Abstracting and Generalising
with Design Patterns

Maria SMOLAROVA, Pavol NAVRAT and Maria BIELIKOVA

Department of Computer Science and Engineering,
Slovak University of Technology,
llkovicova 3, 812 19 Bratislava, Slovakia
smolarova@decs.elf.stuba.sk, {navrat, bielik}@elf.stuba.sk

Abstract. The paper proposes a technique that allows representing design patterns in
a way suitable for design of an application. The paper analyses two important
aspects of design patterns namely their levels of abstraction and generality. We aim
at identifying their difference and consequently, at proposing a way to express them.
Moreover, the role of abstracting and generalising in the design process is more
precisely recognised. We propose to describe (some essential aspects of) design
patterns in a space with two dimensions: abstraction and generality. Next, we descri-
be a technique of modelling design patterns by means of description schemata at a
metalevel. A metaschema represents pattern relevant elements and their relations.
Also, constraints are introduced that restrict the possible structure of pattern
instances.

1. Introduction

Design patterns are a technique envisaged to support development and maintenance of soft-
ware systems. They help reduce the complexity of solving many real-life problems. Thus
they are essentially abstractions of concrete design steps which presumably belong to
wealth of design experience accumulated by the practitioners of the field. They constitute a
set of rules describing how to accomplish certain tasks in the realm of software
development [11]. The purpose of abstracting is to hide many unessential details that are
necessarily involved in elaborating and subsequently implementing any design. Mere
abstracting, however, yields only a high level abstract description of a specific domain
solution with low-level decisions and implementation details abstracted away. Once we
have this, we want more. We want the design pattern, which has proven to be a successful
solution to one specific problem in one application domain to be useful for other problems
and possibly in other domains, too. In other words, we need the design pattern to be general
as well. These two aspects, viz. abstraction and generality often lead to much confusion.
We believe the issue is worth discussing from many points of view, with one particular
being design pattern formulation and representation.

The usual way of formulating design patterns (cf., [5]) relies on a combination of
diagrammatic description of some aspects of the pattern’s structure and on a textual
description organised into a loose structure. For a user who wishes to learn the essence of
the particular design pattern, this seems to be — at least according to the current state of
development of the discipline — a satisfying way of formulation.

From another point of view, it cannot serve as a basis for a mechanical manipulation of
software design documentation. Software design is undoubtedly one of the crucial phases of

software development. For the actual design, it is important to make use of as much of
standardised design knowledge (embodying verified experience) as possible, because
ideally, it would decrease cost of and increase confidence in the designed software. For
software maintenance, documentation about design decisions can be very useful. For
software system reverse engineering, recorded traces of design patterns applied in the
original design would make the job easier. For software system reengineering, similar
consideration is valid.

Because design pattern is a quite complex notion, to devise a way to represent them is
not a straightforward task at all. We want to concentrate on those aspects that we find
especially important from the above outlined point of view. Design patterns, when applied
in the design process, are involved in a series of transformation steps. In the
transformations, the design undergoes changes — among other things — across a series of
abstraction and generality layers. We want to support these transformations by offering a
suitable representation of the relevant aspects of design patterns.

We note there are other interesting aspects of design patterns, such as their structural
level (e.g., components, frameworks, patterns, and architectures) or an underlying
programming paradigm.

The rest of the paper is structured as follows. In Section 2, we introduce shortly design
patterns as presented in a known catalogue [5]. In Section 3, we discuss some problems
with design pattern representation. In Section 4, we describe the technique of modelling
design patterns by means of an example. In Section 5, related work is given. We conclude
with suggestions for future work.

2. Catalogue of Design Patterns

Design patterns capture expertise of designers. They describe commonly recurring
structures of communicating components that solve general design problems within
particular context [5]. Patterns provide solutions that have been developed and evolved over
time and are proven to be useful in design of several systems. Design patterns are presented
in a fixed format. Pattern name, context, problem, solution, along with example, structure,
dynamics, implementation, variant, known uses, consequences, and a reference to related
patterns are the sections used for pattern formulation in GoF catalogue [5]. Each pattern
occupies several pages of natural language descriptions accompanied by diagrams and
source code samples.

As an example that will be used throughout the paper, we show the Abstract Factory
design pattern [5]. Main goal of the Abstract Factory pattern is to provide an interface for
creating families of related or dependent objects without specifying their concrete classes.

