An Approach to Building Software Configuration

Using Heuristic Knowledge

Maria Bielikova, Pavol Navrat

Slovak Technical University, Dept. of Computer Science and Engineering,

lkovicova 3, 812 19 Bratislava, Slovakia
E-mail: {bielikova,navrat}@elf.stuba.sk
Tel.: (+ 42 7) 791 395
Fax: (+ 42 7) 720 415

Abstract

The paper describes original research in the area of
software configuration management. We assume a
software system consists from versions of two kin-
ds: variants and revisions. Our approach is based
on defining a suitable model of the software system,
formulating requirements for a configuration to be
built, and finally building a configuration. The re-
quirements are in fact conditions which constrain
the solution. To build a configuration requires se-
arch in the model represented as A/O graph. We
work with generic configurations which represent
solution on a level of variants, and then with bound
configurations which represent solution on a level of
revisions. We proposed a method to build a confi-
guration which uses heuristic knowledge and imple-
mented it in Prolog. Our experiments show such a
method performs better than without supporting
knowledge.

Keywords: software system configuration, heuris-

tic knowledge, version control
1 Introduction

Software system changes more often than
usually admitted. In fact, the changes are to be
considered more a rule than an exception. Re-
asons for the unstability are not only possible
errors in it which are to be corrected, but first
of all the changing nature of the surrounding
world to which the software system should be
permanently adopted in the process of so called
maintenance.

Software systems consist of many compo-
nents which may undergo changes, as they in-

deed frequently do. These modifications are
usually incremental, so it appears to be reaso-
nable to consider results of such modifications
to be versions of particular components rather
than independent objects. In a traditional mo-
del of versions [9, 3] two different kinds of modi-
fications are reflected in two kinds of versions:
revisions and variants. Similar partitioning of
versions is respected also in a change oriented
model [4].

Revisions result from modifications which
are caused by error correction, functionality en-
hancement, and/or adaptation to changes in
environment. They develop in time sequence,
with each next one usually intended to replace
the previous one.

Variants of software components can be des-
cribed as alternative implementations of a par-
ticular concept [7]. New variant represents an
alternative solution. Variants usually exist con-
currently. Variants result from experimental
development or modifications towards ame-
lioring properties of the system.

A family of software components comprises
a set of such versions of a software component
that were formed by gradual modifications of
the given component. A software system confi-
guration is a set of software components which
is consistent.

When specifying requirements for a configu-
ration of a software system, we adopted the
approach which is accepted universally, e.g.
[9, 3], i.e. a configuration is built with re-
spect to the relation depends_on, or its va-
riants or refinements like uses_type_definition,

calls_procedure, uses_variable, etc.

Software components can be, as far as their
structure is concerned, either simple or com-
posed. If a composed component is included in
a configuration, all the components which are
included in it should be included as well.

Of course, the resulting set must be consis-
tent. Moreover, it should include only compo-
nents which are actually desired. For example,
a configuration intended for an end-user should
include executable program and a user docu-
mentation. On the other hand, a configuration
intended for a further development must ob-
viously include source program modules, but
also design documentation etc. as well.

The process of configuration building should
respect the existence of versions of software
components. It should allow the highest degree
of reusability. It should also support building at
least an incomplete configuration in case some
components do not satisfy the conditions.

Our goal is to devise a method that would
support the process of building a software sy-
stem configuration. The resulting configuration
should be conformant to given requirements.
Assuming software system components usual-
ly have several variants with several revisions
each, selecting a complete and consistent set
of components satisfying given constraints is
essentially a process of searching.

2 The method

In order to devise a method for building a
software system configuration, we have found
at least the following questions to be impor-
tant:

e how to model a software system,

e which steps should be followed when buil-
ding a configuration.

We shall describe our approach to each one of
these questions.

2.1 Model of a software system

We attempt to describe a software system with
the specific purpose in mind, i.e. to be used

during development and maintenance, and spe-
cifically in building the software system confi-
guration. Therefore, our model encompasses
those parts of the system and those relations
among them which are important for building
a configuration.

When attempting to identify them, it is inst-
ructive to bear in mind that a software system
is being created in a development process which
can be viewed as a sequence of transformations.
Because the initial specification of the system
does not and should not include details of the
solution, the overall orientation of the trans-
formations is from abstract towards concrete.
However, this does not mean that each parti-
cular transformation and especially when app-
lied to a particular subsystem or component is
a concretisation. In fact, there are involved ab-
stracting, generalizing, and specializing trans-
formations as well. Let us mention importance
of such kinds of transformations in software re-
use, reverse engineering, etc.

