
Web-Based Learning Environment using Adapted 
Sequences of Programming Exercises  

Radovan Kostelník* 
radok@nextra.sk 

Mária Bieliková* 
bielik@elf.stuba.sk 

 

Abstract: Adaptive hypermedia (AH) educational systems aim at improving self-learning 
of individuals. Although the research in this area is very active, only little work is done in 
the area of educational knowledge representation and their use in various domains. In this 
paper we present the ALEA (Adaptive LEArning) system, which is a web-based 
environment targeted on support of learning programming languages using adapted 
sequences of programming exercises. We describe the design of the ALEA, its architecture 
and the method of adaptation. The main focus is on design of adaptive behavior, which 
includes strategy, concept and fragment selection and presentation adaptation. We compare 
our approach to the existing adaptive hypermedia systems or models. 

Key Words: adaptation, adaptive hypermedia, web-based system, learning style, sequences 
of programming exercises, automatic navigation, rules, XML. 

1    Introduction 
A support for personalization and adaptation based on various aspects of a user behavior and 
context of the environment use became an important feature in modern learning 
environments. Current educational systems often contain large bases of information fragments 
interconnected by various relations. Without a support of navigation through the information 
jungle the user may found him/herself lost. Obvious solution is a definition of lessons or 
predefined paths through the application domain [9]. This is just a partial solution to the 
problem because the lessons may not fit every user’s learning style. Techniques of adaptive 
hypermedia give us the possibility to change dynamically presented educational material 
according to the user needs [5].  
There are several ways how to perform adaptation. The most visible and therefore most 
popular is the adaptation of presentation. The presentation of the same content is modified by 
the adaptation engine, thus a user gets different output according to his/her current needs 
(represented by a user model). The most widely used technique is content highlighting by 
means of color and/or pictures. This technique is typically used to help a user to navigate in 
the information space.  
The second approach is the adaptation of the content. The content that is not likely to be seen 
by a user is hidden or grayed out. Some advanced adaptive hypermedia (AH) systems include 
also natural language processing facilities that modify the actual text of the presented pages. 
The third approach is the adaptation of navigation. Following a link in a standard web 
application results in displaying the requested page. Adaptation featured systems may include 
                                                 
* Department of Computer Science and Engineering, Slovak University of Technology, Ilkovičova 3, 812 19 

Bratislava, Slovakia 



additional processing into link resolution. For example, if a user clicks a link to display 
content for a concept, the system may offer him/her with a series of pages that the user should 
read before the requested one (in case he/she had not already read them). 
Knowledge about the adaptation is crucial in all mentioned approaches. In this paper we 
describe an approach to design an adaptive educational web-based system targeted on 
learning programming using solved exercises (programming samples). Our approach is based 
on representing knowledge about adaptation on several layers (strategy selection layer, 
concept selection layer, fragment selection layer) represented using the XML documents. 

2    Learning using exercises 
Most of adaptive educational systems are not constrained by the content delivered to a 
learner. The content is usually divided into groups based on the media type: text, images, or 
eventually video or audio. Only text parts are further marked by a user or context of 
presentation characteristics aimed to the adaptation. However, in existing systems all text 
content is often considered as an explanatory text.  
We consider several types of text fragments in the domain of learning programming using 
exercises (we are concentrated on beginners, so our exercises are simple assignments; size of 
resulting programs is in most cases several tens of lines of code). The explanatory text is just 
one of them. For example, we distinguish an exercise definition, hint and solution. It is 
obvious that the type of a text fragment plays an important role in such system. 
Adaptation is based on considering the cognitive style of learning related to the domain of 
programming. The application domain of programming gives us the opportunity to lead the 
learner over different paths through the information base. Some students prefer first to see an 
explanatory text related to a concept they are learning, then a generalization of the learned 
programming concept (given by a programming schema [1]) and finally to practice 
programming by solving given exercises. Hints together with a definition of the programming 
tasks further improve the process of learning.  
Another group of students prefers go straight to solve the programming tasks immediately 
after seeing the explanatory text (if even), then look at the schema related to the exercises of 
concepts and compare solutions with presented generalization.  
Above mentioned learning styles represent the common approach to learn programming (we 
do not consider here the cognitive style of learning in terms of didactic resources preferences 
or presentation forms preferences [11]). The first is known as “from general to concrete”, the 
second one “from concrete to general”. We call them strategies. A strategy itself is realized 
by series of rules that are used to select the content for adapted for the learner according 
preferred strategy. The strategy typically determines the order of concepts that are presented 
to the learner. 
Strategies are defined during the course authoring. Two or more typical patterns that fit the 
user’s behavior are defined. The task is to automatically deduce which strategy is the optimal 
for the current user. This process is called strategy selection or automatic strategy switch. 
Each strategy contains a set of rules that specify the right strategy. Decisions are based on the 
user movement through the application domain and his/her “click-patterns”.  