In the catalogue, conventional notations like OMT class diagrams [12] are used to
describe static structure of pattern participants. Class diagram expressing the structure of
the Abstract Factory pattern is shown in Figure 1.

Alternatively to class diagrams, object diagrams and object interaction diagrams help
explain pattern’s run-time behaviour. By using these standard notations to better reveal a
pattern, some typical pattern constructs cannot be expressed completely or unambiguously.
A pattern can have for example multiple occurrence of a particular component but this fact
is not indicated in the class diagram. For example, the number of ConcreteFactorys is
two in the class diagram in Figure 1 but the catalogue assumes that the pattern in fact
allows the number of ConcreteFactorys to be “any”.

The main difficulty causing that class diagrams are unable to express design patterns
appropriately and sufficiently is that class diagrams are meant to model the specific
structure of classes that results in concrete program. Patterns are descriptions of a set of

VAN AbstractFactorv [Client
inherits
______ - CreateProductA()
D
creates CreateProductB() AbstractProductA
—_—
references /\ | /\ |
ConcreteProductA2 || ConcreteProductAl 4“‘:
¥ |
' AbstractProductB | !
ConcreteFactoryl || ConcreteFactory2 ==~~~ i /\ |
| [}
CreateProductA() CreateProductA() v | | i
CreateProductB() || CreateProductB() ConcreteProductB2 || ConereteProductBl 4---i
[}
I

Figure 1. Class diagram expressing the structure of Abstract Factory pattern.

possible structures, i.e. they may result in many possible structures. The lack of class
diagram’s expressiveness is in the catalogue substituted by giving examples, by code
samples, and by informal textual descriptions. The pattern reader is expected to retrieve
pattern essence not only from the pattern structure but also from other parts. We are
persuaded a representation that expresses design pattern essence more appropriately is
necessary. Several efforts to formalize patterns that have been made recently [1], [3], [6],
[8] reflect this necessity as well.

3. Design Pattern Space

Before attempting to propose pattern representation, we examine the nature of design
patterns with respect to abstraction and generalisation.

In the vast literature on design patterns, one can find ambiguous judgements on their
properties. In [6], design patterns are regarded to be abstractions over programs. In [4], the
notions of abstraction and generalisation have been confused, as is apparent from the quote
“the solution may be generalised into an abstraction”. Obviously, result of the process of
generalising is a generalisation. Similarly, abstracting results in a higher abstraction.

Object-oriented design patterns are abstractions above the class level. Notion of design
patterns allows us to view collaborating classes as a unit with known structure and
behaviour. Pattern exists at different abstraction levels in software development. In the
earlier development stages, participating classes and their relations are given. Later, the
abstraction level descends further by adding more details to pattern participants. A possible
differentiation between abstract and concrete patterns may be that the latter are
implementations of the former. A pattern is becoming more concrete if it includes methods
that are not only abstract, i.e. specified but without a body with a program code, but also
implemented i.e., concrete.

However, there are also aspects of design patterns that are more appropriately
understood when brought into correspondence with the generality dimension. One way of
specialising the design pattern is through renaming the general pattern elements by
application specific ones. This results in a domain specific design pattern. When there is no
record about pattern presence and about roles played by particular classes or methods in a
pattern, pattern maintenance in software development is difficult [7] or even impossible.
The situation is further complicated by the fact that frequently, several patterns are used in
designing a system. How to combine their application in a systematic way is an important
related issue. However, we shall not investigate it in this paper.

design pattern e m e » application specific pattern

(abstract and general) (abstract and specific)
-
PL X Py X abstraction/
1 2 o
L tisat
Structure Motivation concretisation
P; X 4-__'—[-'>t' /
Code Sample spectatisation
generalisation
pattern as parametrised .
program schemata _ patlerns Instances —
in application programs instantiation
) - > ;
(concrete and general) (concrete and specific)

Figure 2. Design pattern space.

Another way of specialising general pattern structure is by giving values to pattern
parameters. Pattern parameters are those parts of pattern structure that are left flexible.
Referring to our sample pattern, there can be several ConcreteFactorys. Number of
ConcreteFactorys is the parameter of the pattern which is supposed to be "any" at the
general level, and which can be specialised for example to the value of two at the next
lower level of specialisation. Our recognition of the explicit role of parameterisation
parallels the endeavours to propose and develop new paradigms, e.g. generative
programming [2].

