
Towards Variability Modelling for Reuse in
Hypermedia Engineering?

Peter Dolog and Mária Bieliková

Department of Computer Science and Engineering
Slovak University of Technology

Ilkovičova 3, 812 19 Bratislava, Slovakia,
{dolog, bielikova}@dcs.elf.stuba.sk,

http://www.dcs.elf.stuba.sk/~{dologp,bielik}

Abstract. In this paper we discuss variability modelling for hypermedia
applications. Inspired by domain engineering, we propose a domain engi-
neering based method for hypermedia development. Since several adap-
tive hypermedia become more and more popular to incorporate different
information views for different audience or environments, we believe that
it is important to move variability capturing to modelling phases. Several
established modelling views of hypermedia application are discussed from
the variability point of view. We also explain modelling techniques by
means of examples for the application domain view, the navigation view,
the presentation view and discuss importance of the user/environment
view for parametrisation of components.

1 Introduction

Hypermedia applications are very popular since the Internet became their main
platform for implementation. Wide acceptance of the hypermedia applications
for delivering huge amount of information with complex structure through the
Internet raised the need for studying methods of hypermedia applications con-
struction. Hypermedia construction moved from authoring to development of
complex systems. Several methods for hypermedia design appear, for exam-
ple Hypertext Design Model (HDM) [10], Object Oriented Hypermedia Design
Method (OOHDM) [18], Relationship Management Methodology (RMM) [14] or
UML-based Hypermedia Design Method (UHDM) [13].

These methods systematise development and provide techniques for mod-
elling hypermedia applications. Since hypermedia are now incorporated also in
data intensive applications (e.g., web-based information systems) or applica-
tions characterised by frequent change of some aspects, automation of some
steps significantly improves maintainability. The example of such approach is
RMM-Based Methodology for Hypermedia Presentation Design [9].

We address different point of view to design automation – application con-
struction from reusable components. Hypermedia applications constitute a good
? This work was partially supported by Slovak Science Grant Agency, grant No.

G1/7611/20.

platform for information serving and adaptation to different audience and envi-
ronment. Applications such as tutoring systems, e-courses or digital libraries can
be seen as an application family. Several components of such applications can
be reused, e.g., subset of information, navigation styles, or presentation objects.
Let’s take an example of an e-course for Introduction to Software Engineering.
Some concepts presented in this e-course but in different context and depth can
be served in an e-course of Software Systems Architectures available on the web,
or the course, recorded onto CD ROM as a training material. It means that
at least conceptual model together with information associated can be reused.
Such reuse is addressed in domain engineering. The domain engineering based
software development inspired us to research possibilities of employing such ap-
proach in hypermedia development. The result of this research is an approach
to variability modelling for hypermedia presented in this paper.

The rest of the paper is structured as follows. Section 2 describes background
of domain engineering as a base for our research. Section 3 is devoted to review
of current approaches to hypermedia development. In section 4 we summarise
proposed approach and relate our approach to domain engineering and applica-
tion engineering. Variability as the main idea behind feature modelling and a
key component of domain engineering is discussed in section 5. We discuss where
variability features in hypermedia can be found and also propose solutions to
variability modelling in application, navigation and presentation design. Finally,
we give conclusions and proposal for further work.

2 Background — Domain Engineering vs. Application
Engineering

Domain engineering concentrates on providing reusable solutions for families
of systems. According to [15], the domain engineering is a systematic way of
identifying a domain model, commonality and variability, potentially reusable
assets, and an architecture to enable their reuse. The idea behind this approach
to reuse is that the reuse of components between applications occurs in one or
more application domains. The components created during domain engineering
activities are reused during subsequent application system engineering phase.
Several approaches to domain engineering for software systems appear, for ex-
ample Model Based System Engineering [21] of SEI, which was later replaced by
Framework for Software Product Line Practice [22]. Generative programming [5]
and multi-paradigm design for AspectJ [20] also address domain engineering.

Domain engineering process consists of three main activities [5]:

– domain analysis defines a set of reusable requirements for the systems in the
domain;

– domain design establishes a common architecture for the systems in the
domain;

– domain implementation implements reusable components, domain-specific
languages, generators, and a reuse infrastructure.

