Software Configuration Management(

Mária Bieliková

Slovak University of Technology, Dept. of Computer Science, �Ilkovičova 3, 812 19 Bratislava, Slovakia�bielik@elf.stuba.sk, http://www.dcs.elf.stuba.sk/~bielik

Abstract: The paper summarizes the state in the software configuration management (SCM). �Basic concepts, mechanisms and processes are summarized. To show how to put the principles of the SCM into practice some issues connected to the SCM tools are described. An extensive list of references together with the list of many useful links to WWW pages connected to the SCM is provided at the end of the paper.

Keywords: version, variant, revision, configuration, software system model, SCM tool

Introduction

Software configuration management (SCM) is one of the software engineering disciplines concerned with managing the change. While in an earlier presentation (Bersoff , 1984) of the elements of SCM relatively little attention was paid to the question of configuration version control, and the task of building configurations of software systems was not even discussed as such, a few years later there was articulated an understanding (Lehman, 1991) that “once alternative element versions exist, we can configure, i.e. build, a range or family of systems the precise characteristics of which will depend on the subset of elements used”. It comes as no surprise that automation has been sought, but it was noted (Plaice, Wadge, 1993) that what “makes it difficult to build a complete system automatically is the lack of correspondence between versions of different components”. These three works all published within less than ten years show the extent of development the discipline of SCM has been experiencing, and the growing emphasis on the area of configuration building. Realising the difficulty in automating it, seeking methods that would provide support is a more realistic objective. Moreover, a way to achieve such objective should involve more information about the system and its components, e.g. knowledge about the relations (i.e., corres�pondence) between the system’s elements, or knowledge about properties of the elements.

The purpose of this paper is to bring together basic concepts, mechanisms and processes con�nected to the SCM. This work is based on several years of research effort in the SCM area at the Slovak University of Technology which resulted in devising a method for software configuration building together with a version selection reported in several papers (Bieliková, Návrat, 1995a; 1995b; 1996a; 1996b; Návrat, Bieliková, 1996).

System evolution

An important aspect of SCM is that it is concerned with maintaining configurations of evolving software systems (Narayanaswamy, Scacchi, 1987). The ESE system (Ramamoorthy, 1990) is an evolution support environment which provides automated aids to keeping track of relevant information about software projects. This includes also information about software configuration and version control and allows managing configurations according to such informations maintained in a database.

A more universal view on software system evolution is reflected in the EPOS system (Jaccheri, Conradi, 1993). The system maintains a database to store the entire software process model expressed by a schema of classes and meta-classes, and its model entities and relationships. Such model is potentially useful in building configurations, but the EPOS system is concerned more with the overall support to the software process.

Another approach to describing the environment evolution is the Prism model of changes (Madhavji, 1992). It uses a so called dependency structure for describing data related to changes and a so called change structure for classifying, recording, and analyzing change-related data. The model thus separates object and meta-levels of changes.

Versions

Software systems consist of many components. In the course of system development and maintenance, the components undergo changes. The changes reflect development steps, or improvements and fault correctings, or the changes in the system’s environment. An important subclass of transformations that change the components are those which, intuitively speaking, preserve the specification of the component and do not radically change the language. Such a kind of transformations has been characterized (Berzins et al., 1993) as meaning-preserving and lateral (producing a result at a similar level of abstraction).

Variants and revisions

Recently, most of the authors have been making use of the difference between the notions of variants and revisions (Mahler, Lampen, 1988; Fr(hauf, 1990; Estublier, 1992; Plaice, Wadge, 1993). Others, on the other hand, did not incorporate handling of versions in their methods (Feldman, 1979; Yau, Tsai, 1987), still others did but without distinguishing between variants and revisions (Tichy, 1986; Oquendo et al., 1989). The notion of a family of components was used in several works (Narayanaswamy, Scacchi, 1987; Kimball, Larson, 1991; Vescoukis et al., 1992) to attribute properties of components, but without a reference to variants and revisions.

Version control

A problem related to building software system configurations is how to select proper versions to be included in the configuration. Version to be selected should satisfy requirements which can be given in one of several ways:

empty description: the required version is selected only according to default requirements incorporated in the system, such as ‘select the most recently formed version’ (Tichy, 1985),

explicit identification: version to be selected is directly given for each family of components (Korn, Krell, 1990),

description by attributes: version is identified by its properties (Cohen et al., 1988; Kimball, Larson, 1991; Estublier, 1992).

Frequently used approach to version selection is to use conditions restricting properties of versions, e.g. (Mahler, Lampen, 1988; Tichy, 1988; Cohen et al., 1988; Kimball, Larson, 1991; Estublier, 1992). Often preferences can be specified as well. Preferences are in fact logical conditions which act as filters. In (Zeller, Snelting, 1995) is proposed for modelling version sets a unified approach based on feature logic. Version sets are identified by their features, that is, a boolean expression over (name:value) attributes. Version control based on an ordering of versions according to how relevant each version appears to be with respect to the configuration version has been presented in (Plaice, Wadge, 1993).

Another frequently used approach is to use rules. For example in the system DSEE (Leblang, Chase, 1987) there is defined a set of rules which are interpreted sequentially until the sought component is selected. The language for writing rules allows defining default rules, dynamic rules (e.g., select the most recent version), and conditional rules (if-then).

Version selection controlled by knowledge in the form of heuristic functions serving as necessary condition and suitability condition for selection is presented in (Návrat, Bieliková, 1996).

Version history

Versions of software component are often organized in an ancestral (history) tree (Rochkind, 1975; Tichy, 1985; Cohen et al., 1988). The tree has a root version which represents the first version of a software component. Arcs represent the relation developed_from (or derived_form). A young history tree is slender: it consists of only one branch, called trunk. As development proceeds, side branches may rise. A need of branching arises in the following situations: (i) simultaneous development among multiple users; (ii) distributed development at several sites; (iii) exploratory development; (iv) old versions still in use need to be fixed; (v) versions with alternative purposes are created. Let us note that only the last case of branch forming is the case of a variant. A history graph is used when merging of branched versions is allowed (Buffenbarger, 1995).

Version history can be managed independently for each single configuration item e.g., SCCS (Rochkind, 1975) and RCS (Tichy, 1985) or orthogonally for the entire project e.g., Voodoo (Reichenberger, 1994).

Version storage

One essential task of SCM is to store the history tree of versions efficiently. To address this problem, several techniques have been devised. The key space-saving idea is that if one version has been developed from another (i.e., a successor in the history tree) then the two versions probably have a great deal of commonality and a small number of differences. To save space only one version is stored in full and the other in form of so called delta scripts (Reichenberger, 1991).

When studying the problem of delta storing, two aspects are important: (i) how to generate a delta between two files (and also to recreate the version from delta and version stored intact) (Rochkind, 1975; Tichy, 1985; Reichenberger, 1991; Hunt et al., 1996) and (ii) how to apply delta to the version history tree, i.e. which version to store in full and to which version to calculate delta. Forward delta (Rochkind, 1975; Heimbigner, 1988) and reverse delta (Tichy, 1985; Magnusson, 1993; Cohen et al., 1988) are the best known techniques. Their combination and extension is described in (Bieliková, Návrat, 1996b). Properties of the particular technique (access time and space consumed) are different and imply successful use by various applications.

Software system model

Primary function of a SCM tool is to provide the means to define and control releases of a pro�duct, i.e. configuration. Thus a software system model for SCM purposes should aid configuration building. Configuration can be represented differently for different kinds of configuration items involved. Some examples of configuration structures which naturally arise are: sets (e.g. the set of all program-versions participating in a release; only one version for each member is allowed); groupings (e.g. the program versions a user maintains; more than one version of each member is allowed); trees (e.g. the section/chapter/paragraph structure of a document); directed graphs (e.g. the MAKE dependency structure of a program); a network (e.g. the call graph among a class collection).

Considering the above list, a very general type of structure which may be able to represent most of the cases routinely arising in SCM is the directed graph (Yau, Tsai, 1987; Heimbigner, 1988). Tichy (Tichy, 1986) and later Estublier (Estublier, 1992) have presented a model based on AND/OR graphs. An important aspect stressed also by the latter work is reusability of the created configuration. AND/OR-type graph as a software system model is proposed also in (Bieliková, Návrat, 1995b).

Building software system configurations

The task includes two basic activities: managing software system versions, and managing tools. The former takes care for maintaining consistency and completeness of software system configurations consisting of components. Among the first such systems were SCCS and RCS (Rochkind, 1975; Tichy, 1985). The latter involves automatic activation of tools generating derived software components. The classical example is MAKE (Feldman, 1979).

The task itself can be characterised by the following input/output description:

Input to the process is: (i) set of software components constituting the system, (ii) software system model: description of the system's structure, i.e. the components' families and relations among them, (iii) version selection requirements.

Output is the identification of the required configuration.

Recently, the system ADELE (Estublier, 1992), and its successor NOMADE (Belkhatir, Ahmed-Nacer, 1993) have tackled the problem of configuration building most directly. This approach not only makes use of the conceptual distiction between variants and revisions, but defines also the concept of generic configuration as a set of variants, which greatly facilitates building of configurations and reusing them as well (Bieliková, Návrat, 1996a).

SCM automated support

Limited success of current SCM tools (Cagan, 1995) is mainly due to not covering some of the requirements. Basic requirements could be summarized as follows:

support a wide range of needs, not just a particular process that is thought to have special value (Leblang, Levine, 1995);

consider the automated support of process requirements as a key mechanism (processes supported by a SCM tool should not require to be followed up with manual procedures);

project files (configuration items) should be stored together with managing the process of creating deliverable objects based on the source, or providing automated ways to construct configurations;

support evolving the process over time;

flexibility to lifecycles of the configuration items that a SCM tool supports;

flexible integration into a development environment (Schamp, Owens, 1997).

When considering system model in the context of a SCM tool, a decision should be made about the software components placed under control of the SCM tool. The decision depends on a spectrum of activities supported by the SCM tool. Second important issue is an identification of the relationships covered in the model. Generally, three types of relationships are considered: (i) derivation relationship (basis for a version history graph); (ii) binding relationship (between the member configuration item and the configuration); (iii) hyperlink relationship (between any two configuration items, e.g. depends_on, documents,…).

SCM processes models supported by tools fall into four groups: the checkout/checkin model, the composition model, the long transaction model and the change set model. They are characterized in detail by Feiler (Feiler, 1991).

SCM on the World Wide Web

Bellow in the Table 1 some most useful links to SCM related pages on World Wide Web are summarized. They were selected from hundreds available sources of information.

Research and universities�
�
�
The PROTEUS project together with PROTEUS Configuration Language (PCL) �
http://www.comp.lancs.ac.uk/computing/research/cseg/projects/PROTEUS/�
�
Versioning and Configuration Management of World Wide Web Content�
http://www.ics.uci.edu/~ejw/versioning/�
�
SERL Research in Configuration Management�
http://www.cs.colorado.edu/users/serl/cm/�
�
Software Engineering Institute (SEI) Software configuration management page�
http://www.sei.cmu.edu/technology/case/scm/scmHomePage.html�
�
SCM in Technical University of Braunschweig�
http://www.cs.tu-bs.de/softech/sci.html�
�
SCM research at NRC (DaSC) �
http://wwwsel.iit.nrc.ca/projects/scm.html�
�
Institute of Configuration Management�
http://www.icmhq.com/�
�
Reviews, references, tutorials�
�
�
SCM Yellow Pages�
http://www.cs.colorado.edu/users/andre/configuration_management.html�
�
Yahoo - Configuration Management search�
http://www.yahoo.com/Computers_and_Internet/Software/Programming_Tools/Software_Engineering/Configuration_Management/�
�
Bibliography on Software Configuration Management by Hal Render�
http://liinwww.ira.uka.de/bibliography/SE/

scm.html�
�
Newsgroup comp.software.config-mgmt�
http://www.iac.honeywell.com/Pub/Tech/CM/�
�
Andrew Blyth's tutorial on change management�
http://www.comp.glam.ac.uk/pages/staff/ajcblyth/Teaching/Change-Management/Change-Management.html�
�
The Configuration Management Job Listing�
http://www.cs.colorado.edu/users/andre/cmjobs/

cmjobs.html�
�
STSC (Software Technology Support Center)�
http://stsc.hill.af.mil/~cm/index.html�
�
SCM documentation of SEPO�
http://sepo.nosc.mil/Docs.html�
�
Glossary of terms for engineering management �
http://www.airtime.co.uk/users/wysywig/gloss.htm�
�
Set of management plans and standards for software engineering work by Ken Rigby�
http://www.airtime.co.uk/users/wysywig/

wysywig.htm�
�
Free SCM tools�
�
�
CMI�
http://cmis.caci.com/�
�
The CVS Bubbles�
http://www.loria.fr/~molli/cvs-index.html�
�
ICE (Incremental Configuration Engine)�
http://www.cs.tu-bs.de/softech/ice_e.html�
�
QVCS (Quma Version Control System)�
http://www.clark.net/pub/jimv/qvcsman.html�
�
RCS (Revision Control System)�
ftp://prep.ai.mit.edu/pub/gnu/�
�
ShapeTools�
http://www.cs.tu-berlin.de/~shape/�
�
Commercial SCM tools�
�
�
ClearCase�
http://www.pureatria.com/�
�
PVCS Version Manager�
http://www.intersolv.com/solution/scm_top.htm�
�
PERFORCE�
http://www.perforce.com/perforce/info.html�
�
RCE (Revision Control Engine)�
http://www.xcc-ka.de/products/RCE/RCE.html�
�
MKS Source Integrity�
http://www.mks.com/�
�
Visual SourceSafe�
http://www.microsoft.com/SSAFE/�
�
Personal SCM pages�
�
�
Mária Bieliková�
http://www.dcs.elf.stuba.sk/~bielik/�
�
David G. Durand�
http://cs-www.bu.edu:80/students/grads/dgd/�
�
Jacky Estublier�
http://www-lsr.imag.fr/Les.Personnes/

Jacky.Estublier�
�
Dennis Heimbigner�
http://www.cs.colorado.edu/users/dennis/�
�
André van der Hoek�
http://www.cs.colorado.edu/users/andre/�
�
James J. Hunt�
http://wwwipd.ira.uka.de/~jjh/�
�
Andy Lampen�
http://www.cs.tu-berlin.de/~andy/index.html�
�
Alex Lobba's Software Team Development �
http://www.silcom.com:80/~alobba/�
�
Axel Mahler�
http://www.cs.tu-berlin.de/~axel/index.html�
�
Pascal Molli�
http://www.loria.fr/~molli/cm-index.html�
�
Walter F. Tichy�
http://wwwipd.ira.uka.de/~tichy/�
�
Alexander L. Wolf�
http://www.cs.colorado.edu/~alw/Home.html�
�
Table 1: List of WWW sources related to the SCM

Conclusions

This paper focuses on basic concepts, mechanisms and processes of software configuration management. The aim was not to give a complete overview which is almost impossible on a few pages but to aid in the first ancounter with this evolving discipline. More detailed description together with other issues such as security and access control, workflow support, metrics collection, distributed configuration management can be found in the listed references.

References

Ayer, S.J. and Patrinostro, F.S. (1992), Software Configuration Management: Identification, Accounting, Control, and Management, McGraw-Hill, New York.

Belkhatir, N. and Ahmed-Nacer, M. (1993), “Major issues on PSEE: Process software engineering environments”, Computers and Artificial Intelligence, Vol. 12, No. 3, pp. 279-298.

Bersoff, E.H. (1984), “Elements of software configuration management”, IEEE Trans. on Software Engineering, Vol. SE-10, No. 1, pp 79-87.

Berzins, V. and Luqi and Yehudai, A. (1993), “Using transformations in specification-based prototyping”, IEEE Trans. on Software Engineering, Vol. 19, No. 5, pp. 436-452.

Bieliková, M. and Návrat, P. (1995), “An approach to building a software system configuration using heuristic knowledge”, Proc. 17th Int. Conf. on Information Technology Interfaces ITI'95, Pula, June 1995, ed. by D. Karpi(and V.H. Dobri(, pp. 575-580.

