the physical solution, more than one
node.

Each of the nodes used in the B2Bi runtime topologies is described in Section
4.2, “Topology 1: Document exchange” on page 42.
© Copyright IBM Corp. 2000 41

4.2 Topology 1: Document exchange

The Document runtime topology represents the current practice for EDI
interactions between businesses. Message interactions are mediated by a
VAN service provider that delivers messages to mail boxes

The VAN provider would, in this topology, provide all the translation software
and may also provide a translation service before the message is accepted
into the receiving application.

Figure 14. Application Topology 1: Runtime topology

Section 3.3, “Application Topology 1: Document exchange” on page 30,
describes, in some depth, the characteristics of this application topology.
Variation 1, described in Section 4.2.1, “Illustrative Example 1: Document
runtime topology” on page 42, represents the typical VAN solution. Variation 2
describes an emerging alternative, sending EDI documents over the Internet.

4.2.1 Illustrative Example 1: Document runtime topology
Basically, the VAN-Document runtime topology represents a networking
service that leases communication lines to subscribers and adds extra
services or capability, such as security, error detection, guaranteed message
delivery, and a message buffer between companies using EDI as a document
exchange protocol.

The goal of Electronic Data Interchange (or EDI) is to provide an electronic
transmission medium for the delivery of a standard business document in a
42 Business-to-Business Integration Using MQSeries and MQSI

predefined format from one company’s application to its trading partners’s
application.

Typically, the VAN is implemented by a third company, which provides the
physical communication and services. In this way, the companies do not need
to buy their own physical communication infrastructure. Keep in mind that this
was prior to the Internet becoming a popular network infrastructure.

This runtime topology represent the current practice in business-to-business
integration used principally by large corporations.

Structure
Figure 15 depicts the VAN-Document runtime topology for the document
exchange model, which represents the current practice for EDI interactions
between businesses. Message interactions are mediated by a VAN service
provider that delivers messages to mail boxes. Both companies’ applications
should use the EDI translation package and the VAN access point to translate
and transmit their traditional business documents in EDI formats. Typically,
these nodes are proprietary software installed into the organization system by
the VAN service provider.

Figure 15. Runtime topology: VAN-Document

Characteristics
Companies A and B have subscribed to a VAN. Users of a VAN send
messages to and retrieve messages from a mailbox. This service of the VAN

Company A
Company B

Internal Network

V
A

N
ac

ce
ss

p
oi

n
t

V
A

N
ac

ce
ss

p
oi

n
t

EDI
Translator
Package

Existing
Application
and Data

Internal Network

EDI
Translator
Package

Existing
Application
and Data

Managed
Network

VAN

VAN
mailbox

VAN
mailbox
Chapter 4. Choosing the runtime topology 43

holds messages until the receiver requests them. The VAN access point
represents the networking endpoint of a VAN. It is the company’s connection
to the VAN. As its simplest form, an EDI translator converts EDI transaction
sets (EDI messages) to and from flat files of a format needed by an
enterprise’s applications.

4.2.2 Illustrative Example 2: EDI - Internet Runtime topology
The most appealing benefit of using the Internet for EDI is the low cost. The
VAN providers charge a great deal of money for their services; furthermore,
the charge is, at times, relative to the number of transactions made by the
company. An Internet Service Provider (ISP) is usually much less expensive
than the VAN provider and does not charge by the transaction.

This makes it possible for small and medium companies to gain access to
EDI technology and work with large corporations that use EDI with a VAN at a
reasonable price. Consequently, the number of potential new users for these
systems could increase significantly.

This variant defines an intermediate tier between the Internet world and the
VAN environment to allow EDI Documents to be exchanged between
companies that use the Internet and companies that use a VAN.

A technical paper from the IBM Institute of Advanced Commerce, titled A
Practical Approach to Web-Based Internet EDI, is available at
http://www.ibm.com/iac/papers/icdcsws99/index.html and introduces a
Web-based EDI model.

Structure
Figure 16 on page 45 shows the EDI - Internet runtime topology and its
nodes. The components between the Internet cloud and the VAN cloud are
the gateway nodes that enable communication between Internet and the
VAN.

The figure does not show the company that has direct access to a VAN, which
would appear on the left of the figure. This part is similar to variation 1 (see
Figure 15).

When an existing application in Company B need sends a document to
another company connected to the VAN EDI system, it uses the EDI/MIME
translator to map the application data to the EDI document structure. The
document is then packaged in a MIME message and sent to an SMTP
(Simple Mail Transfer Protocol) server.
44 Business-to-Business Integration Using MQSeries and MQSI

The SMTP Server in Company B sends the message to the SMTP server at
the VAN provider. Both SMTP Servers use the Directory and Security
services to encrypt the message as well as to document and authenticate the
message sender.

The Internet Gateway node retrieves messages stored in the SMTP Server
and transform the MIME message into an EDI message, it then sends it to the
corresponding VAN mailbox, using the VAN access point.

Any document stored in the VAN mailbox of company B is retrieved by the
Internet Gateway and sent to the SMTP Server to be delivered to Company
B.

Figure 16. Runtime topology: EDI - Internet

Characteristics
The following list contains the principal characteristics of this runtime
topology:

• The EDI software should provide function equivalent to the EDI translator
package described in Variation 1. Here, the principal difference is that the
transport layer uses the SMTP/MIME format.

• The SMTP service could be provided by an ISP Company (the same VAN
service provider could provide this service). Consequently, Company B
would not require an SMTP server, which can be expensive for small
companies. It could just use the e-mail server provided by the ISP
company.

• In the Managed Network systems, the VAN access point is protected
behind the Domain Firewall to prevent unwanted access.

VAN

Company B

Existing
Application
and Data

DMZ Internal Network

P
ro

to
co

lF
ire

w
al

l

D
om

ai
n

F
ire

w
al

l

SMTP
Server

P
ro

to
co

lF
ire

w
al

l

Internet
Gateway

V
A

N
ac

ce
ss

po
in

t
Managed Network

VAN
mailbox

Directory
and Security

services

EDI/MIME
Translator

DMZ

Directory
and Security

services

SMTP
Server

D
om

ai
n

F
ire

w
al

l

Internet
Chapter 4. Choosing the runtime topology 45

• The Internet Gateway does not worry about the stored and forward
problem; this is resolved by the SMTP server and the VAN mailbox node.
It only transforms the inbound and outbound messages into the
corresponding format (VAN format to SMTP/MIME format or vice versa).

4.2.3 Summary
This section describes how the VAN - Document runtime topology defines a
communication standard based on traditional EDI Document formats that is
used by a great number of large companies worldwide.

Variation 2, EDI - Internet describes a low-cost solution that allows small and
medium companies to have access to the VAN-Document using the Internet
as a medium to transmit the documents and SMTP/MIME protocols to wrap
and route the Documents to the VAN environment.

4.3 Topology 2 - Direct with adapter/bridge

This topology describes a direct integration without intermediate tiers. This is
also called point-to-point integration. Non-integrated applications are adapted
to understand mutually agreed upon messages; this allows the export of the
services of these applications across organizational boundaries. Once
exported, the services of these applications become reusable assets that can
be much more effectively leveraged to meet business needs.

Two categories of integration can be identified: Front-end and back-end.
Front-end integrations deal with user interfaces and are typically used in
User-to-Business situations. In B2B situations, however, the integration is
usually performed on the application’s back-end. The effort needed to
develop a back-end adapter is influenced heavily by the existing coupling
between the applications front and back ends.

The partner’s application invokes the services of the application through the
adapter interface. The adapter doesn’t know of the partner’s application, and
in a non-intrusive adapter design, the application doesn’t know of the adapter.

Figure 17 on page 47 makes some assumptions. The first is that there is a
symmetrical topology that both partners select to use a message queue. This
is likely but may not necessarily happen in practice. Second, the use of a
queue manager implies shared middleware, which, again, may not
necessarily be done in practice. The protocol running over the
communications link would be determined by the latter selections.
46 Business-to-Business Integration Using MQSeries and MQSI

Figure 17. Application Topology 2 - Runtime topology

4.3.1 Illustrative Example 1- Shared middleware
The middleware adapter adapts the backend of an existing application to an
interface defined by an asynchronous Message Queuing (MQ) middleware
product and implements mutually agreed upon messages that can be
exchanged with partners that have deployed compatible middleware.
Chapter 4. Choosing the runtime topology 47

Structure
This variation is represented using the following assumptions: The shared
middleware is configured as server-to-server. Both parties implement MQ
middleware servers behind their firewalls; so, there are no nodes inside the
DMZ. The firewalls have to be configured to allow the traversal of the MQ
message channel. Alternatively, you could implement MQ Internet Passthru,
which acts as a proxy and wrappers the MQ transmissions in HTTP, sending it
through standard ports in the firewall. See Appendix B, “MQSeries Internet
pass-thru” on page 307.

An alternative configuration could be a client-server one, which uses a single
server and should allow the traversal of the MQ client channel through the
firewalls.

Another assumption is that security is implemented on the network level by
using a Virtual Private Networking (VPN) protocol, such as the Secure
Internet Protocol (IPSec).

Adapters can also integrate applications with synchronous middleware
products, such as object request brokers (CORBA/DCOM) or Distributed
Computing Environment (DCE). Although the use of a synchronous
adapter is not common in a B2B topology, it does make sense to leverage
Enterprise Application Integration (EAI) investments made in such
synchronous middleware, for example, using the Internet Inter ORB
Protocol (IIOP) to integrate two CORBA implementations.

Synchronous middleware
48 Business-to-Business Integration Using MQSeries and MQSI

Figure 18. Illustrative example of topology two using shared middleware

4.3.2 Illustrative Example 2- Open standards
Although the shared middleware variation can provide a short term solution to
meet interconnectivity requirements, in the long run, a solution that supports
heterogeneous middleware is needed. One of the problems with current
middleware technologies is that they often enforce the use of proprietary or
uncommon protocols. Internet access that is being controlled by firewalls and
filtering routers may need to be adapted to support these protocols. Only the
most common protocols, such as HTTP and SMTP, are able to traverse
typical firewall and router configurations.

The solution to this problem is to include an adapter that transforms the
proprietary middleware protocol into HTTP-based protocols that are able to
traverse typical firewall and router configurations. Such adapters will
eventually become part of the middleware packages.

Several technologies address this issue by transforming internal middleware
protocols to XML- and HTTP-based protocols that are able to traverse
common firewall and router configurations. One of those technologies is the
Simple Object Access Protocol (SOAP). Others addressing the same problem
are XML-RPC, WDDX, and WIDL.

Internet

MQ
Server

DMZ

MQ
Server

Application
Node

MQ
Adapter

Secure
Internet
Protocol
(IPSec)

DMZ Internal networkOutside worldInternal network

MQ
Client

Channel

P
ro

to
co

lF
ire

w
al

l

P
ro

to
co

lF
ire

w
al

l

D
om

ai
n

F
ire

w
al

l

D
om

ai
n

F
ire

w
al

l

Application
Node

MQ
Adapter

MQ
Client

Channel

MQ
Message
Channel

MQ
Message
Channel
Chapter 4. Choosing the runtime topology 49

Structure
Figure 19 shows a topology using open standards.

Figure 19. Illustrative example of topology two using open standards

4.3.3 Summary
The direct topology integrates applications without an intermediate tier. The
open standards adapter provides an interface using common Internet
protocols that will, typically, be able to traverse firewall and router
configurations. The middleware adapter, however, adapts to middleware
technology that is to be shared with the partner. Usually, this does not
automatically traverse common firewall and router configurations and
requires special care. Often, the use of middleware technology will increase
the need for an intermediate tier, a broker, which is covered in topology 3.

SOAP is a protocol specification for invoking methods on servers, services,
components, and objects. SOAP codifies the existing practice of using XML
and HTTP as a method invocation mechanism. The SOAP specification
mandates a small number of HTTP headers that facilitate firewall/proxy
filtering. The SOAP specification also mandates an XML vocabulary that is
used to represent method parameters, return values, and exceptions.

SOAP

Internet

Application
Node

DMZ

MQ
Server

Application
Node

MQ
Adapter

DMZ Internal networkOutside worldInternal network

HTTPS

MQ
Client

Channel

P
ro

to
co

lF
ire

w
al

l

P
ro

to
co

lF
ire

w
al

l

D
om

ai
n

F
ire

w
al

l

D
om

ai
n

F
ire

w
al

l

HTTPS
Adapter

MQ
Client

Channel
50 Business-to-Business Integration Using MQSeries and MQSI

4.4 Topology 3 - Message broker

This topology describes an integration based on an intermediate tier, the
message broker. Applications exchange messages with this broker only. The
broker performs the necessary routing and transformation for each message in
accordance with a predefined message flow (set of processing steps). A broker
is often being deployed as the result of Enterprise Application Integration
(EAI) investments. Figure 20 makes some assumptions. First, there is a
symmetrical topology both partners select to use a message queue. This is
likely but may not necessarily happen in practice. Second, the use of a queue
manager implies shared middleware, which, again, may not necessarily be
done in practice. The protocol running over the communications link would be
determined by the latter selections.

Figure 20. Application Topology 3: Runtime topology
Chapter 4. Choosing the runtime topology 51

4.4.1 Illustrative Example 1- Shared middleware
This base runtime topology uses a message broker to integrate various
legacy applications by providing message queuing, translation, and intelligent
routing. The message broker transforms the mutually agreed upon messages
exchanged across organizational boundaries into the native messages of the
applications.

4.4.1.1 Structure
This topology is almost identical to the shared middleware variant of topology
2. This also assumes a server-to-server configuration and VPN-based
security. The only differences are that the MQ server is now been enhanced
with Message Broker functionality, and multiple back-end applications are
taken into consideration. Figure 21 shows topology 3 using shared
middleware.

Figure 21. Illustrative example of Topology 3 using shared middleware

4.4.2 Illustrative Example 2 - Open standards
The motive for a variation based on open standards is identical to the
previous topology: Seamless traversal of the Internet infrastructure formed by
firewall and router configurations.

4.4.2.1 Structure
This topology is almost identical to the open standards variant of topology 2.
The messaging middleware is being front-ended with an open standards
adapter. As with the shared middleware variation of this topology, the

Internet

MQ
Server

DMZ

Message
Broker

Application
Node

MQ
Adapter Application

Node
MQ

Adapter Application
Node

MQ
Adapter

Secure
Internet
Protocol
(IPSec)

DMZ Internal networkOutside worldInternal network

MQ
Message
Channel

MQ
Client

Channel

P
ro

to
co

lF
ire

w
al

l

P
ro

to
co

lF
ire

w
al

l

D
om

ai
n

F
ire

w
al

l

D
om

ai
n

F
ire

w
al

l

52 Business-to-Business Integration Using MQSeries and MQSI

message queuing middleware is enhanced by a message broker, and
multiple back-end applications are taken into consideration. Figure 22 shows
topology 3 using open standards.

Figure 22. Illustrative example of topology 3 using open standards

4.4.3 Summary
The message broker topology leverages EAI investments made in
middleware technology. Legacy applications are adapted to this middleware
using the shared middleware adapters from topology 2. The message broker
itself can also be adapted to support standard protocols, which are often
required in a B2B scenario, by using an open standards adapter, or Internet
gateway.

4.5 An introduction to the node types

The runtime topologies will be shown in graphical form in the following
sections. Each topology will consist of several nodes describing the function
represented on that node. Most topologies will consist of a core set of
common nodes with the addition of one or more nodes unique to that
topology. To understand the runtime topologies, you will need to review the
following node definitions.

4.5.1 Extranet
An extranet is a private network that uses the Internet protocols and the
public telecommunication system to securely share part of a business'

Internet

Application
Node

DMZ

Message
Broker

Application
Node

MQ
Adapter Application

Node
MQ

Adapter Application
Node

MQ
Adapter

DMZ Internal networkOutside worldInternal network

HTTPS

MQ
Client

Channel

P
ro

to
co

lF
ire

w
al

l

P
ro

to
co

lF
ire

w
al

l

D
om

ai
n

F
ir

ew
a

ll

D
o

m
ai

n
F

ir
ew

a
ll

HTTPS
Adapter

MQ
Client

Channel
Chapter 4. Choosing the runtime topology 53

information or operations with suppliers, vendors, partners, customers, or
other businesses. An extranet can be viewed as part of a company's intranet
that is extended to users outside the company. It has also been described as
a "state of mind" in which the Internet is perceived as a way of doing business
with other companies as well as selling products to customers. The same
benefits that HTML, HTTP, SMTP, and other Internet technologies have
brought to the Internet and corporate intranets now seem designed to
accelerate business-to-business integration.

4.5.2 Intranet
An intranet is a private network that is contained within an enterprise. It may
consist of many interlinked local area networks and also use leased lines in
the wide area network. Typically, an intranet includes connections through
one or more gateway computers to the outside Internet. The main purpose of
an intranet is to share company information and computing resources among
employees. An intranet can also be used to facilitate working in groups and
for teleconferences.

4.5.3 DMZ
In computer networks, a DMZ (demilitarized zone) is a computer host or small
network inserted as a "neutral zone" between a company's private network
and the outside public network. It prevents outside users from getting direct
access to a server that has company data. A DMZ is an optional and more
secure approach to a firewall and effectively acts as a proxy server as well.

4.5.4 EDI translation package
In its simplest form, an Electronic Data Interchange (EDI) translator converts
EDI transaction sets (EDI messages) to and from flat files into a usable
format for an enterprise’s applications. The translator can read batches of
messages from a VAN mail box and process them. More sophisticated
translation packages convert the message to a request to a transaction
processing system.

The format of this message must correspond to a standard implemented by
the VAN provider. the most popular standards are ANSI X.12 defined by the
American National Institute of Standards or ANSI sponsored by the United
States government (see www.ansi.org) and EDI for Administration, Commerce
and Transport (EDIFACT) sponsored by the United Nation (www.edifact.org).

An EDI transaction involves the transmission of a business document in the
form of a transaction set that is prepared in accordance with an ANSI X12 or
EDIFACT standard for that document. In other words, a transaction set is the
54 Business-to-Business Integration Using MQSeries and MQSI

electronic equivalent of a document, such as a Purchase Order or Request
for Quotation, enclosed in an "electronic envelope”. Just as you can enclose
several paper letters in one envelope, you can send several transaction sets
(or "Functional Group") enclosed in one electronic envelope. There are
currently almost two hundred transaction sets supporting the business areas
of communications and controls, product data, finance, government,
materials management, transportation, purchasing, industry standards
transition, distribution and warehousing, and insurance.

Each transaction set contains Data Segments and Data Elements. Data
Elements are basic information units, such as price, product code, or attribute
(size and color, for example). A Data Segment is the electronic equivalent of
a line label or line name on a business form.

4.5.5 VAN
A VAN is a networking service that leases communication lines to subscribers
and adds extra services or capabilities, such as security, error detection,
guaranteed message delivery, and a message buffer.

Until recently, the VAN was the only way to take advantage of EDI. A VAN
provider typically leased lines from local telecommunications providers, often
enhancing them with elements, such as error detection. These lines would
then be used to connect trading partners. In addition to carrying the cost of
the connection, companies would have to install the VAN’s proprietary
software to translate and transmit their traditional business documents in EDI
formats.

4.5.6 VAN access point
The Value Added Network (VAN) access point is a company's connection to
the VAN and represents the networking endpoint of a VAN.

The VAN access point resolves connection and document transmission
between enterprise applications and the VAN provider’s applications.

4.5.7 VAN mailbox
Users of a VAN send messages to and retrieve messages from a Mailbox.
This service of the VAN holds messages until the receiver requests them.

4.5.8 EDI/MIME translator
This node provides the same services given by the traditional EDI translator
package (see the EDI translation package definition in Section 4.5.4, “EDI
Chapter 4. Choosing the runtime topology 55

translation package” on page 54), that is, it maps the existing application data
format to the EDI Format.

However, in this node, the transport layer is changed by the MIME format
replacing the transport layer associated to the VAN.

The Multi-Purpose Internet Mail Extensions (MIME) are an extension of the
original Internet e-mail protocol that lets people use the protocol to exchange
different kinds of data files on the Internet, such as audio, video, images,
application programs, and others as well as the ASCII handled in the original
protocol, the Simple Mail Transport Protocol (SMTP).

Using MIME provides a generic mechanism for sending any EDI object
explicitly agreed to by the trading partners. The Internet Engineering Task
Force or IETF (see the Web site, www.eitf.org) defines a draft with the
specification for the “MIME Encapsulation of EDI Objects” or RFC1767
Document.

Typically, EDI transactions include sensitive data; so, transmission often
raises concerns about authentication, data integrity, privacy, access control,
and non-repudiation. Currently, the IETF is working in a project to define a
standard for the “MIME-based Secure EDI” or RFC2026 Document.

4.5.9 SMTP server
This sever implements the most popular and traditional electronic mail
protocol, the Simple Mail Transport Protocol (SMTP). This must include (as
the majority of the actual SMTP server) support for MIME message formats to
be used for EDI document encapsulation.

4.5.10 Internet gateway
This node has a task similar to that of the EDI translator node in Variation 1
(see Section 4.5.4, “EDI translation package” on page 54), but, for this node,
the information is stored in an SMTP Server from which the Internet Gateway
has to retrieve messages and transform them to the specific VAN format.
Then, it uses the VAN access point to deliver the messages to the correspond
VAN mailbox.

4.5.11 Directory and security services
This node supplies information on the location, capabilities, and various
attributes (including user ID/password pairs and certificates) of resources and
users known to this Web application system. The node may supply
information for various security services (authentication and authorization)
56 Business-to-Business Integration Using MQSeries and MQSI

and may also perform the actual security processing, for example, verifying
certificates. The authentication in most current designs validates the access
to the Web application server part of the Web server, but it can also
authenticate for access to the database server.

4.5.11.1 LDAP
Lightweight Directory Access Protocol (LDAP) refers to the protocol that is
used to communicate from a calling program and a Directory node.
Information is kept on the LDAP-based directory node about such topics as
people or services or both.

For example, the directory can store information needed to identify registered
partners (referred to as authentication). It can also be used to store
information about which functions partners are allowed to perform after being
identified (this is referred to as authorization).

4.5.11.2 Security
This node is a logical representation of the functions needed to manage the
security of a system. It works in conjunction with the Directory Node. Think of
the directory as the repository that holds the following:

• Data about security, such as user IDs and associated passwords or digital
certificates (used to authenticate a user).

• Lists of services that a user is authorized to perform (authorization or
access control)

Think of the security node as holding the set of components that define the
decisions to be made. The node might perform the actual security
processing. For example, verify certificates or return a list of the roles an
authenticated user is allowed to perform. The authentication in most current
designs validates the access to the Web Application Server, but it can also
authenticate access to the Database Server.

The security runtime for Web Application Servers typically consists of two
core components:

• A security plug-in attached to the Web server that issues “401” challenges
for user ID and password back to a Web browser and subsequently makes
security decisions when a Web address for a protected resource (HTML
file, Servlet) is entered.

• A security collaborator attached to the Web application server that makes
security decisions on method calls on resources hosted by the application
server.
Chapter 4. Choosing the runtime topology 57

These runtime components collaborate with the security node to make
decisions about authentication, authorization, and delegation.

The components that implement security are distributed throughout the
network. It is unlikely that a node in the system does not include some
components implementing an aspect of security. The Security Node
represents the centralized services that support security on other nodes and
to which security decisions are typically delegated.

The treatment of security combines network design for security with a
particular emphasis on achieving a secure implementation of Internet and
intranet network access. Security is built using these security services:

• Confidentiality provides privacy by protecting sensitive information from
unauthorized access.

• Identification and authentication identifies entities, verifying their identities
and assuring individual accountability.

• Access control provides mechanisms for granting access to authorized
and authenticated users only.

• Data integrity provides detection of the unauthorized modification of data.
• Nonrepudiation assures that you can prove any transaction that takes

place (also called accountability).
• Isolation provides protection by isolating a resource and, therefore,

restricting potential access to it.
• Audit monitors and reviews security-relevant events.

Together, these services provide end-to-end security by integrating security
facilities across heterogeneous environments.

4.5.12 Queue manager
Messages are sent to and received from queues that are managed by a
queue manager. A queue manager provides a persistent message store and
additional services including transaction support and routing of messages to
the proper queue. The receiver of a message can be an adapter that
transforms the message data into parameters to use on method or procedure
calls to a non-queue-based application. Similarly, application adapters can
convert information returned from a procedure or method call into a message
that is then sent back to the originator of the request message.

Three key facts about Messaging and Queuing differentiate it from other
communication styles:

• Communicating programs can run at different times.

• There are no constraints on application structure.
58 Business-to-Business Integration Using MQSeries and MQSI

• Programs are insulated from network complexities.

MQSeries from IBM is currently the most popular queue manager.

4.5.13 Virtual Private Network (VPN)
A Virtual Private Network (VPN) is an extension of an enterprise’s private
intranet across the Internet or other public network. It creates a secure
private “tunnel” through the Internet to the other partner. It can be placed
behind the domain firewall, although you can also create configurations that
access the VPN from within the DMZ.

4.5.14 Protocol domain firewall nodes
A firewall is a hardware/software system that manages the flow of information
between the Internet and an organization's private network. Firewalls can
prevent unauthorized Internet users from accessing private networks
connected to the Internet, especially intranets, and can block some virus
attacks – as long as those viruses are coming from the Internet. A firewall can
separate two or more parts of a local network to control data exchange
between departments. Components of firewalls include filters or screens,
each of which controls transmission of certain classes of traffic. Firewalls
provide the first line of defense for protecting private information, but
comprehensive security systems combine firewalls with encryption and other
complementary services, such as content filtering and intrusion detection.
Firewalls control access from a less trusted network to a more trusted
network. Traditional implementations of firewall services include:

• Screening routers (the Protocol Firewall)

• Application gateways (The Domain Firewall)

A pair of Firewall Nodes provides increasing levels of protection at the
expense of increasing computing resource requirements. The Domain
Firewall is typically implemented as a dedicated server Node. The Protocol
Firewall is typically implemented as an IP Router.

4.5.15 Public Key Infrastructure (PKI)
PKI is a collection of standards-based technologies and commercial services
supporting the secure interaction of two unrelated entities (for example, a
public user and a corporation) over the Internet. In the context of the
topologies defined in this redbook, PKI supports the authentication of the
server to the browser client, using the SSL protocol.
Chapter 4. Choosing the runtime topology 59

4.5.16 Domain Name Service (DNS) node
The domain name server (DNS) node assists in determining the physical
network address associated with the symbolic address (Web address) of the
requested information. The DNS on the node diagram is that of the Internet
service provider (ISP), although DNS is implemented on the accessed site
also.

4.5.17 Existing applications and data node
Existing applications are run and maintained on nodes that are installed in the
internal network. These applications provide for business logic that uses data
maintained in the internal network. The number and topology of these
existing applications and data nodes is dependent on the particular
configuration used by these legacy systems.

4.5.18 Message broker
A message broker is built on a queue manager and routes messages to
applications. A message broker can provide real-time, intelligent, rules-based
message routing and dynamic message-content transformation and
formatting. In this runtime, the message broker allows multiple applications to
implement a published service with the broker providing application
integration.

A Message Broker acts as a way station, or a hub, for messages passing
between MQ applications. Once messages have reached the Message Broker,
they can then be processed, depending on the configuration of the Message
Broker and the contents of the message. Within the Message Broker, the
individual functions are assigned to a collection of interconnected Nodes
(message flow) where the processing and transformation activities can take
place as required.

Another key component of a Message Broker is the provision of a framework to
allow vendors and other partners and customers to write their own processing
nodes. Other components include an extended Publish/Subscribe facility,
message dictionaries, and message warehousing.

4.5.19 HTTPS adapter for MQ middleware
When integrating an internal MQ infrastructure implemented using packaged
software, such as MQSeries, an HTTP adapter or Internet gateway, such as
the MQSeries Internet Gateway for integration with MQSeries, will often be
available.
60 Business-to-Business Integration Using MQSeries and MQSI

4.5.20 MQ server
The MQ server node contains the queue manager that is responsible for
implementing the message queuing middleware. It manages the information
flow between the adapters (the MQ clients), itself, and other servers.

4.5.21 MQ adapter
The adapter is a piece of software that moves data between a message on a
queue and an application or environment. Adapters handle data inbound to
and outbound from the application or environment. Adapters are also known
as bridges, links, and connectors.

The adapter connects the application to the MQ middleware. This connection
needs to be very robust, particularly if we are going to provide updates to the
application and need to ensure that they occur. Ideally, the adapter should
allow for transactional updates of the application where the request passed
by the MQ middleware is consumed as part of the transaction. If we get a
failure, the request message is not consumed, and we can retry.

To a great extent, the adapter depends on the application that is being
integrated. When integrating with applications implemented in environments,
such as CICS or SAP R/3, and using common middleware software, such as
MQSeries, adapters will be commonly available. For example, MQSeries for
OS/390 supports integration with a CICS system or the MQSeries link for R/3
for integration with SAP.

For custom applications not implemented using packaged software, the
adapter will require custom development. Products, such as MQSeries
Adapter Offering, can assist in this process.

4.5.22 Web application server
A Web application server node is an application server that includes an HTTP
server (also known as a Web server) and is typically designed for access by
HTTP clients and to host both presentation and business logic.

The Web application server node is a functional extension of the
informational (publishing-based) Web server. It provides the technology
platform and contains the components to support access to both public and
user-specific information by users employing Web browser technology. For
the latter, the node provides robust services to allow users to communicate
with shared applications and databases. In this way, it acts as an interface to
business functions, such as banking, lending, and HR systems.
Chapter 4. Choosing the runtime topology 61

This node would be provided by the company, on company premises, or
hosted inside the enterprise network and inside a Demilitarized Zone (DMZ)
for security reasons. In most cases, access to this server would be in secure
mode, using services, such as SSL or IPSEC.

In the simplest design, this node can provide the management of hypermedia
documents and diverse application functions. For more complex applications
or those demanding stronger security, it is recommended that the application
be deployed on a separate Web application server node inside the internal
network.

Data that may be contained on the node includes the following:

• HTML text pages, images, and multimedia content to be downloaded to
the client browser

• Java Server Pages

• Application program libraries, for example, Java applets for dynamic
downloading to client workstations

4.5.23 Database server node
This node's function is to provide a persistent data storage and retrieval
service in support of the user-to-business transactional interaction. The data
stored is relevant to the specific business interaction, for example, bank
balance, insurance information, current purchase by user, and so on.

It is important to note that the mode of database access is perhaps the most
important factor determining the performance of this Web application in all but
the simplest cases. The recommended approach is to collapse the database
accesses into a single call or very few calls. This can be achieved via coding
and invoking stored procedure calls on the database.

4.5.24 Load balancer node
The load balancer provides horizontal scalability by dispatching HTTP
requests among several, identically-configured Web servers.

4.5.25 Web server redirector node
In order to separate the Web server from the application server, a so-called
Web server redirector node (or just redirector) is introduced. The Web server
redirector is used in conjunction with a Web server. The Web server serves
HTTP pages, and the redirector forwards servlet and JSP requests to the
application servers. The advantage of using a redirector is that you can move
the application server behind the domain firewall into the secure network
62 Business-to-Business Integration Using MQSeries and MQSI

where it is more protected than within the DMZ. Static pages can be served
from the DMZ by this node.

The redirector can be implemented, for example, by either a reverse proxy
server or by a Web server plug-in, such as the servlet redirector function of
IBM WebSphere Application Server Advanced Edition.

4.5.26 Application server node
This node provides the infrastructure for application logic and may be part of
a Web application server. It is capable of running both presentation and
business logic but, generally, does not serve HTTP requests. When used with
a Web server redirector, the application server node will run both presentation
and business logic. In other situations, it may be used for business logic only.

4.5.27 Other open standards adapters
Another possibility is to integrate the legacy applications directly to the
Internet without the MQ middleware. When integrating with applications
implemented in environments, such as CICS or SAP R/3, Internet adapter
software is usually available off-the-shelf. For example the CICS Transaction
Gateway for integration with a CICS system, or the SAP Internet Business
Framework for integration with a SAP R/3 system. For custom applications
not implemented in such environments, the adapted will usually require
custom development as well.

4.5.28 Communication Interface
The communication interface node represents the technology concepts that
make possible communication between the parties systems. To establish
communication between the parties, they must agree on the protocol used for
it. In this context, is recommended to use a no-property protocol, such as
HTTP (or HTTPS), SMTP, or EDIVAN. In some case, we can use proprietary
protocols, such as the ones implemented with IBM MQSeries product
(message channels).

Specifically, for this runtime topology, we are going to use the HTTP protocol
to implement communication between the parties. This protocol is extended
worldwide and is supported by a great number of software companies.

There is a specific technology for this protocol, called the Web application
server. This is an application server that includes an HTTP server (also
known as a Web server) and is typically designed for access by HTTP clients
and to host both presentation and business logic.
Chapter 4. Choosing the runtime topology 63

The Web application server node is a functional extension of the
informational (publishing-based) Web server. It provides the technology
platform and contains the components to support access to both public and
user-specific information by users employing Web browser technology. For
the latter, the node provides robust services to allow users to communicate
with shared applications and databases. In this way, it acts as an interface to
business functions, such as banking, lending, and HR systems.

This node would be provided by the company, on company premises, or
hosted inside the enterprise network and inside a demilitarized zone for
security reasons. In most cases, access to this server would be in secure
mode, using services, such as SSL or IPSEC.

In the simplest design, this node can provide the management of hypermedia
documents and diverse application functions. For more complex applications
or those demanding stronger security, it is recommended that the application
be deployed on a separate Web application server node inside the internal
network.

Data that may be contained on the node includes:

• HTML text pages, images, multimedia content to be downloaded to the
client browser

• Java Server Pages

• Application program libraries, such as Java applets for dynamic
downloading to client workstations.

4.5.29 Adapter node
This node is the nexus between the legacy application and queue manager
node. It must implement a gateway between the specific communication
mode of the application and the queue manager systems. The
communication mode depends on the specific characteristics of the
application.

For more detail about this node, see Section 3.4 “Topology 2: Direct with
adapter/bridge” .

4.6 Summary

The runtime topologies covered here as well as the application topologies
described in the previous chapter are made up of atomic elements and
represent the 80 percent of applications that are made up of a common set of
elements. Over time, this set will evolve and new patterns may emerge while
64 Business-to-Business Integration Using MQSeries and MQSI

others may fall away. The atomic elements however may repeat themselves
in the new patterns.

The rest of this book will focus on patterns two and three. Patterns four and
five build on patterns two and three and add workflow and long running
conversations. These patterns are not discussed further in this book.
Chapter 4. Choosing the runtime topology 65

66 Business-to-Business Integration Using MQSeries and MQSI

Chapter 5. Technology options

This chapter classifies the technologies according to the IBM Application
Framework for e-business. For each category, there is a descriptive section
followed by a table identifying some representative products and the
technologies they support.

In any category, the particular selections and details should be treated as
being for illustrative purposes only. Since this is a rapidly-changing area,
details get out-of-date very quickly. The reader should consult the related
Web-site or product literature from the relevant vendors.

5.1 Introduction

Now that you have decided which application topology and runtime topology
to use to put your business processes on-line, we will discuss the technology
options for the IBM Application Framework for e-business platform. An
introduction can be found at the following Web site:
http://www-4.ibm.com/software/ebusiness/arch_overview.html

The Application Framework for e-business addresses many important issues
in the development of e-business solutions. The Framework is prescriptive; it
maximizes the use of Internet and other open standards and protocols versus
proprietary technologies. However, development in the context of the
Framework still leaves a choice of technologies, such as the Internet and
open systems, which can dramatically affect the performance, robustness,
and usability of a solution. After reading the following sections, you should be
able to better understand the many choices of client and server technologies.
At the end of each subsection, you will find recommendations regarding
specific integration technologies and their use in relationship to the IBM
Application Framework for e-business.

5.2 Classifying technologies

We have chosen to use the IBM Application Framework for e-business as the
framework for this book. This section describes the framework categories and
the key influencing factors. Figure 23 on page 68 is a building block diagram
that represents the elements of a B2BI solution.
© Copyright IBM Corp. 2000 67

Figure 23. Elements of a B2BI architecture

Admittedly, this is a simple diagram. Real B2BI solutions involve far more
detail than is implied here. However, the value of using such a diagram
remains. By using the building blocks in each section, we keep your focus on
the basic issues of the solution design.

The building block elements map to the elements described in the previous
chapters. The mapping is not exact since the internal communications,
external communication, process coordination, and systems management
functional elements are contained in a number of physical building block
elements.

In our diagram above, we describe the application integration layer as
possibly containing the connectors between the Web Application Server and
the Enterprise Data and Applications. There are two points of view: One is
that this layer should provide a tier of communication. That is, all applications
should communicate with this tier, which, in turn, communicates with the next
tier. A solution that directly connects one application to another without using
the Application Integration tier is viewed as a point-to-point solution.

In Figure 23 on page 68, there are two options in the enterprise: One is
through the Web server or some other open standard, and the other is a
direct connection into the enterprises application integration layer. The
second option implies a closer relationship and, possibly, the use of some
shared middleware standard.

The diagram is also broadly divided into three parts: The partner tier, the
intermediate tier, and the corporate tier.

Security

System Management

Partner Network

Server Appl.
Logic Connectors

Enterprise
Data and

Application

Application Integration
(Integration Services)

Partner Tier Intermediate Tier Corporate Tier
68 Business-to-Business Integration Using MQSeries and MQSI

The partner tier, addresses the technology choices for the partner. The
Corporate Tier contains all the legacy connectivity. The Intermediate Tier
addresses the B2B and integration technologies as well as the Web
application server components of an e-business application.

Usually, one of the three tiers dominates and dictates the technology choices
made on the other tiers.

5.2.1 Framework categories
The IBM Application Framework for e-business provides the following set of
categories within which the technologies can be classified:

Partner (Clients) A standard e-business environment is based on the Web
browser model to enable universal access to Framework applications and
on-demand delivery of application components. The B2Bi model differs only
in the sense that there is no user; instead, there are applications that require
universal access. The supported standards include HTML, Dynamic HTML,
XML, and Java applets.

Network Infrastructure provides a platform for the entire e-business
environment and includes TCP/IP and network services, security services,
directory services, and file and print services. The supported standards
include TCP/IP, CDSA, SSL, IPsec, x.509v3 certificates, LDAP, AFS/DFS,
and IPP.

Application Server Software provides the core function for developing and
supporting the e-business application logic. This includes HTTP servers, mail
and community services, groupware services, database services, transaction
services, and messaging services. The supported standards are SMTP,
POP3, IMAP4, IRC, NNTP, FTP, iCalendar, ODBC, DRDA, and CORBA
OTS/IIOP.

Application Integration Web-enables existing data and applications
allowing e-businesses to leverage existing IT investments. Application
integration also allows disparate applications (potentially written in different
programming languages and built on different architectures) to communicate
with each other within an enterprise and across enterprises.

The Web Application Programming Environment is based on Java
servlets, Enterprise Java services, and Enterprise JavaBean components and
provides an environment for writing dynamic, transactional, secure, business
applications on Web application servers.
Chapter 5. Technology options 69

e-business Application Services e-business Application Services are
higher-level application-oriented components, such as e-commerce services,
that conform to the Application Framework for e-business programming
model. These services allow e-business solutions to be developed faster with
higher quality.

Systems Management Services support the end-to-end management
across networks, systems, middleware, and applications.

Development Tools enable the creation, deployment, and management of
e-business applications. They also support integrating third party tools into
the development process.

5.2.2 Identifying key technology selection influences
In the development of any specific architecture, there will be a number of key
factors that have an overall effect on the selection of technologies. These
must be identified and the combined impact assessed before the selection
process begins.

Here are three relevant examples:

• Non-functional requirements: For example, a requirement for platform
independence and standards-based infrastructure services.

• The existing technical environment: How this is leveraged is particularly
important in the context of a migration.

• Technical architecture goals for the target architecture: A key decision
that must be made early is the choice of the component model, for
example, Sun’s Enterprise Java Beans, OMG CORBA, Microsoft COM,
and so on. In some circumstances, there may be more than one
component model involved. In this case, it may also be necessary to
select bridging technologies.

Such factors act as global filters on the selection of candidate technologies.
This filtering, in turn, flows on to the choices of products that implement these
technologies, the application development model, the choice of development
tools, and so on.

5.3 Partner (Client)

At this point in time, the most common protocol for communicating in an
e-business environment has been HTTP or HTTPS, in addition to this SMTP
and FTP. This was mostly due to the overwhelming number of Web-browser,
and mail clients.
70 Business-to-Business Integration Using MQSeries and MQSI

If the partners have a shared middleware layer, the partner could support any
protocol. The limitations would then be what the network is able to transport.
For example, if the partners share middleware (as in the case with MQSeries)
the partner could choose to support MQI.

In the B2Bi context, the process of choosing e-business client technologies
should involve the consideration of partner application requirements, the
supporting network infrastructure, the legacy infrastructure, and so on.

With many existing implementations, EDI VANs will continue to exist. In these
cases, the client software will be a requirement.

5.3.1 Choosing the partner technologies
The final partner technology decisions will be based on a set of interacting
factors. These factors are summarized in the following list:

• The network selection

- EDI VAN

- Internet

- Other (SNA and so on)

• Partner Application Interface

• Supporting Software Requirements

- Standard platform software

- Pre-installed third party

- Dynamically downloaded components/software

• Application client side persistence requirements

5.3.2 XML and the partner
XML provides a clear separation of presentation and data based on standard
definitions. For this reason, it is well suited to both U2B and B2BI. So, XML is
the most appropriate format to select for data exchange, at least for now.

For those partners transitioning from legacy application, EDI formats and
SMTP may be formats that need to be supported for some time to come.
Some EDI vendors have XML transform services available.
Chapter 5. Technology options 71

5.4 Web application server

There is a remarkable similarity between emerging models of Web
Application servers between the various vendors. These models usually
involve five main architectural elements.

• Internet/Web Services

• Application Services

• Integration Services

• Management Services

• Application Development Services

In the IBM Application Framework for e-business, the Web Application Server
is generally described as including Internet/Web Services and Application
Services. The other elements are shown as separate architectural layers. For
consistency with the framework, these other elements are covered in their
own sections.

5.4.1 Internet/Web services
These services allow any form of client software to make requests for
application services over the Internet. This form of client does not require
additional middleware, software, and so on other than that normally
associated with Internet usage. The main protocol that must be supported is
HTTP.

Some application servers provide built-in Web services, that is, they work in a
standalone manner. Many also provide Web server connectors that allow
integration with existing Web Server environments.

There are pros and cons to this approach. It probably keeps more options
open to keep the two as separate servers. This allows for separate tuning and
independent evolution, recognizes that there are a large number of existing
Web-server products in use, and allows non-Internet clients to be handled
directly by the application server.

5.4.1.1 Standard Internet services
Standard Internet services include support for the basic Internet protocols,
such as HTTP, FTP, e-mail, SSL.

5.4.1.2 Web Server Connectors
Provision of components that allow seamless integration with common Web
Servers, such as Microsoft, Netscape, and Apache. The product may also
72 Business-to-Business Integration Using MQSeries and MQSI

come bundled with its own Web server and/or support multiple proprietary
Web Server APIs, such as Microsoft’s ISAPI or Netscape’s NSAPI.

5.4.1.3 Transactive content support
Transactive content is a term coined by the Forrester Group. It describes a
Web application involving transaction processing, interactivity, and rich
content linked by a high level of personalization based on profile information
kept about each user.

Such an application requires support for features, such as personalization,
collaboration, search engines, media streaming, content push, and so on.

5.4.1.4 Additional features
The additional features include vendor-specific features, such as Content
Management, Log File Analysis, and so on.

5.4.2 Application services
Application services can be considered to be a set of cooperating software
processes that act as an execution or execution management environment
for the server side elements of application systems. The focus is on
performance, robustness, scalability, and so on at mainframe-quality service
levels.

5.4.2.1 Component model
Most application servers will be based on component models, such as
CORBA, Enterprise JavaBeans, or COM. Servers based on a component
model are more valuable than those that merely support such a model.

5.4.2.2 Standards-based infrastructure services
The application server commonly requires the existence of standards-based
infrastructure services to support features, such as transactions and so on.
See Section 5.5, “Network-based infrastructure services” on page 76.

5.4.2.3 Scalability and reliability features
Features, such as multithreaded operation, support for the clustering of
servers, pooling of connections and threads, load balancing and fail-over,
caching, state management, and so on are vital to scalability, reliability, and
performance.
Chapter 5. Technology options 73

5.4.3 Illustrative examples
Table 2 shows examples of Web application server technology.

Table 2. Web application server technology examples

Product Technologies
Supported

Notes

IBM - HTTP
Server

HTTP,
HTTPS,
SSL,
Servlets,
MIMS

This product is included as a base product.
This is an instance of a standard Web server.
Such a server represents the bare minimum
requirements for an e-business server.
This product is based on Apache, a
collaborative open source project.

Microsoft -
Internet
Information
Server

HTTP,
HTTPS,
SSL,
ASP,
ISAPI,
MIME

Microsoft IIS and Netscape Enterprise
represent typical enterprise-level commercial
Web servers.
This class of server usually comes bundled
with many additional features over and above
those provided in a basic Web Server.
They support an extensive but vendor-specific
server API for dynamic HTML generation.
These servers are usually part of a family of
Internet server products. Additional supporting
servers, such as Proxy servers and Index
servers, are some examples.

iPlanet,
Netscape -
Enterprise
Server

HTTP,
HTTPS,
SSL,
LDAP,
Servlets,
MIME
74 Business-to-Business Integration Using MQSeries and MQSI

IBM -
WebSphere

HTTP,
HTTPS,
SSL,
HTML,
XML
Servlets,
JSP,
Corba,
Java Devt.,
EJB,
XA Support,
Tivoli Support,
MQSeries The four products from IBM, Sun, Inprise, and

BEA represent the current state of the art in
Web Application Servers.
Each of these products is based on one or
more of the standards-based Component
models (Sun EJB, OMG Corba).
These products provide (at least) enterprise
application execution support in addition to
highly-tuned Web and Internet services.
Each product is usually released in three
flavors, such as Standard, Advanced, and
Enterprise.
Most of these products also provide
management, application development, and
integration services.

iPlanet,
Sun -
NetDynamics

HTTP,
HTTPS,
SSL,
HTML,
Servlets,
CORBA,
Java Devt,
EJB

Inprise -
Application
Server

HTTP,
HTTPS,
SSL,
HTML,
XML,
Servlets,
JSP,
CORBA,
Java Devt,
EJB,
JTS/OTS

BEA - WebLogic

HTTP,
HTTPS,
SSL,
HTML,
Java 2 Enterprise,
Tuxedo

Product Technologies
Supported

Notes
Chapter 5. Technology options 75

5.5 Network-based infrastructure services

Most application servers adopt or support one or more Component Models.
For example, Enterprise Java Beans, CORBA, or COM.

Each of the Component models defines, supports, or assumes that a specific
set of standard services is available from the network. As part of the
Application Framework for e-business, IBM has defined a complete set of
network infrastructure capabilities to satisfy these requirements. The network
infrastructure provides customers with a secure and scalable distributed
networking software platform that enables e-business applications to be
accessed on-demand from any client, any network, and any location. It
includes the following services, all based on open standards:

• Network services, such as DHCP, which dynamically assigns IP addresses
as devices enter and leave the network, and WAP, which delivers
information and telephony services to mobile phones and other wireless
devices

• Security services based on public key technology that support user
identification and authentication, access control, confidentiality, data
integrity, and non-repudiation of transactions

• Directory services based on the Lightweight Directory Access Protocol
(LDAP) that locate users, services, and resources in the network

• Host integration, for seamless communications with SNA-based networks

The application server makes use of these services to provide an
enterprise-class execution environment

As with the Component Model, application services built on the standard
services of a component model are more valuable than those that merely
support such services.
76 Business-to-Business Integration Using MQSeries and MQSI

5.5.1 Illustrative examples
Table 3 shows some network-based infrastructure technology examples.

Table 3. Network-based infrastructure technology examples

Product Technologies
Supported

Notes

IBM - e-Network
Software

LDAP,
DMTF CIM
Extension
Schema,
Browser-based
Terminal
Emulation,
Certificates and
Public Key
Infrastructure,
VPN

IBM Networking and Communications
e-Network software products provide
networking infrastructure that can be used to
build corporate intranets and extranets and
provide secure access to the Internet.
- Host integration
- Mobile and wireless solutions
- Security services
- Personalization and service access
administration
These services heavily leverage the IBM
SecureWay suite of products.

Visigenic -
VisiBroker

CORBA Orb,
OTS,
Naming, Events,
Trader,
SSL,
GateKeeper,
COM-CORBA
Bridge

Visigenic (now part of Inprise) and IONA are
two major Object Request Broker (ORB)
software vendors. Both companies provide
CORBA 2-compliant ORBS and
implementations of many of the standard
services defined by OMG.
IBM Component Broker is an equivalent
product, now considered part of the
WebSphere Family of products.

Iona - Orbix

CORBA Orb,
OTM,
Naming, Events,
Notification,
Trader, Security,
WonderWall,
COM-CORBA
Bridge

IBM -
Component
Broker

CORBA ORB,
LIfeCycle,
Naming, Events,
Security,
Transactions,
Persistence,
Connectors
Chapter 5. Technology options 77

5.6 Integration services

For B2Bi, the single most significant component of the architecture is the
integration services. It is the component that has the most “responsibility” for
the flow of information to and from a partner.

There are two parts to the integration services: First, they have to integrate
with legacy systems, and, second, they have to make an interface available
for communication with the partner. This interface could be done via the
Web/application server or by directly using shared middleware. This
component is sometimes called the integration server node.

The purpose of this node is to interface between any front end access
channel, such as the Web, a call center, or a client/server ("fat client") PC,
and whatever back-end application system is needed (including applications
from other companies). It will perform the following kinds of services:

• Convert protocols from the front end to match whatever the back-end
systems understands

• Decompose a single message from the front end, such as a Web server,
into several back-end messages (or transactions) and then recompose the
replies

• Navigate from the front end to whatever back-end system needs to be
accessed

• In more complex cases, control the process or unit of work for a number of
back-end interactions based on a request from the front end

The intent is to relieve each front end from having to handle the complexity of
interfacing with potentially multiple back-end systems, which may be in
different companies. The front end (for example, a Web server) should just
need to send a message to the integration server and have it look after the
interface.

A second purpose for locating these interface services on the Integration
server concerns security. There is a firewall between the Web server and the
integration server and the Web server does not need to have any knowledge
of all the back-end addresses. Many locations do not want a server located in
the DMZ to have access directly to sensitive data and systems. In this case,
the Web server can only send messages to the integration server and
nowhere else.
78 Business-to-Business Integration Using MQSeries and MQSI

5.6.1 Database connectivity
Direct database access is important. There should be support for at least one
of ODBC, JDBC and native database drivers.

5.6.2 Packaged application API integration
Packaged applications, such as SAP, JD Edwards, and PeopleSoft, provide a
programming API. Some application servers have already built connectors to
the most common of these applications, such as Pre-built SAP. PeopleSoft
adapter components can be purchased for NetDynamics and Sapphire/Web
as part of these products.

5.6.3 Middleware integration
Products, such as Tuxedo, MQSeries, CICS, Notes, Mail, and so on, provide
support for connectivity.

5.6.4 Component model integration
Component models, such as Enterprise JavaBeans, CORBA, and COM,
provide support for communication with alternative models.

5.6.5 Custom integration service development kit
Most products provide a program development kit/environment that allows
the development of custom integration services. Custom integration
connectors could be any of the types described previously or some hybrid
form.

5.6.6 Application integration approaches
The previous section described the kinds of integration technologies that are
commonly provided in a Web Application server. In selecting an appropriate
technology, a number of key questions must be addressed:

• At what level is integration of the e-business application with existing
external data and applications to take place? This might be dictated by the
architecture or technologies of the existing system and/or by the
requirements of the e-business application.

• How will the external data and applications be represented within the
e-business application programming model?

• How much additional development effort is required to bridge the
representation introduced by the integration technology and the
representation required by the e-business application?
Chapter 5. Technology options 79

For example, from a technical perspective, the use of messaging may be the
only practical solution to a specific integration requirement. However, if the
e-business server developer is expected to be working with Enterprise Java
Beans representing business objects, the level of abstraction involved in
marshalling and unmarshalling message data is very low. In this case, it is
highly likely that some form of abstraction layer will need to be developed in
order to hide this low-level activity. This could be a significant development
effort in its own right.

The IBM Application Framework for e-business has identified a set of
categories that present the alternative approaches. These are presented in
order of increasing isolation from the underlying integration technologies and
their ability to support higher levels of abstraction.

Figure 24 shows application integration approaches.

Figure 24. Application integration approaches

• Connectors are gateway software elements that provide linkage between
the Web application server and services that are reached through the use
of application-specific protocols.

• Application messaging services provide message-based communication
between applications with assured delivery of messages.

Application
Messaging

Connectors

Business Process
Integration/

App. Workflow

Component
Integration

Integration

Connection
80 Business-to-Business Integration Using MQSeries and MQSI

• Business process integration and workflow services extend the base
messaging services with message brokering, intelligent message routing,
and message translation.

• Component integration services enable object wrapping of existing
application logic written in any language. As a result, existing application
logic is extended to object-oriented environments.

5.6.7 Illustrative examples
Table 4 shows integration technology examples.

Table 4. Integration technology examples

5.7 Web application programming model

The application programming model describes the conceptual frameworks,
classes of objects, services, and features that form the environment within
which the developer works during the course of application development.

Product Technologies
Supported

Notes

IBM - Web
Sphere
Enterprise

RDBMS,
CICS, Encina,
CORBA, IMS

The major Web Application server vendors
provide a suite of integration capabilities. IBM
- WebSphere calls these Connectors, Sun -
NetDynamics calls them Platform Adapter
Components (PAC), while BlueStone -
Sapphire/Web calls them System Integration
Modules (SIM)

Sun -
NetDynamics

RDBMS,
PeopleSoft,
SAP,
PAC SDK

BlueStone -
Sapphire/Web

Native, ODBC
RDBMS,
SAP,
Tuxedo,
MQSeries

IBM - MQSeries JMS,
XML

While these two products are completely
different, they both aim to present a unifying
infrastructure layer that targets integration
across multiple kinds of data sources or
systems.
MQSeries uses a generic messaging model.
OleDB provides a series of COM interfaces
representing a generic data source.

Microsoft -
OleDB COM, ADO
Chapter 5. Technology options 81

5.7.1 Influence of the component model
The choice of a Component Model has a major impact on the application
programming model.

In order to manage execution, the Application Server may also require that
application objects be developed within a framework specific to that server.
This server framework is built upon features provided by the component
model.

The combination can create a significant initial learning curve for a developer
and a dependency on a vendor-specific framework. The trade-offs between
learning curve, vendor dependency, and productivity gains have to be
considered.

The decisions made here directly influence the choice of development tools.

5.7.2 Influence of architectural design patterns
A specific technical architecture usually establishes patterns of assembly of
the elements in the Component Model and any vendor-supplied frameworks.
While these decisions are more about architecture design than selecting
technologies, they do further shape the application programming model as
the developer sees it.

For example, a design might utilize a Model-View-Controller pattern
implemented by particular combinations of the Servlet (Controller) and the
JSP (View) elements on the Web Server. These elements communicate with
business objects implemented using Enterprise Java Beans via an
abstraction layer based on the Command design pattern implemented as
JavaBeans.
82 Business-to-Business Integration Using MQSeries and MQSI

5.7.3 Illustrative examples
Table 5 shows some programming model technology examples.

Table 5. Programming model technology examples

5.8 e-business application services

These services provide application domain-specific functionality that
facilitates the development of e-business applications. Examples of such
services range from IBM - San Francisco, where these are implemented as
layers within the architectural framework, to standards proposed by
industry-specific consortiums, such as Open Applications Group, where the
goal is to facilitate integration between organizations.

Product Supported
technologies

Notes

OMG - Corba

ORB 2.0,
IIOP,
OTS,
Naming,
Security,
Events

Each of these retransmissions has produced a
major technology software platform.
These platforms will shape the very core of
software development, particularly e-business
applications, for many years to come.
It is not possible or appropriate to attempt to
describe the scope of these platforms in this
brief summary table.
OMG is a standards-based effort with its roots
in the distributed object programming model.
Microsoft is a component-based approach with
its roots in Windows-based clients.
The SUN Java 2 Enterprise is a
platform-independent component model
explicitly developed for network-based
applications.

Microsoft - COM

COM,
Automation,
ActiveX Controls,
OleDocuments,
Active Server
Pages, OleDB,
MTS

Sun - Java 2
Enterprise

Java 1.2 SDK,
Enterprise Java
Beans 1.0,
JNDI, JMS, JTA,
JDBC, RMI/IIOP
Chapter 5. Technology options 83

5.8.1 Illustrative examples
Table 6 shows e-business application service technology examples.

Table 6. e-business application service technology examples

5.9 Systems management

Systems Management services have three main objectives:

• To reduce operations costs

• To increase availability and improve performance and quality of service

• To manage risks resulting from operational failures

Product Supported
technologies

Notes

IBM - San
Francisco

Java Frameworks

San Francisco is a heavily layered software
product.
The upper two layers of this product are aimed
at application domains.
The Common Business Objects layer
introduces extensible objects, such as
Company, Business Partner, and Address,
which are common across business domains.
The Core Business Process Layer provides
base implementations of behavior for specific
business domains, such as General Ledger
processes.
The primary goal of these layers is developer
productivity through reuse.

Open
Applications
Group - OAGIS

OAGIS,
XML

The Open Applications Group is a non-profit
consortium that aims at cost-effective
integration of key business application
software components for enterprise and
supply chain functions for end-user
organizations.
To this end, the group has developed a model
of application integration points for common
business processes. It has also defined the
protocol and data definitions for participants in
such a process. XML is the basis for one of the
formats supported.
The goal here is to facilitate integration
between applications.
84 Business-to-Business Integration Using MQSeries and MQSI

The e-business approach has addressed a key problem in client/server
solutions: Client application software management. However, it has a
significantly-increased dependency on the network. As a consequence,
system management for e-business requires an extra focus on the following
areas:

• Managing the increased security risk

• Increased demands with respect to availability and scalability

• Ensuring adequate application performance

• Greatly reduced costs. Compared with a typical enterprise client/server
application, an e-business application must, potentially, cater to a large
Internet audience. Most Internet users expect applications to cost nothing.

5.9.1 System management model
The Frameworks systems management model defines a set of management
functions to be applied at each layer of the application stack. As shown in
Figure 25, the application stack consists of four layers, each of which needs
to support a broad set of management functions shown on the right of the
figure.

Figure 25. System management model

Application
"Stack"

Management
Functions

Deployment

Availability

Operations &
Administration

Security

Application

Middleware

System

Network
Chapter 5. Technology options 85

Although these management requirements existed for client/server systems,
e-business applications add a new dimension to many of the problems. As
mentioned previously, most of these management functions are due to the
fact that e-business puts much more focus on the network and the server.
This is a result of the need to ensure application availability anywhere as well
as the interdependence between organizations.

For example, when deploying an Internet e-business application, pieces of
the application are distributed to multiple locations; components may be
deployed not only at the hosting site but also on customers’ and suppliers’
sites. Due to this distribution of function, availability is hard to manage since
the connection to partners and customers is through the Internet,
performance problems due to bandwidth bottlenecks or availability problems
due to improper server configuration or node failure can bring business to a
standstill.

Operations and administration requires a collaborative effort between
disparate organizations that may or may not have any formal relationships.
The security model changes the most between client/server and the
e-business model. It is not only critical to safeguard information assets but
also the privacy of all parties.

5.9.2 Cross-enterprise systems management
As described in the preceding paragraphs, there is a definite need to manage
resources between organizations. Companies are forced to rely on systems,
networks, and people that they do not control and that do not necessarily
function together. The application framework extends the integrated
enterprise systems management environment to span company boundaries
across the Internet. This is termed Cross-Enterprise Systems Management.
86 Business-to-Business Integration Using MQSeries and MQSI

5.9.3 Illustrative examples
Table 7 shows examples of systems management technology.

Table 7. Systems management technology examples

Product Supported
technologies

Notes

Tivoli Systems-
Tivoli

WBEMstandards,
CIM, DMI
AMS, ARM,
SNMP and others

The Distributed Management Task Force
(DMTF) is the industry organization that is
leading the development, adoption, and
unification of management standards and
initiatives for desktop, enterprise, and Internet
environments.
Over the last year, the DMTF has taken on
enterprise-focused industry initiatives and
standards, such as the Web Based Enterprise
Management (WBEM) initiative and the
Directory Enabled Networks (DEN) initiative,
and pioneered the use of extensible markup
language (XML) as the transport encoding for
WBEM. The basis for this collaboration and
integration is, in large part, due to the DMTF's
CIM standard, which facilitates the common
understanding of management data across
different management systems. CIM is an
implementation-neutral schema for describing
overall management information.

See http://www.dtmf.org for more
information.

The Computer Measurement Group,
commonly called CMG, is a non-profit,
worldwide organization of data processing
professionals committed to the measurement
and management of computer systems. CMG
members are primarily concerned with
performance evaluations of existing systems
to maximize performance (for example,
response time, throughput, and so on.) and
capacity management, where planned
enhancements to existing systems or the
design of new systems are evaluated to find
the resources necessary to provide adequate
performance at a reasonable cost.

Computer
Associates -
Unicenter

SNMP, DMI,
Some DMTF and
OMG standards
Chapter 5. Technology options 87

5.10 The development environment

This section identifies development tools and associated software
components. There are a number of non-technical factors that influence the
selection of these technologies.

For any organization contemplating migration to a new architecture, the
following non-technology factors must be considered:

• The current development environment, the available resources, and the
associated skill sets

• An understanding of the development roles associated with e-business
application development

• The ratio of internal development to out-sourced development.

5.10.1 e-business application development team roles
The roles being described in this section take an active part in the actual
implementation process. Roles associated with organizational Web
strategies, product decision-making, project management, and so on are not
included.

It is important to decide whether new skill sets must be introduced into the
organization or whether various parts of development will be outsourced. If
such an approach is taken, the different tools must be able to conveniently
support the lossless two-way interchange of information necessary for
iterative development.

For many of these roles, the implied skills and associated tools may not be
found in the current development environment.
88 Business-to-Business Integration Using MQSeries and MQSI

Chapter 6. B2B integration protocols and standards

This chapter describe at a high level some of the protocols and standards that
are relevant to B2B. Associated technologies, such as those that apply to
security, are not covered here.

An excellent redpiece, Exploring Open Software Standards for Enterprise
e-business Computing , REDP0043, describes all the relevant protocols in
detail and is available at the following URL:
http://www.redbooks.ibm.com/redpapers/abstracts/redp0043.html

The first section provides a context for understanding where a particular
protocol or standard fits. The sections that follow provide a little more detail
for some of the standards and protocols.

6.1 Overview

At a very simple level, B2BI describes the passing of messages from one
organization to another and for the second organization to respond to those
messages. Again, this can be broken down into three distinct layers:

• The mechanism used to send messages from one organization to another
• The content of the message
• The business processes that consume the messages

All protocols don’t neatly map to this breakdown. Many protocols impose
other standards or extend beyond the domains described above.

6.1.1 Transporting the messages
There are three approaches to the problem of transporting messages from
one organization to another:

• Traditional EDI VANs

• Distributed object systems, such as CORBA, COM/DCOM, Java RMI, and
so on

• Internet messaging: email, HTTP, and messaging middleware.

Electronic Data Interchange (EDI) have successfully provided electronic
document interchange between companies and their suppliers for a number
of years. EDI has been widely used in industries, such as finance and
manufacturing since the 1970s. In the USA, ANSI defined X.12, a messaging
standard for various industries. In Europe, EDIFACT is the standard for EDI.
In its long history, EDI has greatly contributed to automating
© Copyright IBM Corp. 2000 89

business-to-business transactions. However, EDI’s high cost and inflexible
structure has always proven a barrier to adoption by all but the largest
enterprises. While EDI will continue to evolve utilizing pervasive networks,
such as the Internet, to reduce costs, complementary technologies that are
able to provide some of the key capabilities necessary to enable dynamic
business process integration are emerging.

The use of distributed systems between organizations is not popular.
Distributed systems work better for internal systems rather than systems that
span enterprises.

The use of different forms of Internet messaging is probably the most
prevalent form of transportation. HTTP is by far the most popular protocol.

Messaging middleware is one of those components that spans the boundary
of both the content and the transportation. The MQSeries family spans all
three layers providing transport, content, and business process support.

6.1.2 Content
The content of the message defines what the message is. Is it a purchase
order, a request for a quote, or a new product description?

cXML and xCBL from Ariba and Commerce One are some of the proposed
content describers. cXML and xCBL define a schema for message content
that covers fairly simple transactional business documents, such as purchase
orders and order status requests. More information about this is provided in
the following sections.

6.1.3 Business processes
The newest initiative in the “conversation” between organizations is the
integration of the process into the individual business processes of each
enterprise. This component is the “business logic” of the interaction. It defines
how the messages should be handled, what processes should be started, and
so on.

RosettaNet has a component called Partner Interface Processes (PIPS), and
this attempts to model the business process within an enterprise.

6.2 B2B Frameworks

A generic B2B framework is based on the following:
90 Business-to-Business Integration Using MQSeries and MQSI

• A common language that can be employed by existing or potential trading
partners to specify how they will interact (for example, an EDI-specific
language)

• An electronic contract — a Trading Partner Agreement (TPA) — that
employs this common language in order to define and enforce the
interaction protocols with which they will do business.

XML B2B frameworks are B2B frameworks that are based on the standard
XML technology. In recent months, these facilities have been receiving the
most public attention since they offer the most potential for business
integration in the inter-company context. In particular, XML B2B frameworks
use TPA protocols expressed in XML. These are registered to a specialized
software component, usually known as a B2B server, along with the internal
business processes for setting up such B2B interactions. Currently, many
XML B2B framework specification initiatives have been started and are in
various stages of development or still in the planning stage. These initiatives
are usually sponsored by independent organizations (the path followed by
IBM), such as the Organization for the Advancement of Structured
Information Standards (OASIS) Consortium (http://www.oasis-open.org)
through the XML.org, the XML Industry Portal initiative
(http://www.xml.org), and jointly with the United Nations body for Trade
Facilitation and Electronic Business (UN/CEFACT) through the ebXML

project (http://www.ebxml.org). The eCo framework specification produced
by the CommerceNet's eCo Working group (eco.commerce.net). In other
cases, XML B2B framework standardization activities are promoted by
specific companies, for example, the Microsoft BizTalk
(http://www.biztalk.org), with the aim to accelerate the rapid adoption of
XML in the B2B market. Table 17 provides a list of the main XML B2B
framework standardization initiatives.

Table 8. XML B2B framework initiatives

XML B2B framework Description

XML.org

http://www.xml.org

XML.ORG is an industry Web portal operated by the
Organization for the Advancement of Structured
Information Standards (OASIS). Funded by a group of
companies committed to establishing an open, distributed
system for enabling the use of XML in electronic
commerce and other industrial applications, XML.ORG is
designed to provide a credible source of accurate, timely
information about the application of XML in industrial and
commercial settings and to serve as a reference
repository for XML specifications such as vocabularies,
DTDs, schemas, and namespaces.
Chapter 6. B2B integration protocols and standards 91

ebXML project

Web Address:
http://www.ebxml.or
g

The United Nations body for Trade Facilitation and
Electronic Business (UN/CEFACT) and the Organization
for the Advancement of Structured Information Standards
(OASIS) have joined forces to initiate a worldwide project
to standardize XML business specifications. UN/CEFACT
and OASIS have established the Electronic Business
XML initiative to develop a technical framework that will
enable XML to be utilized in a consistent manner for the
exchange of all electronic business data. Industry groups
currently working on XML specifications have been invited
to participate in the 18-month project.

Commerce XML (cXML)

Web Address:
http://www.cxml.org

cXML is an open XML-based standard created to facilitate
e-commerce within trading communities. The Commerce
XML initiative was started by Ariba Technologies. cXML is
a suite of lightweight XML Document Type Definitions
(DTDs) and their associated processes that define the
exchange of catalog content and transaction information
between buyers and suppliers.

Distributed Management
Task Force

Web Address:
http://www.dmtf.org

The DMTF is the industry organization that is leading the
development, adoption, and unification of management
standards and initiatives for desktop, enterprise, and
Internet environments. DMTF has taken on enterprise
focused industry initiatives and standards, such as the
Web Based Enterprise Management (WBEM) initiative
and the Directory Enabled Networks (DEN) initiative, and
has pioneered the use of XML as the transport encoding
for WBEM.

eCo Specification

Web Address:
eco.commerce.net

The eCo Specification is an architectural framework that
enables businesses to discover each other on the World
Wide Web and determine how they can do business. The
eCo framework is a product of CommerceNet's eCo
Working Group, an industry-neutral group consisting of
experts from over 35 companies and organizations
throughout the world, and is mainly based on XML.

Open Applications Group

Web Address:
http://www.openappl
ications.org

Open Applications Group (OAG) is a non-profit
consortium focusing on easier business software
interoperability and is the largest publisher of XML content
for business software interoperability in the world. Among
other things, OAG defined the Integration Specification
(OAGIS), which is a model for business software
application component interoperability.

XML B2B framework Description
92 Business-to-Business Integration Using MQSeries and MQSI

In parallel with the general XML B2B Framework initiatives, the development
of a large set of “vertical” market vocabularies (connected to a specific
industry sector or cross-industry) has been started in recent years. For a list
of organizations known to be producing industry-specific or cross-industry
XML Specifications see, for example, the XML.org XML Catalog:
http://www.xml.org/xmlorg_registry/index.shtml.

These vertical protocols cover particular industrial business transactions that
should be used within B2B frameworks. At times, they have difficulty defining
overlapping or conflicting standards, especially when different working groups
are active in the same space. Some industry groups are attempting to resolve
these differences by promoting protocol-merging initiatives. For example, in
the travel industry, the Open Travel Alliance (OTA) decided to incorporate

BizTalk

Web Address:
http://www.biztalk.
org

Introduced by Microsoft in March 1999, the BizTalk
Framework makes it easy for businesses to exchange
information between software applications and conduct
business over the Internet with trading partners and
customers. The BizTalk Framework includes a design
framework for implementing an XML schema and a set of
XML tags used in messages sent between applications.
Microsoft, other software companies, and industry
standards bodies will use the BizTalk Framework to
produce XML schemas in a consistent manner to enable
integration across industries and between business
systems, regardless of platform, operating system, or
underlying technology.

RosettaNet

Web Address:
http://www.rosettan
et.org

RosettaNet is an independent, self-funded, non-profit
consortium dedicated to the development and
deployment of standard electronic business interfaces to
align the processes between supply chain partners on a
global basis. Launched in June, 1998, RosettaNet is
currently in the pilot phase of its implementation cycle.

XML/EDI Group

Web Address:
http://www.xmledi.o
rg

The XML/EDI Group was founded in July, 1997 in
response to President Clinton's call for industry support in
dealing with Internet-based commerce issues and the
emergence in time and space of pivotal technologies that
allowed this to be realized through the fusion of XML and
EDI.
XML/EDI Group is an ad hoc group of professionals and
volunteers in various industries dedicated to promoting
and guiding the future of XML/EDI standards and products
by donating their time and energy.

XML B2B framework Description
Chapter 6. B2B integration protocols and standards 93

much of the Hotel Electronic Distribution Network Association specification in
the first version of its standards.

6.3 More on protocols

The following sections provide more detail on specific protocols. Most of this
information was extracted and is available at the Web sites listed in Table 8
on page 91.

6.3.1 OBI
Open Buying on the Internet (OBI) is an e-commerce standard that has been
specified by the OBI Consortium. OBI is "an open, flexible framework for
business-to-business Internet commerce solutions. It is intended for the high
volume, low-dollar transactions that account for 80 percent of most
organizations' purchasing activity". It is expected to streamline the
non-mission-critical procurement processes of organizations (for example,
MRO materials) by specifying a standard set of roles that OBI-compliant
selling and buying parties must conform to. Furthermore, the standard is
supposed to make it easier to achieve compliance by requiring the use of
widely-accepted, standards-based technologies, such as HTTP, digital
certificates (X509), secure sockets layer (SSL), and EDI.

Figure 26. OBI information flow

There are four essential entities involved in an OBI system. The Buying
Organization procures items as part of its daily business operations. The

Buying

Organization

Requisitioner

Payment

Authority

Selling

Organization

View
Purchasing
Homepage

Query Status

Catalog Browsing

PO
Request

Completed PO

Invoice

Check
Payment
94 Business-to-Business Integration Using MQSeries and MQSI

Requisitioner, a member of the buying organization, is interested in procuring
certain items as part of the non-mission-critical process of the organization
within his/her command. The Selling Organization supplies goods and
services to other businesses. Finally, there is the Payment Organization
(which may not exist in all OBI scenarios), which acts as a clearing-house for
all payment and settlement activities between the selling and buying
organizations. All the aforementioned entities are assumed to have digital
certificates that uniquely and securely establish their identities. Of course,
these entities are all assumed to be connecting to the Internet.

6.3.2 Rosettanet
RosettaNet is a "global business consortium creating the electronic
commerce framework to align processes in the IT supply chain. Founded in
1998, RosettaNet is an independent, self-funded, non-profit consortium
dedicated to the development and deployment of standard electronic
commerce interfaces to align the processes between IT supply chain partners
on a global basis.

Rosettanet use the analogy of a human-to-human business exchange to a
server-to-server electronic business exchange. In order to communicate in a
human-to-human business exchange, humans must be able to produce and
hear sound. Further, they must then agree on a common alphabet and use it
to create individual words. Grammatical rules are then applied to the words to
create a dialog. That dialog forms the business process, which is conducted
(or transmitted) through an instrument, such as a telephone.

The fundamental system of exchanging sounds in a human-to-human
business exchange can be compared to the Internet, which enables two
servers to exchange information during a server-to-server electronic business
exchange. HTML/XML functions as the "alphabet" of this electronic
exchange, and, presently ECOM applications serve as the instrument by
which an electronic business process is transmitted.

In order to scale eBusiness, dictionaries are needed as well as the
framework, the Partner Interface Processes (PIPs), and the eBusiness
processes. RosettaNet fills this existing gap by focusing on building a master
dictionary to define properties for products, partners, and business
transactions. This master dictionary, coupled with an established
implementation framework (exchange protocols), is used to support the
eBusiness dialog known as the Partner Interface Process or PIP. RosettaNet
PIPs create new areas of alignment within the overall EC and IT
supply-chains eBusiness processes, allowing EC and IT supply-chain
Chapter 6. B2B integration protocols and standards 95

partners to scale eBusiness and fully leverage Ecom applications and the
Internet as a business-to-business commerce tool.

6.3.3 cXML
Commerce XML (cXML) is a new proposed standard being developed by
"more than 40 leading companies" for business-to-business electronic
commerce. Several companies have publicly announced support for cXML
including Ariba, Sterling Commerce, Ironside Technologies, SAQQARA
Systems, POET, and Extricity Software. According to the Ariba
announcement, "cXML is a set of lightweight XML DTDs -- based on the
World Wide Web Consortium's XML standard -- with their associated
request/response processes.

cXML defines a request/response process for the exchange of transaction
information. These business processes include purchase orders, change
orders, acknowledgments, status updates, ship notifications, and payment
transactions. The contributors to the cXML initiative are focused on achieving
reference implementations through the creation and rapid iteration of cXML.
The cXML specification, including reference production implementations and
associated implementation knowledge, will be submitted to the appropriate
standards organizations.

The cXML initiative is, therefore, complementary to existing XML initiatives
led by CommerceNet, RosettaNet, Information & Content Exchange (ICE),
and Open Buying on the Internet (OBI). The cXML specification will be made
publicly available in March 1999. cXML was created in a unique collaboration
between buyers, suppliers, and Internet technology companies.

6.3.4 Simple Object Access Protocol (SOAP)
SOAP provides a simple and lightweight mechanism for exchanging
structured and typed information between peers in a decentralized,
distributed environment using XML. SOAP does not itself define any
application semantics, such as a programming model or
implementation-specific semantics; rather, it defines a simple mechanism for
expressing application semantics by providing a modular packaging model
and encoding mechanisms for encoding data within modules. This allows
SOAP to be used in a large variety of systems ranging from messaging
systems to RPC.

SOAP consists of three parts:
96 Business-to-Business Integration Using MQSeries and MQSI

• The SOAP envelope construct defines an overall framework for
expressing what is in a message, who should deal with it, and whether it is
optional or mandatory.

• The SOAP encoding rules define a serialization mechanism that can be
used to exchange instances of application-defined datatypes.

• The SOAP RPC representation defines a convention that can be used to
represent remote procedure calls and responses.

Although these parts are described together as part of SOAP, they are
functionally orthogonal. In particular, the envelope and the encoding rules are
defined in different namespaces in order to promote simplicity through
modularity.

In addition to the SOAP envelope, the SOAP encoding rules, and the SOAP
RPC conventions, this specification defines two protocol bindings that
describe how a SOAP message can be carried in HTTP messages either with
or without the HTTP Extension Framework.

For more information see the following Web site:
http://msdn.microsoft.com/xml/general/soapspec.asp

6.3.5 SET
Secure Electronic Transaction (SET) is an open standard, multiparty protocol
for conducting secure bank card payments over the Internet. Interoperability
is ensured by design through specific protocols and message formats. SET
provides message integrity, authentication of all financial data, and
encryption of sensitive data. The IBM Payment Server is designed to support
the SET protocol and is enrolled in the SET compliance testing process
awaiting formal designation as compliant with the SET specification.

6.3.6 Commerce Business Library (CBL)
Commerce Business Library (CBL) is a set of common semantics, common
syntax, and message packaging for information held by and exchanged
among Internet commerce transaction partners and market participants. CBL
is under development by CommerceNet and VEO Systems Inc.

Commerce One's Common Business Library (xCBL,
http://www.commerceone.com/xml/cbl/) is a set of common semantics, common
syntax, and message packaging for information held by and exchanged
among Internet commerce transaction partners and market participants.
Business documents include product descriptions, purchase orders, invoices,
and shipping schedules.
Chapter 6. B2B integration protocols and standards 97

6.3.7 Product Information Exchange (PIX)
Product Information Exchange (PIX) is a set of protocols that support catalog
interoperability on the Internet through defined guidelines for content,
communication, format, and presentation of product data. PIX is under
development by CommerceNet members.

6.3.8 Information and Content Exchange (ICE)
Information and Content Exchange (ICE) is a protocol to facilitate the
controlled exchange and management of electronic assets between network
partners and affiliates. The ICE authoring group is led by Vignette Corp. and
Firefly Network Inc.

6.3.9 Internet Open Trading Protocol (IOTP)
Internet Open Trading Protocol (IOTP) is an emerging standard for specifying
offers for sale, agreements to purchase, payment (by using existing payment
protocols, such as SET Secure Electronic TransactionTM), the transfer of
goods and services, delivery, receipts for purchases, multiple methods of
payment, and support for problem resolution. OTP is focused on interchange
between consumers, merchants, and support services. OTP is being
developed by the "Trade" working group of the Internet Engineering Task
Force (IETF).

6.3.10 Open Financial Exchange (OFX)
Open Financial Exchange (OFX) is a specification for the electronic exchange
of financial data between financial institutions, business, and consumers via
the Internet; it is focused on the PC desktop. OFX is developed by
CheckFree, Intuit, and Microsoft under the Transpoint brand name.

6.3.11 Platform for Privacy Preferences Project (P3P)
The Platform for Privacy Preferences Project (P3P) provides a framework for
informed on-line interactions. The goal of P3P is to enable users to exercise
preferences over Web sites' privacy practices. P3P applications will allow
users to be informed about Web site practices, delegate decisions to their
computer agent when they wish, and tailor relationships with specific sites.
P3P is a project under W3C.

6.3.12 Open Trading Protocol (OTP)
The Open Trading Protocol (OTP) at http://www.otp.org, is a specification of
banking, payment, and technology companies. It specifies offers for sale,
agreements to purchase, payment (by using existing payment protocols, such
98 Business-to-Business Integration Using MQSeries and MQSI

as SET Secure Electronic Transaction), the transfer of goods and services,
delivery, receipts for purchases, multiple methods of payment, and support
for problem resolution. OTP is focused on interchange between consumers,
merchants, and support services. OTP is being developed by the "Trade"
working group of the Internet Engineering Task Force (IETF).

6.3.13 XML/EDI
XML/EDI (at http://www.xmledi.com)is a specification of a group of
CommerceNet, ANSI X12, and the Graphics Communication Association. It
defines how traditional X12 EDI business data elements can be represented
using XML.
Chapter 6. B2B integration protocols and standards 99

100 Business-to-Business Integration Using MQSeries and MQSI

Chapter 7. IBM product guide

This chapter provides a high-level, non-technical overview of most IBM
software products.

IBM provides one software platform with many solution levels as shown in
Figure 27. The IBM WebSphere software platform for e-business consists of
three solution levels designed to deliver, grow, and differentiate a client’s
e-business. The foundation of the software platform, Application Servers and
Integration, delivers back-end data and applications to the Web. Application
Accelerators and Customer and Partner Applications allow e-businesses to
lead in the marketplace by providing customized e-business solutions and the
partners to implement them. With its full range of offerings, the WebSphere
software platform for e-business provides a base for addressing e-business
and business-to-business (B2B) challenges.

Figure 27. IBM product suite
© Copyright IBM Corp. 2000 101

7.1 Foundation

The WebSphere software platform for e-business starts with a Foundation
formed from the WebSphere Application Servers and MQSeries business
integration software.

7.1.1 WebSphere Application Server
IBM WebSphere Application Server is an e-business application deployment
environment built on open standards-based technology. It is the cornerstone
of WebSphere application offerings and services. The Standard Edition lets
you use Java servlets, JavaServer Pages, and XML to quickly transform
static Web sites into vital sources of dynamic Web content. The Advanced
Edition is a high-performance EJB server for implementing EJB components
that incorporate business logic. The Enterprise Edition integrates EJB and
CORBA components to build high-transaction, high-volume e-business
applications.

7.1.2 MQSeries
IBM's innovative, award-winning MQSeries is the market leader in
commercial messaging, provides a key element of enterprise systems, and
enjoys rich support from business partners. It also provides flexible, rapid
application integration offering unparalleled business flexibility.

MQSeries is integral to the patterns being discussed in this redbook. Detailed
information is provided in Chapter 8, “MQSeries and MQSeries integrator” on
page 109.

7.2 Foundation extensions

In addition to the Foundation, WebSphere provides Foundation Extensions,
which are the integrated services and tools that companies need to develop
complete e-business solutions. This solutions level not only helps leverage
and extend existing IT assets and systems today, it positions businesses to
adapt to future growth. Foundation Extensions facilitate rapid,
component-based development of next generation e-business applications.

By using powerful, innovative IBM Web technologies based on open industry
standards, new opportunities are created with customers, suppliers, and
business partners. Development Extensions, Presentation Extensions, and
Deployment Extensions are the modular building blocks that extend from the
Foundation with Web publishing allowing growth all the way to
enterprise-scale transaction processing.
102 Business-to-Business Integration Using MQSeries and MQSI

7.2.1 VisualAge for Java
IBM VisualAge for Java makes it easier than ever to create scalable,
hard-working e-business applications. Advanced, easy-to-use functions slash
development time, enable a high-level of code reuse, and allow for integrated
team development. The industry's favorite visual Java IDE, VisualAge for
Java, provides the industry's most advanced support for building, testing, and
deploying 100 percent Pure Java applications, JavaBeans components,
servlets, and applets - and scaling from Windows NT to OS/390.

7.2.2 VisualAge Application Rules
IBM VisualAge Application Rules gives developers (even those with little or
no Java programming experience) the ability to quickly build and deploy
business rules-based applications for e-business. Coupled with IBM tools and
middleware, VisualAge Application Rules provides a complete, flexible
solution for building Web-based transactional applications, something
especially important to the exploding B2B market.

7.2.3 VisualAge Generator
The IBM VisualAge Generator combines the power of VisualAge for Java and
WebSphere Rapid Application Development technology to deliver bulletproof
e-business applications. Tailored to IT or line-of-business departments that
need robust, fault-tolerant, scalable applications, VisualAge Generator gives
non-object-oriented skilled programmers a higher level of abstraction for
writing new e-business applications quickly and efficiently. Specifically
designed to deliver high-volume transaction processing in multi-tier,
multi-platform client/server environments, VisualAge Generator masks the
complexity of data and communications connections and is optimized for
DB2, CICS, IMS, and WebSphere servers.

7.2.4 WebSphere Studio
The IBM WebSphere Studio provides a comprehensive set of tools that
reduces the time and effort required to build dynamic and exciting Web
applications. With the industry's first visual layout tool for dynamic Web pages
using Java Server Pages technology (JSPs), full HTML, JavaScript, and
DHTML layout capability, WebSphere Studio allows Web site producers and
Web application developers who need dynamic Web site content and logic to
quickly and easily develop and maintain e-business applications. Tight
integration between WebSphere Studio, VisualAge for Java, and
WebSphereApplication Servers makes it easy for development teams to
communicate and work together to develop Web-based e-business
applications.
Chapter 7. IBM product guide 103

7.2.5 WebSphere Homepage Builder
Whether you are a beginner or an expert, IBM WebSphere Home Page
Builder gives you the capability to build lively pages with state-of-the-art Web
technology. Home Page Builder brings together everything you need to build
pages and publish your site in one package.

7.2.6 WebSphere Business Components
IBM WebSphere Business Components provide an easy-to-use coherent
package of software implementation that can be developed and delivered and
composed from other components and has explicit and well-specified
interfaces for the services it provides and expects from others. IBM has
developed WebSphere Business Components to help developers reduce
their development time, run across diverse infrastructures, and deliver value
to your company faster with a complete project solution.

7.2.7 WebSphere Transcoding Publisher
Extend the reach of your data with the IBM Websphere Transcoding
Publisher, an easy-to-use, flexible solution for bridging existing data and
applications to new environments. Transcoding Publisher is server-side
software that adapts, reformats, and filters data so that it is optimally
formatted for the destination environment, whether it is a
business-to-business transaction or an emerging pervasive computing
device. Transcoding Publisher can be extended to deliver custom transforms
in response to new breeds of devices, emerging XML variants, and
e-business trends.

7.2.8 WebSphere Voice Server
The IBM WebSphere Voice Server with ViaVoice Technology, DirectTalk,
CallPath, Message Center, and ViaVoice Embedded Technology are new
members of the WebSphere family that extend the power of the human voice
to applications across Web and call-center environments. Built on open
architecture, such as VoiceXML and Java, WebSphere voice solutions enable
the mobile Internet.

7.2.9 WebSphere Portal Server
The IBM WebSphere Portal enables companies to build their own custom
portal Web site that serves the needs of employees, business partners, and
customers. Users can sign-on to the portal and receive a personalized Web
page providing access to the information and Web applications they need.
104 Business-to-Business Integration Using MQSeries and MQSI

7.2.10 WebSphere Everyplace Suite
The IBM WebSphere Everyplace Suite is an integrated software package that
combines, in one box, all the necessary "technology ingredients" that
businesses, software developers, and Web integrators will need to create
new applications and easily connect Web and enterprise data to a wide range
of non-PC devices including wireless handsets, PDAs, and other Internet
appliances.

7.2.11 WebSphere Personalization
IBM WebSphere Personalization provides users of WebSphere Application
Server and WebSphere Studio with the capabilities to build a Web site,
intranet, or extranet that delivers Web pages customized to the interests and
needs of each site visitor.

7.2.12 MQSeries Integrator
IBM MQSeries Integrator is a powerful message-brokering software that
automatically distributes information to those who need it. Using MQSeries
for transporting messages across different computing platforms, it routes
information according to enterprise-defined rules, transforming and
reformatting it to suit the receiving application. MQSeries Integrator
seamlessly integrates applications, databases, and networks.

MQSeries Integrator is integral to the patterns being discussed in this
redbook. Detailed information is provided in Chapter 8, “MQSeries and
MQSeries integrator” on page 109.

7.2.13 WebSphere Edge Server
IBM WebSphere Edge Server provides an integrated solution for local and
wide-area load balancing, content-based quality of service routing, and Web
content filtering and caching for multi-vendor Web server environments.

7.2.14 WebSphere Site Analyzer
IBM WebSphere Site Analyzer provides analysis for enterprise Web site
visitor trends, usage and content, and WebSphere Commerce Suite
reporting. WebSphere Site Analyzer helps you make factual e-business
decisions based on enterprise Web site visitor behavior. Use WebSphere Site
Analyzer to describe visitor trends and preferences, manage Web site
content and structure, and improve the overall effectiveness of Web initiatives
and campaigns. WebSphere Site Analyzer is the only Web analytic software
available that is designed to be tightly-integrated across the entire
WebSphere platform.
Chapter 7. IBM product guide 105

7.2.15 WebSphere Host Integration Solution
With the WebSphere Host Integration Solution, you can start simple and grow
your e-business fast, leveraging your legacy data with new e-business
applications to maximize your total return on investment. The Host Integration
development components coupled with the Websphere Studio and
WebSphere Application Server in a single offering simplifies creation and
deployment of e-business solutions. The WebSphere Host Integration
Solution is the most comprehensive and flexible Web-to-host offering in the
industry for a single price per user and integrates with WebSphere
Transcoding Publisher for delivery of host data to any pervasive device.

7.2.16 Tivoli Policy Director
Tivoli Policy Director is a robust and secure policy management tool for
e-business and distributed applications. It uniquely addresses the challenges
of e-business security-escalating costs, growing complexity, and the inability
to implement security policies across platforms. Policy Director is designed to
unite core security technologies around common security policies. This helps
reduce implementation time and management complexity, thereby, lowering
the total cost of secure computing.

7.3 Application Accelerators

WebSphere Application Accelerators are modular and extensible business
services that enable partners to quickly implement tailored solutions in
response to market demands and customer needs. This solutions level
positions a business to take advantage of emerging technology for
competitive advantage in your industry with solution offerings for
e-commerce, collaboration, and business-to-business (B2B) integration.

To become a better competitor on the Web, companies must redesign their
business model and reduce time and cost related to transforming business
processes. New e-business technology must be adopted. At the same time,
existing applications and data must be preserved, integrated, and extended
to the Web. This becomes complicated without the right tools. WebSphere
Application Accelerators simplify this process and enable businesses to
achieve specific business goals by offering readily-customized, off-the-shelf
software and service provider solutions.

7.3.1 WebSphere Commerce Suite
IBM WebSphere Commerce Suite, a front-end integrated e-commerce
solution, helps you capture the e-commerce opportunity by providing the tools
106 Business-to-Business Integration Using MQSeries and MQSI

you need to quickly establish and grow your e-commerce site as your needs
dictate. WebSphere Commerce Suite can help you create exciting,
personalized Internet experiences for your customers’ experiences that drive
top line revenues while your bottom line remains protected.

7.3.2 Lotus Domino
The Domino Server Family is an integrated messaging and Web application
software platform for growing companies that need to improve customer
responsiveness and streamline business processes. Domino helps you
leverage your existing investments in people, skills, tools, and back-end
systems. Now, you don't have to worry about tying together multiple software
products for messaging, security, systems management and data distribution,
and replication; Domino integrates it all.

7.3.3 MQSeries WorkFlow
IBM MQSeries Workflow aligns and integrates your organization's resources
and capabilities with our business strategies, accelerating process flow,
cutting costs, eliminating errors, and improving workgroup productivity. With
the ability to capture and use knowledge about your business processes,
MQSeries Workflow helps organizations define, document, test, control,
execute, improve, and integrate their business processes. The ease of
change enables your organization to react quickly to new market
requirements.

7.3.4 WebSphere Business-to-Business Integrator
Transform your infrastructure to embrace emerging technologies with IBM
WebSphere Business-to-Business (BtoB) Integrator software. WebSphere
BtoB Integrator enables you to seamlessly span-the-gap between your own
enterprise computing systems and those of your customers, suppliers,
business partners, and e-marketplaces simultaneously. This software
supports every facet of your core businesses, combines technologies from
the extensive IBM catalog of integration and transaction software, is based on
open XML technology, and is built to run on the award-winning WebSphere
Application Server platform.

7.3.5 Universal Description, Discovery, and Integration (UDDI)
Web services are Internet-based modular applications that perform a specific
business task and conform to a specific technical format. IBM develops and
implements leading e-business services for B2B, B2C, and eMarketplace
solutions so that you can use this technology to deliver real business results.
Chapter 7. IBM product guide 107

7.4 Customer and partner applications

All levels of the WebSphere software platform for e-business extend into the
Customer and Partner Applications solution level to create further
opportunities for differentiation. More than 200 applications and services are
available for the Foundation alone. In addition, IBM has over 20,000 business
partners to help implement e-business strategy with applications built on the
WebSphere software platform for e-business.

IBM business partners include:

• ISVs: Integral Systems, Lucent, and i2
• Web integrators: Agency.com, Concrete Media, Razorfish, and

USWeb/CKS
• System integrators: Andersen Consulting, Deloitte Touche Tohmatsu,

Ernst & Young, SPL World Group, Perficient, Inc., and IBM Global
Services
108 Business-to-Business Integration Using MQSeries and MQSI

Chapter 8. MQSeries and MQSeries integrator

The IBM family of business integration solutions are based around MQSeries.
Having the strengths of a business integration solution, the product suite
naturally lends itself to B2BI. Some of the benefits that it brings are:

• MQSeries runs on more than 30 different platforms so that virtually any
platforms found in the commercial and industrial worlds can be connected.

• MQSeries is the de facto messaging standard, with more than 60 percent
of the messaging market and more than 5000 customer sites.

• MQSeries is developed by IBM, which can draw on more experience of
enterprise-strength transactional computing than anyone else in the
business.

• MQSeries enjoys global service support and broad support from many
technology and service partners.

Figure 28 shows topology 2. Topology 3 builds on topology 2 in that it adds a
message broker function where the queue manager is depicted. Both
topologies, 2 and 3, can gain significantly from IBM MQSeries, although it is
possible to populate the runtime topologies with alternative messaging
products or other middleware choices.