3    The ALEA Design 
In this section we present design of the ALEA (Adaptive LEArning) system, which is a web-
based environment targeted on supporting teaching of programming languages using adapted 



sequences of programming 
exercises. The ALEA system 
consists of the following parts 
(see Figure 1): application 
domain model, information 
fragment base, user model, 
adaptation knowledge rule base 
and the adaptation engine.  

Application 
domain 
model 

Information 
fragment 

space 

User  
model 

Adaptation 
rule base Adaptation engine 

User interface 

Figure 1. Components of the ALEA system. 

3.1    Application domain model and information fragment base 
Application domain model is usually represented by a graph, in which each node represents 
a concept and edges represent relations among them. Concepts and relations typically have 
additional attributes (e.g., type). Concepts are atomic or composite, the first representing 
individual pages, the latter abstract groups of lower level concepts. Concepts usually do not 
contain the material that is presented to a user. The material (e.g., text, pictures) is stored in 
the information fragment base. Mapping between a concept and its presentation is driven by 
various ways: some AH systems use concepts that are one-to-one mapped to physical pages 
[6], others allow one to many relation between a concept and information fragments [9].  
The ALEA application domain model is based on the concept space idea. Individual concepts 
are organized in an interconnected network. Nodes of the network represent concepts down to 
the level of single exercises. Edges form relations among concepts.  
We have developed an application domain for programming languages Lisp and Prolog. 
Our information base at the moment contains more than 80 solved simple problems 
(programming exercises). Each exercise consists of at least three parts: a definition, one or 
more hints and a solution. We created an ontology that describes the application domain with 
the following relations: 
subconcept:  relation between two non-specialized concepts (typically explanatory texts), 
instance:  relation between a concept and an example, 
schema:   relation between a concept and a schema, 
similarity:   relation between two or more similar concepts, 
prerequisite:   relation determining the order in which the concepts are to be learned. 
Application domain represented by a graph of concepts is related to the information fragment 
base, which stores actual content presented to a learner. The information fragment base 
consists of a set of text chunks stored in files. The relations among concepts and fragments 
are stored in a database. As we mentioned above, each fragment has a type (e.g., exercise 
definition, hint, solution or text).  

3.2    User model 
The user model contains data about each individual user, his knowledge, preferred learning 
style, etc. The two most widely used approaches to the user modeling are the overlay model 
and the stereotype model. The overlay model provides a more detailed information about the 
estimated user knowledge because it stores individual value for each concept, page or 
information fragment. The result is the copy of the domain model filled with the user’s data.  
In stereotype model each user is assigned a stereotype, which designates that he/she is 
a member of a group that shares some characteristics. Typically the stereotypes are based on 



the knowledge level. There may exist stereotypes in other dimensions. It is useful to consider 
a combination of both approaches depending on the amount of data about the user (start with 
a stereotype model and later switch to overlay model). 
The ALEA user model is the overlay type. To save space and increase extensibility the user 
model is realized as a database, which contains only data related to the concepts and 
fragments already visited. The list of visited fragments includes number of visits to the page 
displaying the fragment and the date of last access. The concept-visit list includes also the 
estimated level of knowledge the user has reached about each concept. The user model also 
contains recorded user behavior and the user preferences. The recording of a user behavior 
produces a sequence of predefined actions (e.g. Login, Logout, ContextClick) with additional 
data, which is used for the adaptation.  

4    Adaptation  
Delivery of the content to a user is done by the content-selection and display mechanism. 
Adaptive engine lies in the heart of the system and glues all parts together. Its main tasks are 
to select the content to be presented to a user and to prepare it to suit the user’s needs.  
The knowledge about the process of content selection is divided into three layers: 

− strategy selection layer, 
− concept selection layer and 
− fragment selection layer. 