Bieliková, M. and Návrat, P. (1995), “Modelling software systems in configuration management”, Applied Mathematics and Computer Science, Vol. 5, No. 4, pp. 751-764.

Bieliková, M. and Návrat, P. (1996), “A knowledge based method for building a software system configuration”, Knowledge Based Systems, Vol. 9, No. 1, pp. 61-65.

Bieliková, M. and Návrat, P. (1996), “Space-efficient techniques for storing versions of software components”, Proc. of Scientific Conf. Elektronic Computers and Informatics, Slovakia, Sept. 1996, pp. 56-61.

Buffenbarger, J. (1995), “Syntactic Software Merging”, (Estublier, 1995), pp. 153-172.

Berlack, H.R. (1992), Software Configuration Management, John Wiley & Sons, New York.

Cagan, M. (1995), “Untagling Configuration Management: Mechanism and Methodology in SCM Systems”, (Estublier, 1995), pp. 35-52.

Cohen, E.S. et al. (1988), “Version management in Gypsy”, Proc. ACM SIGSOFT'88, Boston, 1988, ed. by P. Hederson, ACM Press, pp. 201-215.

Dart, S.A. (1991), “Concepts in Configuration Management Systems”, Proc.3rd Int. Workshop on SCM, 1991, ACM SIGSOFT, pp. 1-18.

Estublier, J. (1992), “The Adele configuration manager”, Techn. Report, L.G.I., Grenoble.

Estublier, J. ed. (1995), “Software Configuration Management”, LNCS 1005, Springer-Verlag Berlin.

Feiler, P.H. and Downey, G. (1990), “Transaction-Oriented Configuration Management: A Case Study”, Techn. Report CMU/SEI-90-TR-23, Software Engineering Institute, Pennsylvania.

Feiler, P.H. (1991), “Configuration Management Models in Commercial Environments”, Techn. Report CMU/SEI-91-TR-7, Software Engineering Institute, Pennsylvania.

Feldman, S.I. (1979), “MAKE - a program for maintaining computer programs”, Software - Practice and Experience, Vol. 9, No. 3, pp. 255-265.

Fr(hauf, K. (1990), “Hygiene in Software Works: Software Configuration Management”, Proc. 2nd European Conf. on Software Quality Assurance, Oslo, Norway, 1990.

Heimbigner, D. (1988), “A graph transform model for configuration management environments”, Proc. ACM SIGSOFT'88, Boston, 1988, ed. by P. Hederson, ACM Press, pp. 216-225.

Hicks, D.L., Leggett, J.J. and Schnase, J.L. (1991), “Version Control in Hypertext Systems”, Research report HRL-91-004, Hypermedia Research Lab, Texas A&M University.

Hunt, J.J., Vo, K-P. and Tichy, W.F. (1996), “An Empirical Study of Delta Algorithms”, Proc. Sixth Int. Workshop on SCM, Berlin, March 1996.

Jaccheri, M.L. and Conradi, R. (1993), “Techniques for process model evolution in EPOS”, IEEE Trans. on Software Engineering, Vol. 19, No. 12, pp. 1145-1156.

Kelly, M. (1996), Configuration Management: The Changing Image, McGraw-Hill, London.

Kimball, J. and Larson, A. (1991), “Epochs, configuration schema and version cursors in the KBSA framework CCM model”, Proc. of the 3rd Int. Workshop on SCM, ACM SIGSOFT, pp. 33-42.

Korn, G.D. and Krell, E. (1990), “A new dimension for the unix file system”, Software - Practice and Experience, Vol. 20 (S1), pp. S1/19-S1/34.

Leblang, D.B. and Chase, R.P. (1987), “Parallel Software Configuration Management in a Network Environment”, IEEE Software, Vol. 4, No. 6, pp. 28-35.

Leblang, D.B. and Levine, P.H. (1995), “Software Configuration Management: Why is it needed and what should it do?”, (Estublier, 1995), pp. 53-60.

Lehman, M.M. (1991), “Software engineering, the software process and their support”, Software Engineering Journal, Vol. 6, No. 5, pp. 243-258.