From among all the possible kinds of trans-
formations, it is important to distinguish all
those which correspond to the notion of com-
ponent version. Creating a component version
can be done in one of two possible ways. Fir-
st, versions are created to represent alternative
solutions of the same specification. They differ
in some attributes. Such ’parallel’ versions, or
variants, are frequently result of different spe-
cializations. Second, versions are created to re-
present improvements of previous ones. Such
’serial’ versions, or revisions, are frequently re-
sult of concretizations of the same variant.
identified by

is_version 1s

can by relation
Relation reflexive,
symmetric and transitive. It defines equivalence
classes within the set of all components, each of
which is described as a family of software com-
ponents, i.e. the family is a set of all compo-
nents which are versions of one another. Howe-
ver, we can recognize within a family a binary
relation is_the_same_variant. The relation is an
equivalence. The equivalence classes are called
variants.

Versions
1S_version.

We introduce a software component as a re-
vision. In our meaning, even the very first con-

cretization of a variant is called a revision. A
software component consists of two parts: an
interface and a realization. In fact, from the
point of view of the software configuration ma-
nagement is the realization part of only secon-
dary importance. More important are the re-
lations between components and component’s
properties as defined in the interface. Here, we
identify two parts. One part of the component’s
interface is a description of the variant, which
is common for all revisions of that variant. Any
change to it results in forming a new variant.
The other part is the revision’s own interface.
Any change to only revision part results in for-
ming a new revision.

Relations between software components can
be of two kinds:

o relations expressing the system’s architec-
ture, concerned especially with the funcio-
nality of the components and structure of
the system, such as depends_on, specifies,
uses,

o relations expressing certain aspects of the
system’s development process, with im-
portant consequences especially for the
version management, such as is_version,
has_revision, which we shall commonly re-
fer to as relations of the version kind.

The architectural relations are defined only
between variants and families. As a consequen-
ce, any change of such relations during forming
a new revision must result in a new variant.
We assume that all revisions of a given variant
have the same architectural relations.

It can be seen from the above, that revisions
do not have the ’sovereignty’ to maintain own
architectural relations. All their relations are
completely determined by the variant they be-
long to. This observation is very important be-
cause it allows us to simplify the situation and
to include into a software system model only
two kinds of elements: families and variants.

For a family, the model should represent links
to all its variants (links are implicitly defined by
is_the_same_variant relation). When building a
configuration, exactly one such variant is to be

included for each family found to be included
in the configuration.

For a variant, the model should represent lin-
ks to all those families which are referred to in
that variant (links are defined by architectu-
ral relations). When building a configuration,
precisely all such families are to be included
for each variant found to be included in the
configuration. It should be noted that when a
family or a variant is found to be included in
the configuration during the process of building
it, ultimately precisely one software component
will be included. The selection of variant and
software component within variant being part
of the version control subproblem.

Let us start now to use a graph terminology.
For any software system, we have a set I’ of
software families, and a set V' of variants. The
sets F' and V are disjoint. Let us further assume
there are defined two binary relations A = V X
F' (architectural), and O = F x V (denoting
option, version). We define the software system
model to be an oriented graph M = (N, V),
where N = FUV,and F = AUQO. Any element
of K, (vy,vs) € E, called an edge, is of one from
among the two mutually exclusive kinds. Either
e, € Viey € I, ie. the edge is from A. In this
case, the node e; is called the A-node. Or ¢; €
F.e, € V, ie. the edge is from O. In this case,
the node e, is called the O-node. Such graphs
are denoted as A/O graphs.

As an example, let us include an A/O-graph,
see Figure 1 depicting a software system with
families A,B,C,D.E and variants A.1,A.2,B.1,
etc.

The usual interpretation is that A-nodes are
origins of edges leading to nodes, all of which
must be considered provided the A-node is un-
der consideration (logical AND). Similarly, O-
nodes are origins of edges leading to nodes,
from among which precisely one must be consi-
dered provided the O-node is under considera-
tion (logical OR).

To sum up, our method of modelling a
software system is to describe it by an A/O
graph, with nodes representing families and va-
riants in such a way, that these two kinds of
nodes alternate on any path. A model does not

Figure 1: An example software system: partial
hierarchy of elements.

take into account, however, revisions which are
supposed to be mere implementations of va-
riants. Similar concepts were employed in [8],
who proposes an orthogonal organization of va-
riants and revisions.

