Learning Programming in Prolog Using Schemata *

Maria Bielikova, Pavol Navrat

Slovak University of Technology, Dept. of Computer Science and Engineering,

Ilkovicova 3, 812 19 Bratislava, Slovakia
E-mail: {bielik, navrat}@elf stuba.sk
WWW: http.//www.elf.stuba.sk/~{bielik, navrat}

Abstract. In the paper, we describe our approach and
experience with teaching fundamentals of logic pro-
gramming by program schemata construction and expla-
nation. Program schemata construction is helped by pres-
entation of a few examples. After a particular program
schema has been introduced, students are required to
instantiate the schema both as a writing exercise and af-
terwards as a programming exercise. We report on our
experiments aimed at verifying our hypotheses about
suitability of this approach to learning programming by
evaluating the effectiveness of the learning process.

Key words: logic programming, Prolog, program
schemata

Introduction

Nowadays, learning programming is one of the ba-
sic educational activities of any student of com-
puter or software related curriculum. Besides the
“classical” procedural programming paradigm, and
the “inevitable” object-oriented paradigm, learning
programming functionally and programming logi-
cally is a standard component of the curriculum
offered by Slovak University of Technology in
Bratislava. In the paper, we describe our approach
and experience with teaching fundamentals of logic
programming by program schemata construction
and explanation.

Our approach can perhaps best be expressed as
designing, explaining, and applying program sche-
mata. We rely on explaining a relatively large
number of examples of predicates. As it is fre-
quently the case, Prolog is our language of choice
despite its known shortcomings when considered as
a pure logic programming language.

Program schemata (generalizations), pro-
gramming techniques or plans (abstractions) all
represent various kinds of programming (meta-)
knowledge. We find it important to make the
knowledge explicit for the learner [9,3,10]. A
schema-based approach facilitates learning of gen-
eral programming techniques by requiring the stu-

dent to instantiate templates which are generaliza-
tions of a program to solve the assignment. This
instructional technique has proven useful when re-
cursion (a very difficult concept for most novice
programmers [7]) is taught. It can be argued that
one of the causes of difficulties is the lack of a
structured programming construct for recursion in
programming languages like Prolog and Lisp [1]. A
schema-based approach enables to alleviate some
of these difficulties by providing novice program-
mer with a set of standard structures (or program
schemata) with which one is able build complex
and interesting recursive Prolog programs [6].

In the rest of the paper, we describe the
method of teaching logic programming together
with some of the schemata that we employ in
teaching. We report on our experiments aimed at
verifying our hypotheses about suitability of this
approach with respect to learning programming by
evaluating the effectiveness of the learning process.

Method of teaching

To be able to form relatively large and practically
interesting programs in Prolog requires to master
only “a few” syntactical constructs. However, it
would be most naive to expect that based on that
fact, programming in Prolog can be learnt very
swiftly and simply. More likely, the opposite is true
[2]. To be able to form both elegant and efficient
logic (Prolog) programs requires as a rule a consid-
erable programming experience. Additional diffi-
culty is inter-paradigmal transition, as manifested
by the problems that experience many our students
who had mastered quite extensively the procedural
paradigm. Some of them seem to be constrained to
the extent that their understanding of the alternative
paradigm effectively is blocked (cf. similar experi-
ence reported in [8]).

We teach logic programming as a part of the
subject Functional and Logic Programming. The

* The work reported here was partially supported by Slovak Science Grant Agency grant No. G1/4289/97.

subject is covered in one semester (13 weeks). The
relative modesty of its extent forces to concentrate
on the foundations of logic programming (which
constitutes only a part of the subject’s contents;
besides it, functional programming is treated, too).
We aim to help learners understand the essence of
this programming paradigm. We also aim to
achieve this by a learning process that involves
practical problem solving. Again, the subject’s
extent constraints this aspect as only relatively
short programs can be explained or devised.
“Larger” programs with several dozens or hundreds
of predicates are written by students when
completing their assignments for subjects Artificial
Intelligence or Knowledge Based Systems.