Each layer is represented separately using rules written in the XML language. 

4.1    Strategy selection layer 

The strategy is represented by a set of rules that determine the order in which the sequences of 
individual concepts would be presented. The system infers which strategy is the most suitable 
for the user in particular context. The strategy selection is driven by rules attached to each 
strategy. The result of rules evaluation is a numeric score. The strategy with the highest 
numeric score is selected as the most suitable.  
It is not effective to revise and alter the strategy after each user’s action. This would likely 
cause a confusion of the user. The amount of time (of perhaps number of user actions) after 
which the strategy is to be reconsidered should be set carefully.  
Figure 2 depicts a typical strategy selection rule set. The result of the rule set evaluation is the 
variable StrategyScore that 
contains the numeric 
evaluation of the suitability 
of the strategy. The strategy 
with the highest score is 
selected.  

Ruleset default() 
If um:AverageUserKnowledge >= um:intermediate   
Then var:StrategyScore += 10 
 
If um:AverageUserKnowledge < um:intermediate   
Then var:StrategyScore -= 10 
 
If um:AverageSolutionTime <= 2    
Then var:StrategyScore += 8 
 
If   um:AverageSolutionTime > 2  
Then var:StrategyScore -= 8 

The strategy selection is 
one of the most difficult 
decisions in the adaptation. 
The inputs on which the 
system may set the decision 
are almost exclusively 
computed values based on 
the observation of user’s Figure 2. An example of strategy selection rule set. 



behavior. The selection of positive and negative values that determine the score of the 
strategy is also a matter of experience and experimentation. 

4.2    Concept selection layer 
The second layer of content selection is the concept selection layer. Selection of concepts is 
driven by the actual strategy, which is represented by a set of rules. The rules determine 
which links would be displayed, order and type of the links and the next concept the user 
would see after he/she presses the Next button or navigates a context link.  
Concept selection process is started each time a user requests a concept, which is each time 
he/she clicks on a link. The system loads the rules from the actual selected strategy. The result 
of rule set interpretation is an information structure containing a list of links related to the 
requested concept.  
However, when a user requests guidance by clicking the Next button, the process of link 
selection described above is preceded by the process of selection of the “next” concept to 
display. The system loads the appropriate set of rules and the result of interpretation is a 
sequence of one or more concepts that the system suggests the user to visit. 

4.3    Fragment selection layer 
Main task of the fragment selection layer is to select actual fragments from the information 
fragments base and produce the resulting layout of the concept presentation. The fragment 
selection is also based on interpretation of rules, which are part of a strategy.  
The main criterion for selecting fragments, which are going to be displayed, is a type of the 
selected concept. For example, the type of the concept exercise is usually related to the 
fragments of three types: definition, hints and a solution. It is obvious that the solution may 
not be displayed as the first one.  

4.4    Adaptation 
The most visible effect of adaptation visible to the user is the presentation adaptation. By the 
presentation adaptation we mean altering the appearance of the content, mainly by means of 
various colors and fonts. Presentation adaptation is also directed by rules. The rules work with 
prepared presentation description: an internal document containing information about the 
page that is to be displayed. This information includes the links to other concepts and their 
difficulty level, types of the links, etc. The data from the user model are also available. The 
presentation description is altered according to these data by interpreting the rules. This 
results mainly in changing the link background color based on whether the concept was 
previously visited or not. Figure 3 depicts a screenshot where links to schemas or exercises 
(left part of the screen) are displayed in various colors. 

4.5    Additional features 
Many educational systems support only one way communication: from the teacher to the 
learners. We decided to augment the capabilities of the ALEA with some additions (ALEA 
has been used in the autumn 2002/2003 course Functional and Logic Programming at the 
Slovak University of Technology [10]).  
The first one is the possibility to append custom comments to each displayed concept. These 
comments are visible to other users of the system. This introduces a mechanism for users to 
cooperate on the learning process. Supervisors‘ (typically teachers) comments are displayed 
using different color that the comments written by students. The supervisor has the ability to 



Figure 3. A screen shot of the ALEA system. 

remove comments. Comments may serve also as a means for evaluating student’s 
comprehension or their activity. 
Another feature is the possibility of uploading material – and therefore changing the 
application domain by adding a new concept and its information content. Currently the system 
supports only adding new exercises. A student can add an exercise concept related to any 
other non-exercise concept (e.g., programming schema). The only information he/she must 
provide is a description of the exercise and its definition. Neither hints nor solution are 
required. Such uploaded concept is displayed using different icon to signalize that a 
supervisor did not yet approve it. The supervisor has the option to approve or remove the 
example and edit the contents of the newly uploaded concept. After successful approval by 
the supervisor, the exercise is no longer displayed using a different icon and it acts like other 
concepts defined in the course preparation phase. 
Moreover, to increase user’s comfort, each user can modify the color scheme the system uses 
to distinct different links.  The basic are the background colors of visited/not visited concepts, 
color of links to concepts that do not have prerequisites met yet.  

5    Related works 
In this section we provide a comparison of our system with AHAM, XAHAM models and 
WHRULE system, which inspired our research (more related systems exist but these can be 
considered in some sense as referential).  
AHAM is a model developed by De Bra and his colleagues [2]. The AHA! system was built 
using the AHAM model [3]. The model itself has the aim to define a basis on which new 
adaptive hypermedia system can be based. The ALEA system satisfies the conditions to be 



AHAM compliant. But there are some distinctions. In the ALEA, every concept can contain 
references to fragments or so called atomic components, which enables modeling of different 
knowledge levels.  
In the ALEA, there is no concept of phase in the evaluation of the rules. Our system rather 
provides the teacher or the authoring person with events that correspond to the phases of the 
evaluation. Also the propagation switch is not used because every update is immediately 
visible either in the user model or in the actual presentation description.  
User profiles in XAHM [8, 7] stand for a similar concept to the strategy selection in the 
ALEA. A strategy defines how the system would adapt the presentation. The strategy 
assigned to a user associates the user with a stereotype. The way to determine the suitable 
user profile is the main distinction between the XAHM and the ALEA. The ALEA uses rules 
to infer the most feasible strategy. Current implementation supports only one dimension of the 
adaptivity: the user’s behavior including the path of concepts the user went through.  
The WHURLE system [4] uses a concept of chunks to store data about information 
fragments. Each chunk description contains the media type of the chunk, the actual text 
content with links to non-text resources and some other information. Chunks are similar to 
fragments in the ALEA. There is one important difference: chunks in the WHURLE are self-
contained, which means that the metadata and data of the chunk are stored together whereas 
the ALEA uses different means to store these two.  
The chunks are organized into lessons using lesson plans. A lesson plan is an XML document 
containing a hierarchy of levels. Levels produce similar abstraction like concepts in the 
ALEA’s application domain model. The difference is that whereas in the WHURLE a lesson 
plan defines a top-down hierarchy of „concepts“ an author proposed path through individual 
chunks, in the ALEA domain model order of concepts and grouping by a parent-child 
relations is not explicitly specified.  
Adaptation in the WHURLE is realized through conditional inclusion of chunks and levels. 
Each lesson plan may include dependencies.  Dependencies may involve such aspects as the 
user’s prior experience (e.g. previous mandatory levels) and time (a material may be available 
only during a limited period of time). Adaptation driven by dependencies is also included in 
the ALEA where the prerequisite relations among concepts represent dependencies. The time 
limitations may be incorporated in the rules defining the strategy. However, the WHURLE 
system does not mention link adaptation (at least at the time of publication of [4]) and 
presentation adaptation in terms of altering the user interface. 

6    Conclusions 
Today’s educational applications with static content, ordered to lessons are not sufficient. 
They need a background that makes them looking “alive”, adapting to a user needs and 
preferences. We described in this paper the ALEA system, which is targeted on constructing a 
system enabling the author the opportunity to adapt the adaptation process and a user the 
comfort of adaptive learning environment.  
The system has been implemented and experimentally examined in the autumn 2002/2003 
course Functional and Logic Programming. The information base consists of a set of solved 
programming exercises from Lisp and Prolog programming languages together with related 
programming schemas. This environment formed the base for defining the abstractions used 
in design and development of the system.  
The presentation of the content to the user is driven by the content processing component of 
the system. It is implemented as a web server running an application that delivers actual 



content. The other components of the system described earlier stand in background behind the 
web application.  
The main idea of adaptation in the ALEA is definition of various layers at which the system 
behavior can be adapted: the strategy, concept and fragment selection levels together with 
presentation adaptation. Future development on ALEA would be focused on enhancing the 
adaptation capabilities, experimenting with adaptation techniques and designing a user 
friendly authoring environment. We plan also consider different constraints of students (e.g., 
time available to learning) to improve concept selection according real user needs. This 
research will be based on collected data about users’ behavior during the experiment. 
 
This work has been supported by the Grant Agency of Slovak Republic grant No. VG1/ 
0162/03 "Collaborative accessing, analysis and presentation of documents in internet 
environment using modern software tools". 

References 
1. Bieliková, M. and Návrat, P.: Use of program schemata in Lisp programming: an evaluation of its 

impact on learning. Informatica, Vol. 9, No. 1, 5-20. 1998. 
2. De Bra, P., G.J. Houben, and Wu, H.: AHAM: A Dexter-based Reference Model for Adaptive 

Hypermedia. In Proc. of the ACM Conference on Hypertext and Hypermedia, Darmstadt, 
Germany, 1999, pp. 147-156. 

3. De Bra, P.: AHA! Meets AHAM. In Proc. of 2nd Conf. on Adaptive Hypermedia and Adaptive 
Web-based Systems, P. De Bra, P. Brusilovsky, and R. Conejo (Eds.), Malaga, Spain, May 2002. 
Springer LNCS 2347, pp. 388-391. 

4. Brailsford, T.J. et al.: Autonavigation, Links and Narrative in an Adaptive–Web Based Integrated 
Learning Environment, In Proc. of WWW 2002, May 7-11, 2002, Honolulu, Hawaii, USA. 
http://www2002.org/CDROM/alternate/738/index.html 

5. Brusilovsky, P.: Adaptive Hypermedia. User Modeling and User-Adapted Interaction, Kluwer 
academic publishers, 11 (1-2), 87-110, 2001. 

6. Calvi, L. and Cristea, A.: Towards Generic Adaptive Systems: Analysis of a Case Study. In Proc. 
of 2nd Conf. on Adaptive Hypermedia and Adaptive Web-based Systems, P. De Bra, 
P. Brusilovsky, and R. Conejo (Eds.), Malaga, Spain, May 2002. Springer LNCS 2347, pp. 79-89. 

7. Cannataro, M., Cuzzocrea, A., Mastroianni, C., Ortale, R., and Pugliese, A.: Modeling Adaptive 
Hypermedia with an Object-Oriented Approach and XML. In Proc. of 2nd Int. Workshop on Web 
Dynamics, 2002. Available at ttp://www.dcs.bbk.ac.uk/webDyn2/proceedings/.  

8. Cannataro, M. and Pugliese, A.: XAHM: an XML-based Adaptive Hypermedia Model and its 
Implementation. In Proc. of 3rd Workshop on Adaptive Hypertext and Hypermedia, Arhus, 
Denmark, August 14-18, 2001. Available at http://wwwis.win.tue.nl/ah2001 

9. Fischer, S. and Steinmetz, R.: Automatic Creation of Exercises in Adaptive Hypermedia Learning 
Systems, In Proc. of Hypertext 2000. San Antonio, TX. ACM. pp.49-55. 

10. Kostelník, R.: An approach to web-based support of learning programming by means of exercises. 
Diploma thesis. Slovak University of Technology in Bratislava, 2002. 

11. Souto, M.A. et al.: Towards an Adaptive Web Training Environment Based on Cognitive Style of 
Learning: An Empirical Approach. In Proc. of 2nd Conf. on Adaptive Hypermedia and Adaptive 
Web-based Systems, P. De Bra, P. Brusilovsky, and R. Conejo (Eds.), Malaga, Spain, May 2002. 
Springer LNCS 2347, pp. 338-347. 


	Introduction
	Learning using exercises
	The ALEA Design
	Application domain model and information fragment base
	User model

	Adaptation
	Strategy selection layer
	Concept selection layer
	Fragment selection layer
	Adaptation
	Additional features

	Related works
	Conclusions

