
An Approach to Building Software Con�guration

Using Heuristic Knowledge

M�aria Bielikov�a� Pavol N�avrat
Slovak Technical University� Dept� of Computer Science and Engineering�
Ilkovi�cova �� ��	 �
 Bratislava� Slovakia
E�mail� fbielikova�navratgelf�stuba�sk
Tel�� �� �	 �� �
� �
�
Fax� �� �	 �� �	� ���

Abstract

The paper describes original research in the area of

software con�guration management� We assume a

software system consists from versions of two kin�

ds� variants and revisions� Our approach is based

on de�ning a suitable model of the software system�

formulating requirements for a con�guration to be

built� and �nally building a con�guration� The re�

quirements are in fact conditions which constrain

the solution� To build a con�guration requires se�

arch in the model represented as A�O graph� We

work with generic con�gurations which represent

solution on a level of variants� and then with bound

con�gurations which represent solution on a level of

revisions� We proposed a method to build a con��

guration which uses heuristic knowledge and imple�

mented it in Prolog� Our experiments show such a

method performs better than without supporting

knowledge�

Keywords� software system con�guration� heuris�

tic knowledge� version control

� Introduction

Software system changes more often than
usually admitted� In fact� the changes are to be
considered more a rule than an exception� Re�
asons for the unstability are not only possible
errors in it which are to be corrected� but �rst
of all the changing nature of the surrounding
world to which the software system should be
permanently adopted in the process of so called
maintenance�

Software systems consist of many compo�
nents which may undergo changes� as they in�

deed frequently do� These modi�cations are
usually incremental� so it appears to be reaso�
nable to consider results of such modi�cations
to be versions of particular components rather
than independent objects� In a traditional mo�
del of versions ��� �	 two di
erent kinds of modi�
�cations are re�ected in two kinds of versions�
revisions and variants� Similar partitioning of
versions is respected also in a change oriented
model �	�

Revisions result from modi�cations which
are caused by error correction� functionality en�
hancement� and�or adaptation to changes in
environment� They develop in time sequence�
with each next one usually intended to replace
the previous one�

Variants of software components can be des�
cribed as alternative implementations of a par�
ticular concept ��	� New variant represents an
alternative solution� Variants usually exist con�
currently� Variants result from experimental
development or modi�cations towards ame�
lioring properties of the system�
A family of software components comprises

a set of such versions of a software component
that were formed by gradual modi�cations of
the given component� A software system con��
guration is a set of software components which
is consistent�

When specifying requirements for a con�gu�
ration of a software system� we adopted the
approach which is accepted universally� e�g�
��� �	� i�e� a con�guration is built with re�
spect to the relation depends on� or its va�
riants or re�nements like uses type de�nition�



calls procedure� uses variable� etc�

Software components can be� as far as their
structure is concerned� either simple or com�
posed� If a composed component is included in
a con�guration� all the components which are
included in it should be included as well�

Of course� the resulting set must be consis�
tent� Moreover� it should include only compo�
nents which are actually desired� For example�
a con�guration intended for an end�user should
include executable program and a user docu�
mentation� On the other hand� a con�guration
intended for a further development must ob�
viously include source program modules� but
also design documentation etc� as well�

The process of con�guration building should
respect the existence of versions of software
components� It should allow the highest degree
of reusability� It should also support building at
least an incomplete con�guration in case some
components do not satisfy the conditions�

Our goal is to devise a method that would
support the process of building a software sy�
stem con�guration� The resulting con�guration
should be conformant to given requirements�
Assuming software system components usual�
ly have several variants with several revisions
each� selecting a complete and consistent set
of components satisfying given constraints is
essentially a process of searching�

� The method

In order to devise a method for building a
software system con�guration� we have found
at least the following questions to be impor�
tant�

� how to model a software system�

� which steps should be followed when buil�
ding a con�guration�

We shall describe our approach to each one of
these questions�

��� Model of a software system

We attempt to describe a software system with
the speci�c purpose in mind� i�e� to be used

during development and maintenance� and spe�
ci�cally in building the software system con��
guration� Therefore� our model encompasses
those parts of the system and those relations
among them which are important for building
a con�guration�

When attempting to identify them� it is inst�
ructive to bear in mind that a software system
is being created in a development process which
can be viewed as a sequence of transformations�
Because the initial speci�cation of the system
does not and should not include details of the
solution� the overall orientation of the trans�
formations is from abstract towards concrete�
However� this does not mean that each parti�
cular transformation and especially when app�
lied to a particular subsystem or component is
a concretisation� In fact� there are involved ab�
stracting� generalizing� and specializing trans�
formations as well� Let us mention importance
of such kinds of transformations in software re�
use� reverse engineering� etc�

From among all the possible kinds of trans�
formations� it is important to distinguish all
those which correspond to the notion of com�
ponent version� Creating a component version
can be done in one of two possible ways� Fir�
st� versions are created to represent alternative
solutions of the same speci�cation� They di
er
in some attributes� Such �parallel� versions� or
variants� are frequently result of di
erent spe�
cializations� Second� versions are created to re�
present improvements of previous ones� Such
�serial� versions� or revisions� are frequently re�
sult of concretizations of the same variant�

Versions can by identi�ed by relation
is version� Relation is version is re�exive�
symmetric and transitive� It de�nes equivalence
classes within the set of all components� each of
which is described as a family of software com�
ponents� i�e� the family is a set of all compo�
nents which are versions of one another� Howe�
ver� we can recognize within a family a binary
relation is the same variant� The relation is an
equivalence� The equivalence classes are called
variants�

We introduce a software component as a re�
vision� In our meaning� even the very �rst con�



cretization of a variant is called a revision� A
software component consists of two parts� an
interface and a realization� In fact� from the
point of view of the software con�guration ma�
nagement is the realization part of only secon�
dary importance� More important are the re�
lations between components and component�s
properties as de�ned in the interface� Here� we
identify two parts� One part of the component�s
interface is a description of the variant� which
is common for all revisions of that variant� Any
change to it results in forming a new variant�
The other part is the revision�s own interface�
Any change to only revision part results in for�
ming a new revision�

Relations between software components can
be of two kinds�

� relations expressing the system�s architec�
ture� concerned especially with the funcio�
nality of the components and structure of
the system� such as depends on� speci�es�
uses�

� relations expressing certain aspects of the
system�s development process� with im�
portant consequences especially for the
version management� such as is version�

has revision� which we shall commonly re�
fer to as relations of the version kind�

The architectural relations are de�ned only
between variants and families� As a consequen�
ce� any change of such relations during forming
a new revision must result in a new variant�
We assume that all revisions of a given variant
have the same architectural relations�

It can be seen from the above� that revisions
do not have the �sovereignty� to maintain own
architectural relations� All their relations are
completely determined by the variant they be�
long to� This observation is very important be�
cause it allows us to simplify the situation and
to include into a software system model only
two kinds of elements� families and variants�
For a family� the model should represent links

to all its variants �links are implicitly de�ned by
is the same variant relation�� When building a
con�guration� exactly one such variant is to be

included for each family found to be included
in the con�guration�

For a variant� the model should represent lin�
ks to all those families which are referred to in
that variant �links are de�ned by architectu�
ral relations�� When building a con�guration�
precisely all such families are to be included
for each variant found to be included in the
con�guration� It should be noted that when a
family or a variant is found to be included in
the con�guration during the process of building
it� ultimately precisely one software component
will be included� The selection of variant and
software component within variant being part
of the version control subproblem�

Let us start now to use a graph terminology�
For any software system� we have a set F of
software families� and a set V of variants� The
sets F and V are disjoint� Let us further assume
there are de�ned two binary relations A � V �

F �architectural�� and O � F � V �denoting
option� version�� We de�ne the software system
model to be an oriented graph M � �N�E��
where N � F �V � and E � A�O� Any element
of E� �v�� v�� � E� called an edge� is of one from
among the twomutually exclusive kinds� Either
e� � V� e� � F � i�e� the edge is from A� In this
case� the node e� is called the A�node� Or e� �
F� e� � V � i�e� the edge is from O� In this case�
the node e� is called the O�node� Such graphs
are denoted as A�O graphs�

As an example� let us include an A�O�graph�
see Figure � depicting a software system with
families A�B�C�D�E and variants A���A���B���
etc�

The usual interpretation is that A�nodes are
origins of edges leading to nodes� all of which
must be considered provided the A�node is un�
der consideration �logical AND�� Similarly� O�
nodes are origins of edges leading to nodes�
from among which precisely one must be consi�
dered provided the O�node is under considera�
tion �logical OR��

To sum up� our method of modelling a
software system is to describe it by an A�O

graph� with nodes representing families and va�
riants in such a way� that these two kinds of
nodes alternate on any path� A model does not



Figure �� An example software system� partial
hierarchy of elements�

take into account� however� revisions which are
supposed to be mere implementations of va�
riants� Similar concepts were employed in ��	�
who proposes an orthogonal organization of va�
riants and revisions�

A model of a software system describes all
the possible con�gurations� The space of con��
gurations is extremely large even for a modest
system� For example� assuming a rather small
system with ��� families� and with � versions
within each family� we have ���� di
erent ver�
sions of the system� The thing is� that practi�
cally only a very few of them are useful� either
for maintenance or for further development� To
solve the problem how to �nd a desired ver�
sion of the software system �i�e�� a con�gura�
tion� without having to search the space of all
possible versions is therefore a very practical
question�

The model of software system which we pre�
sented above simpli�es greatly the problem of
building a con�guration� The problem can be
formulated in terms of graph searching� Besides
simplifying the problem� the model also simpli�
�es representation of the large set of possib�
le con�gurations� Without such a model� large
tables of con�gurations would have to be kept�
which would be source of di�culties during
maintenance�

Taking into account the fact that nodes in
our model are component families and variants�

but not revisions �i�e�� the actual components��
it follows from it that any con�guration we
build by searching the model can only be a
generic one� It can identify several con�gura�
tions of the software system� A con�guration
of a software system built solely from softwa�
re components� i�e� revisions� is called a bound
one� A generic con�guration consists from va�
riants and it determines a set of bound con��
gurations� To build a usable �bound� con�gu�
ration from a generic one� one revision for each
variant in the generic con�guration must be se�
lected�

The space of software system con�gurations
is hierarchical� with two levels� One level com�
prises all possible generic con�gurations� For
each generic con�guration� the second level
comprises all corresponding bounded con�gu�
rations� This organization provides for a high
degree of reuse� When building a new con�gu�
ration� we can reuse the current generic con��
guration as long as all the changes have been
revisions within the desired generic con�gura�
tion� Only when a change resulted in modifying
the set of variants� also a new generic con�gu�
ration must be built�

��� The process of building a con��
guration

In order to build a con�guration which would
meet the requirements� our method takes in�
to account knowledge about the architectural
relations between components and also about
selecting components� The method must cope
with three important tasks�

First subtask is to determine which compo�
nent families and which variants shall be consi�
dered in building the con�guration� Selection
of component families is based on edges origi�
nating in A�nodes� A condition for selection of
component families is a set of relations� R � A�
which determine links from A�nodes in the sy�
stem model�

Susequently� it is necessary to search this
subgraph in such a way that for each A�node
all successors are selected and for each O�node
exactly one successor is selected� A successor to
O�node �family� is its variant� A problem ari�



ses here in those special cases when either there
are more than one variant satisfying the requi�
rements� or there is no such variant at all� The
problem resembles some other problems which
are being tackled by arti�cial intelligence tech�
niques� In evaluating suitability of possible al�
ternatives of the solution� a heuristic informa�
tion is used� It can be expressed e�g� in form of
a heuristic function which assigns to each al�
ternative a value from some well ordered set�
The value estimates how suitable or promising
it is to select the given alternative in the actual
state�
In the case of software component selection�

it is di�cult to express a heuristic function
which would de�ne an ordering of versions ba�
sed on their suitability� There must be taken
into account various aspects� such as what kind
of software system is being built� what are the
requirements and properties of versions� The
aspects should be assigned weights according
to their relative importance�
We have found it more advantageous not to

attempt to order the alternatives �i�e�� compo�
nent variants� according to their suitability� but
rather to delete step by step those least suitable
from the set of all possible versions� We under�
stand the strategy of version selection to be ba�
sed on a sequence of heuristic functions which
reduce the set of suitable versions as identi�ed
by the software component family� By changing
the order in which the heuristic functions are
applied we can vary the importance of the eva�
luation criterion which the given function em�
bodies�
We have distributed the requirements �i�e��

the heuristic functions� for version selection in�
to two groups�

� necessary selection condition� which must
be satis�ed by any potentially selected ver�
sion� It is expressed by a heuristic function
h� which builds from a set of all versions
a set of all admissible versions� Necessa�
ry condition can be either condition which
must be satis�ed by all versions� or which
must not be satis�ed by any version�

� selection suitability condition� which is

used for a step by step reduction of the
set of admissible versions with the aim of
selecting one version� The condition is re�
presented by a sequence of heuristic func�
tions �h�� h�� ���� hn��

Heuristic functions represent knowledge about
the degree of suitability of particular versions�
They refer to properties of those versions as ex�
pressed by their attributes� We de�ne heuristic
function h to be a mapping�
h � �V � �V where V is set of all versions�
Heuristic functions can also express our

knowledge from software engineering� e�g�

� prefer a version with the greatest number
of de�ned attributes�

� prefer a version which is architecturally re�
lated to a least number of those compo�
nents which have so far not been included
in the con�guration being built�

The particular ordering of the heuristic func�
tions in our method is important� The earlier a
heuristic function is applied� the more impor�
tant it is in the process of version selection� The
ordering is a control heuristics� and as such a
meta�heuristics�
Next subtask is to select a set of exported

components� Finally� set of revisions� i�e� a set
of components which form the bound con�gu�
ration is selected� Here� for each variant from a
generic con�guration� a suitable revision must
be selected according to requirements for revi�
sion selection� Method for selecting the most
suitable revision is in fact similar to the above
one for selecting most suitable variants�
Any con�guration eligible for selection must

satisfy two important properties� consistency
and completeness� Both the properties can be
properly de�ned for con�gurations ��	� Our
method builds a con�guration for which the
properties hold� if such a con�guration exists
at all�

� Experiments

The proposed method has been implemented
in order to perform experiments aiming to ana�
lyze its properties� We have developed an ex�



perimental implementation of the method in
Prolog� The implementation endeavour became
an interesting research theme by itself� While
devising algorithm implementing our method�
we were facing essentially the problem of sear�
ching an A�O graph with constraints� This led
us to techniques similar to those used in truth
maintenance systems� and �nally to devising a
programming technique for implementing such
algorithms� which uses markings to maintain
consistency� A more detailed description of the�
se results is reported in ��	�

� Conclusion

One principle behind our approach to software
con�guration management is to allow software
engineers to write down informations which are
e
ectively interpretable by a supporting tool�
We have identi�ed a possible portfolio of such
informations� In our model� software system is
represented as an A�O graph with two kinds of
versions� viz� variants and revisions� In the mo�
del� only variants� along with component fami�
lies are represented� A variety of architectural
relations can be de�ned between variants and
families�

Our approach makes not only process of
con�guration building easier� it provides for a
high degree of reuse� One can reuse a software
system model� built generic con�guration and
con�guration requirements� The fact that ar�
chitectural relations can be de�ned between va�
riants and families allows our model to be �mo�
re generic� as for example ��� �	� One model
created for presented method usually has to be
described by more than one model in above ci�
tied approaches� because in them architectural
relations can be de�ned only between compo�
nent families�

Besides de�ning relations� the software en�
gineer can specify conditions which must be
satis�ed by components to be included in the
con�guration� These conditions are e
ectively
restrictions in�uencing consistency�

Both relations and conditions can be de��
ned on various levels� The software engineer
can de�ne e�g� the architectural relation �im�

ports from� between two component families�

or between a variant and a family�
As a special kind of heuristic information�

our method opens for the software engineer a
room for incorporating speci�c knowledge on
how to select the suitable component version�
Our experiments show that with such heuris�
tics� the method performs better�

References

��	 Y� Bernard� M� Lacroix� P� Lavency� and
M� Vanhoedenaghe� Con�guration mana�
gement in an open environment� In Proc�

�nd European Software Engineering Confe�

rence� pages ����� Springer�Verlag� �����
��	 M� Bielikov�a and P� N�avrat� A Prolog tech�

nique of implementing dependency�directed
backtracking� Technical report� Slovak
Technical University� Bratislava� �����

��	 J� Estublier� The Adele con�guration ma�
nager� Technical report� L�G�I�� Grenoble�
�����

�	 M�L� Jaccheri and R� Conradi� Tech�
niques for process model evolution in
EPOS� IEEE Transactions on Software En�

gineering� ���������������� �����
��	 D�B� Leblang and R�P� Chase� Para�

llel software con�guration management in
a network environment� IEEE Software�
���������� �����

��	 D�E� Perry� Dimensions of consistency in
source versions and system compositions�
In J� Feiler� editor� Proc� of the �rd Int�

Workshop on Software Con�guration Ma�

nagement� pages ������ �����
��	 J� Plaice and W�W� Wadge� A new app�

roach to version control� IEEE Transac�

tions on Software Engineering� ����������
���� �����

��	 C� Reichenberger� Concepts and techniques
for software version control� Software �

Concepts and Tools� ������������ ����
��	 W�F� Tichy� Tools for software con�gu�

ration management� In Proc� Int� Work�

shop on Software Version and Con�gura�

tion Control� pages ����� Stuttgart� �����


