
Navigation Modelling in Adaptive Hypermedia?

Peter Dolog and Mária Bieliková

Department of Computer Science and Engineering
Slovak University of Technology

Ilkovičova 3, 812 19 Bratislava, Slovakia,
{dolog, bielikova}@dcs.elf.stuba.sk,

http://www.dcs.elf.stuba.sk/~{dologp,bielik}

Abstract. In this paper we reflect the need for modelling in a system-
atic production of adaptive hypermedia applications. Proposed approach
is based on the Unified Modelling Language (UML). State diagrams are
used to model possible paths through hypertext. The user model ex-
pressed by a class diagram determines structural and behavioural fea-
tures, which are used for specification of adaptations in states and tran-
sitions contained in state diagrams.

1 Introduction

One of the main goals of any adaptive hypermedia application is to increase
user efficiency measured either in the time spent searching for information or
the amount of information absorbed by the user. Another important issue is to
aid developers of such systems which are going to be more and more complex.
The increased complexity of hypermedia applications raises the need to employ
modelling in hypermedia development process.

The modelling of a hypermedia is extensively studied only in past two decades.
Models help us understand developed system by simplifying some of details.
Adaptation of navigation, together with a user model, should be addressed
in hypermedia application modelling. The goal of this paper is to present an
approach to modelling adaptive navigation. The Unified Modelling Language,
namely state diagrams together with sequence and class diagrams are employed
for these purposes.

2 Process of Adaptive Navigation Modelling

A navigation model represents possible paths through information chunks and
their contextual grouping. To develop such navigation model, an analytical model
of information structure and user roles should exist.

Basic modelling technique for navigation modelling in our approach is a state
diagram, which enables to model dynamic character of navigation. We proposed
? This work was partially supported by Slovak Science Grant Agency, grant No.

G1/7611/20.

five basic steps of navigation modelling process: identifying basic interaction
scheme, identifying states, identifying transitions, identifying events, and map-
ping the user model elements to the state diagram. These steps can be performed
in parallel and in iterations. Moreover, proposed approach can be used at several
levels of abstraction (of a hypermedia system).

Adaptive navigation strongly depends on a user modelling. The user model
incorporates various characteristics of users. Hypermedia application usage data
are also represented in the user model. In our approach a user is modelled by a
class diagram similarly to [12]. The user model is derived from user roles. Struc-
ture of the user model follows the well known Adaptive Hypermedia Application
Model (AHAM) [6]. The user model should at least contain a class, which repre-
sents the level of user knowledge. Other classes (user preferences, goals, interests,
knowledge, background, hyperspace experience, etc.) can be incorporated when
it is needed [9]. The user model contains operations for reading the current state
of user characteristics and for updating user characteristics. Environment or con-
text data [2] are carried during mapping to navigation model likewise data in
the user model.

I. Identifying basic interaction scheme. The first step in navigation modelling
is basic interaction scheme modelling. This is intended to identify a sequence of
interactions between main system roles. The UML sequence diagram is used for
these purposes.

II. Identifying states. States in a navigation model fulfil the role of information
chunks [8]. They can be grouped into superstates. The states are created from
an information model. There are two possibilities of mapping: (1) a superstate
mapped to a class with substates mapped to class attributes, and (2) a superstate
mapped to a class instance with substates mapped to class instance attributes.

Parallel substates are mapped to attributes of a class or its instances, which
are presented simultaneously. Attributes, which do not need to be presented
simultaneously are grouped into ordinary substates. The classes, which are ag-
gregates of another class are mapped to parallel or ordinary substates of that
class’ state. In addition, these substates are determined by the cardinality of the
aggregation relationship. Specialised classes are mapped to ordinary substates.
Special information chunks derived from several attributes and/or classes or
special states needed for purposes of navigation can also be considered. States
can be extended with a history. The history indicates that a user can start his
browsing where he finished when exited system last time.

III. Identifying transitions. A transition represents an active interconnection be-
tween information chunks. Association relationships from information model are
transformed to transitions. When it is needed, additional transitions can be in-
corporated into the model. The fork and join pseudostates, and SyncState are
intended to model a synchronisation of parallel states. The first two are intended
for splitting or joining transitions. The latter is for synchronizing substates of
parallel regions.

A condition can be assigned to the transition. A transition can also be con-
ditionally forked; i.e. the transition can end in several states. Transition can also
have associated time event for modelling sequential hypermedia timing. A tran-
sition can also have associated side effect actions, which together with transition
conditions are very important for adaptation modelling.

IV. Identifying events. Events raise transitions in a state machine. Events can
be directly mapped to presentation elements, which have associated actions.
They are mediators between navigation model and presentation model of actions.
Events can be joined to a generalisation/specialisation tree. An event can be
mapped to more than one transition.