Respecting the above considerations, our ap-
proach is an attempt to convey the programming
experience to the students in a most useful i.e.,
comprehensive, effective and complete way. We
realise that without compressing in time the experi-
ence gathering phase, the student would not be able
even to approach the desired level of mastery of
Prolog programming in such a short period. What
is urgently needed is a means to express the pro-
gramming knowledge in a possibly standardized
way, so that the learners can acquire the accumu-
lated experience via a shortcut route. We propose
program schemata as a way of expressing standard
programming solutions. As a consequence, we ho-
pe to achieve more balance between the inventive
dimension of programming (i.e., programs are ori-
ginal programmer’s inventions), and the engineer-
ing dimension of programming (i.e., programs are
original technical solutions developed from stan-
dardized skeletal solutions by applying standard-
ized procedures and respecting technical stan-
dards).

Our basic assumption in teaching logic
programming (but similarly also functional pro-
gramming) is that many programs (e.g., those
which are concerned with list processing) have a
similar structure so that they can be considered
instances of some program schema. Our approach
fosters acquiring basic programming techniques.
The learner forms instances of schema (replaces or
refines generic parts of a schema) and in such a
fashion solves the assigned problems.

Schemata for processing of lists

Our students can be considered novices in pro-
gramming, especially with respect to the logic
paradigm. Therefore we restrict ourselves to prob-

lems in which no indirect recursion is involved or
no operations with side effects are involved (such
as input/output). Only gradually, when proceeding
to solving more complex problems, other schemata
are presented (e.g., meta-predicates, control predi-
cates such as cut, input/output, etc.).

Schemata are based on a typical structure of
predicates for certain classes of problems. One of
the important issues in teaching them is the order in
which the learners become acquainted with the dif-
ferent schemata. In our approach, we distinguish
two basic classes and proceed accordingly in two
steps:

1. list processing at its top level only,
2. list processing at all levels.

In both classes, we define pairs of similar problems
e.g., substituting a symbol in a list by another one
at the top level of the list, and similarly, substitut-
ing a symbol in a list by another one at all levels of
the list. Our experience for several years has been
that the students can cope better with the kind of
problems from the former class. In other words, to
program processing of lists at all levels seems to be
more difficult for our students. That is why we start
teaching the former class and proceed to processing
at all levels only later.

In Fig. 1, a hierarchy of program schemata for
processing of lists is outlined. The schemata identi-
fied in Fig. 1 can be found in Appendix. In the case
of processing of lists at all levels, the classes of
problems are the same. We use the following gene-
ral schema of processing of lists at all levels:

DList(([H|T] &V,) :-
DListH &V,),
DListH &V5).

DList(E &V)) :-
Process(E &V,).

How the program schema is represented? Our
utmost objective has been simplicity. We deliber-
ately avoid introducing any unnecessary complex-
ity, such as a new, different formalism when new
concepts can be satisfactorily represented using a
known language, perhaps with only a minor en-
hancement. We use two kinds of variables: pro-
gramming language variables (Prolog variables)
and schema variables (variable predicate symbols).
Variables begin with a capital letter. Schemata that
express classes of predicates with various numbers
of clauses or various numbers of conditions in
clauses are represented using an additional optional
symbol. This symbol allows to mark place for a

Schema

Reduce M
|

<
a

v \’

[Filter] (Predicate)
——

[Count] [Func-Reduce) (Find-if

—

(

Remove-if) (Removeif-not)

"

(Count-if) (Count-if-not)

(B) (o) (5ome) (Somener)

Fig. 1. Hierarchy of program schemata for processing of lists.

clause or a condition that may but need not occur in
a definition of a particular predicate of the class
expressed by the schema. The optionality is repre-
sented by brackets. Optional arguments in terms are
represented by the symbol &. For example in the
above schema the occurences of the expression
&V, can be replaced by a sequence of any number
of arguments (including none). The condition in the
third clause is optional.

In all the schemata we use a generalised op-
tional argument (in form of &V;). It expresses an
option that the schema instance (i.e., the particular
predicate) can involve additional arguments. Our
position is that such additional arguments are not
crucial from the point of view of the programming
knowledge that is expressed by the schema. To add
them is more or less a matter of routine. Therefore,
we shall not mention them from now on.