The result of the domain analysis is a domain model. This model represents
common and variable properties of the systems in the domain and relationships
between them. Domain analysis starts with a selection of the domain being
analysed. Concepts from the domain and their mutual relationships are anal-
ysed and modelled. The domain concepts in the model may represent a domain
vocabulary. Each concept is then extended by its common and variable features
and dependencies between them. This is the key concept of domain engineering.
Variable features determine the configuration space for the systems family.

Domain design and domain implementation are closely related and some-
times are presented as one phase. The domain design produces generic abstract
architecture for the family of systems according to the well known architectural
patterns (layered, model-view controller, etc.). Domain implementation imple-
ments the architecture by appropriate technology for particular environment.
Figure 1 summarizes software development based on domain engineering.

Domain Analysis Domain Design Domain Implementation

Requirements Analysis Design Analysis

Custom Design

Integration and Test

Custom Development

Domain

Knowledge

Customer

Requirements

Domain

Model

Domain

Model

New

Requirements

Features

Product

Configuration

Domain

Architrecture(s)

Product

Domain-specific

languages,

generators,

components

Domain

Architrecture(s)

Domain Engineering

Application Engineering

Fig. 1. Software development based on domain engineering according to [21].

3 Current View on Hypermedia Engineering

Likewise earlier works on software systems development, current hypermedia de-
velopment methods conform single system development approach, i.e. the focus is
put on the development of single systems rather than reusable models for classes
of systems. Most methods are described in terms of “what to model” question. It
means that development process chains activities related to application domain,
navigation and presentation modelling together with requirements capture and
implementation. OOHDM [18], W2000 [1] or UHDM [13] are examples of such
methods for engineering single hypermedia application.

Introducing adaptive hypermedia raises the need for studying variability of
presentation and navigation. UHDM and RMM-Based Methodology for Hyper-
media Presentation Design [9] are examples of such methods where adaptation is

considered already during the modelling phase. RMM based extension addresses
similar adaptation and user modelling techniques like Adaptive Hypermedia Ap-
plication Model (AHAM) [3]. AHAM provides modelling primitives for a user
and its level of knowledge, preferences and goals description and also the rule
based language for specification of adaptation rules and actions.

User requirements are mostly captured by use cases [18, 1] or their extension
— user interaction diagrams [12]. The concepts and their mutual relationships
are derived from user requirements and modelled by a class diagram [18, 1, 13]
or an entity-relationship diagram [9]. The navigation model usually consists of
two schemas: navigation class schema and navigation context schema. Several
mechanisms are employed for modelling navigation such as views [18, 13], nodes
and links, collections [1], states and transitions [8], and slices and their rela-
tionships [9]. Abstract interface design is modelled for example by abstract data
views [18], presentation blocks and relationships [9], pages and framesets [13, 1].

Hypermedia and especially web-based applications are often accessed by sev-
eral types of users. Information provided is presented also using several environ-
ments. Moreover, these environments require different implementation modelling
languages (e.g., WAP, HTML). These observations raised the need for studying
reuse for families of hypermedia applications.

Current methods (oriented to single system development) provide modelling
techniques, which allow variability modelling partially at the conceptual level by
means of generalisation/specialisation relationship or xor constraints between
aggregation or association relationships. However, the specialisation relationship
is rather implementation oriented technique for variability modelling. Moreover,
specialisation explicitly prescribes that the particular concept instance may be-
long only to one specialized subconcept. Similarly can be seen the xor con-
straint. The variability at the attribute level cannot be modelled by techniques
employed in mentioned methods. Another technique where variability can be
partially captured is views modelling. The views are mostly described by an ob-
ject query language. It means that at the navigation or presentation level only
several concepts or their attributes appear in one context. These techniques are
rather configuration oriented than variability description oriented.

4 Towards Domain Engineering Approach for
Hypermedia

We proposed a framework for incorporating established hypermedia application
modelling aspects into activities of domain engineering. This inclusion is sum-
marised in Figure 2. Domain analysis for hypermedia application involves real
world domain conceptual and feature model and representation of conceptual
and feature model.