An important aspect of pattern parametrisation is that specific value of one parameter
may impose constraints on other parameters. When considering our example, the number of
ConcreteFactory classes must correspond to the number of ConcreteProduct classes
for each AbstractProduct. In the GoF catalogue, constraints are explicitly formulated
neither in textual nor in graphical sections of pattern description. We are convinced that it is
extremely useful to relate explicit constraints to the general pattern structure, as they restrict
specific pattern structure to obey pattern regularities. Constraints are helpful in
transforming a general and abstract pattern into a more concrete and more specific one.

Each design pattern occurs at different abstraction and generality levels during software
development process. With respect to generality and abstraction dimensions, the term
design pattern covers a space that is depicted in Figure 2. Four most significant states of
pattern are:

= general and abstract pattern (in the top left corner) — in this state, pattern is just a

named abstraction that solves a general, i.e. domain independent, design problem:;

= application specific pattern (in the top right corner) — general pattern becomes

specific by embedding it in an application domain; .

" pattern as parameterised program schema — an abstract pattern is transformed into a

more concrete structure;

* pattern instances in application programs — concrete and specific pattern instances

that live in code.

The process of software development moves the design pattern in four possible
directions [9]: concretisation, abstraction, specialisation, and generalisation. While in
pattern mining, i.e. discovering useful solutions and recording them as patterns,
generalisation and abstraction are mostly involved, during pattern application the principal
movement goes from a general and abstract pattern towards a more concrete and more
specific one.

Transforming the general and abstract pattern into more specific and more concrete
instances is called pattern instantiation. It is a vector that combines a partial transformation

from abstract to concrete, and a partial transformation from general to specific. This process
leads eventually to a concrete and specific pattern instance embraced in code.

From the generality and abstraction points of view, the catalogues of design patterns
explain pattern essence at different abstraction and/or generality levels (see also Figure 2).
The pattern structure expressed by class diagrams (shown as point P; in Figure 2)
concretises the pattern but it unfortunately does not preserve pattern’s original generality
because it assigns specific numbers to pattern parameters. The motivation example (point
P, in Figure 2) is even further specialised because it gives an application specific pattern
structure. Code samples (point P3 in Figure 2) decrease both generality and abstraction level
by binding to specific implementation language and conveying concrete implementation
details.

Our aim is to formulate pattern structure at its very general level. We are convinced that
an appropriate pattern representation should be able to reflect different generality and
abstraction levels a pattern may exist at.

4. The Design Patterns Representation Technique

In this section, a technique for representing patterns with respect to its abstractness and
generality is introduced. Our objective is to propose a representation that expresses pattern
as a set of possible specific pattern structures that may exist at different abstraction levels.

In our approach, patterns are represented as a metaschema at the general level.
A metaschema depicts pattern relevant elements and their relations. Constraints may be
attached to a pattern metaschema in order to express dependencies that must be preserved.
All specific instances that are derived from such a metaschema are supposed to satisfy
pattern constraints.

Basic elements of the pattern metaschema are depicted by a rectangle. In case of object-
oriented patterns, basic elements of metaschema are classes and methods that are named
after the roles they play in the pattern. It is in principle possible to extend metaschema so
that the basic elements express also less abstract details, for example method parameters or
return value of methods. Because of space limitations, less abstract elements are omitted
here.

Each metaschema contains also one special element, so-called pattern element. The
pattern element corresponds to the abstract state when pattern is considered as a unit. At
specific level, pattern element records the presence of pattern instance. The most relevant
elements are directly related to pattern element.

Relations between pattern elements are depicted by a rhombus. The relation has its
name, maximal and minimal cardinality. Those relations that have cardinality one to many
(1:N) express the pattern genericity, with N being a pattern parameter. Possible
dependencies among parameters values are expressed by pattern constraints.

In Figure 3, a metaschema for the Abstract Factory pattern is shown. Abstract-
Factory, ConcreteFactory, AbstractProduct, and ConcreteProduct are the
metaschema elements that correspond to principal classes in the pattern. Abstract-
FactoryPattern is the pattern element.

In the pattern structure from the GOF catalogue (Figure 1), the relation between
AbstractFactory and ConcreteFactory is shown as generalise (inheritance) relation-
ship. The purpose of the AbstractFactory class is to declare a common interface that is
implemented by each ConcreteFactory. Obviously, this is an abstract — concrete relation
when method’s implementation is abstracted away in the abstract class. In our metaschema,
AbstractFactory and ConcreteFactory are related through is concretised relation.
with cardinality one to many because many ConcreteFactorys may be derived.