Experiments

To find out more about the effectivenes of our ap-
proach, we conducted some experiments with the
spring of 1997 class. It is useful to repeat here the
fact that before coming to learn programming in
Prolog, the students spend the first part of the sub-
ject learning functional programming (Lisp). The
reason why we use this particular order has been
more or less pragmatic. However, we note that to
discuss and ask about the order in which a learner
studies different programming paradigms is a le-
gitimate question in its own right.

Experimentation method

There were two groups of students. Only to one of
them a catalogue of program schemata was made
available during the test. The catalague included
several schemata (e.g., five for one particular
problem). Some problems could be solved using

some of the schemata directly. There were other
problems that could be solved by combining some
schemata from the catalogue, or by specialising
them. In order to eliminate possible influence of
other factors, schemata are named so that the
names do not reveal the essence of the processing.
For example, the schema for counting those ele-
ments of a list at the top level which share the
given property was presented to students in the
following form:

Schema-1([], 0).

Schema-1([H | T], C) :-
Predicate(H), Schema-1(T, CL),
CisCL+1.

Schema-1([H | T], C) :-
[Not-Predicate(H),]
Schema-1(T, C).

Across both groups, there were students with two
different preconditions. Attending lectures is not
obligatory for the students and consequently, there
is usually a part of the class not present. Some stu-
dents were present at the previous week’s lecture
when the schemata were introduced and explained
to a considerable detail. The complement of the
class can be assumed to be practically ignorant (the
version of our textbook available at that time did
not include program schemata).

Results and evaluation

There were 101 students who took part in the ex-
periments, all of them level 3 students of our bac-
calaureate Informatics course in the software engi-
neering track. There were 53 students among them
who have already heard about schemata, but the
remaining haven’t. During the test, 47 students had
available the catalogue of schemata, but the re-
maining had not. Distribution of the whole set of
students into the four categories is shown in Tab. 1.

Schemata available?

yes no
Explanation ~ Y©5 22 31
received? no 25 23

Tab. 1. Distribution of students into groups.

Perhaps the most important question to answer
when trying to evaluate the approach to learning
logic programming based on program schemata is
concerned with a positive identification of their
influence on students’ learning process. In our for-
mulation, does the use of schemata in learning
logic programming influence results of novice
learners? Can it speed up the process of learning
the paradigm?

We can formulate our first hypothesis: The re-
sults after using schemata are better. To judge
about the results, we tested the whole class. All the
students (in one place at one time) were supposed
to solve very simple problems by devising appro-
priate predicates.

In Tab. 2 we display the overall results of tests
of students from all the four subgroups (cf. Tab. 1)
either based on their marks out of 4, (i.e., marks
from the range <0,4>), or expressed as a relative
portion (per cent) of correct solutions within each
subgroup.

Schemata available?

yes no

Explanation ~ YeS| 3:60 3.45

received? o 3.15 562
a

Explanation 1% 74%

received? 56% 28%
b

Tab. 2. Overall results of tests.

The results in Tab. 2 allow some conclusions.
Best results were achieved by the students who had
prior information on schemata and at the same time
they had the catalogue of schemata at hand during
the test. 77% out of them produced correct solu-
tions. Second best results (74%) were achieved by
those students who had the catalogue of schemata
at hand during the test but did not hear their pres-

entation and explanation. Comparing to them, stu-
dents who heard the presentation and explanation
but did not have the catalogue of schemata at hand
during the test performed worse (56%). By far the
worst results were achieved by the subgroup with-
out prior information and without schemata.

The results of the first two subgroups show
clearly that schemata influence positively the stu-
dents’ programming performance. It is perhaps sur-
prising that their results are so close. However, he-
re it is worth noting that the whole class was at that
point already having some experience with pro-
gram schemata, because in the first part of the se-
mester, schemata for functional programming were
taught in a similar way. This is indirectly endorsed
by similar experiments of ours related to using
schemata in teaching functional programming. The
second and third subgroups scored almost precisely
the same there. Here (after some experience with
program schemata), for the students it was more
valuable to receive the catalogue of Prolog related
schemata and to have it during the test.