Domain design for hypermedia application involves information modelling,
navigation modelling, presentation modelling, user modelling and environment
modelling. It also incorporates mappings between these models. The mappings

Domain Engineering for Hypermedia
Application System Engineering

Define Conceptual Domain Model

- Real World

- Representation

Define Feature Model

- Real World

- Representation

Define Domain Architecture

- Information

- Navigation

- Presentation

- User

- Environment

- Adaptation

Implement Domain

- Reusable Components

- Tools

- Reuse Infrastructure

- Domain Specific Languages

Analyse Requirements of Stakeholders

Perform Selection of Reusable

Components

Define and Scope Requirements not

Covered by Reusable Components

Do Design of Custom Components

Specialise and Integrate Resusable and

Custom Components

Consider Variability and Reuse at Reuse

Time and at Bind Time

Fig. 2. Domain engineering based approach for hypermedia.

involve specification of rules and determination of variable feature mappings
between developed models.

Domain implementation includes construction of parameterised implementa-
tion components with their mutual dependencies. Parameterisation of implemen-
tation components can be realised for example in the form of HTML templates,
active server templates, WAP templates or components in other implementa-
tion languages. Domain implementation should also incorporate domain specific
languages such as query languages or languages for selecting and integrating
components for particular application from the application family. All of the
mentioned models and their parameterisation are transformed into these imple-
mentation components.

Application engineering as a subsequent activity following domain engineer-
ing activities is out of scope of this paper. The hypermedia application is built
according to the requirements, specific for particular application. Similarly to
software systems, the requirements are split into those, which

– can be satisfied by the components from the application family framework
created during the domain engineering process,

– should be satisfied by a custom development.

Results of the framework generation and custom development are integrated into
the final product.

5 Variability Modelling for Hypermedia

Variability is considered from two points of view. The first point of view is
variability at the system level. It means existence of versions of system’s compo-
nents and system releases. Version control in hypermedia domain was studied at

the document level in several works [16, 2, 19]. All mentioned works provide a
model of versions and a model of configuration, which defines how the versions
contribute into the final configuration. The approach described in [2] stresses
importance of families at the level of versions.

The second point of view is the variability at the application level. The vari-
ability is considered in several modelling aspects of hypermedia application [7].
The most significant aspects in hypermedia application modelling are application
domain, navigation and presentation. The variability modelling is important in
all these aspects.

Application domain model should be mapped into the content. Several con-
cepts from application domain model can be expressed by different contents.
Moreover, the same content can be represented by different media and this con-
tent can evolve in time. The content can be also presented in different formats,
e.g. as a book, lecture, or an article. Also overall access to the content can
be managed through different patterns such as digital library, e-course (virtual
university), on-line help, etc.

Hypermedia application can be used by different types of users. Each user
group may require different information to browse, different composition of pre-
sented information (local navigation), and different order and interconnections
between information chunks (global navigation). Different navigation styles can
be determined also by the target environment where the information is served
to a user.

Similarly, different audience may require different appearance of information
chunks, different layout and different presentation of organisation of read infor-
mation. Target environment can also restrict possibilities to presentation. Thus,
it is important to capture also this kind of variability.

5.1 Application Domain

We consider two views of application domain for hypermedia. The first is con-
ceptual model of the “real world” and the second is representation of the real
world concepts. By representation of the real world view we mean appearance of
the concepts in the hypermedia application. The hypermedia application serves
information by its content. The content is somehow structured. For example,
concepts may be described in the paragraph of a section in a paper or book, or
can be described as a part of e-lecture.

Most of current methods reflect only one conceptual view in the hypermedia
application – the representation view. A little attention is paid to real world con-
cepts organisation as the vehicle for information modelling. It is very important
to consider both views when we think about a reuse because the components of
both views can be reused separately.

We model concepts for both views using the same techniques. Since the UML
is de facto standard not only for software modelling, we employ this language
for application domain modelling. A concept is modelled by the class, which is
stereotyped by the ”Concept” stereotype. Concepts can be connected by one of
association, generalisation/specialisation, or aggregation relationships.