____— AbstractFactoryPattern

@ is_concretised
1.1 @ L:

AbstractFactory CreateProduct AbstractProduct

declares
1:
.
1:

ConcreteProduct

ConcreteFactory

Figure 3. Metaschema for the Abstract Factory pattern.

To define a family of classes with identical interfaces is a common theme in design
patterns that helps reduce implementation dependencies in object-oriented design [5]. In
Figure 3, we encapsulated the family of Factory classes by a dashed line rectangle. All
classes in the family respond to the same interface consisting of a number of Create-
Product’s methods. The interface is declared in the AbstractFactory class and must
be implemented in potentially many ConcreteFactorys. Correct instantiation of this part
of metaschema is expressed by the first Abstract Factory constraint:

(1) for each ConcreteFactory
cardinality of(AbstractFactory.CreateProduct) =
cardinality of(ConcreteFactory.CreateProduct)

Similar constraint may be attached to many patterns in the catalogue, for example to
Observer, Bridge, Prototype, etc.

In the Abstract Factory metaschema, the dependencies among pattern parameters can be
expressed by the following constraints:

(2) for each AbstractProduct
cardinality of(AbstractFactory.is_concretised) =
cardinality of(AbstractProduct.is _concretised)

3) cardinality of(AbstractFactoryPattern.is_concretised) =
cardinality of(AbstractFactory.declares)

The constraint (2) forces to keep equality between the number of ConcreteFactorys
and the number of ConcreteProducts for each AbstractProduct. According to
constraint (3), the number of AbstactProducts must correspond to the number of
CreateProduct methods in the family of Factory classes.

One possible instance of the Abstract Factory pattern is depicted in Figure 4. In this
case, specialisation by assigning the values to pattern parameters as well as by embedding
the pattern into the user interface toolkit application domain has been done. All application
specific elements, for example MotifWidgetFactory, Window, PMScrollBar,
CreateWindow, are typed after the roles they play in the pattern. Relations are depicted
uniformly in the diagram. The kind of relation is determined by its name. Its specific
multiplicity is explicitly stated.

Constraints that are attached to the general metaschema allow checking structural

MyWidgetFactory:
AbstractFactoryPattern

is concretised

creates

is concretised

WidgetFactory: \declares

AbstractFactory L lerear ScrollBar: uct
j Window: uct
CreateWindow: CreateProduct / AbstractProduct
creates
is concretised is_concretise iS } is_concretised
2y 2 2y
MotifWidgetFactory: PMWindow: J : PMButton: J
PMWidgetFactory: MotifWindow: [t || MotifScrollBar: [t || MotifButton: [ct
ConcreteFactory ConcreteProduct ConcreteProduct ConcreteProduct

Figure 4. A possible specialisation of Abstract Factory pattern.

dependencies of metaschema’s specific instances. For the Abstract Factory pattern instance
in Figure 4, the number of AbstractProducts is assigned to three and it must correspond
to the number of CreateProduct methods. Otherwise, pattern regularities would not kept.
Also in case that the application undergoes modification and the number of
AbstarctProducts changes, the pattern constraints ensure that the number of methods
for product creation corresponds to the number of AbstarctProducts.

5. Related Work and Conclusions

The paper proposes a technique that allows representing design patterns in a way suitable
for design of an application. The paper analyses two important aspects of design patterns
namely their levels of abstraction and generality. We aim at identifying their difference and
consequently, at proposing a way to express them.

We describe design patterns in a space with two dimensions: abstraction and generality.
A new technique of modelling design patterns by means of description schemata at a
metalevel is introduced. A metaschema is proposed to represent pattern relevant elements
and their relations. Constraints that restrict the possible structure of pattern instances are
attached to the metaschema.

Our approach is quite general with respect to what kind of components the metaschema
elements represent. Throughout this paper, we have shown how the metaschema describes
object-oriented patterns: metaschema elements are classes and methods. However, it is in
principle possible to represent any collaborating elements by a metaschema.

One of the primary motivations for representing patterns is to have an appropriate tool
letting to represent the system also in terms of design patterns. Tools that assist in software
development with patterns have been discussed in several papers. In [11], a unified
representation describing patterns as the “hook&template” metapattern has been proposed.

In [1], a tool that supports the specification of design patterns and their realisation in a
given program is presented. This metaprogramming approach to pattern representation is
quit different from ours. Design patterns are understood as a sequence of steps that must be
carried out in pattern application. A precise method of specifying how a design pattern is
applied by phrasing it as an algorithm in a meta-programming language is proposed.