Figure 28. Runtime topology 2

This chapter describes both the messaging product and the message
brokering product that would fit into topologies 2 and 3. The workflow product
is not discussed in detail here since it does not fit into the latter topologies.
© Copyright IBM Corp. 2000 109

8.1 Business integration and the MQSeries Family

At the core of the MQSeries family is MQSeries itself. It provides assured
once-only delivery of messages across more than 30 industry platforms using
a variety of communications protocols.

MQSeries provides support for applications with a number of application
programming interfaces (MQI, AMI, JMS) in several programming languages
and for a number of communication models (including point-to-point and
publish/subscribe). MQSeries also provides a number of connectors and
gateways to other products, such as Lotus Domino, Microsoft Exchange,
SAP/R3, CICS, and IMS.

MQSeries Integrator extends the messaging capabilities of MQSeries by
adding message broker functionality driven by business rules. It provides the
intelligence to route and transform messages, the possibility to filter
messages (topic-based or content-based) and database capabilities for
enrichment of the messages or for warehousing the messages. Also, it
provides a framework for extending the functionality with plug-ins to
user-written or third-party solutions for specific requirements.

MQSeries Workflow is the third component of the IBM family of products for
business integration. It is also based on the messaging technology offered by
base MQSeries, but it adds a further dimension to the integration of
applications. It’s not only about applications, but about integrating all
resources in a business process. It ensures that the right information gets to
the right target, either a person or application, at the right moment in the
process flow.
110 Business-to-Business Integration Using MQSeries and MQSI

Figure 29. The MQSeries family for business integration

8.2 MQSeries primer

MQSeries is the award winning IBM middleware for commercial messaging
and queuing. It is used by thousands of customers in every major industry in
many countries around the world. MQSeries speeds implementation of
distributed applications by simplifying application development and testing.

MQSeries runs on a variety of platforms. The MQSeries products enable
programs to communicate with each other across a network of unlike
components, such as processors, subsystems, operating systems, and
communication protocols. MQSeries programs use a consistent application
program interface (API) across all platforms. Figure 30 on page 112 shows
the main parts of an MQSeries application at run time.

MQSeries

MQSeries
Integrator

MQSeries
Workflow

Modular Set of Offerings

MQSeries Foundation

Common Look and Feel

Management/Monitoring

Messaging Tools

Family Traits

Workflow, Process Flow
Application Services
Tools

Xform, Rules, Routing
API Framework
Templates, Utilities

Messaging Services
Standard Formats
Tools
Chapter 8. MQSeries and MQSeries integrator 111

Figure 30. MQSeries at run time

Programs use MQSeries API calls, that is the Message Queue Interface
(MQI), to communicate with a queue manager (MQM), the run-time program
of MQSeries. For the queue manager to do its work, it refers to objects, such
as queues and channels. The queue manager itself is an object as well.

The following section provides a brief overview of MQSeries including clients
and servers.

8.3 What is Messaging and Queuing?

Message queuing is a method of program-to-program communication.
Programs within an application communicate by writing and retrieving
application-specific data (messages) to and from queues without having a
private, dedicated, logical connection to link them.

Messaging means that programs communicate with each other by sending
data in messages and not by calling each other directly.

Queuing means that programs communicate through queues. Programs
communicating through queues need not be executed concurrently.

With asynchronous messaging, the sending program proceeds with its own
processing without waiting for a reply to its message. In contrast,

Application
Program

MQSeries

MQI

Application
Program

MQSeries

MQI

NETWORK

MQ Objects MQ Objects
112 Business-to-Business Integration Using MQSeries and MQSI

synchronous messaging waits for the reply before it resumes processing. For
the user, the underlying protocol is transparent. The user is concerned with
conversational or data-entry type applications.

MQSeries is used in a client/server or distributed environment. Programs
belonging to an application can run in one workstation or in different
machines on different platforms. Applications can easily be moved from one
system or platform to another. The programs can be written in various
programming languages, including Java. The same queuing mechanism is
valid for all platforms, and so are the currently 13 APIs.

Since MQSeries communicates via queues, it can be referred to as using
indirect program-to-program communication. The programmer cannot specify
the name of the target application to which a message is sent. However, he or
she can specify a target queue name, and each queue is associated with a
program. An application can have one or more “input” queues and may have
several “output” queues containing information for other servers to be
processed or for responses for the client that initiated the transaction.

The programmer does not have to worry about the target program being busy
or not available. He or she isn’t even concerned about the server being down
or having no connection to it. The programmer sends messages to a queue
that is associated with an application, and the application may or may not be
available at the time of the request. MQSeries takes care of the transport to
the target application and even starts it, if necessary.

If the target program is not available, the messages stay in a queue and are
processed later. The queue is either in the sending machine or in the target
machine, depending on whether the connection between the two systems can
be established or not. Applications can be running all day long or they can be
triggered, that is, automatically started when a message arrives or after a
specified number of messages have arrived. Figure 31 on page 114 shows
how two programs, A and B, communicate with each other.
Chapter 8. MQSeries and MQSeries integrator 113

Figure 31. Messages and Queues

We see two queues: One is the “output” queue for A and, at the same time,
the “input” queue for B while the second queue is used for replies flowing
from B to A.

The squares between the queues and the programs represent the Message
Queuing Interface (API) the program uses to communicate with MQSeries’
run-time program, the queue manager. As we said before, the API is a simple
multiplatform API consisting of 13 calls. The API will be discussed later.

8.4 About messages

A message consists of two parts:

• Data that is sent from one program to another
• The message descriptor or a message header

The message descriptor identifies the message (message ID) and contains
control information, also called attributes, such as message type, expiration
time, correlation ID, priority, and the name of the queue for the reply.

A message can be up to 4 MB or 100 MB long, depending on the MQSeries
version you use. MQSeries Version 5 (for distributed platforms) supports a
maximum message length of 100 MB.

Queue

AA

BB

Queue
114 Business-to-Business Integration Using MQSeries and MQSI

8.4.1 Message segmenting and grouping
In MQSeries Version 5, messages can be segmented or grouped. Message
segmenting can be transparent to the application programmer. If permitted,
the queue manager segments a large message when it does not fit in a
queue. On the receiving end, the application has the option to either receive
the entire message in one piece or each segment separately. This may
depend on the buffer size available for the application.

A second method of segmenting leaves the programmer in control so that he
or she can split a message according to logical boundaries or buffer size
available for the program. The programmer puts each segment as a separate
physical message; thus, several physical messages build one logical
message. The queue manager ensures that the order of the segments is
maintained.

To reduce traffic over the network, you can also group several small
messages together and build one larger physical message. This message is
then sent to the destination and is disassembled there. Message grouping
also guarantees that the order in which the messages are sent is preserved.

8.4.2 Distribution lists
Using MQSeries Version 5, you can send a message to more than one
destination queue with one MQPUT call. This is done with a dynamic
distribution list. A distribution list can be a file that is read at the time an
application starts. It can be modified any time. It contains a list of queue
names and the queue managers that own them. A message sent to multiple
queues belonging to the same queue manager is sent over the network only
once and, thus, reduces network traffic. The receiving queue manager
replicates the messages and puts them into the destination queues. This
function is called late fan-out.

8.4.3 Message types
MQSeries knows four types of messages:

Datagram A message containing information for which no response is
expected

Request A message for which a reply is requested

Reply A reply to a request message

Report A message that describes an event such as the occurrence of
an error or a confirmation on arrival or delivery
Chapter 8. MQSeries and MQSeries integrator 115

8.4.4 Persistent and non-persistent messages
Application design determines whether a message must reach its destination
under any circumstances or if it can be discarded when it cannot get there in
time. MQSeries differentiates between persistent and non-persistent
messages. Delivery of persistent messages is assured; they are written to
logs to survive system failures. In an AS/400 these logs are Journal
Receivers. Non-persistent messages cannot be recovered after a system
restart.

8.4.5 The message descriptor
The table below contains some interesting attributes of the message
descriptor. We mention them here because they explain some of the
functions the queue manager provides for you.

Table 9. Attributes of the message descriptor

The following are some attributes of the message descriptor:

• The version of the message descriptor depends on the MQSeries version
and platform you use. For the functions introduced with Version 5,
additional fields were needed to keep information about segments and
their order and distribution list information, to name a few. This enlarged
structure carries the version number, 2. Other queue managers who do
not support these functions (“Version 1 queue managers”) treat the
additional information as data.

• Message and/or correlation ID are used to identify a specific request or
reply message. The programmer can move a value in one or both fields or
have MQSeries create a unique ID for him or her. Before the programmer
puts the request message in the queue, he or she can save the ID(s) and
use them in a subsequent get operation for the reply message. The
program that receives the request message copies this information into
the reply message. This allows the originating program (the one that gets
the reply) to instruct MQSeries to look for a specific message in the queue
instead of getting the first one in the queue.

Version Return address

Message ID/Correlation ID Format

Persistent/non-persistent Sender application and type

Priority Report options/Feedback (COA, COD)

Date and time Backout counter

Lifetime of a message Segmenting/grouping information
116 Business-to-Business Integration Using MQSeries and MQSI

• We discussed persistent and non-persistent messages earlier. Persistent
messages always arrive at their destination, even when the system fails.
They are “hardened”, that is, saved on disk. You can make a specific
message persistent or all messages on a particular queue.

• You can assign a priority to a message and, thus, control the order in
which it is processed.

• The queue manager stores time and date when the MQPUT occurred in
the message header. The time is in GMT, and the year has four digits and,
thus, is Y2K compliant.

• You can also specify an expiration date. When this date is reached and an
MQGET is issued, the message will be discarded. There is no “daemon”
that checks queues for expired messages. Expired messages can stay in
a queue for weeks until a program attempts to read it.

• The return address is very important for request/reply messages. You
have to tell the server program where to send the reply message. Clients
and servers have a one-to-many relationship, and, usually, the server
program cannot find out from the user data where the request message
came from. Therefore, the client provides the reply-to queue and reply-to
queue manager in the message header. The server uses this information
when it performs the MQPUT API call.

• In the format field, the sender can specify a value that the receiver can use
to decide whether data conversion can be done. It is also used to indicate
that there is an additional header (extension) present.

• The message also carries information about the sending application
(program name and path) and the platform it is running on.

• Report options and feedback code are used to request information, such
as confirmation on arrival or delivery, from the receiving queue manager.
For example, the queue manager can send a report message to the
sending application when it puts the message in the target queue or when
the application gets it off the queue.

• Each time a message is backed out, the backout counter is increased. An
application can check this counter and act on it, for example, send the
message to a different queue where the reason for the backout is
analyzed by an administrator.

• Message segmenting and grouping has been mentioned earlier. The
queue manager uses the message header to store information about the
physical message (for example, if it is a message group, the first or last
segment, or which one in between).
Chapter 8. MQSeries and MQSeries integrator 117

8.5 About the Queue Manager

The heart of MQSeries is the message queue manager (MQM), MQSeries’
run-time program. Its job is to manage queues and messages for
applications. It provides the Message Queuing Interface (MQI) for
communication with applications. Application programs invoke functions of
the queue manager by issuing API calls. For example, the MQPUT API call
puts a message on a queue to be read by another program using the MQGET
API call. This scenario is shown in Figure 32.

Figure 32. Program-to-program communication - One system

A program may send messages to another program that runs in the same
machine as the queue manager (shown above) or to a program that runs in a
remote system, such as a server or a host. The remote system has its own
queue manager with its own queues. This scenario is shown in Figure 33.

Figure 33. Program-to-program communication - Two systems

The queue manager transfers messages to other queue managers via
channels using existing network facilities, such as TCP/IP, SNA, or SPX.
Multiple queue managers can reside in the same machine. They also need
channels to communicate.

Application
Program A

PUT to Q1

Application
Program B

GET from Q1

Messages

Application
Program A

PUT to Q1

Application
Program B

GET from Q1

Messages

Channel

Remote Queue Q1 Local Queue Q1
118 Business-to-Business Integration Using MQSeries and MQSI

Application programmers do not need to know where the program to which
they are sending messages runs. They put their messages in a queue and let
the queue manager worry about the destination machine and how to get the
messages there. MQSeries knows what to do when the remote system is not
available or the target program is not running or busy.

For the queue manager to do its work, it refers to objects that are defined by
an administrator, usually, when the queue manager is created or when a new
application is added. The objects are described in Section 8.7, “About Queue
Manager objects” on page 122. The functions of a queue manager can be
summarized as follows:

• It manages queues of messages for application programs.
• It provides an application programming interface, the Message Queue

Interface (MQI).
• It uses existing networking facilities to transfer messages to other queue

managers when necessary.
• It coordinates updates to databases and queues using a two-phase

commit. Gets and puts from/to queues are committed together with SQL
updates or backed out if necessary.

• It segments messages (if necessary) and assembles them. It can also
group messages and send them as one physical message to their
destination where they are automatically disassembled.

• It can send one message to more than one destination with one API call
using a user-defined dynamic distribution list, thus, reducing network
traffic.

• It provides additional functions that allow administrators to create and
delete queues, alter the properties of existing queues, and control the
operation of the queue manager. MQSeries for Windows NT Version 5.1
provides graphical user interfaces; other platforms use the command line
interface or panels.

MQSeries clients do not have a queue manager in their machines. Client
machines connect to a queue manager in a server. The queue manager
manages the queues for all clients attached to it.

In contrast to MQSeries clients, each workstation that runs MQSeries for
Windows (Version 2) has its own queue manager and queues. MQSeries for
Windows is a single-user queue manager and is not intended to function as a
queue manager for other MQSeries clients. This product is designed for a
mobile environment.
Chapter 8. MQSeries and MQSeries integrator 119

8.6 About Queue Manager clusters

With MQSeries for MVS/ESA and Version 5.1 for distributed platforms, you
can join queue managers together in clusters. Queue managers that form a
cluster can run in the same machine or in different machines on different
platforms. Usually, two of those “cluster queue managers” maintain a
repository that contains information about all queue managers and queues in
the cluster. This is called a full repository. The other queue managers
maintain only a repository of objects in which they are interested, a partial
repository. The repository allows any queue manager in the cluster to find out
about any cluster queue and who owns it. The queue managers use special
cluster channels to exchange information.

Clustering also permits multiple instances of a queue (with the same name)
on different queue managers. This allows for workload distribution, that is, the
queue manager can send messages to different instances of an application.

In normal distributed processing, we send messages to a specific queue
owned by a specific queue manager. All messages destined for that queue
manager are placed in a transmission queue on the sender’s side. This
transmission queue has the same name as the destination queue manager.
The message channel agents move the messages across the network and
place them into the destination queues. Figure 34 shows the relationship
between a transmission (Xmit) queue and the target queue manager.

Figure 34. MQPUT to a remote queue

With clustering, you send a message to a queue with a specific name
somewhere in the cluster; in Figure 35 on page 121, it is represented by a
cloud. You specify the name of a target queue, not the name of a remote
queue definition. Clustering does not require remote queue definitions. They
are only useful when you send a message to a queue manager that is not a

MQSeries for Windows and MQSeries for Windows NT are two different
products.

Note

MQPUT
Xmit
Queue

Target
Queue Qmgr

Remote
Queue
120 Business-to-Business Integration Using MQSeries and MQSI

member of the cluster. You can also specify a queue manager and direct the
message to a specific queue, but, very often, it is left to the queue manager to
determine where the queue is (or where the queues are) and to which one to
send the message.

Figure 35. MQPUT to a cluster queue

Think of an MQSeries cluster as the place where multiple instances of a
queue can exist. They come and go as required by an administrator in order
to satisfy changing availability and throughput requirements. This has to be
achieved completely dynamically and without placing the administrator under
a great burden to configure and control. In addition, the programmer does not
have to think about multiple queues; he or she just treats them as if writing to
a single queue.

This is not to say that there is no burden on the programmer or administrator.
Enhanced levels of availability and exploitation of parallelism require some
planning. The administrator or system designer must ensure that there is
enough redundancy in the configuration to meet their needs. The application
designer must ensure that messages are capable of being processed in
multiple places.

You create multiple instances of a queue by defining a queue with the same
name on multiple queue managers that belong to the cluster. You must also
name the cluster when you define the queue. Without this attribute, the queue
would only be known locally. When the application specifies only the queue
name, where is the message sent? Figure 36 gives you an idea.

MQSeries distributes the messages round-robin. You can, however, change
this default action by writing your own workload balancing exit routine.

Figure 36 on page 122 shows messages put in one of the three cluster
queues named A.

MQPUT
Cluster
Xmit
Queue

Target
Queue
Chapter 8. MQSeries and MQSeries integrator 121

Figure 36. Accessing cluster queues

Each of the three queue managers on the right owns a queue with this name.
By default, the first message is placed in queue A on queue manager 1, the
next in queue A on queue manager 2, the third goes to queue manager 3, and
the fourth message to the queue on queue manager 1 again.

In another scenario involving queue B, we notice that the third queue
manager is down and the third instance of queue B is not available. The
sending queue manager becomes aware of this problem because it
subscribed to information about all queue managers and queues it is
interested in, that is, where it sends messages. As soon as it finds out that
there is a problem with the third instance of B, it distributes messages to the
first two instances only. Special messages about changes of the status of
cluster objects are instantly published to all queue managers that subscribed
to that object.

8.7 About Queue Manager objects

This section introduces you to queue manager objects, such as queues and
channels. The queue manager itself is also an object. Usually, an
administrator creates one or more queue managers and their objects. A
queue manager can use objects of the following types:

• Queues

MQPUT

B

A

A

A

B1

2

3

122 Business-to-Business Integration Using MQSeries and MQSI

• Process definitions

• Channels

The objects are common across different MQSeries platforms. There are
other objects that apply to MVS systems only, such as the buffer pool, PSID,
and storage class. AS/400 MQ objects are known to the OS/400 operating
system as object type *USRSPC (user space) in the QMQMDATA library.

8.7.1 Queues
Message queues are used to store messages sent by programs. There are
local queues that are owned by the local queue manager and remote queues
that belong to a different queue manager.

Queues are described in more detail in Section 8.8, “About message queues”
on page 124.

8.7.2 Channels
A channel is a logical communication link. In MQSeries, there are two
different kinds of channels:

1. Message channels
A message channel connects two queue managers via message channel
agents (MCAs). Such a channel is unidirectional. It comprises two
message channel agents, a sender and a receiver, and a communication
protocol. An MCA is a program that transfers messages from a
transmission queue to a communication link and from a communication
link into the target queue. For bidirectional communication, you have to
define two channel pairs consisting of a sender and a receiver. Message
channel agents are also referred to as movers.

2. MQI channels
A Message Queue Interface (MQI) channel connects an MQSeries client
to a queue manager in its server machine. Clients do not have a queue
manager of their own. An MQI channel is bidirectional.

Figure 37 on page 124 shows both channels types. You see four machines:
Two clients connected to their server machine via MQI channels and the
server connected to another server or a host via two unidirectional message
channels. Some channels can be defined automatically by MQSeries. There
are different types of message channels depending on how the session
between the queue managers is initiated and for what purpose they are used.
Chapter 8. MQSeries and MQSeries integrator 123

Figure 37. MQSeries channels

To transmit non-persistent messages, a message channel can run at two
speeds: Fast and normal. Fast channels improve performance, but
(non-persistent) messages can be lost in case of a channel failure.

A channel can use the following transport types: SNA LU 6.2, TCP/IP,
NetBIOS, SPX, and DEC Net. Not all are supported on all platforms.

MQSeries for Windows Version 2 uses message channels to connect to other
machines. Since this product is designed as a single user system, it does not
support MQI channels. This product supports only TCP/IP.

Process definitions
A process definition object defines an application to a queue manager. For
example, it contains the name of the program (and its path) to be triggered
when a message arrives for it.

8.8 About message queues

Queues are defined as objects belonging to a queue manager. MQSeries
knows a number of different queue types, each with a specific purpose. The
queues you use are located either in your machine and belong to the queue
manager to which you are connected, or in your server (if you are a client).
Table 10 lists different queue types and their purposes. More detailed
information follows.

Table 10. Queue types and their purposes

Queue type Purpose

Local queue A real queue

Remote queue Structure describing a queue

MQ
Client

MQM

MQ
Client

MQMMQI Channels Message Channels
124 Business-to-Business Integration Using MQSeries and MQSI

8.8.1 Local queue
A queue is local if it is owned by the queue manager to which the application
program is connected. It is used to store messages for programs that use the
same queue manager. For example, program A and program B each has a
queue for incoming messages and another queue for outgoing messages.
Since the queue manager serves both programs, all four queues are local.

8.8.2 Cluster queue
A cluster queue is a local queue that is known throughout a cluster of queue
managers, that is, any queue manager that belongs to the cluster can send
messages to it without the need of a remote definition or defining channels to
the queue manager that owns it.

8.8.3 Remote queue
A queue is “remote” if it is owned by a different queue manager. A remote
queue definition is the local definition of a remote queue. A remote queue is
not a real queue. It is a structure that contains some of the characteristics of a
queue hosted by a different queue manager.

The application programmer can use the name of a remote queue just as he
or she can use the name of a local queue. The MQSeries administrator

Transmission queue (xmitq) Local queue with a special purpose

Initiation queue Local queue with a special purpose

Dynamic queue Local queue created “on the fly”

Alias queue If you don’t like the name

Dead-letter queue One for each queue manager

Reply-to queue Specified in a request message

Model queue Model for local queues

Repository queue Holds for cluster information

Queue type Purpose

Both programs do not have to run in the same workstation. Client
workstations usually use a queue manager in a server machine.

Note
Chapter 8. MQSeries and MQSeries integrator 125

defines where the queue actually is. Remote queues are associated with a
transmission queue.

8.8.4 Transmission queue
This is a local queue with a special purpose. A remote queue is associated
with a transmission queue. Transmission queues are used as an intermediate
step when sending messages to queues that are owned by a different queue
manager.

Typically, there is only one transmission queue for each remote queue
manager (or machine). All messages written to queues owned by a remote
queue manager are actually written to the transmission queue for this remote
queue manager. The messages will then be read from the transmission
queue and sent to the remote queue manager.

Using MQSeries clusters, there is only one transmission queue for all
messages sent to all other queue managers in the cluster.

Transmission queues are transparent to the application. They are used
internally by the queue manager. When a program opens a remote queue, the
attributes of the queue are obtained from the transmission queue. Therefore,
the results of a program writing messages to a queue will be affected by the
transmission queue characteristics.

8.8.5 Dynamic queue
Such a queue is defined "on the fly" when the application needs it. Dynamic
queues may be retained by the queue manager or automatically deleted
when the application program ends. Dynamic queues are local queues. They
are often used in conversational applications to store intermediate results.
Dynamic queues can be:

• Temporary queues that do not survive queue manager restarts

• Permanent queues that do survive queue manager restarts

8.8.6 Alias queue
Alias queues are not real queues but definitions. They are used to assign
different names to the same physical queue. This allows multiple programs to

A program cannot read messages from a remote queue. You do not need a
remote queue definition for a cluster queue.

Note
126 Business-to-Business Integration Using MQSeries and MQSI

work with the same queue, accessing it under different names and with
different attributes.

8.8.7 Model queue
A model queue is not a real queue. It is a collection of attributes that are used
when a dynamic queue is created.

8.8.8 Initiation queue
An initiation queue is a local queue to which the queue manager writes a
trigger message when certain conditions are met on another local queue, for
example, when a message is put into an empty message queue or in a
transmission queue. Such a trigger message is transparent to the
programmer. Two MQSeries applications monitor initiation queues and read
trigger messages, the trigger monitor that starts applications and the channel
initiator that starts the transmission between queue managers.

8.8.9 Reply-to-queue
A request message must contain the name of the queue into which the
responding program must put the reply message. This can be considered the
“return address”. The name of this queue and the name of the queue
manager that owns it are stored in the message header. This is the
responsibility of the application program.

8.8.10 Dead-letter queue
A queue manager must be able to handle situations when it cannot deliver a
message. Here are some examples:

• The destination queue is full.
• The destination queue does not exist.
• Message puts have been inhibited on the destination queue.
• The sender is not authorized to use the destination queue.
• The message is too large.
• The message contains a duplicate message sequence number.

Applications do not need to be aware of initiation queues, but the triggering
mechanism implemented through them is a powerful tool to design and
write asynchronous applications.

Note
Chapter 8. MQSeries and MQSeries integrator 127

When the above conditions are met, the messages are written to the
dead-letter queue. Such a queue is defined when the queue manager is
created. It will be used as a repository for all messages that cannot be
delivered.

8.8.11 Repository queue
Repository queues have existed since Version 5.1 and Version 2.1 for
OS/390. They are used in conjunction with clustering and hold either a full or
partial repository of queue managers and queue manager objects in a cluster
(or group) of queue managers.

8.8.12 Creating a Queue Manager
You may create as many queue managers as you like and have them running
at the same time. You create a queue manager with the crtmqm command; to
make it the default, specify the /q parameter.

The following command creates the default queue manager, MYQMGR (in a
Windows NT environment):

crtmqm /q MYQMGR

There are default definitions for objects every queue manager needs, such as
model queues. These objects are created automatically. Most certainly, you
will have to create other objects that pertain to the applications you run.
Usually, those application-specific objects are kept in a script file, such as
mydefs.in. You apply them to a newly-created queue manager with the
following command:

runmqsc < mydefs.in

MQSeries for Windows NT Version 5.1 provides a graphical user interface to
create and manipulate queue managers and their objects.

A dead-letter queue is not automatically created. To create one when you
create the queue manager, specify it as shown in the following example:

crtmqm /q /u system.dead.letter.queue MYQMGR

To start the queue manager, issue the following command:
strmqm

Queue manager names are case-sensitive.

Note
128 Business-to-Business Integration Using MQSeries and MQSI

8.9 Manipulating Queue Manager objects

MQSeries for distributed platforms provides the utility, RUNMQSC, to create
and delete queue manager objects and manipulate them. The queue
manager must be running when you use the utility. RUNMQSC works in two
ways:

• You can type the commands.
• You can create a file containing a list of commands and use this file as

input.

The commands in the next screen start the default queue manager (which is
already running, as the response indicates) and create the local queue,
QUEUE1, for it. Another command alters the queue manager properties to
define a dead-letter queue.

To start the utility in an interactive mode, type runmqsc. To end it, type end.
Another way to create MQSeries objects is by using an input file instead of
typing the commands; for example:

runmqsc < mydefs.in > a.a

where mydefs.in is the script file that contains the commands and a.a is the
file that will contain the responses from the RUNMQSC utility so that you can
check if any error occurred. The output can either appear in the window or
can be redirected to a file.

The following screen describes how to use Control Commands to manipulate
objects.
Chapter 8. MQSeries and MQSeries integrator 129

8.10 Clients and servers

MQSeries distinguishes clients and servers. Before you install MQSeries on a
distributed platform, you have to decide if the workstation will be an
MQSeries client, an MQSeries server, or both. With MQSeries for Windows, a
new term was introduced, the leaf node (described later). There are two kinds
of clients:

• Slim client or MQSeries client

• Fat client

Fat clients have a local queue manager; slim clients do not.

When a slim client cannot connect to its server, it cannot work because the
queue manager and queues for a slim client reside in the server. Usually, an
MQSeries client is a slim client. Several of these clients share MQSeries
objects (the queue manager is one of them) in the server to which they are
attached.

C:\strmqm
MQSeries queue manager running.

runmqsc
84H2001,6539-B42 (C) Copyright IBM Corp. 1994, 1997. ALL RIGHTS RESERVED
Starting MQSeries Commands.

define qlocal('QUEUE1') replace descr ('test queue')
1 : define qlocal('QUEUE1') replace descr ('test queue')

AMQ8006: MQSeries queue created.
alter qmgr deadq(system.dead.letter.queue)

2 : alter qmgr deadq(system.dead.letter.queue)
AMQ8005: MQSeries queue manager changed.
end

3 : end
2 MQSC commands read.
0 commands have a syntax error.
0 commands cannot be processed.

C:\

The MQSeries Client for Java is a slim client.

Note
130 Business-to-Business Integration Using MQSeries and MQSI

In some cases, it may be advantageous to have queues in the end user's
workstation, especially in a mobile environment. This allows you to run your
application when a connection between client and server does not
(temporarily) exist.

You may install client and server software in the same system and use it as
an end user's workstation. If your operating system is Windows NT, you can
install MQSeries for Windows NT V5.1 or MQSeries for Windows V2.1 (also
called MQWin). If your operating system is Windows 95, use MQWin V2.1.
This product has been designed for end users and uses fewer resources.

The difference between an end user's workstation that is a client and one that
has a queue manager is the way messages are sent. The queues reside
either in the end user's workstation or in the server. Figure 38 again shows
the use of MQI and message channels.

Figure 38. MQI and message channels

• MQI channels connect clients to a queue manager in a server machine. All
MQSeries objects for the client reside in the server. MQI channels are
faster than message channels.

• A message channel connects a queue manager to another queue
manager. The queue manager can reside in the same or in a different
machine.

The following sections summarize the three workstation types.

MQSeries client
A client workstation does not have a queue manager of its own. It shares a
queue manager in a server with other clients. All MQSeries objects, such as
queues, are in the server. Since the connection between client and server is
synchronous, the application cannot work when the communication is broken.
You could refer to such workstations as "slim" clients.

MQ
Client

MQM

MQ
Client

MQMMQI Channels Message Channels
Chapter 8. MQSeries and MQSeries integrator 131

MQSeries server
A workstation can be a client and a server. A server is an intermediate node
between other nodes. It serves clients that have no queue manager and
manages the message flow between its clients, itself, and other servers. In
addition to the server software, you may also install the client software. This
configuration is used in an application development environment.

Leaf Node
MQSeries for Windows was designed for use by a single user. It has its own
"small footprint" queue manager with its own objects. However, it is not an
intermediate node between other nodes. It is called a leaf node. You could
also refer to it as a "fat" client. This product is able to queue outbound
messages when connection to a server or host is not available and inbound
messages when the appropriate application is not active.

8.11 How MQSeries works

Figure 39 shows the parts and architecture of MQSeries.

Figure 39. MQSeries - Parts and logic

System Init Q

MQI

Program 1

MCA MCA

Program 2

MQI

Channel
Initiator

PUT

Remote Q

Xmit Q

Ch Init
Q

monitors

starts

starts starts

Trigger
Monitor

Local Q

monitors

starts

P
r
o
c
e
s
s

GET

B
A.B

A.B

Listener

Network

Qmgr A Qmgr B

starts
132 Business-to-Business Integration Using MQSeries and MQSI

The application program uses the Message Queue Interface (MQI) to
communicate with the queue manager. The MQI is described in more detail
later. The queuing system consists of the following parts:

• Queue Manager (MQM)

• Listener

• Trigger Monitor

• Channel Initiator

• Message Channel Agent (MCA) or mover

When the application program wants to put a message on a queue, it issues
an MQPUT API call. This invokes the MQI. The queue manager checks
whether the queue referenced in the MQPUT is local or remote. If it is a
remote queue, the message is placed into the transmission (xmit) queue. The
queue manager adds a header that contains information from the remote
queue definition, such as destination queue manager name and destination
queue name.

Transmission is done via channels. Channels can be started manually or
automatically. To start a channel automatically, the xmit queue must be
associated with a channel initiation queue. Figure 39 on page 132 shows that
the queue manager puts a message into the xmit queue and another
message into the channel initiation queue. This queue is monitored by the
channel initiator.

The channel initiator is an MQSeries program that must be running in order to
monitor initiation queues. When the channel initiator detects a message in the
initiation queue, it starts the message channel agent (MCA) for the particular
channel. This program moves the message over the network to the other
machine, using the sender part of the unidirectional message channel pair.

On the receiving end, a listener program must have been started. The
listener, also supplied with MQSeries, monitors a specified port, by default,
the port dedicated to MQSeries, 1414. When a message arrives, it starts the
message channel agent. The MCA moves the message into the specified
local queue using the receiver part of the message channel pair.

Each remote queue must be associated with an xmit queue. Usually, all
messages destined for one remote machine use the same xmit queue.

Note
Chapter 8. MQSeries and MQSeries integrator 133

The program that processes the incoming message can be started manually
or automatically. To start the program automatically, an initiation queue and a
process must be associated with the local queue, and the trigger monitor
must be running.

When the program starts automatically, the MCA puts the incoming message
into the local queue and a trigger message into the initiation queue. This
queue is monitored by the trigger monitor. This program invokes the
application program specified in the process definition. The application issues
an MQGET API call to retrieve the message from the local queue.

8.12 Communication between queue managers

In this section, we discuss what you have to define to send messages to a
queue manager that resides in another system. We use message channels
for communication between queue managers as shown in Figure 38 on page
131.

The logic is illustrated in Figure 40 on page 136, and the necessary
MQSeries definitions are shown in Table 11 on page 136.

Each machine has a queue manager installed, and each queue manager
manages several local queues. Messages destined for a remote queue
manager are put into a remote queue. A remote queue is not a real queue; it
is the definition of a local queue in the remote machine. A remote queue is
associated with a transmission (xmit) queue, which is a local queue. Usually,
there is one xmit queue for each remote queue manager.

A transmission queue is associated with a message channel. Message
channels are unidirectional, meaning that you have to define two channels for
a conversational type of communication. Also, you have to define each
channel twice, once in the system that sends the message (sender channel)
and once in the system that receives the message (receiver channel). Each
channel pair (sender and receiver) must have the same name. This scenario
is elucidated in Figure 40 on page 136. Next, let us find out how we get this to
work.

Both channel definitions, sender and receiver, must have the same name.
For the reply, you need another message channel pair.

Note
134 Business-to-Business Integration Using MQSeries and MQSI

8.12.1 How to define a connection between two systems
Figure 40 on page 136 shows the required MQSeries objects for connecting
two queue managers.

In each system we need the following:

• A remote queue definition that mirrors the local queue in the receiver
machine and links to a transmission queue (Q1 in system A and Q2 in
system B).

• A transmission queue that holds all messages destined for the remote
system until the channel transmits them (QMB in system A and QMA in
system B).

• A sender channel that gets messages from the xmit queue and transmits
them to the other system using the existing network (QMA.QMB in system
A and QMB.QM.A in system B).

• A receiver channel that receives messages and puts them into a local
queue (QMB.QMA in system A and QMA.QMB in system B); receiver
channels can be started automatically by the queue manager when
Channel Auto Definition (CHAD) is enabled.

• A local queue from which the program gets its messages (Q2 in system A
and Q1 in system B).

In each system, you must define the appropriate queue manager objects. The
objects are defined in the two script files shown in Table 11 on page 136.

When you use clustering, you don’t have to define transmission queues.
There is only one transmission queue per queue manager, and that is created
automatically when the queue manager is created.

You also don’t have to define channels, neither sender nor receiver channels;
they are automatically created when needed.
Chapter 8. MQSeries and MQSeries integrator 135

Figure 40. Communication between two queue managers

Table 11 lists the MQ Series objects defining a connection between two
queue managers.

Table 11. MQSeries Objects defining connection between two queue managers

System A (QMA) System B (QMB)

DEFINE QREMOTE(Q1) +
RNAME(Q1) RQMNAME(QMB) +
XMITQ(QMB)

DEFINE QLOCAL(Q1)

DEFINE QLOCAL(QMB) +
USAGE(xmitq)

DEFINE CHANNEL(QMA.QMB) +
CHLTYPE(sdr) +
XMITQ(QMB) +
TRPTYPE(tcp) +
CONNAME(9.24.104.123)

DEFINE CHANNEL(QMA.QMB) +
CHLTYPE(rcvr) +
TRPTYPE(tcp)

System A System B

XmitQ
QMB

Remote Q2

N

E

T

W

O

R

K

Channel
QMA.QMB
Sender

Program 1

put

get

get

put

Local Q1Remote Q1

Local Q2

Program 2

Qmgr QMA Qmgr QMB

XmitQ
QMA

Channel
QMA.QMB
Receiver

Channel
QMB.QMA
Sender

Channel
QMB.QMA
Receiver

(CHAD)

(CHAD)
136 Business-to-Business Integration Using MQSeries and MQSI

8.12.2 How to start communication manually
First, the objects have to be known to the queue managers. You use
RUNMQSC to create the objects. Make sure that the queue manager is
running. Next, start the listeners and the channels. You need to start only the
sender channel in each system. MQSeries starts the receiver channel. The
commands to start listener and channel for queue manager QMA are as
follows:

strmqm QMA

start runmqlsr -t tcp -m QMA -p 1414

runmqsc

start channel (QMA.QMB)

end

With the first command, you start queue manager QMA. The next command
starts the listener. It listens on behalf of QMA on port 1414 if TCP/IP is used.
The third command starts runmqsc in interactive mode. The channel,
QMA.QMB, is started under control of runmqsc. For the other queue
manager, you issue equivalent commands. You also have to start the
applications in both systems.

8.12.2.1 How to start communication automatically
You can use the channel initiator to start channels. Instead of the commands
shown above, enter the following commands (for Windows NT, UNIX, and
OS/2):

start runmqlsr -t tcp -m QMA -p 1414
start runmqchi

DEFINE QLOCAL(Q2) DEFINE QREMOTE(Q2) +
RNAME(Q2) RQMNAME(QMA) +
XMITQ(QMA)

DEFINE QLOCAL(QMA) +
USAGE(xmitq)

DEFINE CHANNEL(QMB.QMA) +
CHLTYPE(rcvr) +

TRPTYPE(tcp)

DEFINE CHANNEL(QMB.QMA) +
CHLTYPE(sdr) +
XMITQ(QMA) +
TRPTYPE(tcp) CONNAME(ABC1)

System A (QMA) System B (QMB)
Chapter 8. MQSeries and MQSeries integrator 137

With the first command, you start the listener, and, with the second, you start
the channel initiator program.

The channel initiator monitors a channel initiation queue and starts the proper
channel to read in the message. The default initiation queue is
SYSTEM.CHANNEL.INITQ.

You may also start the channel initiator from RUNMQSC (Windows NT, UNIX,
and OS/2). The command is:

start chinit

OR

start chinit initq(SYSTEM.CHANNEL.INITQ)

To have the transmission queue triggered, add the following parameters:

DEFINE QLOCAL(A.TO.B) REPLACE +

USAGE(xmitq) +

TRIGGER

TRIGTYPE(every) +

INITQ(SYSTEM.CHANNEL.INITQ) +

DESCR('Xmit Queue')

The queue manager can trigger the process that starts the channel program
in three ways:

• When the first message is put into the transmission queue
• Every time a message is put into the xmit queue
• When the queue contains a specified number of messages

Figure 41 on page 139 shows the logic behind triggering.
138 Business-to-Business Integration Using MQSeries and MQSI

Figure 41. Triggering channels

The steps are as follows:

1. The program issues an MQPUT to a remote queue, and a message is
placed into the transmission queue.

2. When the queue manager puts a message into the transmission queue, it
checks the trigger type specified in the queue definition. Depending on
that definition and on how many messages are in the queue, it may put an
additional message in the channel initiation queue. This “trigger message”
is transparent to the user.

3. Since the channel initiator was started earlier, for example, at boot time, it
monitors the channel initiation queue and removes the trigger message.

4. The channel initiator starts the message channel agent (also called
mover).

5. The channel program gets the message off the transmission queue and
invokes any channel exit routines, if specified.

6. The message is then moved over the network to its destination.

MQM

XmitQ

MCA Channel Initiator

Channel Init Q

Channel

Message Trigger Message

monitor

start

read

move

1 2

3

4

5

6

Default object
Chapter 8. MQSeries and MQSeries integrator 139

8.13 How to trigger applications

This section describes how to trigger an application program that runs in the
server machine. Both triggering and triggered applications can run under the
same or different queue managers.

Figure 42 shows the logic of triggering.

Figure 42. Triggering an application

Here, Program A sends a message to A-Q to be processed by Program B.
The MQSeries triggering mechanism is as follows:

1. Program A issues an MQPUT and puts a message into A-Q for Program B.

2. The queue manager processes this API call and puts the message into the
application queue.

3. It also finds out that the queue is triggered. It creates a trigger message
and looks in the Process Definition to find the name of the application and
puts it in the trigger message. The trigger message is put into the initiation
queue.

MQSeries for Windows V2.1 does not support triggering.

Note

MQGET
I-Q

MQPUT
A-Q

MQGET
A-Q

Process
Definition

Application
Queue

Initiation
Queue

MQM

1

2

3

4

5

6

Program A Program B
140 Business-to-Business Integration Using MQSeries and MQSI

4. The trigger monitor gets the trigger message from the initiation queue and
starts the program specified.

5. The application program starts running and issues an MQGET to retrieve
the message from the application queue.

The definitions necessary to trigger an application are as follows:

• The target queue must have “triggering” specified as shown in bold below:

DEFINE QLOCAL(A-Q) REPLACE +
TRIGGER
TRIGTYPE(first) +
INITQ(SYSTEM.DEFAULT.INITIATION.QUEUE) +
PROCESS(proc1)

DESCR('This is a triggered queue')

• The process definition associated with the target queue can be as follows:

DEFINE PROCESS(proc1) REPLACE +
DESCR('Process to start server program') +
APPLTYPE(WINDOWSNT) +
APPPLICID(‘c:\test\myprog.exe’)

What trigger type to use depends on how the application is written. You have
three choices as shown in Figure 43.

Figure 43. MQSeries application trigger choices

The three choices are:

EVERY Every time a message is put in the target queue, a trigger
message is also put in the initiation queue. Use this when your

...
MQGET
...
...
exit

...
MQGET WAIT

timeout?
...
...

exit

Queue is empty
Chapter 8. MQSeries and MQSeries integrator 141

program exits after processing one message or transaction,
as shown in the left part of Figure 43 on page 141.

FIRST A trigger message is put in the initiation queue only when the
target queue has been empty. Use this when the program
exits only then when there are no more messages in the
queue as shown in the right part of Figure 43 on page 141.

n messages A trigger message is put in the initiation queue when there are
n messages in the target queue. For example, you can start a
batch program when the queue holds 1000 messages.

8.14 Communication between client and server

In the following section, we discuss what is necessary to define and test the
connection between an MQ client and its MQ server. A more detailed
description is provided in the publication MQSeries Clients, GC33-1632.

8.14.1 How to define a client/server connection
Figure 44 shows that the MQSeries Client product is installed in the client
machine.

Figure 44. Client/Server connection

We said earlier that clients and servers are connected with MQI channels. An
MQI channel consists of a sender/receiver pair, called the Client Connection
(CLNTCONN) and Server Connection (SVCONN) channels.

Client Connection
Server Connection

Communication Link

Application

MQSeries
Client

APIs

Client Machine

Application

MQSeries
Queue Manager

APIs

Server Machine

Link with
MQIC
Java Client

Link with
MQM
Java Bindings
142 Business-to-Business Integration Using MQSeries and MQSI

You have to know what transmission protocol is used (for example, TCP/IP),
the port the listener listens to (1414 is the default), and the address of the
systems to which you want to connect. For an address, you can specify an LU
name, a host name or machine name, or a TCP/IP address.

The client connection channel is defined as an environment variable, such as:

set MQSERVER=CHAN1/TCP/9.24.104.206(1414)

where:

• MQSERVER is the name of the environment variable.

• CHAN1 is the name of the channel to be used for communication between
client and server. This channel is defined in the server. MQSeries will
automatically create it if it does not exist.

• TCP denotes that TCP/IP is to be used to connect to the machine with the
address following the parameter.

• 1414 is the default port number for MQSeries. You may omit this parameter
if the listener on the server side also uses this default.

The definition of the server is as follows:

DEFINE CHANNEL('CHAN1') CHLTYPE(SVRCONN) REPLACE +

TRPTYPE(TCP) MCAUSER(' ')

For the MQSeries Client for Java, the environment variables are set in the
applet code. An applet can run in any machine, such as a network station,
and it has no access to environment variables. The following example shows
what statements to include in your Java program:

import com.ibm.mq.*;

MQEnvironment.hostname = "9.24.104.456";

MQEnvironment.channel = "CHAN1";

MQEnvironment.port = 1414;

8.14.2 How a Client/Server connection works
Now, we will describe how to trigger an application program that runs in the
server machine. Since there are MQI channels of the type server connection
between clients and server, all clients use the queue manager in the server
machine. When a client puts a message on a queue, it has to be read and
processed by a program. This program can be started when the server starts,
Chapter 8. MQSeries and MQSeries integrator 143

or the queue manager can start it when needed by using the MQSeries
triggering mechanism.

Figure 45 on page 145 shows two clients connected to a server. Both clients
request services from the same program (Appl S1). Since that application
runs in the same system as the queue manager, we have only local queues.
Some queues are specifically for a particular client; for example, QA1 is the
reply queue for client A, and QA2 is the reply queue for client B. Other
queues are used by both clients and server. For example, QS1 is used as the
output queue for both clients and as the input queue for the server program.

Next, we describe the MQSeries objects and API call sequences in both client
and server.

8.14.3 How a Client sends a request
The client starts a program that puts a message on a queue. For this function,
five MQSeries API calls are executed:

• MQCONN to connect to the queue manager in the server

• MQOPEN to open the message queue QS1 for output

• MQPUT to put a message in the queue

• MQCLOSE to close the queue QS1

• MQDISC to disconnect from the queue manager

Of course, the program can put many messages in the queue before it closes
it and disconnects. Closing the queue and disconnecting from the queue
manager can be done when the application ends because there are no more
messages to process.

The MQSeries client code that runs in the client machine processes the API
calls and routes them to the machine defined in the environment variable.
144 Business-to-Business Integration Using MQSeries and MQSI

Figure 45. Clients and server communicating

8.14.4 How the server receives a request
The following queue manager objects are needed in the server machine:

• A channel of the type server connection.
• A local queue, QS1, into which the clients put their messages.
• An initiation queue into which the queue manager puts a trigger message

when a request for queue QS1 arrives. You can use the default initiation
queue.

• A process definition that contains the name of the program to be started
when the trigger event occurs (S1).

• One or more queues in which the program puts the reply messages, QA1
and QB1.

In the server machine, two programs have to be started: The listener and the
trigger monitor. The listener listens for messages on the channel and puts
them on the queue, QS1. Since QS1 is triggered, the MQM puts a trigger

Server

Queue Manager

Objects for
Client A

QA1

QS1

Objects for
Client B

QB1

Application
S1

Client A

Appl_1

put

get

Client B

Appl_1
put

get

get

put

Request and Reply

?

Chapter 8. MQSeries and MQSeries integrator 145

message on the trigger queue each time a message is put on QS1. When a
message is placed on the trigger queue, the trigger monitor starts the
program defined in the process.

The server program, S1, connects to the queue manager, opens the queue,
QS1, and issues an MQGET to read the message.

8.14.5 How the server sends a reply
After processing a request, the server puts the reply in the reply queue for the
client. To do this, it has to open the output queue (QA1 or QB1) and issue an
MQPUT.

Since several clients use the same server application, it is advisable to give
the server a return address, that is, the names of the queue and the queue
manager that will receive the reply message. These fields are in the header of
the request message containing the reply-to-queue manager and
reply-to-queue (here, QA1 or QB1). It is the responsibility of the client
program to specify these values.

Usually, the server program stays active and waits for more messages, at
least for a certain time. For how long can be specified in the wait option of the
MQGET API.

8.14.6 How the client receives a reply
The client program knows the name of its input queue; here, it is QA1 or QB1.
The application can use two modes of communication:

• Conversational
If the application uses this mode of communication with the server
program, it waits for the message to arrive before it continues processing.
This means that the reply queue is open and an MQGET with the wait
option has been issued. The client application must be able to deal with
two possibilities:

- The message arrives in time.