The example of simple conceptual model for representation view is depicted
in Figure 3. We take the e-course and its e-lecture as the representation domain.
Figure 3 depicts Course, Lecture, Student and Lecturer concepts. Depicted
associations are decorated by stars, which represent “many” cardinality.

«Concept»

Course

«Concept»

Lecture

«Concept»

Student

«Concept»

Lecturer

* *

*

*

* *

Fig. 3. Conceptual model of course representation.

Figure 4 depicts example of the real world view — the functional program-
ming domain basic concepts. The basic concepts of this domain are Functional
Program, Function, and Expression. These basic concepts should be described
in any lecture on functional programming.

«Concept»

Function
«Concept»

Expression

«Concept»

Functional Program

*

*

*

*

Fig. 4. Conceptual model of the Functional programming domain.

Concepts can have common and variable features in both (representation and
real world) views. We consider mandatory features or optional features of the
concept. Mandatory features must be incorporated in the domain model of any
application from the application family. On the other hand, optional features
need not to be incorporated in concepts specified in particular application.

Variability relationships must also be considered. Features can stand as:

– mutually exclusive variants,
– mutually required features,
– features, whose optional number can be chosen.

A feature, which has defined such variability relationships for its subfeatures,
is denoted as a variation point [21] or variation [11].

Feature diagrams are the key part of the feature modelling in methods such
as MBSE [21] or generative programming [5]. UML is employed for example in
Reuse-Driven Software Engineering Business (RSEB) [15, 11]. Variability points
are considered in the use case view and the component view in [15]. The vari-
ability modelling in the conceptual view is discussed in [11]. In this work the

extension for features, their attributes and variation points is defined. The at-
tributes can be suppressed in the model. However, the definition of extension
for feature and variability modelling has some inconsistencies. First, a feature
is defined as a stereotype of the class element. Since the class is used also for
modelling concepts, it seems that the concept feature should be defined as the
stereotype of another element. Second, attributes of the feature need not to be
distinguished because they can be represented as subfeatures of the feature.

To avoid above mentioned problems we have proposed the following solution.
We define the ”ConceptualFeature” stereotype for the UML abstract element
Feature. The ”ConceptualFeature” stereotype inherits properties and rela-
tionships from its predecessor. The Feature element is associated to the Class
element by the aggregation relationship at the metamodel level. If features are
inserted into a class at the model level, they are mandatory for the class. A class
can have features in the model but features cannot have their features.

We need to express whether a feature belongs to a concept or another feature
at the model level. The feature model of particular concept can form a complex
hierarchy. For this purpose we define the constraint, which restricts aggregation
relationship at the metamodel level for ”ConceptualFeature” and allows to
define association between the concept, its features and their subfeatures.

We defined the special purpose stereotypes (named ”MandatoryFeature”,
”OptionalFeature”) of ”ConceptualFeature” stereotype for modelling manda-
tory and optional features. Features are associated to concepts or features by as-
sociation relationships. We also defined the ”VariationPoint” stereotype of the
Element UML metaclass with the VariationKind attribute to enable handling
variation points. The variation kind can be XOR, OR or AND.

Figure 5 depicts a part of the feature model for the Lecture concept. Lecture
must have at least the Lecturer and Parts features (they are depicted as manda-
tory features in the figure). The Name and Description are optional. Their sub-
features can be interpreted similarly. The figure depicts also OR variation point
of the Picture feature. It prescribes that this feature must appear at least with
one of the Text, Audio, or Video features. For space limitation we show here only
a part of the Lecture concept feature model. Each concept from the conceptual
model can be described similarly.

Figure 6 depicts a part of the Functional Program concept feature descrip-
tion. Functional program as a real world domain concept for a lecture should
be somehow described (Definition mandatory feature). The computation of
functional program should also be explained in e-lecture (Computation manda-
tory feature). The composition of functional program is also important (Program
Definition mandatory feature). These features must be described in any lecture
on functional programming. Remaining features are optional.

Computation of a functional program is based on expression evaluation (Form
optional feature). OR variation point of the Computation feature prescribes that
at least one subfeature must be described in any e-lecture on functional pro-
gramming. The meaning of rest features can be directly derived from the figure.
The reminder of the concepts from discussed domain can be described similarly.