Another question which is frequently
discussed with respect to learning programming
concerns the role of computer and importance of its
direct usage when solving a programming problem.
A quite frequent pattern of a student’s problem
solving procedure includes an initial sketch of a
design of the solution on a paper and then an
interaction with a computer during which imple-
mentation of the solution is attempted to be com-
pleted. We shall refrain in this paper from
commenting on such a pattern with respect to its
appropriateness etc. We wanted to find out whether
the peculiar variety of the trial and error method is
applied because of greater comfort or because of
inability to devise a correct solution by using paper
and pen only.

We have found out that 39% of all students
had the correct solution already sketched on a
paper. Next 30% of all students not only did not
have a correct solution designed on a paper, but
could not arrive to one even during the interaction
with a computer. The remaining 31% was able to
make some minor changes like amending or com-
pleting tests in clauses’ bodies. The likely
conclusion is that in most cases, direct usage of a
computer when solving a programming problem
does not have a clearly positive effect. It is partially
in conflict with our experience from the previous
years when logic programming was taught without
program schemata.

Another hypothesis which we attempted to get
confirmed or refuted was the one related to the
question if problems of processing lists at all levels
are harder to solve for learners than processing lists
at the top level only. Our hypothesis is: Processing
a list at all levels is more difficult to program for
learners. We based our hypothesis on our several
years’ experience. Now, in the experiments re-
ported here we specifically evaluated the success
rate of students for the two classes of problems.

In Tab. 3, the results show that indeed the stu-
dents perform better when programming processing
of lists at the top level only. However, the differ-
ence is quite small, perhaps thanks also to the pre-
vious experience with functional programming. On
the other hand, a similar evaluation with respect to
functional programming did not confirm the hy-
pothesis. The students treated the lists to be proc-
essed at all levels as binary trees which they were
able to program equally “easily” as processing lists
at the top level only. We claim that this result also
supports positive influence of the use of program
schemata.

¢ marks out of 4

processing at the top level only 3.24

processing lists at all levels 3.18

Tab. 3: Average success rate of solving
processing of lists.

Students’ feedback

At the end of semester, we initiated an enquette in
order to solicit their feedback regarding the subject
Functional and logic programming and specifically
our approach based on program schemata. The ta-
ble below summarizes the distribution of responses
to one of the questions in the questionnaire. It
shows that a majority of students uses the program
schemata (first three answers, i.e. 78% of all stu-
dents).

“Which is the way you use program
schemata in designing simple func-
tions/predicates for processing lists?"
| write it on a paper 17%
I recollect it in my mind 27%
I think my using of schemata is automated

and I do not consciously realise it 34%
I know what schemata are but I do not use

them 21%
I do not know what schemata are 1%

Conclusions

In the paper we present the program schemata
which we use in teaching logic (Prolog) program-
ming and the way how to represent them. Similar
approach to logic programming has been described
by Gegg-Harrison [5, 6]. He described 14 basic
schemata for recursive predicates together with a
way of organizing the dialog in a tutoring system.
In [13] is presented an extension of Gegg-
Harrison’s proposal for schema language. Our
approach differs in choosing a different set of
schemata and in focusing to various identified
kinds of problems related to list processing. After
all, list processing can be viewed as a very general
class of computations. Moreover, our approach
reflects consequently our ultimate goal — to support
the learning process.

In [11], too, there is defined a number of
constructs suitable for building Prolog programs
(program skeletons and techniques which extend
skeletons and express steps in program
construction). Separation of control flow and
technique is the key idea of this approach. Student
selects a skeleton and then enhances it, using
standard techniques, to solve his or her particular
problem. We feel that to understand skeletons can
be rather difficult for novices without having some
preceeding experience in building and fully
understanding some programs.