- The timer expires, and no message is there.

• True asynchronous
When using this mode, the client does not care when the request message
arrives. Usually, the user clicks a push button in a menu window to
activate a program that checks the reply queue for messages. If a
message is present, this or another program can process the reply.
146 Business-to-Business Integration Using MQSeries and MQSI

8.15 The Message Queuing Interface (MQI)

A program talks directly to its local queue manager. It resides in the same
processor or domain (for clients) as the program itself. The program uses the
Message Queuing Interface (MQI). The MQI is a set of API calls that request
services from the queue manager.

The 13 APIs are shown in Table 12.

Table 12. MQSeries APIs and their purposes

The most important ones are MQPUT and MQGET. The other calls are used
less frequently. Comments regarding several APIs follow:

MQCONN establishes a connection with a queue manager using the standard
bindings.

API Purpose

MQC0NN Connect to a queue manager

MQDISC Disconnect from a queue manager

MQOPEN Open a specific queue

MQCLOSE Close a queue

MQPUT Put a message on a queue

MQGET Get a message from a queue

MQPUT1 MQOPEN + MQPUT + MQCLOSE

MQINQ Inquire properties of an object

MQSET Set properties of an object

MQCONNX Standard or fastpath bindings

MQBEGIN Begin a unit of work (database
coordination)

MQCMIT Commit a unit of work

MQBACK Back out

When the connection between a client and its server is broken, no API calls
can be executed because all objects reside in the server.

Note
Chapter 8. MQSeries and MQSeries integrator 147

MQCONNX establishes a connection with a queue manager using fastpath
bindings. Fastpath puts and gets are faster, but the application must be well
behaved, that is, well tested. Application and queue manager run in the same
process. When the application crashes, it takes the queue manager down
with it. This API call is new in MQSeries Version 5.

MQBEGIN begins a unit of work that is coordinated by the queue manager
and may involve external XA-compliant resource managers. This API has
been introduced with MQSeries Version 5. It is used to coordinate
transactions that use queues (MQPUT and MQGET under syncpoint) and
database updates (SQL commands).

MQPUT1 opens a queue, puts a message on it and closes the queue. This is
a combination of MQOPEN, MQPUT, and MQCLOSE.

MQINQ requests information about the queue manager or one of its objects,
such as the number of messages in a queue.

MQSET changes some attributes of an object.

MQCMIT specifies that a syncpoint has been reached. Messages put as part
of a unit of work are made available to other applications. Messages retrieved
as part of a unit of work are deleted.

MQBACK tells the queue manager to back out all message puts and gets that
have occurred since the last syncpoint. Messages put as part of a unit of work
are deleted. Messages retrieved as part of a unit of work are reinstated on the
queue.

8.16 A code fragment

The code fragment below shows the APIs to put a message on one queue
and get the reply from another queue.

MQDISC implies the commit of a unit of work. Ending the program without
disconnecting from the queue manager causes a rollback (MQBACK).

MQSeries for AS/400 does not use MQBEGIN, MQCMIT, or MQBACK. The
commit control operation codes of the AS/400 language are used.

Note
148 Business-to-Business Integration Using MQSeries and MQSI

Comments:

1. This statement connects the application to the queue manager with the
name MYQMGR. If the parameter QMName does not contain a name,
then the default queue manager is used. MQ stores the handle of the
queue manager in the variable, HCon. This handle must be used in all
subsequent APIs.

2. To open a queue, the queue name must be moved into the object
descriptor that will be used for that queue. This statement opens QUEUE1
for output only (open the option, MQOO_OUTPUT). The handle to the
queue and values in the object descriptor are returned. The handle, Hobj1,
must be specified in the MQPUT.

3. MQPUT places the message assembled in a buffer on a queue.
Parameters for MQPUT are:

- The handle of the queue manager (from MQCONN)
- The handle of the queue (from MQOPEN)
- The message descriptor
- A structure containing options for the put (refer to the Application

Programming Reference)
- The message length
- The buffer containing the data

4. This statement closes the output queue. Since the queue is predefined, no
close processing takes place (MQOC_NONE).

5. This statement opens QUEUE2 for input only using the queue-defined
defaults. You could also open a queue for browsing, meaning that the
message will not be removed.

Figure 46 on page 150 shows a code fragment.

The fields, CompCode and Reason, will contain completion codes for the
APIs. You can find them in the Application Programming Reference.

Note
Chapter 8. MQSeries and MQSeries integrator 149

Figure 46. A code fragment

6. For the get, the nowait option is used. The MQGET needs the length of the
buffer as an input parameter. Since there is no message ID or correlation
ID specified, the first message from the queue is read. You may specify a
wait interval (in milliseconds) here. You can check the return code to find
out if the time has expired and no message arrived.

MQHCONN HCon; // Connection handle
MQHOBJ HObj1; // Object handle for queue 1
MQHOBJ HObj2; // Object handle for queue 2
MQLONG CompCode, Reason; // Return codes
MQLONG options;
MQOD od1 = {MQOD_DEFAULT}; // Object descriptor for queue 1
MQOD od2 = {MQOD_DEFAULT}; // Object descriptor for queue 2
MQMD md = {MQMD_DEFAULT}; // Message descriptor
MQPMO pmo = {MQPMO_DEFAULT}; // Put message options
MQGMO gmo = {MQPMO_DEFAULT}; // Get message options
:
// 1 Connect application to a queue manager.
strcpy (QMName,"MYQMGR");
MQCONN (QMName, &HCon, &CompCode, &Reason);

// 2 Open a queue for output
strcpy (od1.ObjectName,"QUEUE1");
MQOPEN (HCon,&od1, MQOO_OUTPUT, &Hobj1, &CompCode, &Reason);

// 3 Put a message on the queue
MQPUT (HCon, Hobj1, &md, &pmo, 100, &buffer, &CompCode, &Reason);

// 4 Close the output queue
MQCLOSE (HCon, &Hobj1, MQCO_NONE, &CompCode, &Reason);

// 5 Open input queue
options = MQOO_INPUT_AS_Q_DEF;
strcpy (od2.ObjectName, "QUEUE2");
MQOPEN (HCon, &od2, options, &Hobj2, &CompCode, &Reason);

// 6 Get message
gmo.Options = MQGMO_NO_WAIT;
buflen = sizeof(buffer - 1);
memcpy (md.MsgId, MQMI_NONE, sizeof(md.MsgId);
memset (md.CorrelId, 0x00, sizeof(MQBYTE24));
MQGET (HCon, Hobj2, &md, &gmo, buflen, buffer, 100, &CompCode, &Reason);

// 7 Close the input queue
options = 0;
MQCLOSE (HCon, &Hobj2,options, &CompCode, &Reason);

// 8 Disconnect from queue manager
MQDISC (HCon, &CompCode, &Reason);
150 Business-to-Business Integration Using MQSeries and MQSI

7. This statement closes the input queue.

8. The application disconnects from the queue manager.

8.17 MQSeries integrator components

The key components in an MQSeries Integrator environment include:

• Configuration Manager and configuration repository
• One or more brokers
• Control Center
• User Name Server
• MQSeries Queue Manager(s)
• Message Repository Manager (MRM)

Using the Control Center, the MQSeries Integrator administrator defines
messages in the message repository and message flows. A message flow is
a series of operations and rules that a broker executes for a retrieved
message. Message flows are grouped in an execution group. Execution
groups are assigned to a broker.

When a client application puts a message on an input queue of the broker,
the broker will retrieve the message and parse it. From that point on, a
message is stored in the common message interface, which is, basically, a
tree structure representing all fields in that message. The broker then
executes the actions that are configured in the message flow, and, eventually,
the message arrives at an output queue ready to be retrieved by another
client application.

Figure 47 on page 152 shows the overview of MQSeries integrator.
Chapter 8. MQSeries and MQSeries integrator 151

Figure 47. Overview of MQSeries integrator

A message flow consists of a number of nodes, usually starting with an
MQInput node and ending with one or more MQOutput nodes. An MQInput
node is the encapsulation of a normal MQGET operation, while an MQOutput
node is the encapsulation of a normal MQPUT operation. Between these two
nodes, a message flow can contain other nodes that transform the message.
A Filter node allows you to specify a Boolean expression for routing the
message. In a Compute node you can specify a script to alter message fields.
The script is written in the programming language ESQL, which is an
extension of standard SQL. Another important type of node is a Database
node. These nodes allow you to interact with an external database. You can
use information from a database to enrich a message or route a message.
You can use the message to make updates in the table. It is also possible to
store the message using the Warehouse node.

Besides the standard nodes, called IBMPrimitives, you can extend the palette
of nodes with user-written or third-party nodes that perform a specific
function. Within such a user-written node, you have access to the message
152 Business-to-Business Integration Using MQSeries and MQSI

that flows in and you can create a new transformed message, just like you
can with a Compute node.

8.17.1 The Configuration Manager
An MQSeries Integrator system is controlled by the Configuration Manager;
the components and resources managed by the Configuration Manager make
up the broker domain. The Configuration Manager maintains the broker
domain configuration in the configuration repository. The Control Center is
used to create and modify this configuration.

The Configuration Manager is the main component of the MQSeries
Integrator runtime environment and serves three main functions:

• It maintains configuration details in the configuration repository. This is a
set of database tables that provide a central record of the broker domain
components.

• It manages both the initialization and deployment of the broker and
message processing operations in response to functions performed using
the Control Center.

• It checks the authorities of defined user IDs for the authority to initiate
those actions.

The Configuration Manager provides services to the other broker domain
components, providing configuration updates in response to Control Center
actions.

The Configuration Manager requires:

• A set of tables in a database, known as the configuration repository. This
database must be created using DB2 Universal Database for Windows NT.
The Configuration Manager uses a Java Database Connectivity (JDBC)
connection to this database.

• A set of tables in a database known as the message repository. This
database must be created using DB2 Universal Database for Windows NT.
The Configuration Manager uses an Open Database Connectivity (ODBC)
connection to this database.

• A set of fixed name queues defined on the MQSeries Queue Manager that
hosts the Configuration Manager. This MQSeries Queue Manager must
exist on the same physical system as the Configuration Manager and is
identified at the time the Configuration Manager is created.

These queues are created when the mqsicreateconfigmgr (including
associated variables) command is executed through either the GUI or the
Chapter 8. MQSeries and MQSeries integrator 153

command prompt. No actions are required by the administrator to add the
required definitions.

• A server connection defined to the MQSeries Queue Manager that hosts
the Configuration Manager. This connection is used by all instances of the
Control Center that communicate with the Configuration Manager.

• Sender and receiver channels to each broker in the broker domain except
for a broker that would share its queue manager with the Configuration
Manager.

8.17.2 The Control Center
The Control Center is used to configure and control the broker domain. This
works in association with the Configuration Manager, passing messages back
and forth as information is requested and making updates to the components.

Figure 48. Relationship between the Control Center and Configuration Manager

Any number of Control Center instances can be installed and invoked. The
Control Center depends on MQSeries for Java for its connection with the

ODBC
connection

Queue Manager

Configuration
Manager

JDBC
connection

Configuration
repository
(shared/deployed data)

Message
repository

MQSeries Client for Java

TCP/IP connection

Local configuration data Control Center
154 Business-to-Business Integration Using MQSeries and MQSI

Configuration Manager. The Control Center may be installed on the same
physical system as the Configuration Manager or on any system that can
connect to the Configuration Manager. The Control Center dynamically
creates a client connection to connect to the Configuration Manager’s queue
manager using the information provided at invocation.

The Control Center is structured to provide a series of views on the
configuration and message repositories. Views are selected by choosing one
of five roles. All Roles shows every view. Other roles include message flow
and message set developer, message flow and message set assigner,
operational domain controller, and topic security administrator.

The Control Center is the business administration tool used to define
message flows for applications and to access the databases and resources
used by MQSeries Integrator. This interface allows the manipulation of the
following resources:

• Message flows
• Message sets
• Brokers
• Collectives
• Principals

These resources are stored in the configuration repository database and in
the message repository database.

The Control Center can be used to do the following:

• Develop, modify, assign, and deploy message flows

• Develop, modify, assign, and deploy message sets

• Define the broker domain topology and create collectives

• Create and modify access control lists (ACLs) to control publish/subscribe
security

• View status information

The Control Center manages the configuration data for a particular
workspace. There are three different versions of this data. When the Control
Center is started, the local version of the configuration data is presented. The
three presentations are:

Local A copy of configuration data on which a user is working. To
obtain a local copy of configuration data, you need to check out
the resources from the shared copy. While checked out, other
users are prevented from updating the resource.
Chapter 8. MQSeries and MQSeries integrator 155

Any changes made to a local version will not be visible to other
users until the status of the resource is changed by checking in
the resource.

Shared A version of the configuration data that is shared by all the users
of the Control Center. Once resources are checked out to the
local workspace; they can be modified and, once modified,
checked in.

Deployed This is the active version of configuration data that is operational
at the broker.

8.17.3 The Message Broker
The Message Broker consists of a number of processes. Figure 49 shows an
overview of a broker.

Figure 49. Overview of a broker

For each execution group assigned to a broker, the broker creates an
additional data flow engine. As explained earlier, an execution group is a way
of grouping message flows.

Any number of brokers can be added within a broker domain. More than one
broker may reside on a physical system. Each broker defined will require a
unique MQSeries Queue Manager. A single broker can share the MQSeries
Queue Manager of either or both the Configuration Manager or User Name
Server.

Broker

Queue Manager
Broker database

ODBC
connectionExecution group

Message dictionary

Message flowMessage flow
156 Business-to-Business Integration Using MQSeries and MQSI

The broker is made up of a number of other components:

• Controller

• Message Format Services. These support definitions of metadata that
describe the data format within messages.

• Persistent State Datastore. The broker has a mandatory database to hold
all persistent state data needed by the broker. This may include:

- The deployed message flow definitions

- Persistent subscriptions

- Publish/subscribe neighbors

Each broker requires:

• A set of tables in a database to hold the broker’s local data. This is
accessed using the ODBC connection. These tables are also referred to
as the broker’s local persistent store.

• A set of named queues on the queue manager associated with the broker
domain.

- Again, no actions are required by the administrator to add these
definitions. They are added during execution of the mqsicreatebroker
command.

• Each broker needs its own queue manager. It can share the queue
manager hosting either or both the Configuration Manager and optional
User Name Server.

- Since the broker uses a set of predetermined queue names, this
creates the dependency of an MQSeries Queue Manager per broker.

Creating the broker on the system on which the broker component is installed
is not automatically recorded in the configuration repository. The Control
Center must be used to create the reference. Creating a reference does the
following:

• Stores the broker information in the configuration repository.

• Defines a default execution group on this broker. Further execution groups
can then be defined.

• After creating a broker reference, it needs to be deployed to take effect.
The deploy action:

- Initiates communication between the Configuration Manager and this
broker.

- Initializes the broker so that it is ready to execute message flows.
Chapter 8. MQSeries and MQSeries integrator 157

• For operation, a broker requires both configuration and initialization data.
Configuration and initialization data are logically separate and are stored
in different physical repositories.

Configuration data defines the broker’s operational setup. The master copy is
stored in the Configuration Manager, which is centrally-managed. It is also
cached to facilitate fast restart and make sure the broker continues to operate
if a connection to the Configuration Manager is lost.

Initialization data defines the bootstrap parameters needed by the broker and
is physically stored in the registry of Windows NT. Broker initialization data is
made up of the following:

• Filepath - The root of the file system where MQSeries Integrator is
installed

• WorkPath - The location of a work directory for MQSeries Integrator

• DataSourceName - The datasource name (ODBC) for the broker’s local
persistent storage

• DataSourceUserID - The user name used for accessing the broker
database

• DataSourcePassword - The password used for accessing the broker
database

• QueueManagerName - The name of the queue manager associated with
this broker

• InternalQueueName - An internal queue used for configuration purposes

• Language - An identifier for help and message texts

• Version - A version number

The data is initialized during installation of the broker and may be modified as
a function of broker administration.

Each broker instance needs an assigned, permanent, and fixed name. This is
the Broker Instance name. This name, which is similar to the static identifier
assigned to databases before they are created, is used to distinguish tables
pertaining to one broker from another where multiple brokers have been set
up using the same database.

8.17.3.1 Persistent store
The broker (as opposed to the Configuration Manager) has a mandatory
database that holds all persistent state data needed by the broker. The state
data includes the following:
158 Business-to-Business Integration Using MQSeries and MQSI

• A local cache of broker configurations stored in an optimized format to
facilitate quick restart

• The operational state of the broker, which message flows are enabled, and
so on

• A table of durable subscriptions

• A table of retained publications

In order to manage this state, the broker requires a persistent store. The
persistent store is a relational database that the broker accesses using
standard JDBC/ODBC interfaces.

8.17.4 Controller
The controller is the main control process for the broker. Its purpose is to
monitor a table of broker definitions to ensure that the defined broker
processes (and only those processes) are actually running. To do this, the
controller needs to notice changes to both the table and process state and
make the process state reflect the table.

When the controller starts, it will create an internal cached broker definition
table by loading information from the broker definition table, which is from the
persistent store. This allows the controller to determine which child processes
it needs to spawn, one for each Execution Group required and one for the
administration agent, which is always created and kept active.

If any one child process dies, the controller process will check the internal
definition table for this process and perform the action indicated in that entry,
usually to restart the process. In addition, the controller will start a thread that
is responsible for waiting for the broker definition table to change. When this
happens, the controller process reads the whole broker definition table and
compares it to the internal broker definition table. Any differences will then be
resolved by starting or stopping the child processes.

There will be only one controller process in a correctly-installed system, and
only that controller process ever starts other broker processes.

If the controller process fails and is restarted, it will look for orphaned
administrative agent and MessageFlowEngine Processes. If any are found,
the controller will attempt to kill them before starting its own child processes.
If it is unable to kill them, the controller will start up its own children and report
on those it could not kill.

On Windows NT, the controller runs as a Windows NT Service.
Chapter 8. MQSeries and MQSeries integrator 159

8.17.4.1 Administrative agent
The administrative agent manages the updates to the broker definition table.
It will monitor the broker’s configuration and administrative queues and
process the corresponding messages it receives to create, delete, or modify
an entry in the table and to start and stop the broker.

It can run as a separate process from the controller. This is so the reliability of
the monitor will not be compromised. It is permissible to run as one process,
but the robustness of the system will be weaker.

Configuration messages are routed to either the controller to start or stop
execution engines or to a specific execution engine.

8.17.4.2 Message flow execution engine
A message flow execution engine is an environment supporting execution of
business message flows. The execution engines are started and managed by
the controller, with each typically running its own process.

The broker installation process stores the code that implements the message
flow nodes as loadable implementation libraries (*.lil) in the broker’s
executable directory.

When the message flow execution engine starts up, it will initialize itself and
then load all the lils it can find in the bin directory. This implies that all
message flows on a machine can have the same capability regarding node
and message classes.

When such a message flow execution engine is started for the first time, it will
have a default configuration that is sufficient for it to be able to respond to
configuration messages. When the administrative agent receives a
configuration request for a particular execution engine, it passes the request
to the engine causing it to update its configuration as per the instructions in
the message. The configuration updates have the following properties:

• All configuration changes are made transactionally; either all changes in
one configuration message are made or none of them are made.

• All configuration changes are made immediately and safely; message
processing ceases just before changes are made and resumes with
changed behavior immediately afterwards.

• All configuration changes are made persistently; once changes are made,
restarting a message flow (or machine) will automatically configure itself to
its last known state.
160 Business-to-Business Integration Using MQSeries and MQSI

• The configuration messages may themselves be processed under
transactional control so that either several brokers get a corresponding set
of changes or none of them get any changes.

8.17.5 The User Name Server
Figure 50 shows the role and place of the User Name Server in the MQSeries
Integrator security hierarchy.

Figure 50. Role of the User Name Server

This is an optional resource. If no use of publish/subscribe is planned in the
broker(s), no topic security is required, and neither is the User Name Server.
It is much easier to include in the broker domain when it is first designed
rather than add at some later date when requirements change.

The User Name Server monitors the underlying security subsystem,
accessed via the Windows NT User Manager, and provides information about
users and groups that it shares with the Configuration Manager and brokers.

Message flows that give publish/subscribe service to applications might
require topic security. This gives the ability to control the authority of the
application, based on the user ID they are running under, to do the following:

• Publish on topics

• Subscribe to topics

• Request persistent delivery of messages

Security
Subsystem

User Name Server

Queue Manager

Queue Manager

Configuration
Manager

Queue Manager

Broker
Chapter 8. MQSeries and MQSeries integrator 161

Creation of the User Name Server defines the following resources:

• A set of fixed name queues defined on the MQSeries Queue Manager
hosting the User Name Server and identified during creation. This
MQSeries Queue Manager may be shared with the Configuration
Manager, broker, or both.

8.17.6 Security subsystem
The Windows NT User Manager is populated with five new MQSeries
Integrator groups to which connection is required to enable users to use
various features and functions of MQSeries Integrator. If authorized users
select their required role in user preferences while using the Control Center,
they will be able to see and select the tabs required to perform those roles.

Further security is possible for the publish/subscribe function. For this further
security to be available, the optional User Name Server must be created.

8.17.7 Databases
The MQSI components use databases to store configuration and operational
information. These databases are used to provide a persistent store.

The Configuration Manager requires two sets of tables to support both the
message repository and the configuration repository. These are created and
initialized when the Configuration Manager is created and can be in a single
database or across two separate databases. Access can be by a remote or
local connection.

Normally, three databases will be created, one each for Configuration
Manager, message repository, and broker.

The broker needs a set of database tables to manage its operation. These
are created within the same database as the configuration repository or
message repository or both. Tables for each broker can be in the same
database as tables belonging to another broker or a separate database.
Access can be by either a remote or local connection.

8.17.8 Dependencies
MQSeries Integrator has several dependencies. MQSeries Integrator is
heavily dependent on the facilities of MQSeries messaging to provide
connectivity, message integrity, and some transactional support. A summary
follows to help show the demands that MQSeries Integrator will place on the
system:
162 Business-to-Business Integration Using MQSeries and MQSI

• Queue managers - A single MQSeries Queue Manager can host only one
broker. The Configuration Manager and User Name Server both depend
on an MQSeries Queue Manager but can share with each other and the
broker, or both.

• Communications - A network of MQSeries Queue Managers is required
to support MQSeries Integrator, and the connectivity must be defined. Any
supported communication protocol may be used. Windows NT supports:

- SNA LU6.2
- SPX
- NetBIOS
- TCP/IP

The client/server connection between the Control Center and the
Configuration Manager is limited to using TCP/IP.

• Configuration Manager - The Configuration Manager depends on an
MQSeries Queue Manager with a set of fixed named queues and a server
connection channel. The queues and channel resources are defined
during creation of the Configuration Manager.

A sender and receiver channel pair are also required to be able to
communicate with each broker in the broker domain, except for the broker
(if so defined) created on the same host MQSeries Queue Manager.

• Broker - Each broker depends on a dedicated MQSeries Queue Manager.
A broker may not share it with another broker. A broker may, however,
share the MQSeries Queue Manager with either the Configuration
Manager or User Name Server or both.

A set of fixed name queues that are defined at broker creation are
required, as are sender and receiver channels to allow communication
with the Configuration Manager. Further sender and receiver channels are
also required to allow communication with the User Name Server.

A sender and receiver channel pair are also required to communicate with
all brokers in the same collective, or to which it is identified as a neighbor
in the topology.

• Application. Each application using MQSeries Integrator must be able to
connect to an MQSeries Queue Manager in the MQSeries network to
allow it to place messages on the queue serviced by the message flow
required.

Each application retrieving messages from an application from a queue
written to by message flow must be able to connect to the queue manager
that owns the queue.
Chapter 8. MQSeries and MQSeries integrator 163

If the application retrieving messages is a subscriber to a
publish/subscribe service, the messages it receives are propagated to the
broker to which it has subscribed, regardless of the proximity of the broker
and associated queue manager hosting the publish/subscribe service.

• User Name Server - The User Name Server depends on an MQSeries
Queue Manager with a set of fixed named queues. Sender and receiver
channel pairs are also required for communication with the Configuration
Manager and every broker in the broker domain to which it provides
principal definitions. The queues are defined during the creation of the
User Name Server.

• Databases - MQSeries Integrator components use databases to store
configuration and operational data. A summary follows:

- The Configuration Manager needs two independent sets of tables to
support the message repository and configuration repository.

The tables are created and initialized during Configuration Manager
creation. The two repositories can share the same database, which
must be DB2. The configuration must have a remote or local
connection to the database or databases.

- Each broker needs access to a set of tables to support its operation.

These tables are created and initialized during broker creation. They
can be created in and can share the same DB2 database as the
configuration repository and/or message repository.

Subsequently-defined brokers can share the same tables since each
entry on each table row identifies an individual broker. If preferred,
separate databases, and, thus, separate tables, can be set up for each
broker.

The broker requires either a local or remote connection to the
database.

8.17.9 Message domains, message sets, message types
MQSeries Integrator makes a first distinction between self-defined messages
and predefined messages. Self-defined messages use the XML standard to
structure their content. We will also refer to these types of messages as
generic XML messages. To use self-defined messages, you do not have to do
anything specific.

MQSeries Integrator considers two views of a message: The logical view and
the physical view. The logical view of a message is the structure of a
164 Business-to-Business Integration Using MQSeries and MQSI

message: Its fields, the order, and the relationship between the fields. A
message might have four fields:

1. Employee number

2. Request type

3. Order number

4. Work department

Applications receiving and sending these kinds of messages know the
meaning of each field and its characteristics. They know that, for example,
employee number, request type, and order number are six-character fields
and that work department is a 3-byte character field.

The physical view of the message, also called the wire format, is the
sequence of bits that build up the message. For the above message, the
physical view is as follows:

000110NEW 999999AAA

For predefined messages, you need to make MQSeries Integrator aware of
the logical view and the physical view of the message. For this purpose, you
use the Control Center. If you have already defined some messages using
the MQSeries Integrator Version 1 product, you can use the NEONFormatter
to maintain or add predefined messages.

Knowing all this, we can specify what the message domain is. It identifies, for
the broker, where to look for the actual definition of a message:

1. XML for self-defining messages

2. MRM for messages defined using the Control Center

3. NEON for messages defined using the NEONFormatter

4. BLOB for messages that have no definition

A message type is the definition of the logical view of a message. Message
types are grouped in message sets. You can think of a message set as the
collection of message types used in a single application or project.

The last characterization of a message is the message format. This describes
the physical view of a message, that is, the sequence of bits that make up the
message. The message format can have three values: XML, PDF, and CWF.
Note that PDF does not stand for Portable Document Format. It is a message
format that is used in some financial applications. Custom Wire Format
Chapter 8. MQSeries and MQSeries integrator 165

(CWF) is a format using data types in common programming languages. The
XML format is for messages that comply with a DTD.

8.18 XML and MQSeries

When we think about applications, the major points to consider are how they
handle the following:

1. Data storage

2. Data sharing

3. Data transformation

XML can be used to store data. The availability of standard parsers makes it
easy to read and write data in an XML format, which speeds up development
time. Another advantage is that the format to store the data is an open format
instead of a proprietary format. Given that your data storage is now based on
open standards, the same format can be used to share the data with different
systems. This allows for easier integration. You no longer need proprietary
import/export functions to allow your data to be shared with other
applications. Even if the application continues to store its data in a proprietary
format (think about database servers), XML is still appealing as the standard
format for exporting and importing data to and from other sources. These
other sources can be computer systems within an enterprise or the systems
for your business partners. The ability to link computer systems together is a
key focus in many industries, and, given its open nature, XML can help here.
Thus, XML is also the language for data transmission.

8.18.1 Importance for the MQSeries family
Given the above examples of possible uses of XML, the importance of XML to
MQSeries is immediately clear. The sharing and transmission of data
between different computer systems is exactly the key mission of the base
MQSeries product. MQSeries allows you to distribute data across more than
35 different platforms with assured delivery. The publish/subscribe extension
makes it possible to share data with as many applications as you like. The
publisher (source of information) has no link with the subscriber (the
consumer) of that information. MQSeries makes sure that the right data
arrives at the right place independently of platform, network protocol, or the
availability of systems. The nice thing is that nothing needs to be done to
have MQSeries work with XML messages. For MQSeries, an XML-formatted
message is just another message.
166 Business-to-Business Integration Using MQSeries and MQSI

But, that is not the end for the MQSeries family. Although the acceptance of
XML is growing fast, you will still have much data in proprietary formats for a
long time. Nobody will change a key application in their enterprise just to
make use of XML, and, even if you had the resources, there are situations
where you are not in control of the behavior of an application. Think about all
the packaged applications with their private import/export facilities. For all
these types of data, you can work with MQSeries Integrator to transform the
data into XML messages before delivering the data to XML-enabled
applications, or vice-versa, transforming the XML messages into the
proprietary formats.

Even between XML-enabled applications, MQSeries Integrator can play a key
role. Like any technology, XML will evolve. Industry-specific XML languages
will exist that are not compatible, and, over time, a specific industry might
have a number of different versions of its XML standard. Again, MQSeries
Integrator can help you transform the data into the correct format.

Finally, you can easily imagine an application that generates huge XML
streams while the consumer of the data is only interested in part of the data.
MQSeries Integrator can work here to filter out the necessary elements.

8.18.2 Use of XML within MQSeries Integrator
Given all the advantages of XML that we showed earlier, it comes as no
surprise that MQSeries Integrator itself makes heavy use of XML technology.
We already saw that the Control Center of MQSeries Integrator is storing and
sharing its data in an XML format. When you export or import message sets
from your Configuration Manager, it is again stored in an XML format.

When externalizing data for system management products, MQSeries
Integrator generates event messages in an XML format. One can imagine
that, in the near future, this style of event messages will be used for the base
MQSeries product instead of the current, proprietary PCF format.

Another form of data externalization is the user trace. The user trace is a very
helpful component of MQSeries Integrator for a developer and tester of
message flows. Because the data is internally managed in an XML format, it
was the clear choice to use this format again for tracing purposes. Note,
however, that a tool is available in MQSeries Integrator to reformat the
XML-formatted user trace in a conventional text file. Thus, if you have no
immediate access to an XML-capable viewer, such as Microsoft’s Internet
Explorer, you’re still able to make use of the tracing facility.
Chapter 8. MQSeries and MQSeries integrator 167

We have already mentioned that a user can build nodes themselves for
specific purposes. The way to configure MQSeries Integrator to use these
customer-built nodes is again using XML-formatted configuration files.

While the above list is absolutely not intended to be a complete list, it is
already clear that XML technology is a core part of MQSeries Integrator and
that its use can only grow over time in the MQSeries Family.
168 Business-to-Business Integration Using MQSeries and MQSI

Part 2. B2B integration guidelines

The intent of this part of the book is to provide information or a pointer to
information about development, deployment, systems management, and
deployment guidelines.

Designing an e-business solution is not an exact science; so, no step-by-step
checklists are provided, nor does this section attempt to be a comprehensive
source of technical and product information. However, it does present a
broadly-defined approach and pointers to more information.

Chapter 9, “Application design guidelines” on page 171, introduces
consideration of the functional components of the application within the
context of the runtime topologies.

Chapter 10, “Application development guidelines” on page 213, provides
guidelines for application development, considering the roles, processes, and
tools that are required.

Chapter 11, “Performance guidelines” on page 229, introduces performance
guidelines by considering the components of the topologies under discussion
that are particularly relevant to performance.

Chapter 12, “Systems management” on page 235, looks at the management
of MQSeries and related components.
© Copyright IBM Corp. 2000 169

170 Business-to-Business Integration Using MQSeries and MQSI

Chapter 9. Application design guidelines

Business-to-Business Integration Patterns address the interaction of
business processes between organizations. As mentioned before, it can be
viewed as taking enterprise application integration one step further – the
integration of applications between businesses.

There could be a number of approaches to any given EAI solution within an
Enterprise. Integrating across enterprises adds additional requirements to
any solution.

With topologies two and three, an enterprise could choose to provide a
shared middelware interface to partners or a more generalized/open
interface. See Section 4.3, “Topology 2 - Direct with adapter/bridge” on page
46, and Section 4.4, “Topology 3 - Message broker” on page 51, for more
details.

Both solutions have their advantages as well as disadvantages. A shared
middleware approach is easier to design and would probably be quicker to
implement. A generalized interface may need to support mutiple protocols
and interfaces and would, therefore, have a longer development cycle but
would provide greater flexibility. There are many more considerations. The
selected solution would depend on the relationship between the partners, the
integration requirements, and so on.

This chapter describes the design guidelines for implementing runtime
topologies 2 and 3.

9.1 Application elements

The design guidelines outlined here primarily focus on Business-to-Business
Integration applications. Before exploring these guidelines, it is important to
understand the overall structure of these types of Web applications. Chapter
4, “Choosing the runtime topology” on page 41, presents the overall topology
of such an application and explains the responsibilities of various nodes in
the topology. Chapter 5, “Technology options” on page 67, presents various
technology options available for implementing Business-to-Business
Integration as well as some recommendations and considerations.

As mentioned previously, B2Bi can be viewed as doing EAI between
businesses. This chapter will not focus specifically on the EAI elements, but
on the elements that cross the business boundaries.
© Copyright IBM Corp. 2000 171

This chapter assumes the use of MQ and MQSI to be the products to be
mapped to the message queue and message broker components within
topologies 2 and 3. Figure 51 represents the runtime topology for application
topology three.

Figure 51. Application topology 3: Runtime topology

The symmetrical diagram represents one possible solution and assumes, in
this case, that the partner uses some shared middleware. It is possible to
make a more generic interface available in which case the partner could
select alternate software.
172 Business-to-Business Integration Using MQSeries and MQSI

Figure 52 focuses on the elements of communication between applications.

Figure 52. Application to application communication

In Figure 52, the partner could select to communicate using the same adapter
as Business System #1, or the partner could select to use another medium of
communication.

In the sections that follow, we will describe the following key elements of the
interaction:

• Using synchronous and asynchronous communications

• General principles for distributed systems

• Connecting to the communication interface

• Resolving mutiple backend systems using the hub and spoke architecture

The final sections of this chapter describe how MQSeries and MQSeries
Integrator may be used for topology 2 and 3. See Section 4.3, “Topology 2 -
Direct with adapter/bridge” on page 46, and Section 4.4, “Topology 3 -
Message broker” on page 51, for more details.

9.2 Communicating between applications

Irrespective of whether the shared middleware or a generalized approach is
taken, communication would be between the application servers in each
enterprise.

Application servers can be connected using either synchronous or
asynchronous communication methods.
Chapter 9. Application design guidelines 173

9.2.1 Synchronous communication
Synchronous communication is like two people having a telephone
conversation; both sides are available to communicate (talk) and do so until a
satisfactory conclusion is reached.

Systems that communicate synchronously have two modes for the
communication. The first is like the telephone conversation: One side will call
the other and wait for a reply; then, each side takes it in turn to communicate
(in communications, this is called half-duplex). The other mode, called
full-duplex, is where both sides communicate simultaneously, something not
possible for human phone calls! From the perspective of a single application
process it is also not possible to communicate in full-duplex. Systems that
achieve this have a pair of application processes functioning in half-duplex
mode. So, synchronous communication is actually made up of one to many
request and wait for reply pairs.

9.2.2 Asynchronous communication
Asynchronous communication is like the case of calling someone on the
telephone and getting their voice mail system. In this case, you have to leave
a message if you want to communicate, and you make an assumption that
the owner of the voice mail will actually check that they have a message and
then answer it. There is also the assumption that we have provided enough
information to answer it!

While the analogy of asynchronous communication describes a model of
asynchronous communication, it is not quite good enough for robust
communication. The reason is that in order to leave a message, you have to
be able to talk to the voice mail system. But, what if that system is
unavailable?

Ideally, asynchronous communication should provide a way to leave the
message in the sending system and have that message forwarded when the
other system is available. This capability is called Store and Forward without
having to wait for a reply.

9.2.3 Synchronous and asynchronous communication
In connecting application servers together the Store and Forward capability is
ALWAYS required unless the systems being integrated have identical
availability characteristics. So, in the phone example, store and forward
(voice mail) is required unless the two parties are always available to take
calls with one another at exactly the same times of the day. In practice, this is
not possible unless unrealistic restrictive arrangements are made.
174 Business-to-Business Integration Using MQSeries and MQSI

So, for practical purposes, store and forward is always required when
connecting application servers of different business systems. For application
servers in the same business system, where there is one tightly-controlling
organization, it may be possible (although unlikely) to do without store and
forward.

Therefore, synchronous communication is request and wait for a reply, and
asynchronous communication is store and forward without having to wait for
a reply.

Suppose that in the store and forward case, the next thing is to actually wait
for a reply from the opposite system’s store and forward mechanism. What is
the difference between that and synchronous communication? From a
programming style point of view, there is no difference since this provides the
request and wait for a reply model.

So, why do you need synchronous communication at all?

There is one fundamental difference between the two models and that
difference has everything to do with transactional integrity during the update
of data. You should, therefore, note that in applications that query information
with no updates, there is no difference between synchronous and
asynchronous for request and wait for reply requirements.

So, what about update of information?

9.2.4 Comparison in a two-system update
We will use an example of communicating between two systems where the
objective is to update a database in each of the systems. We will add the
further requirement that both systems be updated or that both systems not be
updated.

To achieve the goal, the first system must receive a request of some sort. It
will interpret the request and update a local database as well as send a
request to the second system asking for it to update its database. You need
some way to make sure that both updates have occurred and then respond to
the requester that we have finished.

In the case of pure synchronous communication, the most robust way of
achieving the goal is to use a distributed transaction with a two phase commit
of the two databases. This will produce a flow of communication that would
be as shown in Figure 53 on page 176 (assuming that you are successful in
your updates):
Chapter 9. Application design guidelines 175

Figure 53. Synch communication:Distributed transaction with two phase commit

The key thing about this flow is that it is all one transaction, and the actual
commitment of the data occurs right at the end. Up to the point where
processing enters the shaded box, if a failure of some kind occurred, all of the
updates can be backed out. The shaded box represents the window of
uncertainty that always exists when you update two separate systems. This
approach really minimizes the duration of this window, but, due to the fact
that communication has to obey the laws of physics, in particular, that
communication is not instantaneous due to the maximum speed being that of
light. Therefore, there must be a delay between the actual commitment of the
update in system #2 and the acknowledgment of that commitment reaching
system #1. In that delay period, a failure in the network may mean that
system #2 has actually committed the data, but system #1 has not seen the
reply. System #1 now has a problem in how to decide whether to commit or
rollback its own updates.

In an ideal system, system #1 would wait, holding all the pending updates, for
the network to come back and then decide what to do. However, there is no
way for system #1 to know when this might happen, and it is usually not
176 Business-to-Business Integration Using MQSeries and MQSI

practical to hold database update locks indefinitely because other
applications will need the data. As a result, system #1 is usually designed to
take either the commit or the rollback option when the failure is detected. The
most common choice is to roll back the updates; this is referred to as a
presumed abort commitment strategy. Of course, system #2 may have
committed, in which case, we have inconsistent data, namely, system #2
updated, system #1 not updated. A very unlikely outcome, but possible.

So, with synchronous communication, you ensure that both systems are
updated by doing all the update commitment as part of one transaction. In the
event of failure, our transaction manager (provided by our application server)
can issue a rollback request to all the datastores involved.

So, what about the asynchronous alternative? In Figure 54, the asynchronous
flow is shown, and you have an additional system to think about, namely, the
store and forward system.

Figure 54. Asynch communication:Distributed transaction with two phase commit
Chapter 9. Application design guidelines 177

While the end result of the flow is the same as in the synchronous case, the
state of the data along the way is very different.

In order to ensure that an update is performed on the second system, the
store and forward mechanism must make sure that the information is passed
from system #1 to system #2 and that it is passed only once. You do not want
to do two updates! To do this, the store and forward system must have a
transactional capability for passing the request from one system to the other,
so that it is either on the first system or on the second system. What cannot
be allowed is for the request to end up on both systems or neither of the
systems.

The flow shown makes an asynchronous request of system #2 before
updating its own database. This allows you to hold an update lock on system
#1 while the system #2 update is being performed. This is to minimize the
time that the two systems will be out of synchronization. The update could be
done before making the request. This could be done where the design of the
application is such that the time between the updates of the two systems is
not critical - as long as both eventually happen!

It should also be noted that five transactions are executed in this process
versus the one transaction in the purely synchronous case. Therefore, one
might conclude that it will take more processing time with this asynchronous
alternative. This is true when your are trying to limit the time difference in
updating the two systems. If your are not concerned about that, from System
#1’s point of view, the asynchronous approach is actually faster because you
don’t have to wait for System #2 to complete its update.

So, the trade-off in asynchronous versus synchronous update is as follows:

Asynchronous

• Complete separation of the availability profiles of the two systems.
• Faster update of first system if you are not concerned about the time

difference in the two updates.
• Systems will be out of synchronization for a small period of time.

Synchronous

• Requires identical availability profiles of the two systems
• Faster update of both systems where an application is time-sensitive to

synchronization
• Systems not out of synchronization at any time, but possibly in doubt
178 Business-to-Business Integration Using MQSeries and MQSI

9.3 General principles

Figure 55 shows the principle in the design of distributed systems.

Figure 55. Distributed Systems: General principles

You can optimize your system anywhere within the triangle of Performance
(how fast does your system run), Distribution (how far apart are you
systems), and Synchronization (how close together in time are updates). The
closer you get to each apex, the more optimal each aspect. In general, you
can optimize for any two of the three, but not all three. No system optimizes
for poor performance; so, you get to choose distribution versus
synchronization. Business to Business communication is inherently
distributed; so, there goes synchronization!

So, if you really want to design your applications so that the updates of the
two systems do not have to be time synchronized, there is absolutely no
requirement for synchronous update. The time synchronization requirement
must come from the business requirements of the application. There are very
few (if any) business processes that have an absolute time synchronization
requirement!

The conclusion is that asynchronous intercommunication should always be
used for integrating business systems (application servers). This applies a
greater design burden on the application developers since they have to
consider the impact of time synchronization in the asynchronous case.
However, the run time benefits are considerable because you can now
Chapter 9. Application design guidelines 179

operate your systems completely independently if required. This
independence is almost always mandatory in business-to-business
integration between separate businesses.

So, to integrate business systems, we need a store and forward capability to
pass requests between the systems to be integrated. However, we have the
question of how to connect the business system to the store and forward
mechanism. This is particularly important where we want to integrate a
system that we have purchased and do not have any source code for it!

9.4 Connecting to a store and forward mechanism

There are two ways of connecting an application server, with its associated
applications, to the store and forward mechanism: Invasive insertion of the
chosen mechanism into the application and passive adaptation of an existing
application interface.

Topologies two and three do not make any assumptions as to exactly which
one would be used. Instead, it would depend largely on the application being
integrated.

9.4.1 Invasive insertion
This approach requires that you have access to the source code of the
application; so, is generally not applicable to cases where a packaged
application is purchased. It is also time consuming because you must retest
the application to ensure that the changes made do not introduce errors into
the application.

In general, this is used in cases where there is an established integration
mechanism and a new application is being built that wants to participate in
the integration.

9.4.2 Passive adaptation
This is achieved through the use of an adapter of some type that makes use
of a existing interface to the application and then bridges that interface to the
chosen communication interface.

If the application already supports the chosen communication interface, the
adapter is very straightforward and, really, just an extension of the
application. However, adapters can also be very complex, particularly if the
only way to access the application is through some sort of screen interface
where we might have to build a “screen scraping” adapter.
180 Business-to-Business Integration Using MQSeries and MQSI

In general, this approach is faster to build than the invasive one because you
only have to test the adapter; as a consequence, it is the preferred approach.
In fact, it can be argued that the invasive approach is really the creation of an
adapter that is being inserted into the application code. The trade-off being
that passive technique is usually simpler to build, whereas the invasive
approach may well provide for more efficient performance. So, the conclusion
is that adapters, either passive or invasive, are required to connect your
applications to the chosen integration communication mechanism. This can
be represented as shown in Figure 56.

Figure 56. Placing the adapter

9.4.3 Placing the adapter
After you have your adapter, the question of where to place it arises.

You could, in theory, place the adapter on a system that is remote to the
application if you have a native interface that can operate remotely. The
benefit of this is that our store and forward mechanism can be restricted in its
platform choice, and you can concentrate the skills required to build adapters
on a small number of platforms. This apparent benefit is far outweighed by
the drawbacks associated with the implied requirement to run multiple
communication protocols to make the adapters work. This makes the
operations side of the system complex and hard to monitor. In addition, there
is the base assumption that we have an interface that is remotely accessible
– in general the only remote interface that you can count on is the one that an
end-user would use (and not always then!), which implies screen scraping – a
relatively difficult approach to integration.

In practice, the better choice is to place the adapter on the same system as
the application. This means you may be able to use one protocol that you can
then monitor and manage much more easily. In the case of packaged
applications, the application vendor may well provide an adapter for standard
Chapter 9. Application design guidelines 181

communication mechanisms. These supplied adapters will always be on the
application server side.

Of course, this means that your chosen store and forward mechanism must
be available on all of the platforms you want to integrate. Ideally, your
selection should be for the most pervasive store and forward mechanism. The
industry’s most pervasive store and forward mechanism is MQSeries.

9.4.4 The role of the adapter
Therefore, the conclusion is that you want an adapter to connect the
application to the store and forward mechanism. This connection needs to be
very robust, particularly if you are going to provide updates to the application
and need to ensure that they occur. Ideally, the adapter should allow for
transactional update of the application where the request passed by the store
and forward mechanism is consumed as part of the transaction. If you get a
failure, the request is not consumed, and you can retry. This presents a major
problem for application integration since the vast majority of passive adapters
cannot participate within a transaction in the target application. If they can,
there is no problem. If they cannot, a compromise design can be deployed in
developing the adapter.

The required processing flow is shown below. The assumptions are that your
store and forward mechanism has a transactional capability that the adapter
can use and that our target system does not have an externalized transaction
capability.

Figure 57. Process for a passive adapter

The processing occurs under the transactional scope of the Store and
Forward mechanism ensuring that you cannot lose the request in the event of
a system failure. The placement of the response on the store and forward
mechanism represents successful completion of your request. It should be
182 Business-to-Business Integration Using MQSeries and MQSI

noted that there is a window of opportunity between the completion of our
perform required processing and the placement of a response on the store
and forward mechanism where, in the event of a failure, recovery of the store
and forward transaction will not allow you to determine if you completed the
update on the business system. This window is extremely small but should be
considered in the design of the system.

Therefore, the primary role of an adapter can be considered to be to make
sure that it does what it’s been asked to do and receive a response.

What else could the adapter do?

Clearly, under the mantra of a simple matter of programming, the adapter
could do just about anything. However, the two areas most often considered
are routing of the request in the store and forward mechanism and
transforming the information gathered from the application into a form the
requesting system requires. In the case of routing, the store and forward
adapter clearly needs to be able to locate at least one other system or you
are not going to get very far with your request! However, you could enable the
adapter to locate all possible systems and allow it to communicate directly.
This point-to-point connection allows for communication with the least
network latency. In order to enable this, you would have to provide a directory
for the adapter’s use that contained the entire system topology that all system
adapters could share. This approach has drawbacks, such as finding a
directory accessible from all systems, the performance impact of such
directory queries for routing, and the currency of the information if you cache
to improve performance. These drawbacks can be solved by using robust
distributed systems services, such as those found in DCE or lightweight
Web-oriented services, such as LDAP-based directories.