«Concept»

Lecture

«MandatoryFeature»

Name

«OptionalFeature»

Description

«MandatoryFeature»

Lecturer

«MandatoryFeature»

Parts

«MandatoryFeature»

Name

«MandatoryFeature»

Title

«OptionalFeature»

Address

«VariationPoint»

Picture

{VariationKind = OR}

«MandatoryFeature»

Text

«OptionalFeature»

Picture

«OptionalFeature»

Audio

«OptionalFeature»

Video

Fig. 5. Feature model of the Lecture concept.

Whereas two views on an application domain are defined, the mapping be-
tween these views should be defined. Mapping can be different for different appli-
cations from the application family. This is subject of the domain design process.
The mapping represents the realisation of concepts and their attributes in the
content representation. It can be specified by transformation specifications, view
mechanism, instantiation etc.

5.2 Navigation

Navigation design is a counterpart of the component identification in the domain
design for software application families. The navigation design defines groupings
of information chunks into higher level contexts, which are interconnected by
links. Links can be derived from semantics relationships between the concepts
and/or features, or from the composition and variability relationships defined in
the feature models.

For navigation specification we employ the UML state diagrams. Features
or concepts are transformed into states (ordinary or composite). Variability is
handled by two approaches. The former is structural, i.e. the composite state is
decomposed into parallel or alternative states [6]. The latter is the specification of
the adaptation rules related to the transitions between states, or the specification
of an entry, exit or internal rules of states [8].

The features which are members of an AND variation point and mandatory
features are transformed directly into parallel states. The features of a XOR varia-
tion point are transformed into alternative states. The features of an OR variation
point and optional features are transformed into parallel states with an entry
parameter determining whether the states will be considered in a generation of
an application or not. This is denoted as reuse at use time.

Second type of reuse is reuse at bind time. The components are incorpo-
rated into the implementation but their usage is determined according to the
rules, which are evaluated at bind time. These dynamic rules can be composed
according to a user or an environment model.

«Concept»

Functional Program

«MandatoryFeature»

Definition

«MandatoryFeature»

Computation

«OptionalFeature»

Effectivity

«VariationPoint»

Computation

{VariationKind = OR}

«OptionalFeature»

Introduction

«OptionalFeature»

Form

...

«OptionalFeature»

Generation

«OptionalFeature»

List Processing

«MandatoryFeature»

Linear

«MandatoryFeature»

Composition of Functions

«OptionalFeature»

Non-Linear

«OptionalFeature»

Representation

«OptionalFeature»

Searching

«OptionalFeature»

By Function

«OptionalFeature»

Mapping

«OptionalFeature»

Function Definition

«MandatoryFeature»

Program Definition

«OptionalFeature»

Recursion

«OptionalFeature»

Programming Schemes

«MandatoryFeature»

Atom

«MandatoryFeature»

List

«OptionalFeature»

Reduction

«OptionalFeature»

Filtering

Fig. 6. Feature model of the Functional Program concept.

The example of the state-diagram navigation model is depicted in Fig. 7. The
diagram contains selected transformed features from Fig. 6. This model can be
seen as a model for one application from the application family. It means that
the selection process of reusable components was executed.

As it is obvious, the Definition feature of the Functional Program concept
is depicted as the Introduction to FP state. Similarly the Computation feature
is mapped to the Computation in FP state and the Introduction feature is
mapped to the Introduction to LISP state. Other states in the figure is derived
from fetures similarly. State diagram in the Fig. 7 also contains rules, which
reference mostly user characteristics.

5.3 Presentation

Presentation design also belongs to domain design activities. Presentation de-
sign aims at the specification of presentation objects. These abstract presentation
objects have their appearance features and also are associated with spatial re-
lationships. The relationship can also have features associated. Such a feature
is a closer specification of the shifting or relationship role. The role can be left,
right, above, bottom, in front, or behind.

Variability is expressed similarly to the domain analysis model. A presenta-
tion object can have its features, which are variable or common with respect to
the variability relationships between them. The features of the spatial relation-
ship can also be considered as variation points.