MacKay, S.A. (1995), “The State of the Art in Concurrent, Distributed Configuration Management”, (Estublier, 1995), pp. 180-193.

Madhavji, N.H. (1992), “Environment evolution: The Prism model of changes”, IEEE Trans. on Software Engineering, Vol. 18, No. 5, pp. 380-392.

Magnusson, B., Asklund, U. and Min(r, S. (1993), “Fine grained revision control for collaborative software development”, Software Engineering Notes, Vol. 18, No. 5, pp. 33-41.

Mahler, A. and Lampen, A. (1988), “An integrated toolset for engineering software configura�tions”, Proc. ACM SIGSOFT'88, Boston, 1988, ed. by P. Hederson, ACM Press, pp. 191-200.

Narayanaswamy, K. and Scacchi, W. (1987), “Maintaining configurations of evolving software systems”, IEEE Trans. on Software Engineering, Vol. SE-13, No. 3, pp. 325-334.

Návrat, P. and Bieliková, M. (1996), “Knowledge controlled version selection in software configuration management”, Software - Concepts and Tools, Vol. 17, pp. 40-48.

Oquendo, F. et al. (1989), “Version management in the PACT integrated software engineering environment”, Proc. European Software Engineering Conf., Springer-Verlag, LNCS 387, pp. 222-242.

Plaice, J. and Wadge, W.W. (1993), “A new approach to version control”, IEEE Trans. on Software Engineering, Vol. 19, No. 3, pp. 268-275.

Reichenberger, C. (1991), “Delta Storage for arbitrary non-text files”, Proc. 3rd Int. Workshop on SCM, ACM SIGSOFT, pp. 144-152.

Reichenberger, C. (1994), “Concepts and techniques for software version control”, Software - Concepts and Tools, Vol. 15, No. 3, pp. 97-104.

Ramamoorthy, C.V., Yutaka, U., Prakash, A. and Tsai, W.T. (1990), “The evolution support environment system”, IEEE Trans. on Software Engineering, Vol. 16, No. 11, pp. 1225-1234.

Rochkind, M.J. (1975), “The source code control system”, IEEE Trans. on Software Engineering, Vol. SE-1, No. 4, pp. 364-370.

Schamp, A. and Owens, H. (1977), “Successfully Implementing Configuration Management”, IEEE Software, Jan., pp. 98-101.

Tichy, W.F. (1985), “RCS - a system for version control”, Software - Practice and Experience, Vol. 15, No. 7, pp. 637-654.

Tichy, W.F. (1986), “A data model for programming support environments and its application”, Trends in Information Systems, ed. by B.Langefors, A.A. Verrijn-Stuart and G. Bracchi, North Holland, pp. 219-236.

Tichy, W.F. (1988), “Tools for software configuration management”, Proc. Int. Workshop on Software Version and Configuration Control, Stuttgart, 1988, pp. 1-20.

Vescoukis, V.C. et al. (1992), “PB-VSS: a software version selection system based on logical programming”, Parallel and Distributed Computing in Engineering Systems, North-Holland, pp. 141-146.

Vitali, F. and Durand, D.G. (1995), “Using versioning to support collaboration on the WWW”, Fourth International World Wide Web Conference, Boston, Massachusetts, USA, Dec. 1995.

Zeller, A. and Snelting, G. (1995), “Handling Versions Sets Through Feature Logic”, Proc. 5th European Software Engineering Conf., ed. by W. Schafer, P. Bottela, Springer-Verlag, pp. 191-204.

Yau, S.S. and Tsai, J.J. (1987), “Knowledge representation of software component interconnection information for large-scale software modifications”, IEEE Trans. on Software Engineering, Vol. SE-13, No. 3, pp. 355-361.

Wallnau, K.C. (1992), “Isues and Techniques of CASE Integration with Configuration Management”, Tech. Report CMU/SEI-92-TR-5, Software Engineering Institute, Pennsylvania.

Whitgift, D. (1991), Methods and Tools for Software Configuration Management, John Wiley & Sons.

(The work reported here was partially supported by Slovak Science Grant Agency, grant No. 95/519/605.