Our approach is focused on learning
programming with schemata. The method is around
building catalogue of program schemata (ultimately
to be stored in learners’ mind). This is the reason
why the simplicity of program schemata
representation is crucial. We realise that formal
methods for representing program schemata, such
as those presented in [4, 12, 13], are important and
inevitable when exploring properties of a created
solution, its correctness, etc. Formalising is
necessary also for programming tools such as
Prolog Techniques Editor [12]. On the other hand,
when teaching novices (especially when very short
period of time is available), very simple set of
schemata should be devised. To speed up learning,
ready to use knowledge should be presented to
learners. Our program schemata were devised with
this point in mind. They are purpously
“incomplete” in the sense that their specialization
cannot be for some problems completed at the
syntactic level.

As the main result, we report on experiments
that allow to judge quite favorably the approach to

teaching Prolog programming when the student
learns a set of program schemata and how to apply
them.

L.

References

M. Bielikova, P. Navrat. A schema-based ap-
proach to teaching programming in Lisp and
Prolog. In: Proc. PEG’97 Int. Conf., P. Brna
and D. Dicheva (Eds.), 22-29. 1997.

A. Bowles, P. Brna. Programming plans and
programming techniques. In Proc. World Conf.
on Al in Education, P. Brna, S. Ohlsson and
H. Pain (Eds.), 378-385. AACE Press, 1993.

P. Brna. Teaching Prolog Techniques. Compu-
ters and Education, 20(1):111-17. 1993.

P. Flenner, K.K. Lau, M. Ornaghi. Correct-
schema-guided Synthesis of Steadfast Pro-
grams. In Proc. 1997 IEEE Conf. on Automated
Software Engineering. M. Lowry and Y. Ledru
(Eds.), IEEE Press. 1997.

T.S. Gegg-Harrison. Representing logic pro-
gram schemata in AProlog. In Proc. of the 12th
Int. Conf. on Logic Programming, L. Sterling
(Ed.), 467-481. MIT Press, 1995.

T.S. Gegg-Harrison. Extensible logic program
schemata. In Proc. of the 6th Int. Conf. on

Logic Program Synthesis and Transformation,
I. Gaallagher (Ed.). Springer-Verlag, 1996.

10.

11.

12.

13.

S.M. Haynes. Explaining recursion to the unso-
phisticated. SIGSCE Bulletin, 27(3):3-6. 1995.

S. Joosten (Ed.), K. van den Berg, G. van der
Hoeven. Teaching functional programming to
first-year students. J. Functional Programming,

3(1):49-65. January, 1993.

P. Néavrat, V. Rozinajova. Making program-
ming knowledge explicit. Computers and Edu-
cation, 21(4):281-299. 1993.

C. Sollohub. Programming Templates: Profes-
sional programmer knowledge needed by the
novice. Computer Science Education, 3:255-
266. 1991.

L.S. Sterling, M. Kirschenbaum. Applying
techniques to skeletons. In Constructing Logic
Programs, J.M.Jacquet (Ed.), 127-140. John
Wiley, 1993.

W.W. Vasconcelos, M. Vargas-Vera, D.S.
Robertson. Building Large-Scale Prolog Pro-
grams using a Techniques Editing System. In
Int. Logic Programming Symposium. The MIT
Press. 1993

W.W. Vasconcelos, N.E. Fuchs. Prolog Pro-
gram Development via Enhanced Schema-
Based Transformations. In Proc. of 7th Work-

shop on Logic Programming Environments,
Portland, 1995.

Appendix — program schemata used in experiments

Processing lists at the top level only

Processing lists at all levels

Map([]. [D

Map([Hy | T1], [Hz [T2]) =-
[Element-Test(H),]
Transform(H,, H,), Map(T, T5).

[Map([H [Ti], [H| T2]) :-
[Not-Element-Test(H),] Map(T,, T5).]

DMap([H, | T\, [H; | T,]) :-

DMap(Hh HZ)»
DMap(Th TZ)

DMap(Ela EZ) -

Test(E, [, E>]), Transform(E,, E,).

DMap(E, E &1) [:- Not-Test(E &2)].