V. Mapping user model elements to state diagram. The adaptive behaviour is
modelled by an introduction of features of user model classes into state diagrams.
Accessible attributes of user model classes are mapped to guards conditions.
They are tested for specific values, which have to be satisfied when transition is
raised. Operations are mapped to actions of transitions. They are used for up-
grading the user model state or for specific operations with the user model and/or
information chunks. Operations for retrieving current user model state can also
be used in guard conditions. Guard conditions of transition specify local rules
of adaptation. Global rules of adaptation, can be specified as guards of internal
transitions, parts of entry, exit or do actions, and conditions of superstates.

3 Modelling of Techniques for Adaptive Hypermedia

Several efficient techniques for adaptive hypermedia were proposed [3]. We se-
lected some of these techniques for presentation of capabilities of the proposed
approach. The examples cover both link-level and content-level adaptation.

Fig. 1 depicts part of an adaptive navigation model, which was created ac-
cording to the approach proposed in this paper. The example figures the model
of a lecture on functional programming (FP). This lecture consists of four topics:
Functional Programming, Programming Schemes, Examples of Linear Lists
Processing and Examples of Non-Linear Lists Processing. The aim of such
lecture is to exercise programming of basic list processing functions in the Com-
mon Lisp language. First, some introduction is needed. This is carried out by
Introduction to FP, Computation in FP, and Introduction to LISP frag-
ments. Next, the introduction to Programming schemes (Programming Schemes
state) is performed. It is represented by Introduction substate and simple cat-
egories of Linear Lists Processing and Non-Linear Lists Processing.

Adaptation rules are involved in transition labels or as internal transitions
of states. Events handle user interaction or internal system events. Conditions
and actions are taken from the user model.

Conditional text is modelled by Entry internal transition of a state. It is
followed by a condition, which determines whether the fragment is displayed or
not. In the Fig. 1, conditional text is represented by the Introduction to LISP

[User.UserKnowledge.
CurrentLOK() >
�Middle�]

Functional Programming

Computation in FP

Introduction to FP

Introduction to LISP
Entry[User.UserKnowledge.
CurrentLOK() > �Low�]

Examples of Non-Linear
Lists Processing

[User.UserKnowledge.
CurrentLOK() <
�Middle�]

Next
List Generation
[User.UserKnowledge.
CurrentLOK() > �Middle�]

Next

Introduction

Non-Linear Lists Processing

Programming Schemes

Linear Lists Processing

Entry/SortOutgoingLinks()

Simple Commented

[User.UserKnowledge.
CurrentLOK() > �Low�]

[User.UserKnowledge.
CurrentLOK() <=
�Low�]

Click

Examples of Linear Lists
Processing

Mapping

List
Generation

Reduction By
Function

Searching
Reduction

Reduction
By

Function

Mapping

Searching
Reduction

Click

Fig. 1. A part of an adaptive navigation model.

state. There is the condition, which examines the level of current user knowledge.
The fragment is displayed only if the level of knowledge is greater than Low.

Stretchtext can be modelled by two approaches. The first is to represent
stretched and unstretched text as two different alternative states with transition
between them. The transition has associated Click event. The second approach
is to model stretchtext with two parallel states, where one state is condition-
ally constrained. It means that the state, which is conditionally constrained is
presented only if the condition is satisfied. Condition is mostly based on a his-
tory (usage data). In the Fig. 1, stretchtext is represented in the Linear List
Processing state containing Simple and Commented version of introduction.
The text is displayed unstretched if current user level of knowledge is greater
than Low. Otherwise, Commented version is displayed. These two alternatives can
be switched by clicking (Click event).

Commented text is modelled similarly. The difference between commented
text and stretchtext is that stretchtext can be clicked and thus unstretched.

Alternative pages or fragments are modelled by conditional transition split.
The decision symbol (junction) represents modelling element for alternation.
Another possibility is to employ the diamond symbol. In the Fig. 1, there are
two alternatives when the next event occurs. If current level of user knowledge is
less than Middle only the Examples of Linear Lists Processing state is dis-

played. Otherwise, Examples of Non-Linear Lists Processing as more chal-
lenging task is provided by adaptive hypermedia application.

Direct guidance can be modelled by assigning the next or back event to
particular transition. Another approach is to use directly state diagram as a
guide, which is interpreted and displayed as a map and the current position and
allowed links are sufficiently indicated (for example like marking in petri nets).

Hiding of a link is modelled by guard condition of a transition. When the
condition is not satisfied, link is not enabled (not displayed). The transition
in Fig. 1 labelled by List Generation event is example such link. The link is
displayed (transition is allowed) only if current user level of knowledge is greater
than Middle.

Link sorting is an operation. It is obviously performed when a user reached
particular fragment, where the links have to be sorted. Such operation can be
modelled as the Entry action of particular state. Fig. 1 depicts Linear List
Processing state, which represents such fragment. The SortOutgoingLinks()
action is invoked when the user reached this state.

The state/transition diagram can be used also as a model of adaptive map.
Special manipulation function can be provided, which interprets meta-model and
rules of states, and according to them displays particular part of the model to
the user.