Presentation objects are mapped to navigation and/or conceptual design
elements. Mapping is performed at reuse time or at bind time according to the
specified rules. The mapping at reuse time is performed by choosing a particular

[User.UserKnowledge.
CurrentLOK() >
�Middle�]

Functional Programming

Computation in FP

Introduction to FP

Introduction to LISP
Entry[User.UserKnowledge.
CurrentLOK() > �Low�]

Examples of Non-Linear
Lists Processing

[User.UserKnowledge.
CurrentLOK() <
�Middle�]

Next
List Generation
[User.UserKnowledge.
CurrentLOK() > �Middle�]

Next

Introduction

Non-Linear Lists Processing

Programming Schemes

Linear Lists Processing

Entry/SortOutgoingLinks()

Simple Commented

[User.UserKnowledge.
CurrentLOK() > �Low�]

[User.UserKnowledge.
CurrentLOK() <=
�Low�]

Click

Examples of Linear Lists
Processing

Mapping

List
Generation

Reduction By
Function

Searching
Reduction

Reduction
By

Function

Mapping

Searching
Reduction

Click

Fig. 7. Navigation model of functional programming e-lecture with adaptation rules.

set of the presentation features and its mapping to navigation or presentation
objects. The mapping at bind time is performed by choosing a set of variable
presentation features with association of rule when particular feature is actual.
State transition graph is refined by presentation states of particular state, which
is associated to concept or its features.

Presentation or navigation can be adapted or parameterised according to
user characteristics or environment characteristics [4]. Preferences, goals, level
of knowledge are examples of user characteristics. Environment characteristics
are elements, which are provided by implementation environment for an im-
plementation of high level design components. User and environment concepts
have also associated variable and common features. These features can also be
constrained by variability relationships.

Features of a user or environment model can be used in rules for parameterisa-
tion of presentation and navigation models or for specification of transformation
to the implementation. We introduced such mapping in [8]. Some mappings can
be derived directly from the application domain model where variable features
are determined according to different requirements of stakeholders.

6 Conclusions and Further Work

In this paper we discussed domain engineering based approach for reuse in hy-
permedia development. Proposed approach is the combination of lessons learned

from implementation of systems and synthesis of these experiences with prin-
ciples of domain engineering. A part of this approach was employed in the
Con4U [17] project for development of the web based conference review sys-
tem. The result of this project was a framework, which allowed us to release two
applications: the first for conference paper reviews and the second for student
project reviews. Particular application was created by a configuration and an
instantiation of this framework.

Proposed approach extends classical notion of single hypermedia system de-
velopment to the application family engineering. We defined which activities
belong to established domain engineering high level activities. We proposed sep-
aration of two conceptually different aspects in application domain engineering
for hypermedia and discussed advantages of such separation in design from reuse
point of view. The contribution to the modelling is the revised definition of the
UML extension for variability modelling at the conceptual level. We showed how
variability can be considered in application domain, navigation and presentation
modelling for hypermedia.

There is a need to define domain specific languages for manipulating with
reusable components for hypermedia. The investigation and development of gen-
erators for specific environments, which consider parametrisation is also needed.
In spite of practical evaluation in the mentioned Con4U case study and e-lecture
in described examples, more case studies or practical realisations are needed.

References

[1] Luciano Baresi, Franca Garzotto, and Paolo Paolini. Extending UML for modeling
web applications. In Proceedings 34th Anual Hawaii International Conference on
System Sciences (HICSS’34), Maui, Hawai, January 2001.

[2] M. Bieliková and P. Návrat. Modelling versioned hypertext documents. In Sympo-
sium on System Configuration Management (ECOOP’98 SCM-8), pages 188–197,
Springer LNCS 1439, Brussels, Belgium, July 1998.

[3] Paul De Bra, Geert-Jan Houben, and Hongjing Wu. AHAM: A dexter-based
reference model for adaptive hypermedia. In Proceedings ACM Conference on
Hypertext and Hypermedia, pages 147–156, Darmstadt, Germany, February 1999.

[4] Peter Brusilovsky. Adaptive hypermedia. User Modeling and User-Adapted In-
teraction, 11(1-2):87–100, 2001.