Another tool supporting pattern instantiating is described in [3]. It has a repository of
pattern prototypes, each representing the pattern as a set of fragments that fulfil a particular

role for the pattern. Pattern is a tree with all fragments related to its root. Examples of
pattern fragments are classes, methods, attributes, association relations, containment
relations, and inheritance relations. The difference to our approach is that even the most
fine-grained pattern fragments are linked to the root fragment regardless of their abstraction
degree.

In [8], a design pattern is represented as metaschema, so-called primal schema. Primal
schema defines roles and relationships of classes. It consists of a basic set of abstract
classes and their relationships capturing the essence of the pattern. In this sense, their
approach is very similar to ours. The main difference is that the possibly multiple
occurrence of pattern’s participants is not taken into account. Also, constraints are not
embraced.

The proposed technique for design pattern representation will be further developed. We
are working on defining the diagrammatic language in more detail with respect to both its
syntax and semantics. Here, it might be productive to consider Unified Modeling Language
[15] as a basis for possible enhancements.

Acknowledgements
The work reported here was supported by Slovak Science Grant Agency, grant No. G1/4289/97.

References

[11 A.H. Eden, J. Gil and A. Yehudai, Precise Specification and Automatic Application of Design Patterns.
In: Proc. of the 12th IEEE International Automated Software Engineering Conference ASE’97, 1997.

[2] U.W. Eisenecker, Generative Programming with C++. In: Proc. of Modular Programming Languages
JMCL'97, H. Mossenbdck (ed.), Springer Verlag, LNCS 1301, 1997, pp. 361-365.

[31 G. Florijn, M. Meijers and P. vanWinsen, Tool Support for Object-Oriented Patterns. In: Proc.
ECOOP'97, Jyviskyld, M. Aksit, S. Matsuoka (eds.), Springer Verlag, LNCS 1241, 1997, pp. 472-495.

[4] J. Gil and D.H. Lorenz, Design Patterns and Language Design. /[EEE Computer 31 (March 1998)
118-120.

[5] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns, Elements of Reusable Object-
Oriented Software. Addison-Wesley, ISBN 0-201-63361-2, 1994,

[6] E.E. Jacobsen, Design Patterns as Program Extracts. In: Object-Oriented Technology, ECOOP'97
Workshop Reader, Workshop on Language Support for Design Patterns and Frameworks, Jyvéskyld, J.
Bosh and S. Mitchell (eds.), LNCS 1375, Springer Verlag, 1997.

[71 C. Kramer and L. Prechelt, Design Recovery by Automated Search for Structural Design Patterns in
Object-Oriented Software. In: Proc. Working Conference on Reverse Engineering, Monterey, IEEE CS
Press, 1996, pp. 208-215.

[8] T.D. Meijler, S. Demeyer and R. Engel, Making Design Patterns Explicit in FACE, a Framework
Adaptive Composition Environment. In: Proc. of ECES/FSE'97, M. Jazayeri and H. Schauer (eds.),
LNCS 1301, Springer Verlag, 1997, pp. 94-110.

[9] P. Navrat, A Closer Look at Programming Expertise: Critical Survey of Some Methodological Issues,
Information and Software Technology 1 (1996) 37-46.

[10] B.U. Pagel and M. Winter, Towards Pattern-Based Tools. In: Proc. of EuroPLoP’96, Kloster Irsee,
Germany, July 1996.

[11] W. Pree, Meta patterns — a means for capturing the essentials of reusable object-oriented program
execution. In Proc. of ECOOP '94; Bologna, M. Tokoro and P. Remo (eds.), LNCS 821, July 1994,
pp. 150-162.

[12] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen, Object-Oriented Modeling and
Design. Prentice Hall, 1991.

[13] M. Smoléarova and P. Navrat, Software Reuse: Principles, Patterns, Prospects, Journal of Computing and
Information Technology 1 (1997) 33-48.

[14] M. Smolarova, P. Navrat and M. Bielikova, A Technique for Modelling Design Patterns. In: P. Navrat
and H. Ueno (eds.), Knowledge-Based Software Engineering, I0OS Press, Amsterdam, 1998, pp. 89-97.

[15] UML, Unified Modeling Language, version 1.1. UML Summary, UML Semantics, UML Notation
Guide, Rational Software Corp., 1997, http://www.rational.com/uml.