4 Related work and conclusions

In this paper we described an approach to adaptive hypermedia modelling. Ap-
plication of a state/transition diagram modelling technique is the first advantage
of the proposed approach. A hypermedia application reacts to user actions. Thus,
it seems that state-transition diagrams are more natural for modelling navigation
than structural techniques such as in OOHDM [14], UHDM [12] or WebML [4]
(for a review of others, see for example [7]).

Provided guidelines for user modelling and the integration of a user model
and navigation model is another advantage. User modelling is supported by
UHDM [12], WebML [4] and W2000 [1] but independently from navigation.
According to [10] the adaptation specification can be involved as slice or slice
relationship condition. But slices and their relationships do not satisfactorily deal
with interactions. The authors do not explicitly discuss relationships between
user model and presentation or application model. In [13] the graph formalism
is employed for modelling paths. Adaptation is specified as text composition
templates with linguistic rules.

HMBS/M [5] and χTrellis [11] are based on behavioural techniques. However,
the former only allows to map states to class instances. Both approaches do not
emphasize on adaptation and user modelling.

Our approach can be used for modelling known techniques of adaptive navi-
gation and presentation. Our further research is oriented to extension of proposed
approach to support implementation modelling.

References

[1] Luciano Baresi, Franca Garzotto, and Paolo Paolini. Extending UML for modeling
web applications. In Proc. of 34th Anual Hawaii International Conference on
System Sciences (HICSS’34), Maui, Hawai, January 2001. IEEE Press.

[2] Mária Bieliková. Adaptive presentation of evolving information using XML. In
T. Okamoto, R. Hartley, Kinshuk, and J.P. Klus, editors, Proc. of IEEE Interna-
tional Conference of Advanced Learning Technologies (ICALT’2001), pages 193–
196, Madison, USA, August 2001. IEEE Press.

[3] Peter Brusilovsky. Methods and techniques of adaptive hypermedia. User Mod-
eling and User-Adapted Interaction, 6(2-3):87–129, 1996.

[4] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web Modeling Language
(WebML): a modeling language for designing web sites. Computer Networks and
ISDN Systems, 33(1–6):137–157, June 2000.

[5] Marcia Regina de Carvalho, Maria Cristina Ferreira de Oliveira, and Paulo Cesar
Masiero. HMBS/M - an object oriented method for hypermedia design. In Proc.
of Brazilian Symposium on Multimedia and Hypermedia Systems (SBMIDIA’99),
pages 43–62, Goiânia, June 1999.

[6] Paul De Bra, Geert-Jan Houben, and Hongjing Wu. AHAM: A dexter-based
reference model for adaptive hypermedia. In K. Tochtermann, J. Westbomke,
U.K. Wiil, and J. Leggett, editors, Proc. of ACM Conference on Hypertext and
Hypermedia, pages 147–156, Darmstadt, Germany, February 1999.

[7] Peter Dolog. Modelling in hypermedia development, August 2001. Technical
Report (A Written Part of PhD Examination). Department of Computer Science
and Engineering, Slovak University of Technology.

[8] Peter Dolog and Mária Bieliková. Modelling browsing semantics in hypertexts
using UML. In J. Zendulka, editor, Proc. of ISM’2001 - Information Systems
Modelling, pages 181–188, Hradec nad Moravićı, Czech Republic, May 2001.

[9] Peter Dolog and Mária Bieliková. Hypermedia modelling using UML. In Proc.
of ISM’2002 - Information Systems Modelling, Rožnov pod Radhoštěm, Czech
Republic, April 2002.

[10] Flavius Frasincar, Geert Jan Houben, and Richard Vdovjak. A RMM-based
methodology for hypermedia presentation design. In A. Caplinskas and J. Eder,
editors, Proc. of ADBIS 2001 - Advances in Databases and Information Systems,
pages 323–337, Vilnius, Lithuania, September 2001. Springer, LNCS 2151.

[11] Richard Furuta and P. David Stotts. A formally-defined hypertextual basis for
integrating task and information, 1994. Tech. Report TAMU-HRL 94-007.

[12] Nora Koch. Software engineering for adaptive hypermedia systems? In Paul De
Bra, editor, Proc. of Third Workshop on Adaptive Hypertext and Hypermedia, 8th
International Conference on User Modeling, July 2001.

[13] Daniela Petrelli, Daniele Baggio, and Giovanni Pezzulo. Adaptive hypertext de-
sign environments: Putting principles into practise. In Proc. of International Con-
ference on Adaptive Hypermedia and Adaptive Web-Based Systems (AH’2000),
pages 202–213, Trento, Italy, August 2000. Springer, LNCS 1892.

[14] Daniel Schwabe and Gustavo Rossi. An object-oriented approach to web-based
application design. Theory and Practise of Object Systems (TAPOS), Special
Issue on the Internet, 4(4):207–225, October 1998.