A model of a software system describes all
the possible configurations. The space of confi-
gurations is extremely large even for a modest
system. For example, assuming a rather small
system with 100 families, and with 2 versions
within each family, we have 2!°° different ver-
sions of the system. The thing is, that practi-
cally only a very few of them are useful, either
for maintenance or for further development. To
solve the problem how to find a desired ver-
sion of the software system (i.e., a configura-
tion) without having to search the space of all
possible versions is therefore a very practical
question.

The model of software system which we pre-
sented above simplifies greatly the problem of
building a configuration. The problem can be
formulated in terms of graph searching. Besides
simplifying the problem, the model also simpli-
fies representation of the large set of possib-
le configurations. Without such a model, large
tables of configurations would have to be kept,
which would be source of difficulties during
maintenance.

Taking into account the fact that nodes in
our model are component families and variants,

but not revisions (i.e., the actual components),
it follows from it that any configuration we
build by searching the model can only be a
generic one. It can identify several configura-
tions of the software system. A configuration
of a software system built solely from softwa-
re components, i.e. revisions, is called a bound
one. A generic configuration consists from va-
riants and it determines a set of bound confi-
gurations. To build a usable (bound) configu-
ration from a generic one, one revision for each
variant in the generic configuration must be se-
lected.

The space of software system configurations
is hierarchical, with two levels. One level com-
prises all possible generic configurations. For
each generic configuration, the second level
comprises all corresponding bounded configu-
rations. This organization provides for a high
degree of reuse. When building a new configu-
ration, we can reuse the current generic confi-
guration as long as all the changes have been
revisions within the desired generic configura-
tion. Only when a change resulted in modifying
the set of variants, also a new generic configu-
ration must be built.

2.2 The process of building a confi-
guration

In order to build a configuration which would
meet the requirements, our method takes in-
to account knowledge about the architectural
relations between components and also about
selecting components. The method must cope
with three important tasks.

First subtask is to determine which compo-
nent families and which variants shall be consi-
dered in building the configuration. Selection
of component families is based on edges origi-
nating in A-nodes. A condition for selection of
component families is a set of relations, R C A,
which determine links from A-nodes in the sy-
stem model.

Susequently, it is necessary to search this
subgraph in such a way that for each A-node
all successors are selected and for each O-node
exactly one successor is selected. A successor to
O-node (family) is its variant. A problem ari-

ses here in those special cases when either there
are more than one variant satisfying the requi-
rements, or there is no such variant at all. The
problem resembles some other problems which
are being tackled by artificial intelligence tech-
niques. In evaluating suitability of possible al-
ternatives of the solution, a heuristic informa-
tion is used. It can be expressed e.g. in form of
a heuristic function which assigns to each al-
ternative a value from some well ordered set.
The value estimates how suitable or promising
it is to select the given alternative in the actual
state.

In the case of software component selection,
it is difficult to express a heuristic function
which would define an ordering of versions ba-
sed on their suitability. There must be taken
into account various aspects, such as what kind
of software system is being built, what are the
requirements and properties of versions. The
aspects should be assigned weights according
to their relative importance.

We have found it more advantageous not to
attempt to order the alternatives (i.e., compo-
nent variants) according to their suitability, but
rather to delete step by step those least suitable
from the set of all possible versions. We under-
stand the strategy of version selection to be ba-
sed on a sequence of heuristic functions which
reduce the set of suitable versions as identified
by the software component family. By changing
the order in which the heuristic functions are
applied we can vary the importance of the eva-
luation criterion which the given function em-
bodies.

We have distributed the requirements (i.e.,
the heuristic functions) for version selection in-
to two groups:

e necessary selection condition, which must
be satisfied by any potentially selected ver-
sion. It is expressed by a heuristic function
ho which builds from a set of all versions
a set of all admissible versions. Necessa-
ry condition can be either condition which
must be satisfied by all versions, or which
must not be satisfied by any version,

e selection suitability condition, which is

used for a step by step reduction of the
set of admissible versions with the aim of
selecting one version. The condition is re-
presented by a sequence of heuristic func-

tions (hy, hay ...y hy).