However, there is one large question that cannot be resolved, and that is the
number of connections produced by a point-to-point integration strategy.

Figure 58 on page 184 shows the number of connections for three, four, and
ten directly-connected systems.
Chapter 9. Application design guidelines 183

Figure 58. Number of connections for 3, 4 and 10 integrated systems

As the number of systems grows, the number of connections quickly
becomes a management problem – one mainly associated with monitoring
whether all connections are operational.

9.5 Hub and Spoke integration architecture

A better approach is to adopt a spoke and hub connection architecture where
the systems connect to a central hub, which then makes the routing decision.
The systems now only need to know where the central hub is (note that this
information still has to be distributed to the adapters!) and have one
connection each. The hub is in charge of making the routing decision.

Note that this is the same principle used in TCP/IP routing where TCP/IP
clients know a router or gateway that then routes all traffic onwards.

Figure 59 on page 185 shows the number of connections in the spoke and
hub architecture for the same number of systems shown in the
directly-connected example.
184 Business-to-Business Integration Using MQSeries and MQSI

Figure 59. Number of Hub systems for 3, 4, and 10 integrated systems

A graphical comparison of the increasing complexity of the two approaches is
shown in Figure 60 on page 186.
Chapter 9. Application design guidelines 185

Figure 60. Complexity of Direct Connected Systems vs. Hub Connected Systems

Clearly the hub approach becomes increasingly simpler to manage as you
increase the systems. The question is at what point should we consider the
hub approach? After all, for two systems, you actually have more connections
with the hub!

The answer to this question is FOUR systems.

Why four? Well, because you must look at the problem from the point of view
of minimizing the number of points of failure. In any set of integrated systems,
you have to maintain the number of systems plus the number of connections.
In the direct connection approach, the number of failure points (FP) is the
number of systems plus n(n-1)/2 number of connections, represented as

FP = n + n(n-1)/2

where n is the number of systems.
186 Business-to-Business Integration Using MQSeries and MQSI

In the hub connection approach, the number of failure points is the number of
systems, plus one for the hub and the same number of connections as there
are systems, represented as

FP = 2n + 1

where n is the number of systems.

The graphical representation of these is shown in Figure 61, and the cut over
point is between 3 and 4 systems, thus, the number four.

Figure 61. Comparison of direct connected systems vs hub connected systems

Now, many may think, “that is a much too simplistic approach to making that
decision. What about the cost of the building the hub versus building the
adapters?” Clearly, the economics of building the initial system do come into
play, but the longer the system is in use the more money will be spent on
monitoring and maintaining the system. Minimizing the complexity and
associated failure points is the best way to control this expense and if you run
the system long enough the cost benefit of the simpler system outweighs the
potential build cost. The point at which this happens is very dependent on
Chapter 9. Application design guidelines 187

how much money is spent in the building. However, if you have four systems,
it could be argued that given enough time, it always happens; this is another
reason for picking four!

Also, if you are integrating two systems and intend to add at least two more at
some point in the future, you should also consider the hub approach to
simplify your future development!

Once we have decided that routing belongs at the center, you need to
consider the transformation of the information that one application will send to
another one. In the ideal case, we would use a common form of information;
however, just as in real life, everyone does not speak the same language.
Systems tend not to have a common form. In addition, even if we agree on a
common form, and XML appears to be a candidate, we still have to agree on
the specific meaning of the phases. It is likely that transformation will be
required for many years to come.

9.5.1 Where to do the transformation
We believe that transformation also belongs in the central hub because this
allows for the simplest adapter strategy, that is, connect me to the hub. If you
put transform in the hub, you either have to make available all possible
transformations or you need to adopt a common format for moving
information.

The first of these two presents a significant systems management problem
and is not usually considered a viable option.

The transform to common format could be considered. From the point of view
of building the system, doing the common format in the adapter transform
seems attractive because this allows the business system provider to do all
the work on their local platform rather than having to provide a transformation
at the central hub to accompany the adapter. However, if you look at the
runtime aspects of the systems, particularly if you wish to change your
transformation rules, it is much simpler to do this at the central hub than to
change all of the adapters.

This is the same principle as the management of client/server systems where
code needs to be distributed to workstations vs. a centrally-managed system.
For any reasonable number of systems (say, four again to be consistent!) the
centrally-managed one is the more long term cost effective approach.

We conclude that transformation belongs at the hub, assuming you needed a
hub for the routing capability.
188 Business-to-Business Integration Using MQSeries and MQSI

One would argue that all functionality associated with the management of
information flow between integrated systems belongs in the central hub.
Other examples of management include services to publish information from
business systems that can be subscribed to by other systems and the control
of which business systems should be invoked to achieve an entire business
process or workflow.

9.6 Application design summary

Business systems are best integrated using a pervasive asynchronous store
and forward mechanism with a spoke and hub architecture. The only case
where this is not true is where there is a business requirement to have point
in time synchronization of updates in two or more systems where a
synchronous, distributed transaction approach would be needed. In this case,
the architecture would be point to point. Very few, if any, business processes
have this requirement. Connection of the business system to the store and
forward mechanism should be achieved by use of an adapter where the
adapter’s role is to provide a transactional (or as close to transactional as
possible) connection to the store and forward system. All management of
information flow should be provided by a central hub.

9.7 Using MQSeries

MQSeries is the most predominant business integration software. Although
used mostly for intra business application integration or EAI, it has all of the
attributes that were discussed in the previous sections making it suitable for
B2Bi. Figure 62 on page 190 is a simple diagram showing a business system
communicating with a partner. In the figure, three interfaces are marked out.

A is the interface or connector between the store and forward mechanism to
the back end application. B is the store and forward mechanism, and C is the
interface presented to the partner from the store and forward mechanism.

If we assume that B represents MQSeries and MQSI, in this section, we will
discuss some of the considerations or options available for implementing the
components A and C. A being the connector and C being the interface you
expose to the partner.
Chapter 9. Application design guidelines 189

Figure 62. Application to application communication

9.8 Connecting to the business application using MQSeries or MQSI

This section describes the options available to connect applications into the
integration infrastructure (the store and forward mechanism or the message
broker).

In this discussion, connecting to an application is also termed an adapter. It
has been used in a broader sense to this point. For the rest of this section,
the term, adapter, will refer to the component that is built to connect into the
business application.

9.8.1 Application types
The type of adapter you select or build depends on the application into which
you are integrating.

Figure 63 on page 191 describes a method of classifying the types of adapter
based on the type of applications into which they are required to connect.
190 Business-to-Business Integration Using MQSeries and MQSI

Figure 63. Adapter Interface classification and differentiation

The vertical axis represents the degree of standardization of the interface that
is required for the application type. It ranges from completely different to
standard. This refers to the application interface as it would appear in
different enterprises. For example, a CICS provides a standard interface
irrespective of the enterprise in which it is deployed. Therefore, a standard
adapter can be developed for it, possibly, with some configuration
parameters.

The horizontal axis represents the data format being passed to the target
application. This could range from being proprietary to a specific application
to an industry standard. If the data is in a standard format, it is much easier to
create a standard adapter since you are aware of what inbound and outbound
formats are required.

These differences give rise to three different adapter types:

• Custom Adapters – These adapters are required to connect to one-of-a
kind applications. The behavior of these adapters are usually complex.

App'n interface
Standardisation

Data format
Standardisation

Standard,
immutable

Different
for each app'n

Proprietary
or specific to app'n

Industry
standard

CICS
DPL

Homegrown
App'n

SAP
(BAPIs)

RDBMS
(SQL)

SWIFTDB
Schema

EDISAP
IDOCs

JDE
Z files

Baan
BOIs

Custom
Adapters

Bridges
(pass standard data
through standard
interfaces

Configurable
Adapters

Application
specific
adapters
Chapter 9. Application design guidelines 191

• Configurable Adapters – These adapters will usually be required to
connected to standard applications. The adapter is not necessarily
programmed but configured.

• Bridges – These adapters are more like bridges, allowing data to flow
from one system to another. They require very little configuration and
setup.

Adapters are available from a number of vendors that fit into each of the
above categories. Some of these vendors include the following:

• NEON – Have configurable adapters for industry formats (EDI, SWIFT)
and packaged applications (SAP R/3, Siebel, PeopleSoft). Neon also has
an Adapter Development Kit (ADK) that includes helper classes.

• Extricity – Have configurable adapters for packaged applications (SAP
R/3, Clarify and so on) as well as an Adapter Development Environment.
Adapters are, however, not separable from their Alliance Integration
Server.

• CrossWorlds – Have configurable adapters for packaged applications
(SAP R/3, Vanitive, Clarify and so on). Adapters are not separable from
the Interchange Server.

For more information on the above vendors, please refer to their respective
Web sites.

9.8.2 The MQSeries Adapter Offering
The MQSeries Adapter Offering consists of two product components:

• MQSeries Adapter Builder
• MQSeries Adapter Kernel

and two supportpac components:

• MQSeries Adapter Sets
• MQSeries Integrator Library

9.8.2.1 The MQSeries Adapter Builder
The adapter builder is a tool that allows a developer to import an application’s
interface into a repository by processing C header files containing function
prototypes and structure definitions. It also allows a message format
definition to be imported into the repository by processing XML Data Type
Documents (DTDs). The OAG provide DTDs for all of their BODs on their
Web site. The repository used by the tool is based on the same technology
used by MQSeries Integrator v2, and, therefore, the message format
definitions can be shared between the adapters and the message broker.
192 Business-to-Business Integration Using MQSeries and MQSI

A developer with knowledge of the application can visually map the data from
the message structure into the data structures expected by the application’s
interfaces and vice versa, that is, map the data from the application’s
interface into the desired message structure. The mapping definitions include
basic data manipulation, such as padding, truncation, alignment, and so on. If
more complex behavior is required, custom code can be written and stored in
the repository. The tool then allows the developer to sequence the calls to the
applications that are necessary to process all the data within a message.

Once the logic required in the adapter to transform data and interact with the
application has been defined, the tool generates C code to implement the
adapter, together with make files to build the code on a number of different
platforms. Any custom written code is included in the generated code, and
the generated code includes comments and tracing calls to aid debugging.

Figure 64. Adapter builder tool

9.8.2.2 The MQSeries adapter kernel
The MQSeries adapter kernel provides the standard runtime functionality
required by any MQSeries adapter created by the adapter builder tool
Chapter 9. Application design guidelines 193

including interaction with MQSeries queuing, configuration, and handling log
and debug information. The adapter kernel is the same for all adapters, and
the same code is, therefore, built for each of the supported platforms.

MQSeries adapter sets
Initially, there will be sets of standard adapters for three ERP applications:
SAP R/3, Baan IVb, and JD Edwards OneWorld. The adapter sets will be
available to download from the Web as “patterns” to be loaded into the
adapter builder tool and customized to meet each customer’s specific
requirements. The patterns will define predetermined mapping between the
fields in the OAG BOD messages and the application’s data, which can be
augmented with extra non-standard data defined in the customer’s
installation of the application.

MQSeries integrator libraries
For those customers who use the NEON components of MQSeries Integrator,
IBM will provide format libraries for the BOD messages handled by the
adapter sets. These BOD definitions will be distributed in the form of import
files; each of these will contain all the BOD definitions used by one of the
functional areas, such as MES, corresponding to an adapter set. The format
libraries will also provide useful definitions for customers who want to define
their own XML messages in the NEON formatter.

9.9 General MQSeries guidelines

The main points to consider when designing an application using message
queuing are:

• Application considerations

• Program considerations

• Queue considerations

• Message considerations

These items are covered in detail in the redbook, An Early Look at Application
Considerations Involved with MQSeries, GG24-4469. Although it does not
use the latest version of MQSeries, it does cover the overall concepts for
using messaging middleware.

The process of building an adapter for an EAI application differs significantly
from the process of building a B2Bi application. That is the interface
presented to the partner. When communicating outside of your own
enterprise, the interface you present to your partner is of significant
194 Business-to-Business Integration Using MQSeries and MQSI

importance. It will determine how easy or difficult it is to integrate with your
enterprise.

The details on planning or building an application using MQ Series are
covered in the MQ product documentation and a number of the redbooks
listed at the end of this chapter. The MQ manuals are available on-line at the
following Web site:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/

9.10 Application style

MQSeries and the associated message brokering architecture support the
store and forward, request/reply and publish and subscribe programming
models using either MQSeries persistent or non-persistent messages. In
sequence of preference, use the following rules of thumb:

• Store and forward with non-persistent messages.

Because no response from the called Service is required and the
messages do not need to be recoverable, this model has the best
scalability and performance characteristics. There is no network traffic
and, therefore, no network delays.

• Store and forward with persistent message.

Now MQSeries has to log the messages to ensure they are never lost.
This involves disk IO, and, therefore, this model performs/scales less.
There is no network traffic and, therefore, no network delays.

• Request/reply with non-persistent messages.

Use the request/reply model only when the client needs a response from
the Service to be able to continue processing (for example, inquiry). In
most cases, MQSeries non-persistent messages can be used in this
programming model. The processing time of the called Service as well as
network delays add to the response time.

• Request/reply with persistent messages.

Because of the additional MQSeries logging, the Service processing time,
and the network delays, this model has the worst performance and
scalability characteristics.

Publish and subscribe has the same characteristics as the store and forward
model.

Compared to the synchronous programming model, the MQSeries
programming models allows for the building of applications that scale and
Chapter 9. Application design guidelines 195

perform better than could be achieved with synchronous communication
models.

• When using store and forward, the client can continue processing as soon
as MQSeries has accepted the message. The destination Service is not
involved at all and does not even need to be available. No network traffic
takes place.

• Request/reply is, basically, the only programming model that is supported
when systems communicate synchronously. The requesting system waits
for the answer of the called system before continuing. Network delays add
to the wait time. MQSeries supports this programming model as well but
offers opportunities to reduce the wait times and improve scalability.

• If the application allows, the replies could be sent to and handled by
another application that may even run on another physical machine. In the
synchronous model, this cannot easily be done. The requester has to
handle the replies.

• When sending an MQSeries request/reply message, the requestor does
not have to wait for the response. It can continue processing and process
the response later. This allows the requestor to fire multiple messages and
continue processing and collecting the responses later. The messages are
processed by the Services in parallel. In the synchronous model, unless
one develops multi-threaded programs, all request/response pairs are
processed serially, and the individual wait times add together.

9.11 Application Programming Interface options

With MQSeries, you receive a family of three APIs designed to make
programming straightforward for any messaging task, from the simple to the
most advanced. All three APIs support the request/reply, fire-and-forget, and
publish and subscribe application programming models.

9.11.1 MQI
The MQSeries Queuing Interface provides the lowest level of interfacing with
MQSeries. It is available on all platforms on which MQSeries runs including
the MQSeries client platforms. There are bindings for almost all language
environments including C(++), Cobol, COM, Java. It is a rich interface
through which all functionality MQSeries offers can be accessed. It is
possible that the many options available through this interface may lead to
inefficient, inflexible, or even conflicting MQSeries implementations. It is,
therefore, advised to provide “corporate” guidelines for using this interface.
196 Business-to-Business Integration Using MQSeries and MQSI

The MQI should be used when the other available interfaces are not
appropriate.

9.11.2 AMI
Unlike the MQI, the Application Messaging Interface is an open standardized
interface accepted by the Open Application Group for accessing MQSeries. It
is very easy to use and is implemented on top of the MQI. The AMI interface,
however, will be only available on certain MQSeries platforms and is not
available for the MQSeries clients.

9.11.3 Java-based APIs
MQSeries provides support for developing MQSeries applications in Java
through a number of Java-based APIs.

• MQSeries classes for Java

• MQSeries classes for Java Message Service (JMS)

9.11.3.1 MQSeries classes for Java
The MQSeries classes for Java allow a program written in the Java
programming language to connect to MQSeries as an MQSeries client using
TCP/IP or directly to an MQSeries server using the Java Native Interface
(JNI). They allow Java applets, applications, and servlets access to the
messaging and queuing services of MQSeries. If the client-style connection is
used, no additional MQSeries code is required on the client machine. The
MQSeries classes for Java enable a message-based approach to application
integration using Java.

MQSeries Java follows a traditional MQSeries object model approach. It
allows greater flexibility and more control. It is relatively straightforward to
use and requires an understanding of the MQ API (MQI).

Some considerations
Maintain code levels as a general rule of thumb. on MQSeries servers,
reinstall the supportpac(MA88) after applying the CSD.

JDK codepage support can be varied. For example, on HP, codepage 1051
(platform default) is not supported by the JDK.

When using the Java bindings servlets within WebSphere, use of JNI
dependent code requires that the application server classpath (as opposed to
the Web application classpath) be set. Failure to do this typically results in an
UnstatisfiedLinkError.
Chapter 9. Application design guidelines 197

9.11.3.2 MQSeries classes for Java Message Service (JMS)
MQSeries classes for Java Message Service is a set of Java classes that
implement Sun Microsystems Java Message Service specification. A JMS
application can use the classes to send MQSeries messages to either
existing MQSeries or new JMS applications.

Use of the MQSeries classes for Java Message Service offers benefits
associated with using an open standard to write MQSeries applications, such
as the protection of investment both in skills and application code. In addition,
the JMS classes provide some additional features not present in the
MQSeries classes for Java. These extra features include:

• Explicit support for publish and subscribe

• Asynchronous Message Delivery

• Message Selectors

• Structured message classes

It also provides an administration tool for defining administration objects and
storing them in an enterprise directory service (JNDI namespace).

Java Message Service (JMS) is a specification of a portable API for
asynchronous messaging. JMS has been developed by Sun Microsystems in
collaboration with IBM and other vendors interested in promoting
industry-wide standard frameworks.

Many aspects of the Java API implementation are the responsibility of the
vendor developing the product, and, naturally, IBM will provide a robust JMS
service using MQSeries core technology.

JMS is an object-oriented Java API with a set of generic messaging objects
for programmers to write event-based messaging applications. JMS supports
both request /reply and publish/subscribe models as separate object models.

MQSeries JMS follows a simpler programming model since there is a higher
level of abstraction. This abstraction layer does have an associated
performance overhead. With MQSeries JMS, an application programmer may
not need MQ-specific skills. It does, however, have reduced control and
flexibility from a traditional perspective. It has extra functionality, described
previously, that is not available in MQSeries Java.

Some considerations
Within Multithreaded applications, connections are thread safe but sessions
and other things are not. Sessions and message consumers should not be
198 Business-to-Business Integration Using MQSeries and MQSI

accessed concurrently from different threads. One session per thread is a
good rule to follow.

Ensure appropriate cleanup by calling the appropriate close() methods.

When doing Exception handling, upon catching a JMSException, it is good
practice to call getLinkedException, retrieving the associated MQException.

9.11.3.3 Client vs. Bindings transport
Programmable options allow MQ Java to connect to MQSeries in either of the
following ways:

• As an MQSeries client using TCP/IP

• In bindings mode connecting directly to MQSeries

Client connection
If you are using MQ Java as an MQSeries client, it can be installed either on
the MQSeries server machine, which may also contain a Web server, or on a
separate machine. Installation on the same machine as a Web server has the
advantage of allowing you to download and run MQSeries client applications
on machines that do not have MQ Java installed locally.

Wherever you choose to install the client, it can be run in three different
modes:

• From within any Java-enabled Web browser – When running in this
mode, the locations of the MQSeries queue managers that can be
accessed may be constrained by the security restrictions of the browser
being used.

• Using an applet viewer – To use this method, you must have the Java
Developer's Kit (JDK) or Java Runtime Environment (JRE) installed on the
client machine.

• As a stand-alone Java program or in a Web application server – To
use this method, you must have the Java Developer's Kit (JDK) or Java
Runtime Environment (JRE) installed on the client machine.

Bindings connection
When used in bindings mode, MQ Java uses the JNI to call directly into the
existing queue manager API rather than communicating through a network.
This provides better performance for MQSeries applications than using
network connections. Unlike the client mode, applications written using the
bindings mode cannot be downloaded as applets.
Chapter 9. Application design guidelines 199

To use the bindings connection, MQ Java must be installed on the MQSeries
server.

Some considerations
An MQ Client implementation connects to a queue manager over TCP/IP via
the MQ listner. It offers a pure Java solution and is useful for connecting to
remote queue managers. It may be used for local queue managers.

Bindings is used in an MQ Server application. The queue manager must be
local to the application. It utilizes JNI to call the C MQI. There are
performance benefits over the client. Also, the application and queue
manager are more closely coupled.

9.11.3.4 Applets vs. servlets vs. applications
Each of the above methods has its drawbacks.

Applets tend to be somewhat heavyweight. They are often prone to browser
JVM differences and may have security restrictions.

Servlets are the favored option for Web-based solutions. They have better
performance and provide equivalent access to applications.

Java applications provide no run-time restrictions. They also allow access to
native code. Performance optimization may also be performed using native
compilation.

9.12 Considerations for the Partner Interface using MQSeries

There are a number of ways of enabling Internet access to the Enterprise
using MQSeries. This section describes the interfaces that could be made
available and lists some of their characteristics. An older but relevant
publication, Connecting the Enterprise to the Internet with MQSeries and
VisualAge for Java, SG24-2144, has more information about the sections that
follow. A number of additional resources are also available in the related
publications section.

9.12.1 MQ Queue to MQ Queue: Intercommunication
The information in this section was taken from the MQSeries
Intercommunication manual, SC33-1872, available online at
ftp://ftp.software.ibm.com/software/ts/mqseries/library/books/csqzae03.pdf

The manual contains a significant amount of detail that has not been included
in the summary that follows.
200 Business-to-Business Integration Using MQSeries and MQSI

One method of communicating with your partner when you have a
symmetrical topology (when your partner also had his or her application or an
application you provided) talk through an MQ Queue.

In MQSeries, intercommunication means sending messages from one queue
manager to another. The receiving queue manager could be on the same
machine or another machine, nearby, or on the other side of the world. It
could be running on the same platform as the local queue manager, or it
could be on any of the platforms supported by MQSeries. This is called a
distributed environment. MQSeries handles communication in a distributed
environment, such as this, using Distributed Queue Management (DQM).

The local queue manager is sometimes called the source queue manager,
and the remote queue manager is sometimes called the target queue
manager or the partner queue manager.

Figure 65. Overview of the components of distributed queuing

Distributed queuing works in the following way:

1. An application uses the MQOPEN call to open a queue so that it can put
messages on it.
Chapter 9. Application design guidelines 201

2. A queue manager has a definition for each of its queues, specifying
information such as the maximum number of messages allowed on the
queue.

3. If the messages are destined for a queue on a remote system, the local
queue manager holds them in a message store until it is ready to forward
them to the remote queue manager. This can be transparent to the
application.

4. Each queue manager contains communications software called the
moving service component; through this, the queue manager can
communicate with other queue managers.

5. The transport service is independent of the queue manager and can be
any one of the following (depending on the platform):

- Systems Network Architecture Advanced Program-to Program
Communication (SNA APPC)

- Transmission Control Protocol/Internet Protocol (TCP/IP)
- Network Basic Input/Output System (NetBIOS)
- Sequenced Packet Exchange (SPX)
- User-Datagram Protocol (UDP)

What do we call the components?
1. MQSeries applications put messages onto a local queue, that is, a queue

on the same queue manager.
2. A queue manager has a definition for each of its queues. It may also have

definitions for queues that are owned by other queue managers. These
are called remote queue definitions.

3. If the messages are destined for a remote queue manager, the local
queue manager stores them on a transmission queue until it is ready to
send them to the remote queue manager. A transmission queue is a
special type of local queue on which messages are stored until they can
be successfully transmitted and stored at the remote queue manager.

4. The software that handles the sending and receiving of messages is
called the Message Channel Agent (MCA).

5. Messages are transmitted between queue managers on a channel. A
channel is a one-way communication link between two queue managers. It
can carry messages destined for any number of queues at the remote
queue manager.

Components needed to send a message
If a message is to be sent to a remote queue manager, the local queue
manager needs definitions for a transmission queue and a channel. Each end
of a channel has a separate definition defining it, for example, as the sending
end or the receiving end. A simple channel consists of a sender channel
definition at the local queue manager and a receiver channel definition at the
202 Business-to-Business Integration Using MQSeries and MQSI

remote queue manager. These two definitions must have the same name,
and, together, they constitute one channel.

There is also a message channel agent (MCA) at each end of a channel.
Each queue manager should have a dead-letter queue. Messages are put on
this queue if, for some reason, they cannot be delivered to their destination.

Figure 66 shows the relationship between queue managers, transmission
queues, channels, and MCAs.

Figure 66. Sending messages

Components needed to return a message
If your application requires messages to be returned from the remote queue
manager, you need to define another channel, to run in the opposite direction
between the queue managers, as shown in Figure 67 on page 204.
Chapter 9. Application design guidelines 203

Figure 67. Sending messages in both directions

Considerations
This option is probably the most efficient of all the interfaces described in this
section. It does, however, require that the partner agree and purchase a
shared middleware platform, MQSeries in this instance. This interface would
probably be chosen by close partners. For example, two companies that are
interdependent or have common shareholders.

Communication over an open network would probably also present problems
although an Internet gateway is available and is described in Appendix B,
“MQSeries Internet pass-thru” on page 307.

MQ Queue to MQ Queue intercommunication over HTTP
This was released very recently. It does not require the Internet pass-thru
option since it communicates over HTTP. However, there are some
limitations.

9.12.1.1 MQ classes for Java
These classes were described in Section 9.11.3.1, “MQSeries classes for
Java” on page 197. The classes implement an object-oriented model for
accessing MQSeries resources.

It supports various connection or transport options. In an MQ client
implementation, it connects to the queue manager over TCP/IP via the MQ
listener. This is a pure Java solution and is useful for connecting to remote
queue managers.
204 Business-to-Business Integration Using MQSeries and MQSI

A bindings connection would be used by an MQ server application. The
queue manager must be local to the application. It utilizes JNI to call the C
MQI. It has some performance benefits over the client. The application and
the queue manager are more closely coupled.

9.12.1.2 MQSeries connector
The IBM Common Connector Framework defines a common wrapper for IBM
e-business connectors, such as CICS, IMS, HOD, and MQSeries. It enables
a common tooling methodology using Visualage for Java. This helps
developers create applications/servlets in a consistent and common way.

CCF defines a common set of classes for all connectors as well as a runtime
infrastructure. The MQSeries Connector is the MQSeries implementation of
the IBM e-business connectors Common Connector Framework.

This framework makes it easier to build applications visually. It facilitates the
deployment of pre-canned “service” beans to the Visual Application developer
who simply wires methods and properties into application concepts. The IBM
Visualage for Java allows easy construction of CCF type beans into
Commands/Navigators.

The MQSeries connector utilizes the MQSeries Classes for Java v5.1 to
access MQSeries. It supports client transport(TCP/IP) only. Support for
bindings transport is in the works. It ships with Visualage Java Enterprise
Edition V3.0.

9.12.1.3 MQ classes for JMS
These classes were described in Section 9.11.3.1, “MQSeries classes for
Java” on page 197.

9.12.1.4 Other technologies
This section describes other methods of connecting into MQSeries.

MQSeries LotusScript extension
This extension allows Lotus Script programs executing in a Domino Server to
connect into an MQSeries Queue Manager. The Domino Server can be
accesses by either a Notes client or a Web Browser. Domino’s support for
Java agents allows Java programs using the MQSeries classes for Java to
also be used.

MQSeries automation classes for ActiveX
This option gives access to MQSeries via an ActiveX Class. The server side
would be developed using Active Server Pages (ASP).
Chapter 9. Application design guidelines 205

9.12.1.5 MQSeries Internet gateway
The Internet Gateway is a program that interfaces with the Web server and
provides information or services on requests from a client program. The
MQSeries Internet Gateway provides a bridge between the synchronous
WWW and asynchronous MQSeries applications. The gateway, Web browser,
and MQSeries together provide an Internet-connected Web browser with
access to MQSeries applications.

The gateway acts as a mediator between the HTTP server and MQSeries. It
receives data from the HTTP server and packages it into an MQSeries
message. It then waits for the MQSeries reply message and passes it back to
the HTTP server. The Common Gateway Interface (CGI) is a standard
supported by almost all Web servers that defines how information is
exchanged between a Web server and an external program.

More information is available in the redbook, Connecting the Enterprise to the
Internet with MQSeries and VisualAge for Java, SG24-2144.

9.12.2 Summary of interface options
Each of the interfaces have its own characteristics and limitations. Choosing
an interface will be dependent upon, among other things, the application
requirements and the current infrastructure.

9.13 Building the hub and spoke architecture using MQSI

In topology three, the application to application diagram could be described
using Figure 68.

As discussed in Section 9.5, “Hub and Spoke integration architecture” on
page 184, the hub approach becomes increasingly simpler to manage as we
increase the systems.

MQSeries Integrator provides many of the functions required by such an
architecture. This section describes some of the functions provided by MQSI
and how they may be factored into your application design.
206 Business-to-Business Integration Using MQSeries and MQSI

Figure 68. Mutiple application with multiple partners

To build a complete MQSeries Integrator Version 2.0 application, you need to
consider the following activities:

• Define the information space and model.
• Build the business message flows.
• Develop or modify applications that feed messages into the message

flows, and consume the messages they produce.

The components that make up the first two activities are described in Chapter
8, “MQSeries and MQSeries integrator” on page 109. This summary was
taken from the redbook, Business Integration Solutions with MQSeries
Integrator, SG24-6154.

The product manuals, MQSeries Integrator Introduction and Planning and
MQSeries Integrator Using the Control Center, contain further detailed
information on the first two activities.
Chapter 9. Application design guidelines 207

The next section summarizes the third activity: Developing applications that
work with MQSeries Integrator Version 2.0.

9.13.1 MQSeries Integrator applications
MQSeries Integrator supports two communication models for applications. In
the point-to-point model, an application is putting a message on a queue
serviced by a broker. When the message has passed through the message
flow, the broker puts it on a queue serviced by another client application. The
second model is known as publish/subscribe. Applications wishing to receive
messages will create a subscription on a topic. Applications wishing to send
messages will create a publication for a topic. Publisher and subscriber are
unaware of each other. The broker makes sure that publications are sent to
the correct subscribers. Subscriptions can be topic based and/or content
based.

When sending messages to a queue serviced by a broker, MQSeries
Integrator needs to know something about the message. There are two ways
to provide this information:

1. Your application prefixes the user data of the message with the MQSeries
Integrator header, MQRFH or MQRFH2.

2. The MQSeries Integrator administrator has provided the necessary
information in the configuration of the MQInput node. Basically, this
instructs the broker to handle all messages on this queue as if they belong
to the configured message domain, message set, and message type.

Applications that can use the MQRFH or MQRFH2 header provide the same
information. If messages have an MQRFH or MQRFH2 header and, at the
same time, the MQInput node has values for message domain, set, and type,
the broker will check the values. When a message has conflicting information
in the MQRFH or MQRFH2 header, the broker will handle this as a failure.
Note that the MQRFH header was used in earlier publish/subscribe
applications and in MQSeries Integrator Version 1 applications. The new
version supports the older MQRFH header.

If publish/subscribe messages have no MQRFH or MQRFH2 header, the
broker will rely on the topic information in the properties of the MQInput node,
but existing publish/subscribe applications will, normally, already have the
MQRFH header. For full use of the broker, it might be necessary to change
these applications to use the MQRFH2 header.
208 Business-to-Business Integration Using MQSeries and MQSI

9.13.2 Multiple hubs?
When designing a message brokering architecture on a large scale, it is
pertinent to ask whether it is appropriate to deploy all instances of the broker
components in one physical location or to split out some of this function
across more than one location.

Clearly, it is simpler in the first instance to locate all major broker components
in one location (perhaps on several physical processors). It is simpler in
terms of systems management, operationally, deployment, database
maintenance, etc. The main reasons for deploying across multiple sites,
located possibly in different parts of the world, are:

• Resilience – Protection against a major outage of the data center.

This item is critical and, even on its own, probably justifies the design of
an architecture built to be capable of being deployed in multiple locations.
The key thing to incorporate into the design is to make sure that
applications located on a spoke of one of the hubs can actually connect
directly to a hub other than their local hub.

• Capacity – Extra processing hardware may be available in different
locations.

This item could be discounted since it is always possible to install
additional hardware in any location. The physical location should be
irrelevant to overall processing capacity.

• Performance – Applications in one global region may prefer to
communicate via their local hub

It is intuitively "obvious" that two applications that are attached to one hub
are more likely to perform more quickly when sending data locally than if
they have to send data to a processing hub on the other side of the world.
However, reality may turn out to be different, for example, if the network
that connects the principal data centers is very high bandwidth, then that
consequent network performance between these principal sites may turn
out to be a very small contributor to overall performance metrics.

The major contributor to performance and response time is most likely to
be attributed to the local network connecting the hub to the application
residing on the "spoke".

9.13.3 Database resilience
Within a given location, each MQSI broker will need access to an underlying
database. This database will be used exclusively by MQSI to contain details
of incoming message formats and rules. In MQSI V2, this is known as the
Chapter 9. Application design guidelines 209

Message Repository manager (MRM) and, in MQSI V1, is represented by the
Rules and Formats database. Each cloned instance of MQSI can use the
same instance of the database; so, this database is a key component of the
broker implementation. The MQSI instance uses standard database
technology to connect to the database, for example, DB2 Client, accessed
through an ODBC connection; so, in theory, the physical location of the
database is actually not relevant. However, in practical terms, it would
probably not be appropriate to place this database in a different physical
location. Failure to gain access to this database would mean that the brokers
would not be able to operate.

Resilience of this database is, therefore, key, and it should, therefore, be
placed on devices that are equipped with hardware technology for failover.
The database itself should be placed on shared disks across these machines.
Failure of one of these processors will simply result in the backup processor
taking over from the failed processor using the same network addresses so
that the clients (that is, The MQSI instances) will not have to make any
configuration changes.

9.13.4 Message routing - Basis
A key component of the broker architecture will be the basis on which routing
decisions are made. Clearly, there are many places in the end-to-end flow at
which decisions can be made, and the logic and data that drives these
decisions will execute in a particular environment and use data held in a
certain repository to make these decisions.

Some examples of where these decisions can be are:

• In the originating application (assuming that there is the capability to
include exit-style routing logic)

• In the adapter connecting the source application to MQSeries

• In a preprocessing component, such as an adapter, that intercepts an
MQSeries message immediately prior to being passed into the MQSI
broker.

• Within the MQSI broker using information that is held within the message
and logic held in the MQSI process flow

• Within the MQSI broker using information that is held within the message
and logic held in the MQSI process flow combined with routing logic held
in a relational database

• In a post-processing adapter that intercepts a message immediately after
exiting MQSI using some form of routing algorithms and/or data repository
210 Business-to-Business Integration Using MQSeries and MQSI

This type of function is best done in as central a place as possible, and
whatever mechanism is chosen to hold the rules for such routing, it should be
capable of being easily created, updated, disseminated, and managed.

In particular, if a database approach is taken, it is likely to be required to be
accessed from more than one broker, possibly, in more than one location.
Assuming that brokers in more than one location require this access,
although this would be possible over a distributed network, the criticality of
this information would lead to the conclusion that multiple copies of this
information would be required to be located locally to the instance of the
MQSI broker. This, in turn, leads to the conclusion that this information would
be "read-only" from the broker and the requirement to introduce careful
update and data replication procedures. It also introduces the requirement to
be able to control use of the broker environment, for instance, to be able to
quiesce some or all of the system (for example, Stop a broker, PutInhibit an
MQSeries queue, stop a queue manager, or QM channel, and so on) while
new routing information was fully disseminated.
Chapter 9. Application design guidelines 211

212 Business-to-Business Integration Using MQSeries and MQSI

Chapter 10. Application development guidelines

The development of an e-business application does not differ very much from
the development of any object-oriented, client/server application. However,
there are some special considerations, which we will outline in this chapter.
We will summarize the development process used to build an e-business
application from the start of the development project until its deployment in a
production system.

B2BI applications use a significant amount of middleware to achieve the end
goal.

10.1 The development process

Today, it is quite common in the industry to develop object-oriented software
with an iterative and incremental process. This approach has different roots.
For more information, refer to the books, Object-Oriented Analysis and
Design with Applications, ISBN 0-8053-5340-2, by Booch and Grady,
Object-Oriented Software Engineering; A Use Case Driven Approach, ISBN
0-2015-4435-0, by Jacobson and Ivar, and Object-Oriented Modeling and
Design, ISBN 0-1362-9841-9, by Rumbaugh, James, et al.

There is no defined standard process for development that everyone uses.
Different teams typically adopt a recognized process using a vendor
methodology or using their services team methodology. IBM Global Services
has its own methodology used in customer engagements that covers the
development process. The development process described throughout this
chapter is simplified and more generic than the IBM Global Services
methodology but is similar to it.

This process is described in detail in the redbook, Patterns for e-business:
User-to-Business Patterns for Topology 1 and 2 using WebSphere Advanced
Edition, SG24-5864. For completeness, a summary of the process is
presented in the following sections.

The process we will discuss is divided into different phases. Each phase is
done in a sequential manner and is subdivided into further smaller phases.
Some phases are only run through once. Others are done over and over
again, forming the iterative and incremental part of the development process.
The actual process and which phases you use might differ slightly depending
on the development team or organization that uses the process.

We can divide the whole process into the following phases:
© Copyright IBM Corp. 2000 213

• Solution outline

• Macro design

• Micro design

• Build cycle

• Deployment

Figure 69. Development process overview

In the solution outline phase you decide the scope of the project, explore
what the essential business needs are, come up with an idea of the base
architecture, and get the commitment from the project sponsor to start.

Then you start with the macro design which concentrates on the detailed
requirements gathering, business process modelling, high level analysis and
design, the base architecture, and a plan for the following development
phases, including a development release plan. These two phases are usually
done once in a project.

Now the iterative and incremental part of the development starts. For each
release of the developed e-business application, the micro design, build
cycle, and deployment phases are completed. Usually, a certain set of use
cases that have to be developed to meet a part of the system requirements
make up a release. The releases are defined in the project plan produced in
the previous phase. A release can be an internal one that is not deployed to
any users. This is quite common for early stages of big projects. Others, like
alpha or beta releases, might be deployed to a certain number of test users. It
might take several iterations until a first official release of the application is
deployed to the users. In turn, there are often several releases to the users
until all requirements are met, plus maintenance releases to fix errors and
other defects.

10.2 The scope of this chapter

In this chapter, we will explain the development process used for e-business
applications and will focus on:

Solution
Outline

Macro Design Micro Design Build Cycle Deployment
214 Business-to-Business Integration Using MQSeries and MQSI

• The results

• The process to get those results

• The tools to produce those results

We chose this structure since some process models, such as the IBM Global
Services methodology, suggest this approach. The idea is to drive the whole
process from the results, called work products. The process is divided into
phases as explained before. Each phase is divided into activities. In turn,
each activity might include several tasks. Each phase, activity, or even task
produces particular work products as output and needs others as input. The
IBM Global Services methodology also provides technical papers
(techniques) that describe how to produce the different work products.

10.3 The application and architecture domains

As we mentioned before, we do not explain a specific methodology in this
chapter. We will describe the process used to create the different work
products in a general way, but we will not go into the work breakdown
structure that the IBM Global Services methodology provides. However, the
IBM Global Services methodology provides a domain concept that will help to
position the contents of this chapter.

A domain is a logical grouping of related work products. Different roles and
skills fit into a domain through enabling specialization. Domains build the
basis for method tailoring which is an important part of the IBM Global
Services methodology.
Chapter 10. Application development guidelines 215

Figure 70. Domain concept in IBM Global Services methodology

Domains span the whole development process. There are six top level
domains. We will concentrate on the application and architecture domains in
this chapter. This does not mean that you should not be concerned with the
other domains; for example, the use case model work product in the
application domain is dependent on the business process model work product
from the business domain.

10.4 Solution outline

The first phase of a development project is the startup. This phase normally
begins with a small team of domain experts, analysts, and IT architects
exploring the requirements for the new solution. Beyond the pure business
requirements, it is important to explore the existing environment to find out
how the new application can fit. The target audience for the solution has to be
named, and their experience has to be determined.

Based on all this initial information, an architecture for the application has to
be determined. The team has to decide on the overall strategy of the solution
that will drive the whole project based on the business impact the solution has
on the organization.

Micro
Design

Build
Cycle

Deploy-
ment

IBM Global Services methodology

Macro
Design

Business Domain

Organization Domain

Application Domain

Architecture Domain

Operations Domain

Project Management Domain

Solution
Outline
216 Business-to-Business Integration Using MQSeries and MQSI

In the process of making these base architectural decisions, the team can
use the assets of the patterns for e-business:

• First, choose a business pattern that best fits your business problem. The
Patterns for e-business home page at
http://www.ibm.com/software/developer/web/patterns/ will help you make
this decision. For the purpose of this discussion, the chosen business
pattern is user-to-business.

• Next, review the application topologies for the chosen pattern.

The architectural decisions made are a separate work product and should be
well documented. They are used as input for the macro design where the
architecture is driven from the chosen logical application topology.

10.5 Macro design

In the macro design phase, the project team is usually extended from the few
domain experts, analysts, and IT architects working in the solution outline
phase to a broader skill set. This team works on the refinement of the results
from the solution outline phase. Their task is to do the following:

• Refine the requirements to come up with the business process model by
identifying and describing key business use cases.

• Evaluate various technology options available for the implementation. At
this point, you need to choose a set of technologies for application
development. Chapter 5, “Technology options” on page 67, helps you
make this decision.

• At this stage, it is also important to plan the deployment model. For that
reason, it is important to finalize the operational model. Chapter 4,
“Choosing the runtime topology” on page 41, helps you choose a logical
operational architecture. Since such decisions have an implication on the
long-term system management of the deployed application, we urge you
to consider the guidelines provided in Chapter 12, “Systems management”
on page 235.

• Subsequently, the logical operational architecture needs to be mapped to
a physical instantiation. Chapter 4, “Choosing the runtime topology” on
page 41, provides guidance in achieving this.

As in the solution outline phase, you should document your architectural
decisions as work products because they will serve as input for the following
release cycles.

Other tasks that have to be done in this phase include:
Chapter 10. Application development guidelines 217

• Design and plan the tests.

• Set up the development environment.

• Create a development plan for the following release cycles.

The release cycles start after all architectural decisions have been made and
documented.

10.6 Micro design

The development plan outlines several release cycles to implement the
requirements iteratively and incrementally. After the macro design phase, the
requirements of a project are captured in different work products, such as the
business process model, domain use cases, domain class models, and
interaction diagrams for those use cases.

Each release cycle starts with the micro design that focuses on transforming
the business model into a design model by taking the selected use cases and
running them through a typical object-oriented development phase.
Transforming means that we use the business model to bring it to such a
technically detailed level that it can be implemented. This is done by adding
all the architecture and implementation-specific classes and components to
the existing business model.

The design patterns explained in Chapter 9, “Application design guidelines”
on page 171, are used for the transition of the business model to the actual
design model. These design recommendations should lead you from your
high-level application design model to a micro design model that is ready to
be implemented.

The work products we produce in the micro design phase of the development
process are:

• Use cases

• Class models

• Interaction diagrams

• State diagrams

• Component model

• Deployment model
218 Business-to-Business Integration Using MQSeries and MQSI

The work products are described in detail in the redbook, Patterns for
e-business: User-to-Business Patterns for Topology 1 and 2 using
WebSphere Advanced Edition, SG24-5864.

Most of the work products are Unified Model Language (UML) artifacts. The
UML specifications are defined by the Object Management Group (OMG,
http://www.omg.org). Refer to the UML specification under
http://www.omg.org/uml, and to UML Distilled: Applying the Standard Object
Modeling Language, ISBN 0-2013-2563-2, by Fowler, Martin, Scott, Kendall,
and Jacobson, for further information on UML. We use UML to express the
work products and show the examples in UML notation. We work with
Rational Rose 2000 Professional J Edition as our modelling tool. Use the
documentation and tutorials that come with the Rational Rose product to find
more details about its use. Refer to the Rational Rose home page at
http://www.rational.com/products/rose/, to get the latest information about
the product.

10.7 Build cycle

In each release cycle, the micro design is followed by the build cycle. The
designed system is actually coded and tested in several build cycles. As in
the micro design, each build cycle focuses only on the requirements valid for
that particular release. So, with every build cycle, the developed system is
growing in the functionality implemented.

In the build cycle, the results of the micro design are turned into code:

• Write and unit test the source code.

• Build the executable code if necessary, for example, all Java code.

• Perform various tests on the executable code.

• Test the application in a runtime environment.

• Prepare for deployment.

The incremental approach used to run the release cycles is also used for the
different activities of the build cycle. It is run in several iterations for one
release, with each iteration transforming more of the design into tested
executable code that is ready to be deployed.

In this section, we will focus on the process of building and testing. Be sure to
refer to Chapter 11, “Performance guidelines” on page 229, while
implementing the source code and when executing your stress and
performance tests.
Chapter 10. Application development guidelines 219

http://www.omg.org
http://www.omg.org/uml
http://www.rational.com/products/rose/

For more detailed information on the following topics including using
WebSphere Studio, VisualAge for Java, and source code management, refer
to the redbook, Servlet and JSP Programming with IBM WebSphere Studio
and VisualAge for Java, SG24-5755.

10.8 Deployment

Depending on the size of the developed components in the build cycle, the
development team might decide to build it in several iterations. Even though
each build cycle produces executable code, only the final result is usually
deployed. The whole project is also run iteratively. It is up to the development
team to decide which release, built in a development cycle, is going to be
deployed. There might be alpha or beta releases that are deployed only to a
certain number of test users.

Deployment: Work products
A deployment plan has to be created that encompasses not only when and
how to install and set up the newly-developed application, but it must include
all hardware and prerequisite software requirements.

You also have to plan for system management taking into consideration what
has to be managed and how, how to establish the required security, and what
has to be done for availability and recovery, before you can deploy the
application into a production environment. More information on systems
management can be found in Chapter 12, “Systems management” on page
235.

When preparing for deployment of a Web application, you have to plan and
execute the hardware setup. In e-business applications with one of the
architectures described in this book, this means server and network
hardware, database and Web application server machines, network routers,
and firewall machines. For an intranet application, this might also include
client hardware, such as thin network computers. The software for all this
hardware has to be installed and configured including any databases used,
Web and application servers, firewalls, and security software. If the system
uses application topology 2, it needs access to other production systems. In
some cases, this means adding or changing components of a running
system. This task must be addressed in the deployment plan.

You also have to plan how to hand over the operations of the production
system to the staff that will be responsible for it.
220 Business-to-Business Integration Using MQSeries and MQSI

10.9 Developing MQSeries applications

With MQSeries, you receive a family of three APIs designed to make
programming straightforward for any messaging task, from the simple to the
most advanced. Three APIs can be used for exchanging messages:

• MQSeries Message Queue Interface (MQI)

• Java and MQSeries for Java

• AMI

All three of the APIs can interoperate.

10.9.1 Message Queue Interface (MQI)
The Message Queue Interface (MQI) is the API that provides full access to
the underlying messaging implementation and is available for all key
languages and environments.