Func-Reduce(|], Neutral-Value).
Func-Reduce(|H | T], R) :-
[Element-Test(H),]

Func-Reduce(T, RL), Element-Reduce(H, RL, R).

[Func-Reduce(|H | T], R) :-
[Not-Element-Test(H),] Func-Reduce(T, R).]

DFunc-Reduce(|[H | T], R) :-

DFunc-Reduce(H, RH),
DFunc-Reduce(T, RT),
Reduction(RH, RT, R).

DFunc-Reduce(E, E) :- Test(E).
DFunc-Reduce(E, Neutral-Value) [:- Not-Test(E)].

Count-if([], 0).
Count-if[H | T], C) :-
Element-Test(H),
Count-i(T, CL), Cis CL + 1.
Count-if[H | T], C) :-
[Not-Element-Test(H),] Count-if(T, C).

DCount-if((H | T], C) :-
DCount-if(H, CH),
DCount-if(T, CT),

Cis CH+CT.
DCount-if(E, 1) :- Test(E).
DCount-if(E, 0) [:- Not-Test(E)].

Processing lists at the top level only

Processing lists at all levels

Count-if-not([], 0).

Count-if-no([H | T], C) :-
Element-Test(H), Count-if-not(T, C).

Count-if-no([H | T], C) :-
[Not-Element-Test(H),]
Count-if-no(T, CL), Cis CL + 1.

DCount-if-no([H | T], C) :-
DCount-if-not(H, CH),
DCount-if-noT, CT),

Cis CH +CT.
DCount-if-no(E, 0) :- Test(E).
DCount-if-no(E, 1) [:- Not-Test(E)].

Find-ifE, [H| _]):-Element-Test(E, H).
Find-ifE, [| T]) :- Find-ifE, T).

Every([]).
Every([H| T]) :-
Element-Test(H), Every(T).

Some([H |]) :- Element-Test(H).
Some([H | T]) :- [Not-Element-Test(H),] Some(T).

None([]).
None([H | T]) :- Element-Test(H), !, fail.
None([H | T]) :- [Not-Element-Test(H),] None(T).

Some-no([H | T]) :- Element-Test(H), Some-not(T).
Some-not([H | 1) [:- Not-Element-Test(H)].

DFind-if(E, [H | T]) :-DFind-if E, H) ; DFind-if(E, T).
DFind-if(E, H) :- Test(E, H).

DEvery([]).
DEvery([H | T]) :- DEvery(H), DEvery(T).
DEvery(E) :- Test(E).

DSome([H | T]) :- DSome(H) ; DSome(T).
DSome(E) :- Test(E).

DNone([H | T]) :- DNone(H), DNone(T).
DNone(E) :- Test(E), !, fail.
DNone(E).

DSome-not([H | T]) :- DSome-no(H) ; DSome-not(T).
[DSome-not([]) :- !, fail.]

DSome-not(E) :- TestE &2), !, fail.

Dsome-not(E).

Remove-if[], []).
Remove-i([H| T1], T2) :-
Element-Test(H), Remove-if(T1, T2).
Remove-i([H| T1], [H | T2]) :-
[Not-Element-Test(H),] Remove-if(T1, T2).

Remove-if-not([], [1).

Remove-if-nof([H | T1], [H | T2]) :-
Element-Test(H),
Remove-i(T1, T2).

Remove-i([H| T1], T2) :-
[Not-Element-Test(H),]
Remove-i(T1, T2).

DRemove-if([Hy | T{], R) :-
DRemove-if(H,, Hy), DRemove-if{(Ty, T>),
combine(H,, T,, R).
DRemove-if(E, remove-flag) :- Test(E).
DRemove-if(E, E) [:- Not-Test(E)].

[DRemove-if-not([1, [1).]

DRemove-if-not([H, | T1], R) :-
DRemove-if-not(Hi, H,), DRemove-if-not(T,, Ty),
combine(H,, T,, R).

DRemove-if-not(E, E) :- Test(E).

DRemove-if-not(E, remove-flag) [:- Not-Test(E)].

combine(remove-flag, T, T).
combine(H, T, [H| T]).