Heuristic functions represent knowledge about
the degree of suitability of particular versions.
They refer to properties of those versions as ex-
pressed by their attributes. We define heuristic
function h to be a mapping:
h:2Y — 2V where V is set of all versions.
Heuristic functions can also express our
knowledge from software engineering, e.g.

o prefer a version with the greatest number
of defined attributes,

e prefer a version which is architecturally re-
lated to a least number of those compo-
nents which have so far not been included
in the configuration being built.

The particular ordering of the heuristic func-
tions in our method is important. The earlier a
heuristic function is applied, the more impor-
tant it is in the process of version selection. The
ordering is a control heuristics, and as such a
meta-heuristics.

Next subtask is to select a set of exported
components. Finally, set of revisions, i.e. a set
of components which form the bound configu-
ration is selected. Here, for each variant from a
generic configuration, a suitable revision must
be selected according to requirements for revi-
sion selection. Method for selecting the most
suitable revision is in fact similar to the above
one for selecting most suitable variants.

Any configuration eligible for selection must
satisfy two important properties: consistency
and completeness. Both the properties can be
properly defined for configurations [6]. Our
method builds a configuration for which the
properties hold, if such a configuration exists
at all.

3 Experiments

The proposed method has been implemented
in order to perform experiments aiming to ana-
lyze its properties. We have developed an ex-

perimental implementation of the method in
Prolog. The implementation endeavour became
an interesting research theme by itself. While
devising algorithm implementing our method,
we were facing essentially the problem of sear-
ching an A/O graph with constraints. This led
us to techniques similar to those used in truth
maintenance systems, and finally to devising a
programming technique for implementing such
algorithms, which uses markings to maintain
consistency. A more detailed description of the-
se results is reported in [2].

4 Conclusion

One principle behind our approach to software
configuration management is to allow software
engineers to write down informations which are
effectively interpretable by a supporting tool.
We have identified a possible portfolio of such
informations. In our model, software system is
represented as an A/O graph with two kinds of
versions, viz. variants and revisions. In the mo-
del, only variants, along with component fami-
lies are represented. A variety of architectural
relations can be defined between variants and
families.

Our approach makes not only process of
configuration building easier, it provides for a
high degree of reuse. One can reuse a software
system model, built generic configuration and
configuration requirements. The fact that ar-
chitectural relations can be defined between va-
riants and families allows our model to be ”mo-
re generic” as for example [1, 5]. One model
created for presented method usually has to be
described by more than one model in above ci-
tied approaches, because in them architectural
relations can be defined only between compo-
nent families.

Besides defining relations, the software en-
gineer can specify conditions which must be
satisfied by components to be included in the
configuration. These conditions are effectively
restrictions influencing consistency.

Both relations and conditions can be defi-
ned on various levels. The software engineer
can define e.g. the architectural relation ”
ports_from” between two component families,

1m-

or between a variant and a family.

As a special kind of heuristic information,
our method opens for the software engineer a
room for incorporating specific knowledge on
how to select the suitable component version.
Our experiments show that with such heuris-
tics, the method performs better.

References

[1] Y. Bernard, M. Lacroix, P. Lavency, and
M. Vanhoedenaghe. Configuration mana-
gement in an open environment. In Proc.
2nd Furopean Software Fngineering Confe-
rence, pages 35-43. Springer-Verlag, 1987.
M. Bielikova and P. Navrat. A Prolog tech-
nique of implementing dependency-directed
backtracking. Technical report, Slovak
Technical University, Bratislava, 1995.

J. Estublier. The Adele configuration ma-
nager. Technical report, L.G.I., Grenoble,
1992.

M.L. Jaccheri and R. Conradi. Tech-
niques for process model evolution in
EPOS. IEFFE Transactions on Software Fn-
gineering, 19(12):1145-1156, 1993.
D.B. Leblang and R.P. Chase.
llel software configuration management in
a network environment. [FFEFE Software,
4(6):28-35, 1987.

D.E. Perry. Dimensions of consistency in
source versions and system compositions.
In J. Feiler, editor, Proc. of the 3rd Int.
Workshop on Software Configuration Ma-
nagement, pages 29-32, 1991.

J. Plaice and W.W. Wadge. A new app-
roach to version control. IFFE Transac-
tions on Software Engineering, 19(3):268—
275, 1993.

C. Reichenberger. Concepts and techniques
for software version control. Software -
Concepts and Tools, 15(3):97-104, 1994.
W.F. Tichy. Tools for software configu-
ration management. In Proc. Int. Work-
shop on Software Version and Configura-
tion Control, pages 1-20, Stuttgart, 1988.

Para-