MQI is an easy-to-use, programming interface that allows applications to
communicate transparently across the various platforms that make up the
enterprise-wide computing environment. The MQI allows full access to
MQSeries messaging support.

In-depth information on developing applications using MQI is available on-line
at the following Web site:

http://www-4.ibm.com/software/ts/mqseries/library/manualsa/index.htm

The MQSeries Application Programming Guide, SC33-0807, contains all the
information required to use this API.

10.9.2 MQSeries classes for Java and MQSeries classes for JMS
The following paragraphs will describe MQSeries classes for Java and JMS.

10.9.2.1 MQSeries classes for Java?
MQSeries classes for Java (MQ base Java) allows a program written in the
Java programming language to connect to MQSeries as an MQSeries client
or directly to an MQSeries server. It enables Java applets, applications, and
servlets to issue calls and queries to MQSeries giving access to mainframe
and legacy applications, typically, over the Internet without necessarily having
any other MQSeries code on the client machine. With MQ base Java, the
user of an Internet terminal can become a true participant in transactions
rather than just a giver and receiver of information.
Chapter 10. Application development guidelines 221

10.9.2.2 MQSeries classes for Java Message Service (JMS)
MQSeries classes for Java Message Service (JMS) (MQ JMS) is a set of
Java classes that implement Sun's Java Message Service (JMS) interfaces to
enable JMS programs to access MQSeries systems. Both the point-to-point
and publish-and-subscribe models of JMS are supported.

There are a number of benefits that arise from using MQ JMS as the API for
writing MQSeries applications. Some advantages derive from JMS being an
open standard with multiple implementations; others result from additional
features that are present in MQ JMS but not in MQ base Java.

Benefits arising from the use of an open standard include:

• The protection of investment both in skills and application code
• The availability of people skilled in JMS application programming
• The ability to plug in different JMS implementations to fit different

requirements

More information about the benefits of the JMS API can be found on Sun's
Web site at http://java.sun.com.

The extra function provided over MQ base Java includes:

• Asynchronous message delivery
• Message selectors
• Support for pub/sub messaging
• Structured message classes

In-depth information about developing applications using JMS is available
on-line at the following Web site:

http://www-4.ibm.com/software/ts/mqseries/library/manualsa/index.htm

MQSeries Using Java, SC34-5456, contains all the information required to
develop applications using this API.

10.9.3 AMI
The MQSeries products enable programs to communicate with one another
across a network of dissimilar components, such as processors, operating
systems, subsystems, and communication protocols, using a consistent
application programming interface, the MQSeries Message Queue Interface
(MQI). The purpose of the Application Messaging Interface (AMI) is to provide
a simple interface that application programmers can use without needing to
understand all the functions available in the MQI. The functions that are
222 Business-to-Business Integration Using MQSeries and MQSI

required in a particular installation are defined by a system administrator
using services and policies.

10.9.3.1 Main components of the AMI
There are three main components in the AMI:

• The message, which defines what is sent from one program to another

• The service, which defines where the message is sent

• The policy, which defines how the message is sent

To send a message using the AMI, an application has to specify the message
data together with the service and policy to be used. You can use the default
services and policies provided by the system or create your own. Optionally,
you can store your definitions of services and policies in a repository.

10.9.3.2 Sending and receiving messages
You can use the AMI to send and receive messages in a number of different
ways:

• Send and forget (datagram), where no reply is needed

• Distribution list, where a message is sent to multiple destinations

• Request/response, where a sending application needs a response to the
request message

• Publish/subscribe, where a broker manages the distribution of messages

10.9.3.3 Interoperability
The AMI is interoperable with other MQSeries interfaces. Using the AMI, you
can exchange messages with one or more of the following:

• Another application that is using the AMI

• Any application that is using the MQI

• A message broker, such as MQSeries Publish/Subscribe or MQSeries
Integrator

10.9.3.4 Programming languages
The Application Messaging Interface is available in the C, COBOL, C++, and
Java programming languages. In C and COBOL, there are two interfaces: A
high-level interface that is procedural in style and a lower level object-style
interface. The high-level interface contains the functionality needed by the
majority of applications. The two interfaces can be mixed as required.

In C++ and Java, a single object interface is provided.
Chapter 10. Application development guidelines 223

In-depth information on developing applications using AMI is available on-line
at:

http://www-4.ibm.com/software/ts/mqseries/txppacs/ma0f.html

The interface has to be downloaded from the above site and installed. An
on-line guide, Application Messaging Interface, SC34-5604, contains all the
information required to develop applications using this API.

10.10 Application development for MQSeries Integrator

In the previous chapter, we provided an overview of how to build a complete
MQSeries Integrator Version 2.0 application. You should consider the
following activities:

• Define the information space and model.
• Build the business message flows.
• Develop or modify applications that feed messages into the message

flows, and consume the messages they produce.

In addition to writing applications to use MQSI, it is possible and would,
possibly, be necessary to extend the functionality of MQSeries Integrator by
developing a custom plug-in. This process is described in detail in the
redbook, Business Integration Solutions with MQSeries Integrator,
SG24-6154. The following sections are a summary of the requirements for
developing a plug-in taken from the latter publication.

10.10.1 Terminology
In discussions about the framework that MQSeries Integrator provides for
extending its functionality, a number of terms are used, such as plug-in,
user-written node, user-written parser, and lil.

A plug-in is a generic name for any type of function that can be added to your
MQSeries Integrator environment.

A user-written node or node is the first type of plug-in. It is the type of plug-in
that you can add to the palette of the Control Center. The function that a
user-written node can provide is very broad. It can route the message to one
of its output terminals based on some specialized logic that is not easy to
express in a Compute node. It can edit the message by accessing external
resources and so on.
224 Business-to-Business Integration Using MQSeries and MQSI

A parser is a second type of plug-in. You can decide to write your own parser
for specialized messages that you cannot or do not want to express in the
Message Repository Manager (MRM).

Finally, a loadable implementation library or a lil is the implementation module
for one or more nodes or one or more parsers. A lil is implemented as a
dynamic link library (DLL) on the Windows NT platform. It does not have the
file extension .dll but .lil.

10.10.2 Overview of the requirements for a plug-in
Given that a plug-in is used at the heart of a broker, it is clear that there are
some specific requirements for the implementation of a plug-in, such as API
requirements, memory management, exception management, and threading
issues.

10.10.2.1 API requirements
There are a number of specific functions that a module must implement. We
refer to these functions as implementation functions. Your lil can also use the
functionality of the broker by calling utility functions, and, finally, you have the
initialization function. This last function, with the name,
bipGetMessageflowNodeFactory, is called by the broker after the lil has been
loaded and initialized by the operating system. The broker calls this function
to understand what your lil is able to do and how the broker should call the lil.

To express what your lil can do, or better yet, what nodes your lil supports,
the bipGetMessageflowNodeFactory function has to call the utility function,
cniCreateNodeFactory. This function passes back a factory name (or group
name) for all the nodes that your lil supports. Next, the lil should call the utility
function cniDefineNodeClass to pass the name of each node and a virtual
function table of the addresses of the implementation functions.

To make the above more concrete, refer to the redbook, Business Integration
Solutions with MQSeries Integrator, SG24-6154, which includes code
snippets.

Because you are passing function pointers, you are free to choose the name
of your implementation functions. Their signature is fixed, of course. The list
below specifies what functions you have to implement:

• cniCreateNodeContext

• cniGetAttributeName

• cniGetAttribute

• cniSetAttribute
Chapter 10. Application development guidelines 225

• cniEvaluate

When the broker has received the table of function pointers, it will call the
function, cniCreateNodeContext, for each instantiation of the plug-in. If you
have three message flows that are using your plug-in, your
cniCreateNodeContext function is called for each of them. This function
should allocate memory for that instantiation of the plug-in to hold the values
for the configured attributes. Next it should call the appropriate utility
functions to tell the broker about the input terminals and the output terminals
it supports. Note that this must be done during cniCreateNodeContext. Next,
the broker calls the cniSetAttribute function to pass the values for the
configured attributes for this instantiation of the plug-in.

At this point, the instantiation of the plug-in is finished. When the broker
retrieves a message from the queue and that message arrives at the input
terminal of your plug-in, the broker will call the implementation function,
cniEvaluate. This function should decide what to do with the message,
propagate the message to a terminal, and, eventually, transform the
message.

10.10.2.2 Implementation requirements and restrictions
Message flows can be used in multiple execution groups and in multiple
threads at the same time. Therefore, the implementation of a node needs to
be thread-safe and avoid the use of any global data.

To avoid creating orphaned memory, the node should make sure that all
memory acquired by the node is released at some point.

All data passed between the broker and the plug-in is coded in a wide
character set, even for attributes in an integer format. The implementation
functions, cniSetAttribute and cniGetAttribute, should make sure that the
necessary conversions are done with data received from the broker or
passed back to the broker.

The plug-in should also limit the use of any operating system-specific
functions. The use of external configuration parameters, such as environment
variables or ini files, should be avoided because the broker cannot assist in
distributing these resources. MQSeries Integrator is designed in such a way
that brokers can be administered from remote locations. If a plug-in requires
external data, you should make sure that this data is available before the
deployment of a message flow using the plug-in.

And, finally, here are some considerations about exception management and
errors. When a plug-in calls utility functions that execute in the broker, the
226 Business-to-Business Integration Using MQSeries and MQSI

return code parameter will contain an indication of any error conditions. The
plug-in should test the value and perform any recovery operations if needed.
The utility function, cciGetLastExceptionData, can then be used to obtain
more information about the error. Once the plug-in has done its logging and
recovery, the exception should be passed back to the broker again by calling
the utility function, cciRethrowLastException. The plug-in itself can also raise
exceptions using the utility function, cciThrowException. It is critical for the
integrity of the broker that a plug-in respect and use these exception
management functions.
Chapter 10. Application development guidelines 227

228 Business-to-Business Integration Using MQSeries and MQSI

Chapter 11. Performance guidelines

This chapter discusses the various aspects of performance and how the
design or implementation of an e-business application can affect them. This
chapter is does not present exhaustive guidelines on performance but serves
as a pointer to sources of more detailed information.

It’s imperative to include performance considerations at the architecture and
design phase for all e-business development projects. Without clear
performance objectives during initial architecture definition and high level
design, performance becomes an afterthought; something to be dealt with
after hardware and software products have been selected and application
code developed. We have enough data and experience now to know that
these projects often fail when they are deployed - not because they cannot
deliver the required business function, but because they cannot service the
demand generated by their customer community in a satisfactory way.

A white paper, Designing e-business Solutions for Performance, by Maggie
Archibald and Mike Schlosser, covers this topic extensively. Although the
paper explores performance relative to a User-to-Business pattern, the
methodology is roughly the same.

Figure 71. Application topology 3, the runtime components
© Copyright IBM Corp. 2000 229

With B2Bi topologies 2 and 3, performance is a function made up of three
parts:

1. The implementation and deployment of the many pieces of middleware
that integration solutions require.

2. The application design of the adapters and communications used to
integrate the applications across the enterprises.

3. The performance of the applications being integrated.

This chapter will summarize some of those components and provide pointers
to more extensive material. You will be able to use this material to reflect on
your proposed architecture.

11.1 MQSeries and MQSI tuning, capacity planning, and performance

The elements that make up the planning, tuning, and optimizing guidelines
are subject to the environment within which MQSeries is deployed. The
MQSeries Planning Guide, GC33-1349, provides detailed information for the
many platforms that MQSeries supports. In addition to this guide, the
following sections describe additional material available for this task.

11.1.1 Hardware and capacity
MQSeries and MQSI have base requirements. These requirements are based
on the platform being deployed. The processor, amount of storage and
random access memory (RAM) required for typical configurations of
MQSeries are listed in the planning guides. For MQSeries, the MQSeries
Planning Guide, GC33-1349, provides the base hardware requirements for
each of the platforms. The Introduction and Planning Guide, GC34-5599,
provides this information for MQSI.

The above guides also provide capacity information for the various platforms
based on a sample configuration that you could extrapolate based on your
environment and experience.

11.1.2 MQSeries and MQSI application performance
The following are some ideas to help you design efficient applications:

• Design your application so that processing goes on in parallel with the
user’s thinking time:

- Display a panel and allow the user to start typing while the application
is still initializing.
230 Business-to-Business Integration Using MQSeries and MQSI

• Don’t be afraid to get the data you need in parallel from different servers

• Keep connections and queues open if you are going to reuse them instead
of repeatedly opening and closing, connecting, and disconnecting.

•

• Keep your messages within a unit of work so that they can be committed
or backed out simultaneously.

• Use the nonpersistent option for messages that do not need to be
recoverable.

The Introduction and Planning Guide, GC34-5599, provides some guidance
on performance for MQSI.

11.1.3 Additional performance information
Information about MQSeries performance is available on the Internet at:

http://www.ibm.com/software/ts/mqseries/txppacs/txpm1.html

The sections below describe some of the SupportPacs and their contents that
are available for various IBM hardware platforms.

11.1.3.1 OS/390
The MQSeries SupportPacs can be found at the following Web sites:
http://www-4.ibm.com/software/ts/mqseries/txppacs/mp16.html and
http://www-4.ibm.com/software/ts/mqseries/txppacs/mp19.html. They provide
an in-depth look at optimizing MQSeries for the OS/390. These SupportPacs
provide capacity planning and tuning information for MQSeries for MVS/ESA
Version 1.2 and MQSeries for OS/390 Version 2.1, most of which is common
to both.

This SupportPac contains the following:

1. It describes the steps taken to optimize performance of an MQSeries for
MVS/ESA V1.2 or MQSeries for OS/390 V2.1 system that uses persistent,
1000-byte messages. Starting with the MQSeries-supplied default
definitions, it describes the symptoms of potential performance problems
and the actions taken to resolve them.

2. It provides a variety of capacity information.
3. It provides tuning advice.

However, a server application which is putting only one message should
use MQPUT1

Note
Chapter 11. Performance guidelines 231

11.1.3.2 AS/400
The MQSeries SupportPac available at
http://www-4.ibm.com/software/ts/mqseries/txppacs/mp43.html provides an
in-depth look at optimizing MQSeries for the OS/390.

This SupportPac aims to provide capacity planning information relevant to
MQSeries for AS/400 Version 4 Release 2.1 and to highlight the performance
features available in this release.

The measurements described in the SupportPac are categorized below:

• Synchronous request/reply timings – These measurements show the
round trip times that can be achieved between Queue Managers when
using synchronous messaging. They illustrate the benefit of using Fast
Channels.

• MQSeries channels – These evaluations measure the message
throughput that can be achieved using MQSeries channels. They show the
effects of using Fast Channels and batch interval to maximize
performance.

• MQSeries client performance – These figures indicate the level of
performance that can be expected when connecting MQ thin clients to an
AS/400. They illustrate the performance benefits of using correlation ID.

11.1.3.3 AIX
The MQSeries SupportPac is available at
http://www-4.ibm.com/software/ts/mqseries/txppacs/mp67.html and provides
an in-depth look at optimizing MQSeries for AIX.

This SupportPac provides capacity planning information relevant to
MQSeries for AIX V5.1. It presents the results of MQSeries client-based
performance evaluations although most of the tuning activities also apply to
distributed queuing. The SupportPac includes:

• Tables and charts that summarize the performance characteristics of
various MQSeries client based configurations

• Interpretation of the evaluations and their implications for those designing
or sizing MQSeries configurations

• Appendices containing the detailed performance data

11.1.3.4 Windows
The MQSeries SupportPac is available at
http://www-4.ibm.com/software/ts/mqseries/txppacs/mp74.html and provides
an in-depth look at optimizing MQSeries for Windows NT.
232 Business-to-Business Integration Using MQSeries and MQSI

This SupportPac provides capacity planning information relevant to
MQSeries for Windows NT V5.1. It presents the results of MQSeries
client-based performance evaluations, although most of the tuning activities
also apply to distributed queuing. The SupportPac includes:

• Tables and charts that summarize the performance characteristics of
various MQSeries client based configurations

• Interpretation of the evaluations and their implications for those designing
or sizing MQSeries configurations

• Appendices containing the detailed performance data

11.1.3.5 MQSeries Integrator Performance
The MQSeries SupportPacs are available at the following URLs:
http://www-4.ibm.com/software/ts/mqseries/txppacs/mpi1.html

http://www-4.ibm.com/software/ts/mqseries/txppacs/mpi2.html

http://www-4.ibm.com/software/ts/mqseries/txppacs/mpi2.html

http://www-4.ibm.com/software/ts/mqseries/txppacs/mpi4.html

They do not provide a comprehensive performance test but rather a series of
useful tests and conclusions designed to allow the reader to determine which
factors will most affect the performance of their own particular MQSeries
Integrator setup. Also provided in some of the SupportPacs is the source of
the C programs used in the generation of the results.
Chapter 11. Performance guidelines 233

234 Business-to-Business Integration Using MQSeries and MQSI

Chapter 12. Systems management

Systems Management is complex and includes the management of different
environments, networks, hardware, operating systems, and applications. This
section only describes security for MQSeries since MQ is the predominant
component for patterns 2 and 3. It does not include any description of how
this interrelates with managing other software or network hardware.

However, it should be noted that many of these problems affect each other.
For example, an MQSeries problem can affect or be affected by numerous
products. For example:

• If disk space runs out, this is first seen as an MQSeries problem; for
example, it is not possible to issue an MQPUT to a queue, then second, as
an operating system problem, and, finally, as a hardware problem.

• If there is a defect on a network adapter and this causes the network to
slow down or to fall out, IP connections may close, and, finally, MQSeries
channels between some systems may go in a stopped or retry state, and a
transmission queue may get full.

This chapter describes the management of MQSeries and MQSI since they
are the most significant components of Topology 2 and 3.

12.1 Managing MQ?

For truly effective and efficient MQSeries network management, you need to
manage your MQSeries network from a central point, as well as minimize
time-consuming and sometimes error-prone administrative tasks. For
example, reliance on local configuration and operation at each system in a
distributed, multi-platform environment can be costly. What is needed is a
centralized administrative and operations management solution that
accelerates your deployment of MQSeries along with improving the efficiency
in managing your MQSeries network.

Typically, as you design and develop your MQSeries network, the parameters
of each MQSeries node must be defined. Conversational node pairs, such as
channels, require parameters that match, which demands coordination
between administrators of disparate systems. This configuration
management process is labor-intensive, complex, and error-prone requiring
specialized technical personnel with deep knowledge about different
operating platforms. Simple typographical errors and naming convention
conflicts can add to the difficulties.
© Copyright IBM Corp. 2000 235

IBM provides very basic management services with its MQSeries package by
design. IBM relies on additional functions (SupportPacs) or solution partners
to fill these important application requirements for the end-user.

12.1.1 What should be managed in MQSeries networks?
Systems Management is very important to ensure that you have an MQSeries
network with high availability, good throughput, and fewer specially-educated
staff. For MQSeries, you should look at the following:

• Platform Support is divided into two groups: MQSeries support and GUI
Interface support. MQSeries support is based on areas, such as MVS,
AIX, NT, OS/2, and so on. GUI support usually involves Windows NT/95,
OS/2, UNIX, and 3270.

• Management Console Information areas, such as Central Point of Control,
GUI, Local and Remote Platforms, and Ad Hoc Queries.

• Enterprise-Wide Management investigates areas, such as Mainframes,
Workstations, Databases, and the Enterprise integration with CICS, IMS,
DB2, and mid-range monitoring products.

• Open Systems Platform Connectivity connects your MQSeries
management toolset to a management tool such as HP OpenView, Tivoli
TME, CA Unicenter, or Cabletron Spectrum. Microsoft SMS is usually not
covered by the management products.

• Security Services, such as Machine Authentication, User ID
Authentication, Message Validation, and Data Encryption.

• Configuration touches several areas, such as MQSeries Queues,
Channels, Automated Tasks, and Automatic Discovery.

• Software Distribution for distributing and updating MQSeries software on
different platforms; this task should include the distribution and update of
the MQSeries objects and may only be completely done when the queue
manager or the whole MQSystem is down or when a system backup
(including the contents of the queues) has been done before.

• Performance, for example, Queue Manager Status, Message Manager
Performance, Buffer Manager Performance, Log Manager Performance,
Channel Performance, and Dead Letter Queue Management. A Dead
Letter Queue management function should be able to manipulate
messages in the Dead Letter Queue by, for example, viewing, deleting, or
moving them to other queues.

• Scalability of applications includes areas, such as Dynamic Routing, Load
Balancing and Speed, and Application Deadlocks.
236 Business-to-Business Integration Using MQSeries and MQSI

• Application Testing Tools look at areas, such as Edit Messages, Test Data
Creation, Manage Queues, and System Testing.

• Consulting Services are capabilities a vendor currently offers to support in
using the management tools. Application Design, Education and Training,
Project Management, Application Development and Performance, and
Availability of Middleware Consultants should be evaluated.

12.1.2 MQSeries Systems management products
Today, there are several comprehensive and robust products available from
both large and small vendors. Two reports that contain a fairly in-depth
description and comparison of the products available are The MQSeries
Systems Management Market available at the following URL:
http://www-4.ibm.com/software/ts/mqseries/library/whitepapers/sysman/

and the IBM Support Pack #MS08 "Evaluation of MQSeries Systems
Management Products" available at
http://www-4.ibm.com/software/ts/mqseries/txppacs/txpm3.html#sysmng

The preceding link includes a number of additional SupportPacs related to
systems management.

The functional areas that relate to the management and administration of
your current and planned MQSeries is commonly broken down as follows:

• Configuration Management – The ability to deploy MQSeries code and
create and delete MQSeries objects including Queue Managers, Queues,
Channels, and Processes from a single point of control

• Operations Management – The ability to start and stop resources, such
as Queue Managers, Channels, Trigger Monitors, Channel Listeners, and
Channel Initiators from a single point of control

• Problem Management – The ability to detect, track, and resolve problems
with MQSeries objects from a single point of control

• Performance Management – The ability to determine the performance of
MQSeries objects and networks including Queues and Channels from a
single point of control

You should also consider strategic issues that may determine what products
you will need to manage your MQSeries network. These include:

Do you need stand-alone MQSeries management, a broader application view,
or enterprise-wide support? Are the mainframe(s) acting as a central
application message switch or as another distributed end-node? Should the
central Manager Platform be accessible from a 3270 console, a Windows/NT
or UNIX GUI, or a Web browser? Which MQSeries platforms must be
Chapter 12. Systems management 237

managed and which vendors provide full support for those platforms? Is there
an incumbent vendor managing other subsystems, such as CICS or DB2, and
what is your organization's enterprise-wide management direction? Do you
have adequate in-house technical talent to select and implement a systems
management solution, or should you plan for outside assistance?

12.2 Security

With any operating environment, there are usually a number of components
that provide various services. The most significant of these are:

• Identification and authentication (I&A) – This service forms the basis of
many of the other services and involves the provision of a user identifier
(user ID or principal) and the verification that the identifier is valid (that is,
it represents the actual user and is not some intruder impersonating a
valid user).

• Authorization – This is access control and relies upon the availability of
some user identifier to compare against access control lists (ACLs). Note
that the authorization service is only useful if it is used; an intruder might
attempt to bypass (and neutralize) the authorization service.

• Data confidentiality or encryption

• Data integrity – Even though data might be visible (that is, not encrypted),
the data integrity service ensures that data is not altered.

• Non-repudiation – This is the provision of some form of token, such as a
digital signature, that guarantees that a particular piece of data originated
from a particular user.

Note that although the Security component is positioned as one of the
distribution services, it also provides services within the node (particularly
authorization but all of the other services as well).

The way in which these security services are used by the various aspects of
MQSeries is explained in the following sections.

12.2.1 MQSeries security functions
The following sections apply to all MQSeries products.

12.2.1.1 MQSeries applications
Before an application connects to a queue manager, it will have undergone
some form of I&A procedure. This might be the provision of a user ID and
password or it might be some more elaborate process, such as a smart card
identification. Alternatively, it might be that there is no requirement for the I&A
238 Business-to-Business Integration Using MQSeries and MQSI

procedure and, thus, no user identifier associated with the application (for
example, the building that houses the system might be physically secure, and
user identifiers might not be considered necessary).

The consequence of this is that each application that issues MQI calls has an
associated user identifier (which might be null) that is used to authorize the
use of certain MQI functions (primarily MQCONN and MQOPEN) and options
(such as PUT and GET) against particular objects (usually queues). This
means that any application user identifier trying to access MQSeries
resources must be suitably authorized.

Because the I&A procedure takes place before the application connects to
the queue manager, it is the responsibility of components other than
MQSeries to provide the I&A service. MQSeries is only responsible for
capturing the user identifier for use in providing other security services, such
as authorization. (The user identifier is captured when the application
connects to the queue manager.)

Similarly, it is often the responsibility of some other component to provide the
authorization service, with MQSeries having responsibility for calling that
service. This works satisfactorily for systems, such as OS/390, where there is
a standardized interface (for example, SAF) to the authorization service. For
the OS/2 Warp, Windows NT, and UNIX platforms, however, there is no
standard authorization service or interface provided, and so, MQSeries
provides its own interface. This is called the authorization service and is
documented in the MQSeries Programmable System Management manual.

12.2.1.2 The Object Authority Manager
For MQSeries for AS/400, MQSeries for Compaq (DIGITAL) OpenVMS,
MQSeries for Tandem NSK, MQSeries on UNIX systems, and MQSeries for
Windows NT, there is an additional component written to the SEI that
provides an authorization service. This is called the object authority manager
(OAM), and it restricts access to MQSeries objects based upon the access
control lists (ACLs) that it manages.

The OAM is documented in the following product documentation:

• MQSeries for AS/400 V5.1 System Administration Manual

• MQSeries for Digital OpenVMS System Management Guide

• MQSeries for Digital UNIX System Management Guide

• MQSeries for Tandem NonStop Kernel System Management Guide

• MQSeries for VSE/ESA System Management Guide
Chapter 12. Systems management 239

• MQSeries System Administration Manual

12.2.2 MQSeries messages
The basic function of MQSeries is to pass messages between applications.
The message header (the message descriptor, MQMD) contains a field,
UserIdentifier, where a user identifier can be placed allowing the application
that gets the message to know from which user the message originated. The
user identifier can be placed in the MQMD in one of three ways:

• The user identifier from a previous message (that is, one for which an
MQGET has been performed) can be passed to a subsequent message.
This is known as passing the security context.

• A suitably authorized (that is, trusted) application can place any user
identifier in the field.

• If neither of the above is used, MQSeries automatically places the user
identifier of the application that did the MQPUT in this field.

Therefore, this aspect of MQSeries operation provides an identification
service (associating a user identifier with the message); it does not provide
an authentication service. It is, currently, the responsibility of MQSeries
applications both to provide any required authentication token (on the
MQPUT side) and to verify that token (on the MQGET side).

Note also that, when an application does an MQGET for a message, there is
no attempt to reset the application's user identifier to that contained in the
message header. This function is called context management and is not
supported by MQSeries.

12.2.3 Point-to-point security
In addition to providing services as a local resource manager, a queue
manager also provides distributed queuing, enabling messages to be
distributed around a network of queue managers. This distributed messaging
function is provided by means of MQSeries channels. Each channel is
composed of a pair of message channel agent programs (MCAs), which
provide the protocol for assured, once-only message delivery using an
underlying transport mechanism to exchange messages.

When the two MCAs establish communication, it might be necessary for each
to verify the identity of the other. This would be the case if one queue
manager did not trust the connection or the identity of the partner queue
manager (for example, if they were owned by separate enterprises). This
verification can be accomplished in one of the following ways:
240 Business-to-Business Integration Using MQSeries and MQSI

• Some transport mechanisms (in particular APPC) provide security
features, such as session authentication. Note that this provides
verification of the partner system (the partner logical unit), rather than the
partner application (the MCA) but this might satisfy the security
requirements of the queue manager.

• The MCAs each provide a security exit point which can be used to call
user-written security exits for the exchange of user identifiers and
associated authentication tokens (password, ticket, and so on). This
allows each MCA to verify the identity of its partner.

Using the MCA security exit allows the channel to be independent of the
underlying transport mechanism and to provide a consistent service
across many transports. This is especially important when providing a
service (like security) that is available only on a limited set of transports.

This aspect of MQSeries operation provides support for the I&A service. If
required, the security exit can use the central security services to provide
authentication tokens but this is not a requirement.

• On AIX, HP-UX, OS/2 Warp, Sun Solaris, Windows NT, and Windows 95,
MQSeries provides exits relating to DCE security. Source code is also
provided to help you understand the program, and to assist you in creating
your own.

Note that it is possible to use any or all of the above mechanisms for
point-to-point security, enabling an MCA to be assured that it is exchanging
messages with the correct queue manager.

12.2.4 End-to-end security
End-to-end security refers to security services that can be provided when a
message is PUT by an application and to the corresponding services that are
available when the target application performs a GET. The relevant services
are identification and authentication (possibly across the network), data
confidentiality, data integrity, and non-repudiation.

MQSeries is not responsible for the provision of these services, but it is
responsible for providing appropriate interfaces to call these services.

Today, the only aspect of end-to-end security that is (directly) supported by
MQSeries is Identification, where a user identifier can be placed in a
message header. MQSeries does not provide (direct) support for any of the
other services.
Chapter 12. Systems management 241

However, these services can be implemented in either MQSeries application
programs or the MCA message exit, which is a customer exit invoked each
time a message is passed between two queue managers.

12.2.5 Where to find more information
For information about MQSeries security on your platform, see the following
chapters in the MQSeries Planning Guide, GC33-1349:

• Chapter 11, Security planning for MQSeries for AS/400

• Chapter 16, Security planning for MQSeries for Compaq (DIGITAL)
OpenVMS

• Chapter 21, Security planning for MQSeries for OS/2 Warp

• Chapter 27, Security planning for MQSeries for OS/390

• Chapter 34, Security planning for MQSeries for Tandem NSK

• Chapter 38, Security planning for MQSeries for UNIX systems

• Chapter 41, Introduction to MQSeries for VSE/ESA

• Chapter 44, Security planning for MQSeries for Windows NT
242 Business-to-Business Integration Using MQSeries and MQSI

Part 3. An application example

The third part of the book looks at a solution with MQSeries, MQSeries
Integrator, WebSphere, and DB2. This solution consists of a Web application
that finds information about a customer on a number of separate systems. We
have called this solution the single customer view. We are aware that the
issue of getting a single customer view is far more complex than what is
shown here. This solution will help customers in architecting their solutions.
Basically, the solution shows how to break up a single request into multiple
requests using MQSeries Integrator and how to reformat each part of the
request into the format that the back-office application expects. Finally, we
show how each reply is collected and used to build a single reply for the
front-end application.

This part was produced as a part of another project. The material is
reproduced here for illustrative purposes. The application could be described
as a User-to-Business or a Business-to-Business Integration application
since it has the properties of both. The distinction is made in how the partner
interface is implemented. In this section, it is used to illustrate B2Bi. This
application is an example of topology 3. The topology implements both the
routing and transformation functions that are illustrated in topology 3.
© Copyright IBM Corp. 2000 243

244 Business-to-Business Integration Using MQSeries and MQSI

Chapter 13. Getting a single customer view with MQSeries

This section was developed independently of this project. It was originally
part of the redbook, Business Integration Solutions with MQSeries Integrator,
SG24-6154.

This section shows how MQSeries and MQSeries Integrator can be used to
enable the gathering of information from multiple MQSeries-enabled legacy
systems and then display this information on a single Web page.

Figure 72 is a high-level view of the components of the solution. The
application takes a request from an application server using a servlet, queries
three legacy backend systems, and consolidates a response to the requester.

Figure 72. Component overview

The environment used for development of this application solution consisted
of two Netfinity 3000 workstations running Windows NT Workstation V4.0. A
list of hardware and software used for this example can be found in Appendix
A, “Hardware and software specifications” on page 305.

Information on installing and implementing all the other software components
in the solution is outside the scope of this redbook.
© Copyright IBM Corp. 2000 245

13.1 Outbound flow

This section describes the outbound flow of the request message from the
Web page to the legacy back-end programs. There is a main flow,
RB_SCV_1, and three sub-flows, RB_SCV_Request_Endow,
RB_SCV_Request_House, and RB_SCV_Request_Motor.

13.1.1 RB_SCV_1message flow
Figure 73 shows the RB_SCV_1 message flow.

Figure 73. RB_SCV_1 message flow

This is the main outbound flow. Its purpose is to:

• Retrieve the request message(s).
246 Business-to-Business Integration Using MQSeries and MQSI

• Determine if information exists for the identified customer

• Determine which back-end application(s) to send requests to

• Send a message to the Message Merger’s trigger queue to tell it how
many responses to expect and the message ID of the original request so
that the response messages can be associated with the correct request
message.

The flow was built by dragging the appropriate nodes from the list of
IBMPrimitives and then wiring them together. The properties of each of the
nodes will be discussed in the order in which they appear in the flow, top to
bottom, left to right, starting with the MQInput node SessReq. Only the
significant nodes, those that transform the message or in some way affect
how it is processed, will be discussed in detail. The first time a type of node
(for example, Compute node) is presented, a step-by-step review of
configuring the node will be covered. Subsequent instances of that node in
the flow will list only the configuration values.

Trace nodes and MQOutput nodes that are wired to Failure, Unknown, or
Catch terminals of the Compute or Filter nodes were defined and wired to
facilitate testing and debugging. You could implement this flow with none of
the error type terminals wired, but then, the failed message will end up in the
queue manager’s dead letter queue. Since MQSeries Integrator does not put
any feedback code in the dead letter header before it writes the message
there, the only way to find out which node failed will be to review the message
flow, turn on the trace, and review the output. This can be tedious and time
consuming; so, the recommendation is to wire all possible terminals during
the development process.

13.1.1.1 SessReq MQInput node
The first node in the outbound flow is SessReq, an MQInput node. Its purpose
is to retrieve messages from the queue identified in the node’s Basic tab,
shown in Figure 74 on page 248, and pass them on to the next node in the
flow.
Chapter 13. Getting a single customer view with MQSeries 247

Figure 74. SessReq MQInput node: Basic tab

The Basic tab of the MQInput node identifies the name of the queue that will
be monitored for messages. Figure 75 shows the Default tab.

Figure 75. SessReq MQInput node: Default tab

Since the request message on the queue does not have an RFH header, the
Message Domain property of the MQInput node’s Default tab must be set to
XML so that broker knows to use the built-in XML parser to parse the
message.
248 Business-to-Business Integration Using MQSeries and MQSI

13.1.1.2 SessReqFail MQOutput node
This node receives messages that are propagated to the Failure terminal of
the SessReq MQInput node. It writes them to the queue identified by the
queue manager and queue name specified on the node’s Basic tab, shown in
Figure 76.

Figure 76. SessReqFail MQOutput node

13.1.1.3 FilterRequest Filter node
The purpose of the FilterRequest Filter node is to determine if the customer
requested exists in the database. The single customer view sample
application uses a simple DB2 database to determine which types of policies
the customer owns so that requests for information are only sent to the
back-end applications where the customer has policy information. The
primary reason for doing this is so that the inbound flow knows how many
responses to expect but it would also lead to increased efficiency because
unnecessary messages would be eliminated and back-end programs would
only be invoked if they contained information for the customer request.

The ESQL, shown in Figure 77 on page 250, is a standard SQL construct to
check if the customer number passed in the request message exists on the
database.
Chapter 13. Getting a single customer view with MQSeries 249

Figure 77. FilterRequest Filter node

If the customer number on the request message exists in the database, the
message is propagated to the true node. In Figure 73 on page 246, you will
notice that if the message is propagated to the true terminal, it is actually
passed to four nodes: FilterEndow, FilterHouse, FilterMotor and
MergerTrigger. If the customer number does not exist in the database, the
message is propagated to the false node causing a failure message to be
written to the reply-to queue identified on the request message.

13.1.1.4 FilterReqFail MQOutput node
This node receives the request message if processing fails in the
FilterRequest Filter node. It writes the message to the queue identified by the
queue manager and queue name specified on the node’s Basic tab as shown
in Figure 78 on page 251.
250 Business-to-Business Integration Using MQSeries and MQSI

Figure 78. FilterReqFail MQOutput node

13.1.1.5 FilterReqUnknown MQOutput node
This node receives the request message if it is propagated to the Unknown
terminal during processing in the FilterRequest Filter node. It writes the
message to the queue identified by the queue manager and queue name
specified on the node’s Basic tab as shown in Figure 79.

Figure 79. FilterReqUnknown MQOutput node

13.1.1.6 NoInfo Compute node
The request message is passed to this node when it is propagated to the
false terminal of the FilterRequest Filter node. A request would be
propagated to the false terminal if the customer number on the request
Chapter 13. Getting a single customer view with MQSeries 251

message does not exist on the SCV_Policy DB2 database table. The
message is augmented with a return code and propagated to the output
terminal.

Figure 80. NoInfo Compute node

Figure 81 on page 253 shows the NoInfo Compute node ESQL.

Since we want to
pass the original
message, we select
Copy entire
message.
252 Business-to-Business Integration Using MQSeries and MQSI

Figure 81. NoInfo Compute node ESQL

13.1.1.7 NoPolicyInfo MQReply node
This node writes the message passed to it to the reply-to queue identified in
the message header.

13.1.1.8 FilterEndow Filter node
Figure 82 on page 254 shows the FilterEndow node.

The first line of ESQL
is generated for us
because Copy entire
message was
selected.

The second line was
inserted manually to
add an additional
field, ReturnCode, to
the message before it
is propagated to the
node’s output
terminal.
Chapter 13. Getting a single customer view with MQSeries 253

Figure 82. Node: FilterEndow

The purpose of the FilterEndow node is to determine if Endowment policy
information exists for the customer. In Figure 73 on page 246, notice that the
false terminal is not wired. If no Endowment policy information exists for this
customer, message processing for this leg of the flow is abandoned. If
information does exist on the database for this customer, the message is
propagated to the true terminal, which is wired to a sub-flow called
RB_SCV_Request_Endow. This sub-flow is discussed in Section 13.1.2,
“RB_SCV_Request_Endow message flow” on page 267.

13.1.1.9 FilterEndowFail MQOutput node
This node receives a request message that fails processing in the
FilterEndow node and has been propagated to the Failure terminal of that
node. It writes the message to the queue identified by the queue manager
and queue name specified on the node’s Basic tab. Figure 83 on page 255
shows the FilterEndowFail MQOutput node.
254 Business-to-Business Integration Using MQSeries and MQSI

Figure 83. FilterEndowFail MQOutput node

13.1.1.10 FilterEndowUnknown node
This node receives a request message that fails processing in the
FilterEndow node and has been propagated to the Failure terminal of that
node. It writes the message to the queue identified by the queue manager
and queue name specified on the node’s Basic tab. Figure 84 shows the
FilterEndowUnknown MQOutput node.

Figure 84. FilterEndowUnknown MQOutput node

13.1.1.11 RB_SCV_Request_Endow1
This is actually the connection to a sub-flow, RB_SCV_Request_Endow. It
has no properties. You add the flow to the palette by dragging onto the palette
Chapter 13. Getting a single customer view with MQSeries 255

from the list of message flows on the left hand side of the window. Because
the sub-flow has been created with an Input Terminal node, there will be an
input terminal on the icon that you can then wire to (an output terminal of)
another node in the flow. In this sample application, the true terminal of the
FilterEndow Filter node is wired to the input terminal of this sub-flow so that
the request message will be passed. The nodes that comprise this sub-flow
are described in Section 13.1.2, “RB_SCV_Request_Endow message flow”
on page 267.

13.1.1.12 FilterHouse Filter node
The purpose of the FilterHouse node is to determine if House policy
information exists for the customer. In Figure 73 on page 246, you will notice
that the false terminal is not wired. If no House policy information exists for
this customer, message processing for this leg of the flow is abandoned. If
information does exist on the database for this customer, the message is
propagated to the true terminal, which is wired to a sub-flow called
RB_SCV_Request_House.

Figure 85. FilterHouse Filter node

13.1.1.13 FilterHouseFail MQOutput node
This node receives a request message that fails processing in the
FilterHouse node and has been propagated to the Failure terminal of that
node. It writes the message to the queue identified by the queue manager
and queue name specified on the node’s Basic tab.
256 Business-to-Business Integration Using MQSeries and MQSI

Figure 86 shows the FilterHouseFail MQOutput node.

Figure 86. FilterHouseFail MQOutput node

13.1.1.14 FilterHouseUnknown MQOutput node
This node, shown in Figure 87, receives a request message that fails
processing in the FilterHouse node and has been propagated to the Unknown
terminal of that node. It writes the message to the queue identified by the
queue manager and queue name specified on the node’s Basic tab.

Figure 87. FilterHouseUnknown MQOutput node
Chapter 13. Getting a single customer view with MQSeries 257

13.1.1.15 RB_SCV_Request_House1
This is actually the connection to a sub-flow, RB_SCV_Request_House. It
has no properties. You add the flow to the palette by dragging onto the palette
from the list of message flows on the left hand side of the window. Because
the sub-flow has been created with an Input Terminal node, there will be an
input terminal on the icon that you can then wire to (an output terminal of)
another node in the flow. In this sample application, the true terminal if the
FilterHouse Filter node is wired to the input terminal of this sub-flow so the
request message will be passed. The nodes that comprise this sub-flow are
described in Section 13.1.3, “RB_SCV_Request_House message flow” on
page 290.

13.1.1.16 FilterMotor Filter node
The purpose of the FilterMotor node is to determine if Motor policy
information exists for the customer. In Figure 73 on page 246, you will notice
that the false terminal is not wired. If no Motor policy information exists for
this customer, message processing for this leg of the flow is abandoned. If
information does exist on the database for this customer, the message is
propagated to the true terminal, which is wired to a sub-flow called
RB_SCV_Request_Motor. Figure 88 shows the FilterMotor Filter node.

Figure 88. FilterMotor Filter node
258 Business-to-Business Integration Using MQSeries and MQSI

13.1.1.17 FilterMotorFail MQOutput node
This node receives a request message that fails processing in the
FilterHouse node and has been propagated to the Failure terminal of that
node. It writes the message to the queue identified by the queue manager
and queue name specified on the node’s Basic tab. Figure 89 shows the
FilterMotorFail MQOutput node.

Figure 89. FilterMotorFail MQOutput node

13.1.1.18 FilterMotorUnknown MQOutput node
This node receives a request message that fails processing in the
FilterHouse node and has been propagated to the Unknown terminal of that
node. It writes the message to the queue identified by the queue manager
and queue name specified on the node’s Basic tab. Figure 90 on page 260
shows the FilterMotorUnknown MQOutput node.
Chapter 13. Getting a single customer view with MQSeries 259

Figure 90. FilterMotorUnknown MQOutput node

13.1.1.19 RB_SCV_Request_Motor1
This is actually the connection to a sub-flow, RB_SCV_Request_Motor. It has
no properties. You add the flow to the palette by dragging onto the palette
from the list of message flows on the left hand side of the window. Because
the sub-flow has been created with an Input Terminal node, there will be an
input terminal on the icon that you can then wire to (an output terminal of)
another node in the flow. In this sample application, the true terminal if the
FilterMotor Filter node is wired to the input terminal of this sub-flow so the
request message will be passed. The nodes that comprise this sub-flow are
described in Section 13.1.4, “RB_SCV_Request_Motor message flow” on
page 293.

13.1.1.20 MergerTrigger Compute node
The MergerTrigger Compute node creates a “trigger” message for the Java
applet MessageMerger. This trigger message tells MessageMerger how
many response messages to expect and the correlation ID of those
messages so that it can match up the back-end response messages to the
original request message. Figure 91 on page 261 shows the MergerTrigger
Compute node.
260 Business-to-Business Integration Using MQSeries and MQSI

Figure 91. MergerTrigger Compute node

Input to this node is the DB2 database table SCV_Policy. This datasource is
added by clicking the Add button and then filling in the Data source and Table
name variables. The output from this node is a pre-defined message,
SCV_MM_Trigger_Msg in MRM message set SCV_MSet. Since the output
message looks nothing like the input message, we select Copy message
headers only.

Figure 92 on page 262 shows the ESQL for the MergerTrigger Compute
node. Note that the ESQL generated by the Copy message headers only
option are “scrolled off” the top of the window and not shown.
Chapter 13. Getting a single customer view with MQSeries 261

Figure 92. MergerTrigger Compute node ESQL

The first three of the four lines marked in Figure 92 set the properties for the
new message. Since the incoming request message is XML and the output
message is a legacy format, we need to tell the broker how to parse the new
message. The ESQL statements marked in Figure 93 on page 263 declare
two integer variables for use in determining the number of policies of a given
type that exist for the customer (J) and how many types of policy exist for the
customer (K).
262 Business-to-Business Integration Using MQSeries and MQSI

Figure 93. MergerTrigger Compute node ESQL (continued)

The (K) variable is initialized to zero and will be incremented by one for each
policy type that exists. The lines of ESQL marked in Figure 94 interrogate the
database to determine if any “HOUSE” policies exist for the customer.

Figure 94. MergerTrigger Compute node ESQL (continued)

If any policies exist then the policy type counter (K) is incremented by 1.
Chapter 13. Getting a single customer view with MQSeries 263

The lines of ESQL marked in Figure 95 interrogate the database to determine
if any “ENDOW” policies exist for the customer.

Figure 95. MergerTrigger Compute node ESQL (continued)

If any policies exist, the policy type counter (K) is incremented by 1.

Figure 96. MergerTrigger Compute node ESQL (continued)
264 Business-to-Business Integration Using MQSeries and MQSI

The lines of ESQL marked in Figure 96 interrogate the database to determine
if any “MOTOR” policies exist for the customer. If any policies exist then the
policy type counter (K) is incremented by 1.

Figure 97. MergerTrigger Compute node ESQL (continued)

The final line of ESQL in the MergerTrigger Compute node sets the
SCV_PolicyCountStr_ID field in the output message to the value of (K). Since
the preceding ESQL has been executed, (K) gets incremented for each policy
type that exists for the customer. This correlates to the number of back-end
requests for information that will be sent.

13.1.1.21 MergerTriggerFail MQOutput node
This node receives a request message that fails processing in the
MergerTrigger Compute node and has been propagated to the Failure
terminal of that node. It writes the message to the queue identified by the
queue manager and queue name specified on the node’s Basic tab.
Chapter 13. Getting a single customer view with MQSeries 265

Figure 98. MergerTriggerFail MQOutput node

13.1.1.22 MergerTriggerTrace Trace node
This node, shown in Figure 99, is used to show what the message being
passed looks like at this point in the flow. It’s used for debugging purposes.
For a discussion about configuring a Trace node, please see Section
13.1.2.4, “RequestEndowTrace Trace node” on page 285.

Figure 99. MergerTriggerTrace Trace node

13.1.1.23 MergerTriggerQ MQOutput node
This MQOutput node, shown in Figure 100 on page 267, parses the message
according to the properties set in the MergerTrigger Compute node and
266 Business-to-Business Integration Using MQSeries and MQSI

writes the message to the queue identified by the queue manager and queue
specified on the node’s Basic tab.

Figure 100. MergerTriggerQ MQOutput node

13.1.2 RB_SCV_Request_Endow message flow
Figure 101 on page 268 shows the RB_SCV_Request_Endow message flow.
Chapter 13. Getting a single customer view with MQSeries 267

Figure 101. Flow RB_SCV_Request_Endow

The purpose of this “sub-flow” is to augment the request message with
information from the database and then reformat it from XML into a format
that is expected by the legacy back-end program.