[5] Krysztof Czarnecki and Ulrich Eisenecker. Generative Programing: Principles,
Techniques, and Tools. Addison Wesley, 2000.

[6] Peter Dolog and Mária Bieliková. Modelling browsing semantics in hyper-
texts using UML. In Proceedings Symposium on Information Systems Modelling
(ISM’2001), pages 181–188, Hradec nad Moravićı, Czech Republic, May 2001.

[7] Peter Dolog and Mária Bieliková. Hypermedia modelling using UML. In Pro-
ceedings Symposium on Information Systems Modelling (ISM’2002), pages 79–86,
Rožnov pod Radhoštěm, Czech Republic, April 2002.

[8] Peter Dolog and Mária Bieliková. Navigation modelling in adaptive hypermedia.
In Proceedings 2nd Conference on Adaptive Hypermedia and Adaptive Web-based
Systems, Springer LNCS 2347, Malaga, Spain, May 2002.

[9] Flavius Frasincar, Geert Jan Houben, and Richard Vdovjak. A RMM-based
methodology for hypermedia presentation design. In Proceedings 5th ADBIS Con-
ference, Springer LNCS 2151, pages 323–337, Vilnius, Lithuania, September 2001.

[10] Franca Garzotto and Paolo Paolini. HDM — a model-based approach to hyper-
text application design. ACM Transactions on Information Systems, 11(1):1–26,
January 1993.

[11] Martin L. Griss, John Favaro, and Massimo d’ Alessandro. Integrating feature
modeling with the rseb. In Proceedings 5th International Conference on Software
Reuse, pages 76–85, Victoria, Canada, June 1998.

[12] N. Guell, Daniel Schwabe, and Patricia Vilain. Modelling interaction and naviga-
tion in web applications. In Proceedings WWW and Conceptual Modeling Work-
shop, Springer LNCS, Salt Lake City, 2000.

[13] Rolf Hennicker and Nora Koch. A UML-based methodology for hypermedia de-
sign. In Proceedings UML 2000 Conference, Springer LNCS 1939, York, England,
October 2000.

[14] Tomás Isakowitz, A. Kamis, and M. Koufaris. Extending the capabilities of RMM:
Russians dolls and hypertext. In Proceedings 30th Annual Hawaii International
Conference on System Sciences, January 1997.

[15] Ivar Jacobson, Martin Griss, and Patrik Jonsson. Software Reuse: Architecture,
Process and Organization for Business Success. ACM Press, 1997.

[16] Theodor Holm Nelson. Xanalogical Structure, Needed Now More than Ever:
Parallel Documents, Deep Links to Content, Deep Versioning and Deep Re-Use .
Available at: http://www.sfc.keio.ac.jp/ ted/XUsurvey/xuDation.html. Accessed
on March 1, 2002.

[17] Richard Richter, Róbert Trebula, Peter Lopeň, Ján Zázrivec, and Peter Kósa.
Con4U: Project and paper review system, May 2002. Team Project supervised by
Peter Dolog. Dept. of Computer Sci. and Eng., Slovak University of Technology.

[18] Daniel Schwabe and Gustavo Rossi. An object-oriented approach to web-based
application design. Theory and Practise of Object Systems (TAPOS), Special
Issue on the Internet, 4(4):207–225, October 1998.

[19] Luiz Fernando G. Soares, Rogério F. Rodrigues, and Débora C. Muchaluat Saade.
Modeling, authoring and formatting hypermedia documents in the HyperProp
system. ACM Multimedia System Journal, 8(2):118–134, March 2000.

[20] Valentino Vranić. AspectJ paradigm model: A basis for multi-paradigm de-
sign for AspectJ. In Proceedings 3rd International Conference on Generative
and Component-Based Software Engineering (GCSE 2001), Springer LNCS 2186,
pages 48–57, Erfurt, Germany, September 2001.

[21] James V. Withey. Implementing model based software engineering in your or-
ganization: An approach to domain engineering, 1994. CMU/SEI-94-TR-01, see
also http://www.sei.cmu.edu/mbse/index.html.

[22] James V. Withey. Investment analysis of software assets for product lines, 1996.
CMU/SEI-96-TR-010.