13.1.2.1 InputTerminal1 Input Terminal node
This node has no properties. Its purpose is to provide an input terminal to the
RB_SCV_Request_Endow sub-flow. This is how the main flow, RB_SCV_1,
passes the request message to the sub-flow.

13.1.2.2 RequestEndow Compute node
Figure 102 on page 269 shows the RequestEndow Compute node.
268 Business-to-Business Integration Using MQSeries and MQSI

Figure 102. RequestEndow node

The node in Figure 102 was created by dragging a Compute node onto the
palette and setting the appropriate properties. The following figures show the
steps taken.

After dragging a Compute node onto the palette, right-click the node image
and select the Properties pull-down as shown in Figure 103.

Figure 103. The Compute node Properties pull-down menu

A DB2 database,
SCV_Policy, is input
to this node (in
addition to the
message passed to it
from the main flow
RB_SCV_1)

Only the message
headers have been
copied

The output message
is defined in the MRM
Chapter 13. Getting a single customer view with MQSeries 269

First select Copy message headers only as shown in Figure 104.

Figure 104. Copying messasge headers only

This causes the message header information (but no message data) to be
copied from the input format to the output format. Since the output message
is completely different from the input message, we only want the GUI to prefill
the header information in the output message. Figure 105 on page 271 shows
the Compute node add input task.
270 Business-to-Business Integration Using MQSeries and MQSI

Figure 105. The Compute node add input task

The next step is to add input information to the Compute node. To do this, we
click the Add button on the Inputs side of the box as shown in Figure 106 on
page 272.
Chapter 13. Getting a single customer view with MQSeries 271

Figure 106. Adding input sources to a Compute node

Clicking the Add button causes the Add pop-up window to appear. It is
prefilled with message set information from the Message Repository Manager
(MRM). Since our input is going to be a database, we select the Database
table option instead and click the OK button as shown in Figure 107 on page
273.
272 Business-to-Business Integration Using MQSeries and MQSI

Figure 107. Adding a database table as a Compute node input source

The Data Source and Table Name fields are not prefilled by MQSeries
Integrator. You must know the names of the database and tables that are
going to be used as input to this Compute node.

In the case of the single customer view sample application, the database we
are using is named SCV, and the table name is SCV_Policy; so, we type
those in and click OK as shown in Figure 108 on page 274.

Select a database
table instead of a
message by clicking
on the database
table selection
button.
Chapter 13. Getting a single customer view with MQSeries 273

Figure 108. Entering data source and table names to the Compute node input

Defining an external database as input is now complete. The output message
format required by the legacy back-end program has already been defined to
the Message Repository Manager so all we have to do is select it. We start
the selection process by clicking the Add button on the Output Messages
side of the box as shown in Figure 109 on page 275.

Type in the names of
the Data Source
(database name) and
Table name and click
on the OK button to
add this external
database table as an
input data source to
the compute module.
274 Business-to-Business Integration Using MQSeries and MQSI

Figure 109. Selecting the MRM output message of the Compute node

Clicking the Add button causes the Add pop-up window, shown in Figure 110
on page 276, to appear.

Click on the Add
button to select an
output message from
the Message
Repository Manager
Chapter 13. Getting a single customer view with MQSeries 275

Figure 110. Selecting an MRM message as the output of the Compute node

The Add pop-up window is prefilled with message set information from the
Message Repository Manager (MRM). Since we have only one message set
defined in the MRM, the correct message set is displayed by default, but we
have multiple messages in the message set and we want to select a different
one. Open the drop-down box to get a list of available messages as shown in
Figure 111 on page 277.
276 Business-to-Business Integration Using MQSeries and MQSI

Figure 111. Selecting a Compute node output message from the MRM

Since this message flow is sending a message to the Endowment legacy
back-end program, we select the SCV_ENDOW_BACKEND_MSG_ID.

Figure 112 on page 278 shows what the Compute node looks like so far.

Select the desired
message by
highlighting the list
entry and clicking the
OK button.
Chapter 13. Getting a single customer view with MQSeries 277

Figure 112. Compute node with inputs and outputs selected

SCV_Policy has been selected as an input source. The output message is the
SCV_ENDOW_BACKEND_MESSAGE from the MRM. We have also selected
to copy message headers only. The next step is to start entering the ESQL
required to generate the message to be sent to the legacy back-end program.
Start this process by clicking the ESQL tab shown in Figure 113 on page 279.

Start the process of
customizing the ESQL
by clicking the ESQL
tab.
278 Business-to-Business Integration Using MQSeries and MQSI

Figure 113. Compute node, generated ESQL

When you first see the ESQL palette, you’ll notice that there is already some
ESQL in place. This was generated by selecting Copy message headers
only in the previous panel, shown in Figure 112 on page 278. We add the
ESQL statements to populate SCV_ENDOW_BACKEND_MSG following the
pregenerated ESQL statements.

The three lines selected in Figure 114 on page 280 set the properties of the
new message.

This ESQL is
generated for you. It
causes the message
headers to be copied
from the input
message to the
output message.
Chapter 13. Getting a single customer view with MQSeries 279

Figure 114. ESQL to populate SCV_ENDOW_BACKEND_MSG properties

This is required because the incoming message did not have an RFH header.
The MessageSet, MessageType and MessageFormat properties are used by
the MRM parser to format the output message.

The two lines highlighted in Figure 115 on page 281 set the MQSeries
Message Descriptor (MQMD) properties.
280 Business-to-Business Integration Using MQSeries and MQSI

Figure 115. ESQL to populate SCV_ENDOW_BACKEND_MSG MQMD

This is where we tell the legacy back-end program the name of the reply-to
queue.

The next two lines, selected in Figure 116 on page 282, are simple ESQL
statements to set field values in the output message.
Chapter 13. Getting a single customer view with MQSeries 281

Figure 116. Compute node simple EQSL

The first statement selected shows setting a literal value. The second
statement shows setting the output message field to a value from the input
message. You can see the results of these statements in the output from the
Trace node shown in the screen on page 289.

The statement selected in Figure 117 on page 283 shows ESQL being used
to count how many rows exist on the external database for the customer
number and policy type and then assigning that calculated value to one of the
fields in the output message.
282 Business-to-Business Integration Using MQSeries and MQSI

Figure 117. Calculating an output message field value

The CAST function is used because the output message fields are all
STRING and the COUNT function returns an integer.

The statement, selected in Figure 118 on page 284, selects all rows from the
database that meet the criteria (customer number and policy type) and
populate a repeating structure (SCV_Policy_No_Id) with the returned row(s).
Chapter 13. Getting a single customer view with MQSeries 283

Figure 118. Using the Compute node ESQL to populate a list

The repeating structure, SCV_Policy_No_Id, is a fixed array of 3. The
statements, selected in Figure 119 on page 285, show filling the “unused”
entries in the array with spaces.
284 Business-to-Business Integration Using MQSeries and MQSI

Figure 119. Initializing unused repeating structure iterations

Previously, we determined how many rows of policy information exist
(SCV_Policy_CountStr_Id). We use this to determine the position of the first
“unused” entry in the array. We also know that the array is a fixed length of
three entries; so, we can easily use a WHILE loop to initialize the remaining
unused entries.

13.1.2.3 RequestEndowFail MQOutput node
This is an MQOutput node that receives the message if a failure occurs in the
RequestEndow Compute node. The only significant properties are the queue
manager name and the queue name. These are entered on the node’s Basic
tab.

13.1.2.4 RequestEndowTrace Trace node
This node is used to show what the message being passed looks like at this
point in the flow. It’s used for debugging purposes.

To configure a Trace node, drag a Trace node from the primitives list to the
palette as shown in Figure 120 on page 286.
Chapter 13. Getting a single customer view with MQSeries 285

Figure 120. Configuring a Trace node

Select the Properties tab from the pop-up menu that is displayed when you
right-click the Trace node icon you have just dragged to the palette. Select
the file destination from the pull-down menu as shown in Figure 121.

Figure 121. Configuring the Trace node: Selecting the trace destination

Select the file
destination from the
pull-down menu.
286 Business-to-Business Integration Using MQSeries and MQSI

The default destination of the trace output is the user trace log file. This is not
the best place to view the Trace node output as you will need to extract the
log, format it and then scan through potentially thousands of lines of output. A
better choice is to output the Trace node data to a separate file. To do this
you select the file option from the destination pull-down menu as shown
above.

The next step is to tell the broker where you want the Trace node output to be
sent. In Figure 122, we have specified that we want the Trace node data
written to a file, named scvtrace.

Figure 122. Configuring the Trace node: Identifying the destination file

By default, the file will be created in the bin subdirectory of the directory
where MQSeries Integrator is installed.

Next, we need to tell the broker what to trace. The pattern property is what
tells the broker what to print to the trace file. The significant statement in
Figure 123 on page 288 is the third line, ${Root}.

Name of file where
trace data will be
written.
Chapter 13. Getting a single customer view with MQSeries 287

Figure 123. Configuring the Trace node: what to print in the trace

${Root} tells the broker that the entire message should be written to the trace
file. The following figures show what the broker writes to the trace file when
the ReqEndowTrace node is executed. Notice how the first two lines in the
pattern are the first two lines in the trace, followed by the message and
ending with last line in the pattern box. The only statement in the pattern that
is necessary is the ${Root}, but the rest of the text is descriptive information
that identifies what you’re looking at and distinguishes between separate
trace entries written to the same trace file.
288 Business-to-Business Integration Using MQSeries and MQSI

The date is 2000-04-19 Time is 06:45:53.888999
The tree structure for the Request Endow output message looks like this...
(
(0x1000000)Properties = (
(0x3000000)MessageSet = 'DHQ6R5406U001'
(0x3000000)MessageType = 'SCV_ENDOW_BACKEND_MSG_ID'
(0x3000000)MessageFormat = 'CWF'
(0x3000000)Encoding = 273
(0x3000000)CodedCharSetId = 819
(0x3000000)Transactional = TRUE
(0x3000000)Persistence = FALSE
(0x3000000)CreationTime = GMTTIMESTAMP '2000-04-19 10:45:51.550'
(0x3000000)ExpirationTime = -1
(0x3000000)Priority = 0
(0x3000000)Topic = NULL

)
(0x1000000)MQMD = (
(0x3000000)SourceQueue = 'SESSION.REQUEST.QUEUE'
(0x3000000)Transactional = TRUE
(0x3000000)Encoding = 273
(0x3000000)CodedCharSetId = 819
(0x3000000)Format = 'MQSTR'
(0x3000000)Version = 2
(0x3000000)Report = 0
(0x3000000)MsgType = 1
(0x3000000)Expiry = -1
(0x3000000)Feedback = 0
(0x3000000)Priority = 0
(0x3000000)Persistence = 0
(0x3000000)MsgId = X'414d51205343562020202020202020202389fd3813e00200'
(0x3000000)CorrelId = X'00'
(0x3000000)BackoutCount = 0
(0x3000000)ReplyToQ = 'SCV.ENDOW.BACKEND.REPLY.QUEUE'
(0x3000000)ReplyToQMgr = 'SCV '
(0x3000000)UserIdentifier = 'MUSR_MQADMIN'
(0x3000000)AccountingToken =

X'16010515000000690da7498714117d6603bd07ed03000000000000000000000b'
(0x3000000)ApplIdentityData = ' '
(0x3000000)PutApplType = 28
(0x3000000)PutApplName = 'MQSeries Client for Java '
(0x3000000)PutDate = DATE '2000-04-19'
(0x3000000)PutTime = GMTTIME '10:45:51.550'
(0x3000000)ApplOriginData = ' '
(0x3000000)GroupId = X'00'
(0x3000000)MsgSeqNumber = 1
(0x3000000)Offset = 0
(0x3000000)MsgFlags = 0
(0x3000000)OriginalLength = 50

)
(0x1000008)MRM = (
(0x3000000)SCV_Backend_Program_Id = 'ENDOWMNT'
(0x3000000)SCV_Customer_No_Id = '123456'
(0x3000000)SCV_PolicyCountStr_ID = '1'
(0x3000000)SCV_Policy_No_Id = '987654'
(0x3000000)SCV_Policy_No_Id = ' '
(0x3000000)SCV_Policy_No_Id = ' '

)
End of Trace
Chapter 13. Getting a single customer view with MQSeries 289

13.1.2.5 EndowBackend MQOutput node
This MQOutput node parses the message according to the properties set in
the RequestEndow Compute node and writes the message to the queue
identified by the queue manager and queue specified on the node’s Basic
tab.

13.1.3 RB_SCV_Request_House message flow
The message flow, shown in Figure 124, is a sub-flow of the RB_SCV_1
message flow. It augments the request message passed to it with information
from a DB2 database table and reformats it into the format expected by the
“House” legacy back-end program.

Figure 124. RB_SCV_Request_House message flow
290 Business-to-Business Integration Using MQSeries and MQSI

13.1.3.1 RequestHouseIn Input Terminal node
This node has no properties. Its purpose is to provide an input terminal for
another message flow to pass a message to this flow.

13.1.3.2 RequestHouse Compute node
This node augments the request message with information from the
SCV_Policy DB2 table and reformats the message from the XML format of
the request message to the Custom Wire Format expected by the “House”
legacy back-end program.

For step-by-step instructions on how to add a Compute node to a message
flow, see Section 13.1.2.2, “RequestEndow Compute node” on page 268.

As with the message created by the RB_SCV_Request_Endow message
flow, only message headers are copied from the original request message to
the new message created by this node to be sent to the House legacy
back-end program. This is specified by clicking Copy message headers
only as shown in Figure 104 on page 270.

Input to this node is the SCV_Policy DB2 database table. The same Data
Source and Table Name used for the RequestEndow Compute node in the
RB_SCV_Request_Endow message flow is used here. For step-by-step
instructions on how to specify an input to a Compute node, refer to the text
and figures beginning on page 271.

Output from this node is the message, SCV_HOUSE_BACKEND_MSG, in the
message set, SCV_MSet. For step-by-step instructions on how to specify an
input to a Compute node, refer to the text and figures beginning on page 275.

The ESQL in this node is exactly the same as the ESQL in the
RequestEndow Compute node of the RB_SCV_Request_Endow message
flow with a few exceptions. In fact, the ESQL was copied from the
RequestEndow Compute node and pasted into this one. The ESQL is shown
in Figure 125. The exceptions are indicated.
Chapter 13. Getting a single customer view with MQSeries 291

Figure 125. RequestEndow Compute node ESQL

13.1.3.3 ReqHouseFail MQOutput node
This node puts messages that fail during processing of the RequestHouse
Compute node on the queue identified by the queue manager and queue
name values specified on the node’s Basic tab as shown in Figure 126.

Figure 126. ReqHouseFail MQOutput node
292 Business-to-Business Integration Using MQSeries and MQSI

13.1.3.4 ReqHouseTrace trace node
The ReqHouseTrace trace node, shown in Figure 127, prints the message to
the destination specified in the Trace node properties.

Figure 127. ReqHouseTrace Trace node

13.1.3.5 HouseBackend MQOutput node
The HouseBackend MQOutput node, shown in Figure 128, parses the
message according the message’s properties and writes it to the queue
identified on the node’s Basic tab.

Figure 128. HouseBackend MQOutput node

13.1.4 RB_SCV_Request_Motor message flow
This message flow, shown in Figure 129 on page 294, is a sub-flow of the
RB_SCV_1 message flow. It augments the request message passed to it with
policy number information from a DB2 database table, reformats the
Chapter 13. Getting a single customer view with MQSeries 293

message, and writes it to the MQSeries queue monitored by the Motor legacy
back-end program.

Figure 129. RB_SCV_Request_Motor message flow

13.1.4.1 RequestMotorIn Input Terminal node
This node has no properties. Its purpose is to provide an input terminal to the
flow so that a message can be passed in from another flow.

13.1.4.2 RequestMotor Compute node
This node uses information extracted from the SCV DB2 database
SCV_Policy table to augment the request message with a list of policy
numbers to be retrieved. It also reformats the message from XML to a
customer wire format expected by the legacy back-end program and writes
the message to the queue monitored by the Motor legacy back-end program.
294 Business-to-Business Integration Using MQSeries and MQSI

For step-by-step instructions on how to add a Compute node to a message
flow, see Section 13.1.2.2, “RequestEndow Compute node” on page 268.
Figure 130 shows the RequestMotor Compute node properties.

Figure 130. RequestMotor Compute node properties

As can be seen in the fields marked in Figure 130, only message headers are
copied from the input message to the output message. A DB2 database table.
SCV_Policy is input to the Compute node, and the output message is defined
in the Message Repository Manager (MRM).

The ESQL in this Compute node was copied from the RequestEndow
Compute node, and then, the necessary changes were made to tailor the
references for a Motor request. Figure 131 on page 296 shows the values
that were changed when tailoring the ESQL.
Chapter 13. Getting a single customer view with MQSeries 295

Figure 131. RequestMotor Compute node ESQL

13.1.4.3 ReqMotorFail MQOutput node
This node, shown in Figure 132 on page 297, puts messages that fail during
processing of the RequestMotor Compute node on a queue identified by the
queue manager and queue name values specified on the node’s Basic tab.
296 Business-to-Business Integration Using MQSeries and MQSI

Figure 132. ReqMotorFail MQOutput node

13.1.4.4 RequestMotorTrace Trace node
This Trace node prints the message to the destination specified in the Trace
node properties. The ${Root} statement specifies that the entire message is
to be printed.

Figure 133. RequestMotorTrace Trace node

13.1.4.5 MotorBackend MQOutput node
This MQOutput node parses the message according to the properties set in
the RequestMotor Compute node and writes the message to the queue
Chapter 13. Getting a single customer view with MQSeries 297

identified by the queue manager and queue specified on the node’s Basic tab
as shown in Figure 134.

Figure 134. MQOutput node

13.2 Inbound flow

This section describes the inbound message flow.

1. The legacy back-end application writes its response message to the
queue name specified as the reply-to queue name in the request
message.

2. The response message is picked up by the RB_SCV_Backend_Reply
message flow or the RB_SCV_Backend_Reply_Endow message flow,
depending on which legacy back-end application generated the reply.

- The RB_SCV_Backend_Reply message flow receives and processes
mesages from the House and Motor legacy back-end applications.

- The RB_SCV_Backend_Reply_Endow message flow receives and
processes messages from the Endow legacy back-end application.

3. The message flow parses the reply message and generates an output
message that consists of a subset of the fields on the input message with
semi-colon delimiters inserted between the fields in the output message.

4. The Message Merger Java application retrieves messages and “merges”
messages having matching correlation IDs into a single message and
writes the merged message to a queue monitored by the ClientServlet
Java application.
298 Business-to-Business Integration Using MQSeries and MQSI

5. The ClientServlet application retrieves the reply messages by correlation
ID and updates the Web page with the response data.

13.2.1 RB_SCV_Backend_Reply message flow
The RB_SCV_Backend_Reply message flow processes reply messages from
the House and Motor legacy back-end applications as shown in Figure 135.

Figure 135. RB_SCV_Backend_Reply message flow

This flow demonstrates that two separate queues are being monitored for
reply messages from the two back-end applications and that the reply
message, regardless of which back-end application it came from (House or
Motor), is being processed by a single sub-flow,
RB_SCV_Backend_Reply_House&Motor.
Chapter 13. Getting a single customer view with MQSeries 299

13.2.1.1 HouseBackendReply MQInput node
The reply message sent by the House legacy back-end application does not
carry an RFH; so, the message properties must be set on the Default tab of
the MQInput node. Figure 136 shows that the message is defined in the
MRM, where the message set, message (type), and message format are
identified.

Figure 136. HouseBackendReply MQInput node default properties

The Default tab of the MotorBackendReply is exactly the same.

13.2.1.2 RB_SCV_Backend_Reply_House&Motor node
This is a message processing node whose function is to pass the message to
another message flow. It has no properties.

13.2.1.3 BackendReplyFail MQOutput node
This node receives message propagated to the Failure terminal of the
BackendReply MQInput node. It writes the message to the queue identified
on the node’s Basic tab.

13.2.1.4 BackendReplyCatch node
This node receives message propagated to the Catch terminal of the
BackendReply MQInput node. It writes the message to the queue identified
on the node’s Basic tab.
300 Business-to-Business Integration Using MQSeries and MQSI

13.2.2 RB_SCV_Backend_Reply_House&Motor message flow
This flow processes messages passed to it from the
RB_SCV_Backend_Reply message flow as shown in Figure 137.

Figure 137. RB_SCV_Backend_Reply_House&Motor message flow

13.2.2.1 BackendReply Input Terminal node
This node provides an input terminal into this flow. It has no properties.

13.2.2.2 FormatHouse&Motor Compute node
This node takes the reply message from the House and Motor legacy
back-end applications, extracts the fields required for the output message,
and inserts a semicolon delimiter between each of the fields in the output
message as shown in Figure 138 on page 302.
Chapter 13. Getting a single customer view with MQSeries 301

.

Figure 138. FormatHouse&Motor Compute node

Input to this node is the reply message sent by either the House or the Motor
legacy back-end application. The input message is a legacy format
predefined in the MRM. It is added to this node as input by clicking the Add
button and selecting it from the drop-down list in the pop-up menu.

Output from this node is a predefined format expected by the Web front-end
application. It too has been defined in the MRM and is added to the Compute
node by clicking the Add button on the Output Messages side of the window
and selecting the appropriate message set and message from the drop-down
list in the pop-up menu.

Since the input and output messages are of different formats, we select Copy
message headers only.
302 Business-to-Business Integration Using MQSeries and MQSI

Figure 139. FormatHouse&Motor Compute node ESQL

The first five lines of ESQL, shown in Figure 140, are automatically generated
because the Copy message headers only option was selected.

Figure 140. FormatHouse&Motor Compute node ESQL

The next five lines set the message properties, that is, the identification for
the message set and the name of the message type.

Figure 141. FormatHouse&Motor Compute node ESQL

This SET statement selects the policy information from the input message
and copies the values in the corresponding fields of the output message.

Figure 142 on page 304 shows the FormatHouse&Motor Compute node
ESQL.
Chapter 13. Getting a single customer view with MQSeries 303

Figure 142. FormatHouse&Motor Compute node ESQL

This ESQL is filling in the delimiter between fields. For policy entries that
contain real data, the delimiter is set to a semicolon. For empty entries it is
set to blanks.
304 Business-to-Business Integration Using MQSeries and MQSI

Appendix A. Hardware and software specifications

This appendix lists the hardware and software used for the application
solution described in Chapter 13, “Getting a single customer view with
MQSeries” on page 245.

The solution used two 350 MHz Pentium II IBM Netfinity 3000 servers. One
server hosted an IBM WebSphere Application Server and an IBM HTTP
Server. The other server hosted MQSeries for Windows NT V5.1 and
MQSeries Integrator V2.0 in addition to the legacy programs and application
data. IBM DB2 UDB V6 was the database software used in the solution.
TCP/IP was the communications protocol used. Details of the software
installed on each server follow:

Server #1 - WebSphere

• IBM Netfinity 3000 350 MHz Pentium II

• 260 MB memory

• Windows NT Workstation V4.0 with ServicePac 5

• IBM HTTP Server V1.3.6

• IBM WebSphere Application Server V3.02

• IBM Java Development Kit V1.1.7

• IBM DB2 Universal Database (UDB) V6.1

• MQSeries Java Client V5.1

Server #2 - MQSeries

• IBM Netfinity 3000 350 MHz Pentium II

• 320 MB memory

• Windows NT Workstation V4.0 with ServicePac 5

• IBM MQSeries for Windows NT V5.1 with CSD04

• IBM MQSeries Integrator for Windows NT V2.0

• IBM DB2 Universal Database (UDB) V6.1

• IBM Java Development Kit V1.1.7
© Copyright IBM Corp. 2000 305

306 Business-to-Business Integration Using MQSeries and MQSI

Appendix B. MQSeries Internet pass-thru

IBM MQSeries Internet pass-thru:

• Is an MQSeries base product extension that can be used to implement
messaging solutions between remote sites across the Internet

• Makes the passage of MQSeries channel protocols into and out of a
firewall simpler and more manageable by tunneling the protocols inside
HTTP or acting as a proxy

• Operates as a stand-alone service that can receive and forward MQSeries
message flows. The system on which it runs does not have to host an
MQSeries Queue Manager

• Helps you to provide business-to-business transactions using MQSeries
• Enables existing, unchanged MQSeries applications to be used through a

firewall
• Provides a single point of control over access to multiple queue managers

This appendix describes the latter product. For detailed information, including
installation and configuration details, refer to the Internet related SupportPacs
at http://www-4.ibm.com/software/ts/mqseries/txppacs/mquguides.html

This appendix is an abstract of the MQSeries SupportPac MS81 available at
the aforementioned URL.

In this appendix, MQSeries Internet pass-thru is often termed “MQIPT” for
convenience.

B.1 Introduction

MQSeries Internet pass-thru is an extension to the base MQSeries product.
MQIPT runs as a stand-alone service that can receive and forward MQSeries
message flows, either between two MQSeries queue managers or between
an MQSeries client and an MQSeries queue manager. MQIPT enables this
connection when the client and server are not on the same physical network.
One or more MQIPTs can be placed in the communication path between two
MQSeries queue managers or between an MQSeries client and an MQSeries
queue manager. The MQIPTs allow the two MQSeries systems to exchange
messages without needing a direct TCP/IP connection between the two
systems. This is useful if the firewall configuration prohibits a direct TCP/IP
connection between the two systems.

MQIPT listens on one or more TCP/IP ports for incoming connections, which
can carry either the normal MQSeries messages or an MQSeries protocol
© Copyright IBM Corp. 2000 307

tunneled inside HTTP. It can handle multiple concurrent connections. The
MQSeries channel that makes the initial TCP/IP connection request is
referred to as the “caller”; the channel to which it is attempting to connect is
the “responder”, and the queue manager it is ultimately trying to contact is the
“destination queue manager”.

The anticipated uses of MQIPT are:

• MQIPT can be used as a channel concentrator so that channels from or to
multiple separate hosts can appear to a firewall as if they are all from or to
the MQIPT host. This makes it easier to define and manage firewall
filtering rules.

Figure 143. Example of MQIPT as a channel concentrator

• If it is placed in the firewall’s “demilitarized zone” (DMZ), on a machine
with a known and trusted Internet protocol (IP) address, MQIPT can be
used to listen for incoming MQSeries channel connections that it can then
forward to the trusted intranet; the inner firewall must allow this trusted
machine to make inbound connections. In this configuration, MQIPT
prevents external requests for access from seeing the true IP addresses of
the machines in the trusted intranet. Thus, MQIPT provides a single point
of access. Figure 144 on page 309 shows an example of MQIPT with a
“demilitarized zone”.
308 Business-to-Business Integration Using MQSeries and MQSI

Figure 144. Example of MQIPT with a “demilitarized zone”

• If two MQIPTs are deployed inline, they can communicate using HTTP.
Provision of this HTTP tunneling feature enables requests to be
transmitted through corporate firewalls by the use of existing HTTP
proxies. The first MQIPT inserts the MQSeries protocol into HTTP and the
second extracts the MQSeries protocol from its HTTP wrapper and
forwards it to the destination queue manager as shown in Figure 145.

Figure 145. Example of MQIPT and HTTP tunneling
Appendix B. MQSeries Internet pass-thru 309

MQIPT provides a number of options for inbound connections through
firewalls; it does not provide for outbound connections through firewalls. For
outbound connections, it is assumed that the MQSeries client or queue
manager is running on a system that is SOCKS-enabled and is configured to
communicate with a SOCKS gateway.

MQIPT holds data in memory as it forwards it from its source to its
destination. No data is saved on disk (except for memory paged to disk by the
operating system). The only time MQIPT accesses the disk explicitly is to
read its configuration file and to write log and trace records.

The full range of MQSeries channel types can be made through one or more
MQIPTs. The presence of MQIPTs in a communication path has no effect on
the functional characteristics of the connected MQSeries components, but
there will be some impact on the performance of message transfer.

MQIPT can be used in conjunction with MQSeries publish/subscribe or the
MQSeries Integrator message broker.

B.2 Overview of how Internet pass-thru works

In its simplest configuration, MQIPT acts as an MQSeries protocol forwarder.
It listens on a TCP/IP port (1414 by default) and accepts connection requests
from MQSeries channels. If a well-formed request is received, MQIPT
establishes a further TCP/IP connection between itself and the destination
MQSeries queue manager. It then passes all protocol packets it receives from
its incoming connection to the destination queue manager and returns
protocol packets from the destination queue manager back on the original
incoming connection.

No change to the MQSeries protocol (client/server or queue manager to
queue manager) is involved because neither end is directly aware of the
presence of the intermediary; so, new versions of the MQSeries client or
server code are not required.

To use MQIPT, the caller channel must be configured to use MQIPT’s
hostname and port, not the hostname and port of the destination queue
manager. MQIPT does not examine the channel name; this is simply passed
through to the receiving queue manager. Other configuration fields, such as
the user ID and password in a client/server channel, are similarly passed to
the receiving queue manager.

MQIPT can be used to allow access to one or more destination queue
managers. For this to work, there must be a mechanism to tell MQIPT which
310 Business-to-Business Integration Using MQSeries and MQSI

queue manager to connect to; so, MQIPT uses the incoming TCP/IP port
number to determine which queue manager to connect to as described in the
next paragraph. To allow access to more than one destination queue
manager, MQIPT can be configured to listen on multiple TCP/IP ports. Each
incoming port is mapped to a destination queue manager through an MQIPT
“route”. The MQIPT administrator may define up to 100 such routes, which
associate an incoming TCP/IP port with the hostname and port of the
destination queue manager. This means that the hostname (IP address) of
the destination queue manager is never visible to the originating channel.
Each route can handle multiple connections between its listening port and
destination and acts as a different MQIPT “instance”.

B.3 HTTP support

As an option, MQIPT can be configured so that the data packets it forwards
are encoded as HTTP requests. MQIPT supports HTTP tunneling with or
without chunking.

Because today’s MQSeries channels do not accept HTTP requests, a second
MQIPT is required to receive the HTTP requests and convert them back into
normal MQSeries protocol packets. The second MQIPT strips off the HTTP
header to convert the incoming packet back into a standard MQSeries
protocol packet before passing it on to the destination queue manager.

When using HTTP tunneling without chunking, an HTTP reply is sent back to
the first MQIPT. This reply can be the response from the destination queue
manager or a dummy acknowledgement.

If either MQSeries system has to send a chain of successive MQSeries
protocol packets (as happens when transferring a large message), several
HTTP request/reply pairs are used to transfer the data. To achieve this,
MQIPTs insert additional request or reply flows.

When using HTTP tunneling with chunking, only the first packet is wrapped in
an HTTP header. Middle and last packets have chunking headers. This
arrangement removes the wait for a dummy acknowledgement from the
second MQIPT and, thus, offers slightly better performance than that
provided by HTTP tunneling without chunking.

When HTTP is being used between two MQIPTs, the TCP/IP connection on
which the HTTP requests and replies are flowed is kept open for the lifetime
of the message channel. The MQIPTs do not close the TCP/IP connection
between request/reply pairs.
Appendix B. MQSeries Internet pass-thru 311

If two MQIPTs are communicating through HTTP, it is possible that an HTTP
request might stay outstanding for an extended period. An example is in a
requester/server channel when the server side is waiting for new messages
to arrive on its transmission queue. The MQSeries channel protocol provides
a “heartbeat” mechanism, which requires the waiting end periodically to send
heartbeat messages to its partner (the default channel heartbeat period is five
minutes) and MQIPT uses this heartbeat as the HTTP reply. To avoid causing
problems with timeouts in some firewalls, do not disable this channel
heartbeat or set it to an excessively high value.

B.4 Supported channel configurations

All MQSeries channel types are supported, but configuration is restricted to
TCP/IP connections. To an MQSeries client or queue manager, MQIPT
appears as if it is the destination queue manager. Where channel
configuration requires a destination host and port number, the MQIPT host
name and listener port number are specified.

Client/server channels
MQIPT listens for incoming client connection requests, and then forwards
them (either using HTTP tunneling or as standard MQSeries protocol
packets). If MQIPT is using HTTP tunneling, it forwards them on a connection
to a second MQIPT. If it is not using HTTP tunneling, it forwards them on a
connection to what it sees as the destination queue manager (although this
could in turn be a further MQIPT). Once the queue manager has accepted the
client connection, packets are relayed between client and server.

Sender/receiver
If MQIPT receives an incoming request from a sender channel, it forwards it
to the next MQIPT or destination queue manager in exactly the same way as
for client connection channels. The destination queue manager validates the
incoming request and starts the receiver channel if appropriate. All
communications between sender and receiver channel (including security
flows) are relayed.

Requester/server
This combination is handled in the same manner as the types above.
Validation of the connection request is performed by the server channel at the
destination queue manager.
312 Business-to-Business Integration Using MQSeries and MQSI

Requester/sender
The “callback” configuration could be of use if the two queue managers are
not allowed to establish direct connections to each other, but are both allowed
to connect to MQIPT and accept connections from it.

Server/requester and server/receiver
These are handled by MQIPT just like the Sender/Receiver configuration.

13.3 Normal termination and failure conditions

When MQIPT detects closure (either normal or abnormal) of an MQSeries
channel, it propagates the channel closure. If the administrator closes down a
route through the MQIPT, all channels going through that route are closed.

MQIPT provides an optional idle time-out facility. If MQIPT detects that a
channel has been idle for a period of time exceeding the timeout, it performs
an immediate shutdown on the two connections in question.

The two MQSeries systems at either end of the channel observe these
abnormal termination conditions either as network failures or as termination
of the channel by their partner. The channels in question are then able to
restart and recover (if the failure happens during a protocol in-doubt period)
just as they would do if there were no MQIPTs.

B.5 Security considerations

MQIPT does not contain any mechanism to authenticate the originating
channel or provide user-based access control to destination queue
managers. MQIPTs allow channel security flows, so that MQSeries channel
exits can be used to provide security over the entire channel from end to end.

MQIPT has several additional functions that help a designer build a secure
solution:

• If there are many clients in an internal network all trying to make outgoing
connections, they can all go through an MQIPT located inside the firewall.
The firewall administrator then has to grant external access only to the
MQIPT’s machine.

• MQIPT can connect only to queue managers for which it has been
explicitly configured in its configuration file.

• It provides a connection log. When enabled, this facility logs all
connections, successful or otherwise, detailing the host from which the
connection was made and the responding hostname. It also logs
connection timeouts and disconnects.
Appendix B. MQSeries Internet pass-thru 313

• MQIPT verifies that the messages it receives and transmits are valid and
conform to the MQSeries protocol. This helps prevent MQIPTs being used
for security attacks outside of the MQSeries protocol.

• It allows channel exits to run their own end-to-end security protocols.
• MQIPT allows you to restrict the total number of incoming connections.

This helps protect a vulnerable internal queue manager from
denial-of-service attacks.

You must protect the MQIPT’s configuration file, mqipt.conf, because this file
controls access to the internal hosts, and you must prevent unauthorized
access to the command port (if it is enabled) because such access allows an
external person to shut down MQIPT.
314 Business-to-Business Integration Using MQSeries and MQSI

Appendix C. Using the additional material

This redbook also contains additional material in the form of Web material.
See the sections below for instructions on using or downloading this material.

C.1 Locating the additional material on the Internet

The Web material associated with this redbook is also available in softcopy
on the Internet from the IBM Redbooks Web server. Point your Web browser
to:

ftp://www.redbooks.ibm.com/redbooks/SG246010

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds to the
redbook form number.

C.2 Using the Web material

The additional Web material that accompanies this redbook includes the
following:

File name Description
SwitchNode.zip Sources for the SwitchNode
SCV.zip Sources for the single customer view application

C.2.1 System requirements for downloading the Web material

The following system configuration is recommended for using the additional
Web material.

Operating System: Windows NT Version 4
Processor: Pentium II
Memory: 256 MB

C.2.2 How to use the Web material

Create a subdirectory (folder) on your workstation and copy the contents of
the Web material into this folder.
© Copyright IBM Corp. 2000 315

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

316 Business-to-Business Integration Using MQSeries and MQSI

Appendix D. Special notices

This publication is intended to help IT architects and IT specialists design and
deploy B2B Integration solutions. The information in this publication is not
intended as the specification of any programming interfaces that are provided
by any of the products mentioned. See Appendix E, “Related publications” on
page 321, for more information about what publications are considered to be
product documentation.

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
© Copyright IBM Corp. 2000 317

attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli
A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

e (logo) IBM
Redbooks Redbooks Logo
System/36 System/360
System/390 ViaVoice
VisualAge VSE/ESA
VTAM WebSphere
318 Business-to-Business Integration Using MQSeries and MQSI

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Lotus Notes is a registered trademark of Lotus Development Corporation

Other company, product, and service names may be trademarks or service
marks of others.
Appendix D. Special notices 319

320 Business-to-Business Integration Using MQSeries and MQSI

Appendix E. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

E.1 IBM Redbooks

For information on ordering these publications see “How to get IBM
Redbooks” on page 325.

• Servlet and JSP Programming with IBM WebSphere Studio and VisualAge
for Java, SG24-5755

• Developing an e-business Application for the IBM WebSphere Application
Server, SG24-5423

• VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets -
CICS Connector, SG24-5265

• Connecting e-business to the Enterprise by Example, SG24-5514

• Business Integration Solutions with MQSeries Integrator, SG24-6154

• The XML Files: Using XML and XSL with IBM WebSphere V3.0,
SG24-5479

• Patterns for e-business: User-to-Business Patterns for Topology 1 and 2
using WebSphere Advanced Edition, SG24-5864

• The XML Files: Using XML for Business-to-Business and
Business-to-Consumer Applications, SG24-6104

• An Early Look at Application Considerations Involved with MQSeries,
GG24-4469

• Connecting the Enterprise to the Internet with MQSeries and VisualAge for
Java, SG24-2144

E.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at ibm.com/redbooks for information about all the CD-ROMs offered,
updates and formats.

CD-ROM Title Collection Kit
Number

IBM System/390 Redbooks Collection SK2T-2177
IBM Networking Redbooks Collection SK2T-6022
IBM Transaction Processing and Data Management Redbooks Collection SK2T-8038
© Copyright IBM Corp. 2000 321

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

E.3 Other resources

• Design Patterns - Elements of Reusable Object-Oriented Software, ISBN
0-2016-3361-2, by E. Gamma, R. Helm, R. Johnson, J. Vlissides

• A Pattern Language, ISBN 0-1950-1919-9, by C. Alexander, S. Ishikawa,
M. Silverstein, M. Jacobson, I. Fiksdahl-King, S. Angel.

• Pattern-Oriented Software Architecture - A System of Patterns, ISBN
0-4719-5869-7, by Buschmann, et al.

• Pattern Hatching - Design Patterns Applied, ISBN 0-2014-3293-5, by J.
Vlissides

• Object-Oriented Analysis and Design with Applications, ISBN
0-8053-5340-2, by Booch and Grady

• Object-Oriented Software Engineering; A Use Case Driven Approach,
ISBN 0-2015-4435-0, by Jacobson and Ivar

• Object-Oriented Modeling and Design, ISBN 0-1362-9841-9, by
Rumbaugh, James et al.

• UML Distilled: Applying the Standard Object Modeling Language, ISBN
0-2013-2563-2, by Fowler, Martin, Scott, Kendall, and Jacobson

• Developing Object-oriented Software - An Experienced-Based Approach,
ISBN 0-1373-7248-5, by John Barry, Tom Bridge, Paul Fertig, Tom
Guinane, Geoff Hambrick, Daniel Hu, Tom Kristek, Dave Livesey,
Guillermo Lois, Mike Page, Branko Petch, Frank Seliger, Thomas
Wappler, Brian Watt, Martin West, George Yuan

The following publications are product documentation:

• MQSeries Integrator Introduction and Planning

• MQSeries Integrator Using the Control Center

• MQSeries Clients

• MQSeries Application Programming Guide

• MQSeries Intercommunication Manual

IBM Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
IBM AS/400 Redbooks Collection SK2T-2849
IBM Netfinity Hardware and Software Redbooks Collection SK2T-8046
IBM RS/6000 Redbooks Collection SK2T-8043
IBM Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694

CD-ROM Title Collection Kit
Number
322 Business-to-Business Integration Using MQSeries and MQSI

• MQSeries Using Java

• MQSeries Messaging Interface

• MQSeries Planning Guide

• MQSeries Integrator Introduction and Planning Guide

• MQSeries for AS/400 V5.1 System Administration Manual

• MQSeries for Digital Open VMS System Management Guide

• MQSeries for Digital UNIX System Management Guide

• MQSeries for Tandem NonStop Kernel System Management Guide

• MQSeries for VSE/ESA System Management Guide

• MQSeries System Administration Manual

E.4 Referenced Web sites

These Web sites are also relevant as further information sources:

• Web magazine focused on Application Integration issues:
http://www.eaijournal.com/

• Articles from IBM Research on a number of software disciplines:
http://www.research.ibm.com/journal

• Industry leading Web site for middleware and systems management:
http://www.messageq.com

• e-commerce solution provider:
http://www.fastwater.com/

• http://www.eaijournal.com

• http://eai.ebizQ.net/

• http://www.ibm.com/software/developer/web/patterns

• http://www.ibm.com/iac/papers/icdcsws99/index.html

• www.ansi.org

• www.edifact.org

• http://www.dtmf.org

• http://www.oasis-open.org

• http://www.xml.org

• http://www.ebxml.org

• http://www.cxml.org
Appendix E. Related publications 323

• http://www.biztalk.org

• http://www.dmtf.org

• eco.commerce.net

• http://www.openapplications.org

• http://www.biztalk.org

• http://www.rosettanet.org

• http://www.xml.org/xmlorg_registry/index.shtml

• http://msdn.microsoft.com/xml/general/soapspec.asp

• http://www.commerceone.com/xml/cbl/

• http://www.xmledi.com

• http://www-4.ibm.com/software/ts/mqseries/library/manualsa/

• ftp://ftp.software.ibm.com/software/ts/mqseries/library/books/csqzae03.p

df

• http://www.ibm.com/software/developer/web/patterns/

• http://www.omg.org

• http://www.omg.org/uml

• http://www.rational.com/products/rose/

• http://www-4.ibm.com/software/ts/mqseries/library/manualsa/index.htm

• http://java.sun.com

• http://www-4.ibm.com/software/ts/mqseries/library/manualsa/index.htm

• http://www-4.ibm.com/software/ts/mqseries/txppacs/ma0f.html

• http://www.ibm.com/software/ts/mqseries/txppacs/txpm1.html

• http://www-4.ibm.com/software/ts/mqseries/txppacs/mp16.html

• http://www-4.ibm.com/software/ts/mqseries/txppacs/mp19.html

• http://www-4.ibm.com/software/ts/mqseries/txppacs/mquguides.html

• http://www-4.ibm.com/software/ts/mqseries/txppacs/mp43.html

• http://www-4.ibm.com/software/ts/mqseries/txppacs/mp67.html

• http://www-4.ibm.com/software/ts/mqseries/txppacs/mp74.html

• http://www-4.ibm.com/software/ts/mqseries/txppacs/mpi1.html

• http://www-4.ibm.com/software/ts/mqseries/txppacs/mpi2.html

• http://www-4.ibm.com/software/ts/mqseries/txppacs/mpi4.html
324 Business-to-Business Integration Using MQSeries and MQSI

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site ibm.com/redbooks

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States or Canada
Outside North America

e-mail address
pubscan@us.ibm.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 325

mailto: pubscan@us.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com/
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.redbooks.ibm.com/

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
326 Business-to-Business Integration Using MQSeries and MQSI

Glossary

ACL. Access Control List.

AD/SI. IBM Application Development/Systems
Integration Method Group within WSDDM.

API. Application Programming Interface.

APPC. Advanced Program-to-Program
Communication.

applet. A Java program designed to run within a
Web browser. Contrast with application.

application. In Java programming, a
self-contained, stand-alone Java program that
includes main() method. Contrast with applet.

ASCII. American Standard Code for Information
Interchange. The 8-bit character encoding
scheme used by most PCs and UNIX systems.
It supersedes an earlier 7-bit ASCII standard.

ASP. Microsoft’s Active Server Pages

AVM. Accelerated Value Method. This is a rapid
deployment method based on iterative
prototyping, used by Lotus Consulting.

Bamba. Bamba is a brandname for IBM
technology used to develop network-enabled
multimedia applications. One function of the
technology is streaming audio and video (both
live and stored) across the Internet and over
intranets via modem or LAN connections.

BB. Building Block. Many IBM design and
development methods, including the one
described in this redbook, construct a design
from building blocks that are generally defined
in more detail as the design evolves.

Bean. This is a small component that can be
used to build applications. See JavaBean.

Browser. An Internet-based tool that lets users
browse Web sites.

Call Level Interface (CLI). This is a callable
application program interface (API) for database
access that is an alternative to an embedded
SQL application program interface. In contrast
to embedded SQL, CLI does not require
precompiling or binding by the user, but instead
© Copyright IBM Corp. 2000
provides a standard set of functions to process
SQL statements and related services at run
time.

Customer Information Control System
(CICS). This is a distributed online transaction
processing system designed to support a
network of many terminals. The CICS family of
products is available for a variety of platforms
ranging from a single workstation to the largest
mainframe.

CICS Access Build. This is a VisualAge for
Java Enterprise tool that generates beans to
access CICS transactions through the CICS
Gateway for Java and CICS Client.

CICS Client. This is a server program that
processes CICS ECI calls, forwarding
transaction requests to a CICS program running
on a host.

CICS Gateway for Java. This is a server
program that processes Java ECI calls and
forwards CICS ECI calls to the CICS Client.

Class. This is an aggregate that defines
properties, operations, and behavior for all
instances of that aggregate.

Client. As in client/server computing, this is
the application that makes requests to the
server and, often, handles the necessary
interaction with the user.

Client/server. This is a form of distributed
processing in which the task required to be
processed is accomplished by a client portion
that requests services and a server portion that
fulfills those requests. The client and server
remain transparent to each other in terms of
location and platform.

COBOL. Common Business Oriented
Language.

Commit. The operation that ends a unit of work
to make permanent the changes it has made to
resources (transaction or data).

Common Gateway Interface (CGI). A standard
protocol through which a Web server can
327

execute programs running on the server
machine. CGI programs are executed in
response to requests from Web client browsers.

CGI. Common Gateway Interface.

CICS. Customer Information Control System.

COM. Microsoft’s Component Object Model.

Common Object Request Broker Architecture
(CORBA). A middleware specification that
defines a software bus – the Object Request
Broker (ORB) – that provides the infrastructure.

Communications area (COMMAREA). In a
CICS transaction program, this is a group of
records that describes both the format and
volume of data used.

Conversational. A communication model where
two distributed applications exchange information
by way of a conversation; typically one
application starts (or allocates) the conversation,
sends some data, and allows the other
application to send some data. Both applications
continue in turn until one decides to finish (or
deallocate). The conversational model is a
synchronous form of communication.

CORBA. Common Object Request Broker
Architecture.

Data Access Builder. A VisualAge for Java
Enterprise tool that generates beans to access
and manipulate the content of
JDBC/ODBC-compliant relational databases.

Database. (1) A collection of related data stored
together with controlled redundancy according to
a scheme to serve one or more applications. (2)
All data files stored in the system. (3) A set of
data stored together and managed by a database
management system.

Database Management System (DBMS). A
computer program that manages data by
providing the services of centralized control, data
independence, and complex physical structures
for efficient access, integrity, recovery,
concurrency control, privacy, and security.

DB2 Call Level Interface (CLI). The DB2 call
level interface is an alternative SQL interface for
the DB2 family of products and takes full

advantage of DB2 capability. This implementation
closely follows industry standards, such as
X/OPEN, to enhance application portability.
Currently, the DB2 Call Level Interface functions
are compatible with ODBC 2.0, and contain
DB2-specific APIs to help exploit DB2 capability.

DB2 for MVS/ESA. An IBM relational database
management system for the MVS operating
system.

DCE. Distributed Computing Environment.
Adopted by the computer industry as a de facto
standard for distributed computing. DCE allows
computers from a variety of vendors to
communicate transparently and share resources,
such as computing power, files, printers, and
other objects in the network.

DB2. IBM Relational Database Family.

DCOM. Microsoft’s Distributed Object Model.

DECS. Domino Enterprise Connection Services.
A standard component of Domino 4.6.3 and
Domino 5 that provides connectivity from Domino
to back end relational data base servers. This
connectivity is table-driven and requires no
programming.

DMZ. DeMilitarized Zone. This term is now
commonly used in the industry to describe a
subnetwork, typically used for Web servers, that
is protected by firewalls from both the external
Internet and a company’s internal network.

DNS. Domain Name Services.

Distributed Processing. Distributed processing
is an application or systems model in which
function and data can be distributed across
multiple computing resources connected on a
LAN or WAN. See client/server computing.

Distributed Program Link (DPL). This enables
an application program executing in one CICS
system to link (pass control) to a program in a
different CICS system. The linked-to program
executes and returns a result to the linking
program. This process is equivalent to remote
procedure calls (RPCs). You can write
applications that issue RPCs that can be received
by members of the CICS family.
328 Business-to-Business Integration Using MQSeries and MQSI

Dynamic Link Library (DLL). This is a file
containing executable code and data bound to a
program at run time rather than at link time. The
C++ Access Builder generates beans and C++
wrappers that let your Java programs access
C++ DLLs.

E2E. IBM End-to-End System Design Method.
See ISD.

EBCDIC. Extended Binary Coded Data
Interchange Code. EBCDIC is the 8-bit character
encoding scheme used by IBM and compatible
mainframes since the introduction of System/360
in the mid 1960s.

ECI. External Call Interface is a way of interfacing
with CICS at a program-to-program level.

EJB. Enterprise JavaBean. An EJB is a
non-visual, remote object designed to run on a
server and be invoked by clients. An EJB can be
built out of multiple non-visual JavaBeans. EJBs
are intended to live on one machine and be
invoked remotely from another machine. They
are platform-independent. Once a bean is written,
it can be used on any client or server platform
that supports Java.

e-business. This is a either (a) the transaction of
business over an electronic medium, such as the
Internet, or (b) a business that uses Internet
technologies and network computing in their
internal business processes (via intranets), their
business relationships (via extranets), and the
buying and selling of goods, services, and
information (via electronic commerce).

External Call Interface (ECI). This is an API that
enables a non-CICS client application to call a
CICS program as a subroutine. The client
application communicates with the server CICS
program using a data area called a COMMAREA.

External Presentation Interface (EPI). An API
that allows a non-CICS application program to
appear to the CICS system as one or more
standard 3270 terminals. The non-CICS
application can start CICS transactions and send
and receive standard 3270 data streams to those
transactions.

Enterprise Access Builders (EAB). In
VisualAge for Java Enterprise, this is a set of
code-generation tools. See also CICS Access
Builder and Data Access Builder.

EPI. External Presentation Interface is a way of
interfacing with CICS at a program to 3270 level.

ERP. Enterprise Resource Planning.

EXCI. External CICS Interface allows programs
within MVS (including UNIX Services) to
communicate with CICS programs.

Firewall. A computer (or programmable device)
with associated software that can be used to
restrict traffic passing through it according to
defined rules. Controls would typically be applied
based on the origin or destination address and
the TCP/IP port number.

FTP. File Transfer Protocol

File Transfer Protocol (FTP). This is the basic
Internet function that enables files to be
transferred between computers. You can use it to
download files from a remote host computer as
well as to upload files from your computer to a
remote host computer. See Anonymous FTP.

Gateway. This is a host computer that connects
networks that communicate in different
languages. For example, a gateway connects a
company’s LAN to the Internet.

Graphical User Interface (GUI). This is a type of
interface that enables users to communicate with
a program by manipulating graphical features
rather than entering commands. Typically, a
graphical user interface includes a combination of
graphics, pointing devices, menu bars and other
menus, overlapping windows, and icons.

HotJava. This is a Java-enabled Web and
intranet browser developed by Sun
Microsystems, Inc. HotJava is written in Java.

Hypertext Markup Language (HTML). This is
the basic language that is used to build hypertext
documents on the World Wide Web. It is used in
basic plain ASCII-text documents, but, when
those documents are interpreted (called
rendering) by a Web browser, such as Netscape,
the document can display formatted text, color, a
329

variety of fonts, graphic images, special effects,
hypertext jumps to other Internet locations, and
information forms.

HTTP. HyperText Transport Protocol

Hypertext Transfer Protocol (HTTP). The
protocol for moving hypertext files across the
Internet. Requires an HTTP client program on
one end, and an HTTP server program on the
other end. HTTP is the most important protocol
used in the World Wide Web (WWW). See also
Client, Server, WWW.

HTTP request. A transaction initiated by a Web
browser and adhering to HTTP. The server
usually responds with HTML data, but can send
other kinds of objects as well.

Hypertext. Text in a document that contains a
hidden link to other text. You can click a mouse
on a hypertext word and it will take you to the text
designated in the link. Hypertext is used in
Windows help programs and CD encyclopedias
to jump to related references elsewhere within
the same document. The wonderful thing about
hypertext, however, is its ability to link—using
HTTP over the Web—to any Web document in
the world, yet still require only a single mouse
click to jump clear around the world.

IBM. International Business Machines

IEC. The IBM International Education Centre in
La Hulpe, Belgium.

IE. Microsoft’s Internet Explorer.

IGS. IBM Global Services.

IIOP. Internet Inter-ORB Protocol

Internet Inter-ORB Protocol (IIOP). An industry
standard protocol that defines how General
Inter-ORB Protocol (GIOP) messages are
exchanged over a TCP/IP network. The IIOP
makes it possible to use the Internet itself as a
backbone ORB through which other ORBs can
bridge.

Integrated Development Environment (IDE). A
software program comprising an editor, a
compiler, and a debugger. IBM's VisualAge for
Java is an example of an IDE.

Interface. A set of methods that can be accessed
by any class in the class hierarchy. The Interface
page in the Workbench lists all interfaces in the
workspace.

Internet. The vast collection of interconnected
networks that all use the TCP/IP protocols and
that evolved from the ARPANET of the late
1960’s and early 1970’s.

Intranet. A private network inside a company or
organization that uses the same kinds of software
that you would find on the public Internet, but that
is only for internal use. As the Internet has
become more popular, many of the tools used on
the Internet are being used in private networks.
For example, many companies have Web servers
that are available only to employees.

IMAP4. Internet Message Access Protocol -
Version 4.

IMS. Information Management System.

IP. Internet Protocol.

IPSec. IP Security Protocol. Provides
cryptographic security services at the network
layer.

ISAPI. Internet Server API.

ISC. The Installation Support Centre. Based in
Hursley in the UK the EMEA ISC provides early
education and support for new technologies.

ISD. InfraStructure Design. IBM ISD is a path of
the AD/SI method component of WSDDM. ISD is
used to design the delivery platform supporting
an application. ISD phases are Requirements,
Architecture, Infrastructure Specification, and
Component Specification and Selection. ISD is
based on the original E2E method that provided a
formal way of designing complex systems.

ISD. The Integrated Service Offering
Development process of IBM Global Services.

ISP. Internet Server Provider.

I/T. Information Technology.

ITSO. International Technical Support
Organization
330 Business-to-Business Integration Using MQSeries and MQSI

Java. Java is a new programming language
invented by Sun Microsystems that is specifically
designed for writing programs that can be safely
downloaded to your computer through the
Internet and immediately run without fear of
viruses or other harm to your computer or files.
Using small Java programs called applets, Web
pages can include functions, such as animations,
calculators, and other fancy tricks. We can expect
to see a huge variety of features added to the
Web using Java, since you can write a Java
program to do almost anything a regular
computer program can do, and then include that
Java program in a Web page.

Java archive (JAR). A platform-independent file
format that groups many files into one. JAR files
are used for compression, reduced download
time, and security. Because the JAR format is
written in Java, JAR files are fully extensible.

JavaBeans. In JDK 1.1, the specification that
defines the platform-neutral component model
used to represent parts. Instances of JavaBeans
(often called beans) may have methods,
properties, and events.

Java Database Connectivity (JDBC). In JDK
1.1, the specification that defines an API that
enables programs to access databases that
comply with this standard.

Java Development Kit (JDK). The Java
Development Kit 1.1 is the latest set of Java
technologies made available to licensed
developers by Sun Microsystems. Each release
of the JDK contains the following: the Java
Compiler, Java Virtual Machine, Java Class
Libraries, Java Applet Viewer, Java Debugger,
and other tools.

Java Foundation Classes (JFC). Developed by
Netscape, Sun, and IBM, JFCs are building
blocks that are helpful in developing interfaces to
Java applications. They allow Java applications
to interact more completely with the existing
operating systems.

JavaBean. A JavaBean is a component that can
be integrated into an application with other beans
that were developed separately. This single
application can be used stand-alone, within a

browser, and as an ActiveX component.
JavaBeans are intended to be local to a single
process, and they are often visible at runtime.
This visual component may be, for example, a
button, list box, graphic, or chart.

JDBC. This is a trademark, often referred to as
Java DataBase Connectivity.

JDK. Java Developer’s Kit.

JFC. Java Foundation Class.

JIT. Just In Time.

JVM. Java Virtual Machine.

Local Area Network (LAN). This is a computer
network located at a user’s establishment within
a limited geographical area. A LAN typically
consists of one or more server machines
providing services to a number of client
workstations.

LDAP. Lightweight Directory Access Protocol.

LEI. Lotus Enterprise Integration. This is the
product formerly known as NotesPump.

LSX. Lotus Script Extensions.

LU type 6.2 (LU 6.2). A type of logical unit used
for CICS intersystem communication (ISC). LU
6.2 architecture supports CICS
host-to-system-level products and CICS
host-to-device-level products. APPC is the
protocol boundary of the LU 6.2 architecture.

Logical unit of work (LUW). An update that
durably transforms a resource from one
consistent state to another consistent state. A
sequence of processing actions (for example,
database changes) that must be completed
before any of the individual actions can be
regarded as committed. When changes are
committed (by successful completion of the LUW
and recording of the synch point on the system
log), they do not need to be backed out after a
subsequent error within the task or region. The
end of an LUW is marked in a transaction by a
synch point that is issued by either the user
program or the CICS server, at the end of task. If
there are no user synch points, the entire task is
an LUW.
331

Messaging. A communication model whereby
the distributed applications communicate by
sending messages to each other. A message is
typically a short packet of information that does
not necessarily require a reply. Messaging
implements asynchronous communications.

Method. A fragment of Java code within a class
that can be invoked and passed a set of
parameters to perform a specific task.

Multipurpose Internet Mail Extension (MIME).
The Internet standard for mail that supports text,
images, audio, and video.

MIB. Management Information Base.

MIME. Multipurpose Internet Mail Extensions.

MOM. Message-Oriented Middleware.

MQ. Message Queue.

MVS. Multiple Virtual Storage. For many years
the flagship operating system for IBM large
Enterprise Servers. In its latest releases, it is
formally known as OS/390, although the term
MVS is still used unofficially.

NC. Network Computer or Network Computing.

NCF. Network Computing Framework.

NNTP. Network News Transfer Protocol.

NSAPI. Netscape Server API.

NSF. Notes database file extension.

NT. Windows NT (New Technology).

Online Transaction Processing (OLTP). A
style of computing that supports interactive
applications in which requests submitted by
terminal users are processed as soon as they are
received. Results are returned to the requester in
a relatively short period of time. An online
transaction-processing system supervises the
sharing of resources to allow efficient processing
of multiple transactions at the same time.

Object. (1) A computer representation of
something that a user can work with to perform a
task. An object can appear as text or an icon. (2)
A collection of data and methods that operate on
that data, which together represent a logical
entity in the system. In object-oriented

programming, objects are grouped into classes
that share common data definitions and methods.
Each object in the class is said to be an instance
of the class. (3) An instance of an object class
consisting of attributes, a data structure, and
operational methods. It can represent a person,
place, thing, event, or concept. Each instance
has the same properties, attributes, and methods
as other instances of the object class, although it
has unique values assigned to its attributes.

ODBC Driver. An ODBC driver is a dynamically
linked library (DLL) that implements ODBC
function calls and interacts with a data source.

ODBC Driver Manager. The ODBC driver
manager, provided by Microsoft, is a DLL with an
import library. The primary purpose of the Driver
Manager is to load ODBC drivers. The Driver
Manager also provides entry points to ODBC
functions for each driver and parameter validation
and sequence validation for ODBC calls.

Open Database Connectivity (ODBC). A
Microsoft-developed C database application
programming interface (API) that allows access
to database management systems calling
callable SQL, which does not require the use of a
SQL preprocessor. In addition, ODBC provides
an architecture that allows users to add modules
called database drivers that link the application to
their choice of database management systems at
run time. This means applications no longer need
to be directly linked to the modules of all the
database management systems that are
supported.

Object Request Broker (ORB). A CORBA term
designating the means by which objects
transparently make requests and receive
responses from other objects, whether they are
local or remote.

OS/390. The latest version of MVS. OS/390’s
standard OpenEdition function provides certified
POSIX compliant interfaces in addition to
enhanced support for its traditional programming
interfaces.

ODBC. Open DataBase Connectivity

OMG. Object Management Group.
332 Business-to-Business Integration Using MQSeries and MQSI

PERL. Practical Extraction and Reporting
Language.

PGP. Pretty Good Privacy

PKI. Public Key Infrastructure.

POP3. Post Office Protocol 3

Port. A TCP/IP terminology; a port is a
separately-addressable point to which an
application can connect. For example, by default,
HTTP uses port 80 and Secure HTTP (HTTPS)
uses port 443.

Protocol. (1) The set of all messages to which an
object will respond. (2) Specification of the
structure and meaning (the semantics) of
messages that are exchanged between a client
and a server. (3) Computer rules that provide
uniform specifications so that computer hardware
and operating systems can communicate. It’s
similar to the way that mail in countries around
the world is addressed in the same basic format
so that postal workers know where to find the
recipient’s address, the sender’s return address,
and the postage stamp. Regardless of the
underlying language, the basic protocols remain
the same.

Proxy. This is an application gateway from one
network to another for a specific network
application, such as Telnet of FTP, for example,
where a firewall’s proxy Telnet server performs
authentication of the user and then allows the
traffic to flow through the proxy as if it were not
there. Function is performed in the firewall and
not in the client workstation causing more load in
the firewall. Compare with socks.

RACF. Resource Access Control Facility.

RDMS. Relational Database Management
System.

RFC. Request For Comment. Internet Standards
are defined in documents known as RFCs.

Remote Method Invocation (RMI). In JDK 1.1,
the API that allows you to write distributed Java
programs allowing methods of remote Java
objects to be accessed from other Java virtual
machines.

Remote Procedure Call (RPC). A
communication model where requests are made
by function calls to distributed procedure
elsewhere. The location of the procedures is
transparent to the calling application.

RSA. Rivest-Shamir-Adleman algorithm.

Sandbox. A restricted environment provided by
the Web browser in which Java applets run. The
sandbox offers them services and prevents them
from doing anything naughty, such as doing file
I/O or talking to strangers (servers other than the
one from which the applet was loaded). The
analogy of applets to children led to calling the
environment in which they run the sandbox.

SAP. Originally “Systemanalyse und
Programmentwicklung” and now named Systems,
Applications, and Products in Data Processing,
SAP supplies widely-used software for integrated
business solutions.

Schema. In the Data Access Builder, the
representation of the database that will be
mapped. In the Data Access Builder, the mapping
contains a set of definitions for all attributes
matching all the columns for your database table,
view, or SQL statement, as well as information
required to generate Java classes.

Server. A computer that provides services to
multiple users or workstations in a network; for
example, a file server, a print server, or a mail
server.

SES/workbench. A simulation product for
behavioral and performance modeling of complex
client/server, network, software, and hardware
systems.

SET. Secure Electronic Transaction.

SHTTP. Secure Hypertext Transfer Protocol.

SI. Systems Integration. One of the six
competency areas of IBM Global Services.

SI/AD. Systems Integration/Application
Development. One of the six competency areas
announced by IBM Global Services in May 1998,
later renamed simply SI.

SMTP. Simple Mail Transport Protocol
333

SNMP. Simple Network Management Protocol

Socket Secure (SOCKS). The gateway that
allows compliant client code (client code made
socket secure) to establish a session with a
remote host.

SQL. Structured Query Language.

SSL. Secure Sockets Layer.

S/MIME. Secure MIME.

Telnet. U.S. Dept. of Defense virtual terminal
protocol.

TME. Tivoli Management Environment.

Transmission Control Protocol/Internet
Protocol (TCP/IP). This is the basic
programming foundation that carries computer
messages around the globe via the Internet. It is
the suite of protocols that defines the Internet.
Originally designed for the UNIX operating
system, TCP/IP software is now available for
every major kind of computer operating system.
To be truly on the Internet, your computer must
have TCP/IP software.

Thin client. Thin client usually refers to a system
that runs on a resource-constrained machine or
that runs a small operating system. Thin clients
do not require local system administration, and
they execute Java applications delivered over the
network.

Transaction. This is a unit of processing
consisting of one or more application programs
initiated by a single request. A transaction can
require the initiation of one or more tasks for its
execution.

Transaction Processing. This is a style of
computing that supports interactive applications
in which requests submitted by users are
processed as soon as they are received. Results
are returned to the requester in a relatively short
period of time. A transaction processing system
supervises the sharing of resources for
processing multiple transactions at the same
time.

UDB. Universal Data Base. The latest release of
IBM DB2.

Uniform Resource Locator (URL). This is the
standard to identify resources on the World Wide
Web.

VA. Visual Age.

VAJ. Visual Age for Java.

VB. Visual Basic.

Virtual Machine (VM). A software program that
executes other computer programs. It allows a
physical machine, a computer, to behave as if it
were another physical machine.

VM. Virtual Machine.

VPN. Virtual Private network.

VTAM. Virtual Telecommunications Access
Method.

Web server. This is the server component of the
World Wide Web. It is responsible for servicing
requests for information from Web browsers. The
information can be a file retrieved from the
server's local disk or generated by a program
called by the server to perform a specific
application function.

Widget. In this context, it is a generic term for
something that can be put on a window, such as a
button, scrollbar, label, listbox, menu, or
checkbox.

Workstation. This is a configuration of
input/output equipment at which an operator
works. A terminal or microcomputer, usually one
that is connected to a mainframe or a network, at
which a user can perform applications.

World Wide Web (WWW or Web). A graphic
hypertextual multimedia Internet service.

WSDDM. IBM WorldWide Solution Design and
Delivery Methods. WSDDM is a collection of
generic plans and methods representing IBM
best practices for planning, managing, and
delivering projects.

WYSIWYG. What You See is What You Get.

XML. Extensible Markup Language.
334 Business-to-Business Integration Using MQSeries and MQSI

Abbreviations and acronyms

IBM International Business
Machines Corporation

ITSO International Technical
Support Organization

API Application Program
Interface

ARM Application Request
Manager

ASCII American National
Standard Code for
Information
Interchange

AWT Abstract Windowing
Toolkit

CA Certification Authority

CAB Cabinet (Microsoft)

CAE Client Application
Enabler

CGI Common Gateway
Interface

CICS Customer Information
Control System

CICS TS CICS Transaction
Server for OS/390

CLI Call Level Interface

COMMAREA Communication Area
(CICS)

CORBA Common Object
Request Broker
Architecture

DBMS Database Management
System

DB2 Database 2

DCE Distributed Computing
Environment

DDCS/2 Distributed Database
Connection Services/2

DLL Dynamic Link Library
© Copyright IBM Corp. 2000
DPL Distributed Program
Link (CICS)

DRDA Distributed Relational
Database Architecture

EBCDIC Extended Binary Coded
Decimal Interchange
Code

ECI External Call Interface
(CICS)

EPI External Presentation
Interface (CICS)

ESA Enterprise Systems
Architecture

EXCI External CICS Interface

FTP File Transfer Protocol

GUI Graphical User
Interface

HTML Hypertext Markup
Language

HTTP Hypertext Transfer
Protocol

IBM International Business
Machines Corporation

IDE Integrated
Development
Environment

IIOP Internet Inter-ORB
Protocol

IMS Information
Management System

IS Information System

ITSO International Technical
Support Organization

JAR Java Archive

JDBC Java Database
Connectivity

JDK Java Development Kit

JFC Java Foundation
Classes
335

JVM Java Virtual Machine

LAN Local Area Network

LDAP Lightweight Directory
Access Protocol

LUW Logical Unit of Work

MIME Multipurpose Internet
Mail Extensions

MVS Multiple Virtual Storage

NC Network Computer

NCF Network Computing
Framework

NetBIOS Network Basic
Input/Output System

NNTP NetNews Transfer
Protocol

NT Microsoft Windows NT
(New Technology)

ODBC Open Database
Connectivity

OLTP Online Transaction
Processing

ORB Object Request Broker

OS/2 Operating System/2

OSF Open Software
Foundation

PC Personal Computer

POP Post Office Protocol

RACF Resource Access
Control Facility

RAD Rapid Application
Development

RMI Remote Method
Invocation

SDK Software Developer's
Kit

SET Secure Electronic
Transaction

SHTTP Secure Hypertext
Transport Protocol

SIT System Initialization
Table

SMTP Simple Mail Transfer
Protocol

SNA Systems Network
Architecture

SNMP Simple Network
Management Protocol

SQL Structured Query
Language

SSL Secure Sockets Layer

TCP/IP Transmission Control
Protocol/Internet
Protocol

TSO Time Sharing Option

URL Uniform Resource
Locator

XA Extended Architecture

XML Extensible Markup
Language
336 Business-to-Business Integration Using MQSeries and MQSI

Index

A
abstract windowing toolkit, See AWT
Access protocol 77
ActiveX 205
adapter

placement 182
processing flow 182
transformation 188
types 191

adapter placement 181
adapters

Bridges 191
Configurable 191
Custom 191

administrative agent 160
AIX 241
Apache 72
API

implementation functions 225
utility functions 225

APPC 241
application

elements 68, 171
factors 27
General Principles 179
influencing factors 27
node types 53
request manager, See ARM
runtime topology 41

Application Framework for e-business 25, 67
Application Integration 20
application server 63
Application services 73
application topology 27
applications 7

adapter placement 181
classification schema 7
distribution 179
existing 60
Inter-business 7
Intra-business 7
legacy 60
partner interface 200
performance 179
Role of the Adapter 182
synchronization 179
© Copyright IBM Corp. 2000
transform 188
Application-to-Application 13
Ariba 90
Asynchronous Communication 174
authentication 238
Authorization 238

B
B2B

application elements 68
Business Context 28
challenges 13
frameworks 91
Functional components 28
node types 53
runtime topology 41
Solution Components 14

B2BI
General Principles 179
partner interface 200

B2Bi
Role of the Adapter 182

B2M2B 11
BEA 75
BizTalk 93
BLOB

message domain 165
business context 28
Business patterns 19
Business-to-Business 20

C
cache 73
Capacity 209
CBL 97

description 97
CICS 79, 103
client 70
Client Connection 142
Client Reply

MQSeries
Client Reply 146

Client Request 144
clustering 73
COM 70, 73
COM/DCOM 89
337

Commerce Business Library 97
Commerce One 90
Commerce XML 96
Commerce XML (cXML) 92
common gateway interface, See CGI
common message interface 151
communication area, See COMMAREA
CompCode 149
Component model 73
Compute node 152
Configuration Management 237
Configuration Manager 153

dependencies 163
configuration repository 153
connection complexity 187
connection pooling 73
connectors 77
content management 73
Control Center 154
CORBA 13, 70, 73, 89
Custom Wire Format

See CWF
CWF 166
cXML 90, 92, 96

D
Data confidentiality 238
Data integrity 238
Database node 152
Database Resilience 209
Database server node 62
Databases

dependencies 164
DB2 103
DCE 183
demilitarized zone 54, 308
Demilitarized Zone (DMZ) 62
description 96
Design patterns 18
Development

Build cycle 214
Macro design 214
Micro design 214

Deployment 214
Solution outline 214

DHCP 76
Directory and Security Services 56

Distributed Management Task Force 92
DMTF 92
DMZ 54, 63, 308
Document Type Definitions 92
domain firewall 59
Domain Name Service (DNS) 60
DTD 91, 92

E
e-business

about 3
adoption process 5
applications 7
competitiveness 7
transformation 4
value 6

ebXML 91
ebXML project 92
eCo 92
eCo Specification 92
EDI 12

description 99
EDI translation package 54
EDI/MIME Translator 55
EDIFACT 54
eMarketPlace 11
encryption 238
enterprise 28
Enterprise Java Beans 13
Enterprise JavaBeans 73
Enterprise Solution Structure (ESS) 17
ERP 28
ESQL 152
ESS 22
external call interface, See ECI
external CICS interface, See EXCI
external presentation interface, See EPI
Extranet 53

F
fail-over 73
Filter node 152
filtering 70
filtering technologies 70
framework 67, 69
frameworks 91
full-duplex 174
338 Business-to-Business Integration Using MQSeries and MQSI

G
generic XML messages 164
graphical user interface, See GUI

H
half-duplex 174
HP-UX 241
HTML 62
HTTP 62, 72, 90
Hub 184
Hub and spoke 184

I
IBM Application Framework for e-business 67, 69
IBM Global Services methodology 17, 213
IBM Software

Application Accelerators 106
Customer and Partner Applications 108
Foundation 102
Foundation Extensions 102

IBMPrimitives 152
ICE 96, 98

description 98
IDE 103
Identification 238
IMS 103
influences 70
Influencing factors 27
Information & Content Exchange 96, 98
Innovation 4
Inprise 75
Integration services 78
Inter-business 7
Internet Gateway 56
Internet Information Server 74
Internet Open Trading Protocol 98
Internet pass-thru 307
Internet services 72
Intra-business 7
Intranet 54
Iona 77
IOTP 98

description 98
iPlanet 74, 75
IPSEC 62
ISAPI 73
ISV 108

J
Java archive, See JAR
Java Database Connectivity , See JDBC
Java development kit , See JDK
Java IDE 103
Java Server Pages 62, 103
Java virtual machine , See JVM
JD Edwards 79
JDBC 79
JSP 103

L
LDAP 57, 76, 77, 183
lightweight directory access protocol 57
lil 160
load balancer 62
load balancing 73
Lotus Domino 107

M
message broker 156

dependencies 163
instance name 158

message channel agent 240
message domain 165
message flow 151
message flow execution engine 160
message format 165
message repository 153
message set 165
message type 165
messaging

Message Broker 60
Microsoft 70, 72

COM 70
Internet Information Server 74
ISAPI 73

MIME 55
MIME-based Secure EDI 56
MIMS 74
Mobile 77
MQ Adapter 61
MQ Server 61
MQBACK 148
MQBEGIN 148
MQCMIT 148
MQInput node 152
MQINQ 148
339

MQOutput node 152
MQPUT1 148
MQRFH 208
MQRFH2 208
MQSeries 102

Adapter 192
Adapter Builder 192
Adapter Kernel 193
Adapter Sets 194
AMI 196
Automation Classes for ActiveX 205
C/S Connection details 143
Client Connection 142
Client Server Connection 142
Code Fragment 148
description 102
guidelines 194
Integrator Libraries 194
JMS 196
LotusScript Extension 205
management 236
MQI 196
Partner Interface 200
Security 238
Server Connection 142
Server Reply 146
Server Request 145
Systems management products 237
Topology 2 171
Topology 3 171
XML 166

MQseries
Client Request 144

MQSeries Integrator 105
brokers 151
Components 151
Configuration Manager 151
Control Center 151
Databases 162
Dependencies 162
Description 151
description 105
Message Repository Manager 151
MQSeries Queue Manager 151
Security subsystem 162
User Name Server 151
XML 167

MQSeries WorkFlow 107
MQSET 148

MRM
message domain 165

Multi-Purpose Internet Mail Extensions 55
multi-threaded 73

N
namespaces 91
NEON

message domain 165
Netscape 72

iPlanet 74
NSAPI 73

node types 53
Non-repudiation 238
NSAPI 73

O
OAG 92
OASIS 91, 92
OBI 94

definition 94
description 94

object request broker, See ORB
ODBC 79
OFX 98

description 98
OMG 70
ompetitiveness 7
online transaction processing , See OLTP
Open Applications Group 92
Open Financial Exchange 98
Open Trading Protocol 98
Operations Management 237
Orbix 77
OTP 98

description 98

P
P3P 98

description 98
parser 225
Partner Interface Processes 90
Pattern Development Kit (PDK) 23
PeopleSoft 79
Performance 209
performance 73
Performance Management 237
340 Business-to-Business Integration Using MQSeries and MQSI

persistence 71, 77
PIPS 90
PIX 98

description 98
PKI 77
Platform for Privacy Preferences Project 98
plug-in 224
point to point integration 183
Portal 104
predefined messages 164
Problem Management 237
Product Information Exchange 98
project management 88
protocol firewall 59
Protocols 89

CBL 97
cXML 90
DMTF 92
ebXML 91
ICE 96, 98
IOTP 98
OFX 98
OTP 98
P3P 98
PIX 98
RosettaNet 90
SET 97
SOAP 96
UDDI 107
VoiceXML 104
WBEM 92
xCBL 90
XML 91
XML/EDI 99

Public Key Infrastructure 77
Public Key Infrastructure (PKI) 59

Q
Queue Manager 58

R
rapid application development, See RAD
Rational Rose 219
Reason Field 149
reliability 73
Resilience 209
reverse proxy 63
RFC1767 56

RFC2026 56
RMI 89
robust communication 174
robustness 73
RosettaNet 90, 93, 95

description 95
PIP 95

RPC 97
runtime topology 41

definition 41
Direct with Adapter/Bridge 46
Document Exchange 42
Message Broker 51

S
SAP 79
scalability 73
schemas 91
Secure Electronic Transaction 97
secure electronic transaction, See SET
SecureWay Software 77
Security 57, 97
security 77
self-defined messages 164
Server Connection 142
Server Reply 146
Server Request 145
Services

Application 72
Application Development 72
Integration 72
Internet 72
Management 72

servlet redirector 63
SET 97
simple mail transport protocol 56
Simple Object Access Protocol 96
SMTP 56

Server 56
SNA 71
SOAP 96

contents 96
description 96

Spoke 184
SSL 62
Standards 89
state management 73
Store and Forward 174
341

connecting to 180
invasive insertion 180
passive adaptation 180

straight-through processing 28
Sun 70
Sun EJB 70, 75
Synchronous Communication 174
System integrators 108
Systems Management 235
systems management 188

T
technology classification 67
technology influences 70
threads 73
Tivoli Policy Director 106
topology

application 27
runtime 41

TPA 91
Trading Partner Agreement 91
Transformation 4
transformation 188
tunneling protocols 307
Tuxedo 79
Two System Update 175

U
UDDI 107
UN/CEFACT 91, 92
Unified Model Language (UML) 219
uniform resource locator , See URL
Universal Description, Discovery and Integration
(UDDI) services 107
user

interface, See GUI
User Name Server 161

dependencies 164
User-to-Business 20
User-to-Data 20
User-to-Online Buying 20
User-to-User 20
user-written node 224

V
value added network 55
VAN 55

access point 55
mailbox 55

Virtual Private Network 59, 77
Visigenic 77
VisualAge Application Rules 103
VisualAge for Java 103
VisualAge Generator 103
Voice 104
VoiceXML 104
VPN 59, 77

W
Warehouse node 152
WBEM 92
Web application server 61, 63
Web application server node 61
Web Based Enterprise Management 92
Web integrators 108
Web server redirector 62
WebSphere Application Server 102
WebSphere Business Components 104
WebSphere Business-to-Business Integrator 107
WebSphere Commerce Suite 106
WebSphere Edge Server 105
WebSphere Everyplace Suite 105
WebSphere Homepage Builder 104
WebSphere Host Integration Solution 106
WebSphere Personalization 105
WebSphere Portal Server 104
WebSphere Site Analyzer 105
WebSphere Studio 103
WebSphere Transcoding Publisher 104
WebSphere Voice Server 104
wire format

See CWF

X
X509 94
xCBL 90
XML 91, 99, 164

message domain 165
MQSeries 168
MQSeries Integrator 168

XML.org 91
XML/EDI 99
XML/EDI Group 93
342 Business-to-Business Integration Using MQSeries and MQSI

© Copyright IBM Corp. 2000 343

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

• Use the online Contact us review redbook form found at ibm.com/redbooks
• Fax this form to: USA International Access Code + 1 845 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-6010-00
Business-to-Business Integration Using MQSeries and MQSI
Patterns for e-business Series

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/
http://www.ibm.com/privacy/yourprivacy/

Business-to-Business Integration Using M
QSeries and M

QSI

®

SG24-6010-00 ISBN 0738418579

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Business-to-Business Integration
Using MQSeries and MQSI
Patterns for e-business Series

Select topologies
and mappings to
build B2B Integration
e-business solutions

Gain insight into
available products
and design
guidelines

Learn from an
implementation
example

Patterns for e-business are a group of proven, reusable assets
that can help speed the process of developing applications.
The patterns discussed in this book, Business-to-Business
Integration patterns two and three, form the basis for many of
the more complex and functional B2B patterns. It is relevant
to all enterprises dealing with partner integration issues over
the Internet.

Application topology 2 describes a scenario in which
messages are being passed between two enterprise
applications and no routing is performed. Topology 3 extends
topology 2 to describe the scenario where routing is required
for multiple cross enterprise applications to communicate.

Part 1 of the redbook takes you through the process of
choosing an application topology and a runtime topology. It
gives you possible product mappings for implementation of
the chosen runtime topology and introduces all the topologies,
even though only two of the patterns are covered in this book.
Part 2 is a set of guidelines, based on topologies 2 and 3, for
building your e-business application. It includes information
on application design, technology options, application
development, performance, and security.
Part 3 takes you through a working example showing the
simple implementation of an integration pattern using
application topology 3.

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Part 1. Introduction
	Chapter 1. e-business and B2B integration
	1.1 About e-business
	1.1.1 Business transformation and Innovation
	1.1.2 e-business value

	1.2 e-business applications: A simplified classification scheme
	1.2.1 Intra-business applications
	1.2.2 Inter-business applications

	1.3 Inter-business: B2Bi
	1.3.1 EDI and B2B Integration
	1.3.2 B2B and A2A (Application-to-Application)
	1.3.3 B2B integration challenges
	1.3.4 B2B integration solution components

	1.4 Summary

	Chapter 2. Introduction to business patterns
	2.1 Patterns for e-business
	2.1.1 Patterns for e-business and design patterns
	2.1.2 Components of the patterns for e-business
	2.1.3 Defined patterns for e-business
	2.1.4 How to use these patterns
	2.1.5 Patterns for e-business Web sites

	2.2 The Business-to-Business Integration pattern
	2.3 The Application Framework for e-business
	2.4 Structure of this redbook

	Chapter 3. Choosing the application topology
	3.1 Influencing factors
	3.1.1 Business context
	3.1.2 Functional components

	3.2 Application topology overview
	3.3 Application Topology 1: Document exchange
	3.3.1 Business driver
	3.3.2 Considerations
	3.3.3 Examples

	3.4 Topology 2: Direct with adapter/bridge
	3.4.1 Business driver
	3.4.2 Considerations
	3.4.3 Examples

	3.5 Topology 3: Message broker
	3.5.1 Business driver
	3.5.2 Considerations
	3.5.3 Examples

	3.6 Topology 4: Managed business protocol
	3.6.1 Business driver
	3.6.2 Considerations
	3.6.3 Examples

	3.7 Topology 5: Managed business protocol and process
	3.7.1 Business driver
	3.7.2 Considerations
	3.7.3 Examples

	3.8 Topologies summary

	Chapter 4. Choosing the runtime topology
	4.1 Runtime topologies
	4.2 Topology 1: Document exchange
	4.2.1 Illustrative Example 1: Document runtime topology
	4.2.2 Illustrative Example 2: EDI - Internet Runtime topology
	4.2.3 Summary

	4.3 Topology 2 - Direct with adapter/bridge
	4.3.1 Illustrative Example 1- Shared middleware
	4.3.2 Illustrative Example 2- Open standards
	4.3.3 Summary

	4.4 Topology 3 - Message broker
	4.4.1 Illustrative Example 1- Shared middleware
	4.4.2 Illustrative Example 2 - Open standards
	4.4.3 Summary

	4.5 An introduction to the node types
	4.5.1 Extranet
	4.5.2 Intranet
	4.5.3 DMZ
	4.5.4 EDI translation package
	4.5.5 VAN
	4.5.6 VAN access point
	4.5.7 VAN mailbox
	4.5.8 EDI/MIME translator
	4.5.9 SMTP server
	4.5.10 Internet gateway
	4.5.11 Directory and security services
	4.5.12 Queue manager
	4.5.13 Virtual Private Network (VPN)
	4.5.14 Protocol domain firewall nodes
	4.5.15 Public Key Infrastructure (PKI)
	4.5.16 Domain Name Service (DNS) node
	4.5.17 Existing applications and data node
	4.5.18 Message broker
	4.5.19 HTTPS adapter for MQ middleware
	4.5.20 MQ server
	4.5.21 MQ adapter
	4.5.22 Web application server
	4.5.23 Database server node
	4.5.24 Load balancer node
	4.5.25 Web server redirector node
	4.5.26 Application server node
	4.5.27 Other open standards adapters
	4.5.28 Communication Interface
	4.5.29 Adapter node

	4.6 Summary

	Chapter 5. Technology options
	5.1 Introduction
	5.2 Classifying technologies
	5.2.1 Framework categories
	5.2.2 Identifying key technology selection influences

	5.3 Partner (Client)
	5.3.1 Choosing the partner technologies
	5.3.2 XML and the partner

	5.4 Web application server
	5.4.1 Internet/Web services
	5.4.2 Application services
	5.4.3 Illustrative examples

	5.5 Network-based infrastructure services
	5.5.1 Illustrative examples

	5.6 Integration services
	5.6.1 Database connectivity
	5.6.2 Packaged application API integration
	5.6.3 Middleware integration
	5.6.4 Component model integration
	5.6.5 Custom integration service development kit
	5.6.6 Application integration approaches
	5.6.7 Illustrative examples

	5.7 Web application programming model
	5.7.1 Influence of the component model
	5.7.2 Influence of architectural design patterns
	5.7.3 Illustrative examples

	5.8 e-business application services
	5.8.1 Illustrative examples

	5.9 Systems management
	5.9.1 System management model
	5.9.2 Cross-enterprise systems management
	5.9.3 Illustrative examples

	5.10 The development environment
	5.10.1 e-business application development team roles

	Chapter 6. B2B integration protocols and standards
	6.1 Overview
	6.1.1 Transporting the messages
	6.1.2 Content
	6.1.3 Business processes

	6.2 B2B Frameworks
	6.3 More on protocols
	6.3.1 OBI
	6.3.2 Rosettanet
	6.3.3 cXML
	6.3.4 Simple Object Access Protocol (SOAP)
	6.3.5 SET
	6.3.6 Commerce Business Library (CBL)
	6.3.7 Product Information Exchange (PIX)
	6.3.8 Information and Content Exchange (ICE)
	6.3.9 Internet Open Trading Protocol (IOTP)
	6.3.10 Open Financial Exchange (OFX)
	6.3.11 Platform for Privacy Preferences Project (P3P)
	6.3.12 Open Trading Protocol (OTP)
	6.3.13 XML/EDI

	Chapter 7. IBM product guide
	7.1 Foundation
	7.1.1 WebSphere Application Server
	7.1.2 MQSeries

	7.2 Foundation extensions
	7.2.1 VisualAge for Java
	7.2.2 VisualAge Application Rules
	7.2.3 VisualAge Generator
	7.2.4 WebSphere Studio
	7.2.5 WebSphere Homepage Builder
	7.2.6 WebSphere Business Components
	7.2.7 WebSphere Transcoding Publisher
	7.2.8 WebSphere Voice Server
	7.2.9 WebSphere Portal Server
	7.2.10 WebSphere Everyplace Suite
	7.2.11 WebSphere Personalization
	7.2.12 MQSeries Integrator
	7.2.13 WebSphere Edge Server
	7.2.14 WebSphere Site Analyzer
	7.2.15 WebSphere Host Integration Solution
	7.2.16 Tivoli Policy Director

	7.3 Application Accelerators
	7.3.1 WebSphere Commerce Suite
	7.3.2 Lotus Domino
	7.3.3 MQSeries WorkFlow
	7.3.4 WebSphere Business-to-Business Integrator
	7.3.5 Universal Description, Discovery, and Integration (UDDI)

	7.4 Customer and partner applications

	Chapter 8. MQSeries and MQSeries integrator
	8.1 Business integration and the MQSeries Family
	8.2 MQSeries primer
	8.3 What is Messaging and Queuing?
	8.4 About messages
	8.4.1 Message segmenting and grouping
	8.4.2 Distribution lists
	8.4.3 Message types
	8.4.4 Persistent and non-persistent messages
	8.4.5 The message descriptor

	8.5 About the Queue Manager
	8.6 About Queue Manager clusters
	8.7 About Queue Manager objects
	8.7.1 Queues
	8.7.2 Channels

	8.8 About message queues
	8.8.1 Local queue
	8.8.2 Cluster queue
	8.8.3 Remote queue
	8.8.4 Transmission queue
	8.8.5 Dynamic queue
	8.8.6 Alias queue
	8.8.7 Model queue
	8.8.8 Initiation queue
	8.8.9 Reply-to-queue
	8.8.10 Dead-letter queue
	8.8.11 Repository queue
	8.8.12 Creating a Queue Manager

	8.9 Manipulating Queue Manager objects
	8.10 Clients and servers
	8.11 How MQSeries works
	8.12 Communication between queue managers
	8.12.1 How to define a connection between two systems
	8.12.2 How to start communication manually

	8.13 How to trigger applications
	8.14 Communication between client and server
	8.14.1 How to define a client/server connection
	8.14.2 How a Client/Server connection works
	8.14.3 How a Client sends a request
	8.14.4 How the server receives a request
	8.14.5 How the server sends a reply
	8.14.6 How the client receives a reply

	8.15 The Message Queuing Interface (MQI)
	8.16 A code fragment
	8.17 MQSeries integrator components
	8.17.1 The Configuration Manager
	8.17.2 The Control Center
	8.17.3 The Message Broker
	8.17.4 Controller
	8.17.5 The User Name Server
	8.17.6 Security subsystem
	8.17.7 Databases
	8.17.8 Dependencies
	8.17.9 Message domains, message sets, message types

	8.18 XML and MQSeries
	8.18.1 Importance for the MQSeries family
	8.18.2 Use of XML within MQSeries Integrator

	Part 2. B2B integration guidelines
	Chapter 9. Application design guidelines
	9.1 Application elements
	9.2 Communicating between applications
	9.2.1 Synchronous communication
	9.2.2 Asynchronous communication
	9.2.3 Synchronous and asynchronous communication
	9.2.4 Comparison in a two-system update

	9.3 General principles
	9.4 Connecting to a store and forward mechanism
	9.4.1 Invasive insertion
	9.4.2 Passive adaptation
	9.4.3 Placing the adapter
	9.4.4 The role of the adapter

	9.5 Hub and Spoke integration architecture
	9.5.1 Where to do the transformation

	9.6 Application design summary
	9.7 Using MQSeries
	9.8 Connecting to the business application using MQSeries or MQSI
	9.8.1 Application types
	9.8.2 The MQSeries Adapter Offering

	9.9 General MQSeries guidelines
	9.10 Application style
	9.11 Application Programming Interface options
	9.11.1 MQI
	9.11.2 AMI
	9.11.3 Java-based APIs

	9.12 Considerations for the Partner Interface using MQSeries
	9.12.1 MQ Queue to MQ Queue: Intercommunication
	9.12.2 Summary of interface options

	9.13 Building the hub and spoke architecture using MQSI
	9.13.1 MQSeries Integrator applications
	9.13.2 Multiple hubs?
	9.13.3 Database resilience
	9.13.4 Message routing - Basis

	Chapter 10. Application development guidelines
	10.1 The development process
	10.2 The scope of this chapter
	10.3 The application and architecture domains
	10.4 Solution outline
	10.5 Macro design
	10.6 Micro design
	10.7 Build cycle
	10.8 Deployment
	10.9 Developing MQSeries applications
	10.9.1 Message Queue Interface (MQI)
	10.9.2 MQSeries classes for Java and MQSeries classes for JMS
	10.9.3 AMI

	10.10 Application development for MQSeries Integrator
	10.10.1 Terminology
	10.10.2 Overview of the requirements for a plug-in

	Chapter 11. Performance guidelines
	11.1 MQSeries and MQSI tuning, capacity planning, and performance
	11.1.1 Hardware and capacity
	11.1.2 MQSeries and MQSI application performance
	11.1.3 Additional performance information

	Chapter 12. Systems management
	12.1 Managing MQ?
	12.1.1 What should be managed in MQSeries networks?
	12.1.2 MQSeries Systems management products

	12.2 Security
	12.2.1 MQSeries security functions
	12.2.2 MQSeries messages
	12.2.3 Point-to-point security
	12.2.4 End-to-end security
	12.2.5 Where to find more information

	Part 3. An application example
	Chapter 13. Getting a single customer view with MQSeries
	13.1 Outbound flow
	13.1.1 RB_SCV_1message flow
	13.1.2 RB_SCV_Request_Endow message flow
	13.1.3 RB_SCV_Request_House message flow
	13.1.4 RB_SCV_Request_Motor message flow

	13.2 Inbound flow
	13.2.1 RB_SCV_Backend_Reply message flow
	13.2.2 RB_SCV_Backend_Reply_House&Motor message flow

	Appendix A. Hardware and software specifications
	Appendix B. MQSeries Internet pass-thru
	B.1 Introduction
	B.2 Overview of how Internet pass-thru works
	B.3 HTTP support
	B.4 Supported channel configurations
	13.3 Normal termination and failure conditions
	B.5 Security considerations

	Appendix C. Using the additional material
	C.1 Locating the additional material on the Internet
	C.2 Using the Web material
	C.2.1 System requirements for downloading the Web material
	C.2.2 How to use the Web material

	Appendix D. Special notices
	Appendix E. Related publications
	E.1 IBM Redbooks
	E.2 IBM Redbooks collections
	E.3 Other resources
	E.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Glossary
	Abbreviations and acronyms
	Index
	IBM Redbooks review

