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Abstract. In this paper we present a model of Web communities which
constitute a part of the Web structure. The proposed model is aimed at
characterization of the topology behind the Web communities. It is in-
spired by small world graphs that show behaviors similar to many natural
networks. We model Web communities as clusters of Web pages using
graph grammars. Graph grammars allow us to simulate the structural
properties of Web communities including their growth and evolution. An
example of a grammar is presented. We discuss possibilities for utiliza-
tion of the proposed model for research into Web communities, their
properties and identification.

1 Introduction

As the Web grows, effective searching for information becomes more and more
important. Present Web search engines typically crawl the Web pages in order to
build indexes and/or local copies for further analysis. The search is based mainly
on analysis of the content gathered. Several search engines use the hyperlink
structure to provide additional information regarding the quality of the results
(using for example the PageRank algorithm [13]). Knowledge of the structure of
the Web graph dramatically improves the search results, in particular ranking of
the search results. However, most current search engines consider the Web as a
network at a rather low level of abstraction in which the vertices represent Web
pages and the edges are associated with hyperlinks that connect the information
content of the pages. To capture the features of the Web at a higher level of
abstraction, considering a collection of Web pages created by individuals, or
any kind of associations that have a common interest on a specific topic (web
communities), instead of the Web pages per se, is a challenging task. However,
it would enable reasoning at a higher level of abstraction, with the potential for
improving the efficiency and accuracy of the information search, and also for
improving the search results.
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Groupings can be observed in various natural networks. People, companies,
etc., which form collections (or clusters) represented by vertices, are often de-
noted as communities. Edges represent interactions such as social relations be-
tween people in a social network, or trade relationships in a business network.
Communities exist not only in the physical world. Research into the Web showed
that they emerge in the virtual world as well [7].

Since it is our intention to model communities on the Web, we concentrate
on clusters formed by Web pages. The primary understanding of the Web com-
munities comes from sociology [10]. Similar to the connections found in human
society, there exist connections between Web pages created by those who share a
common interest (so that the content of the pages is oriented towards a specific
topic).

We distinguish two main sources of knowledge that can be extracted from
the Web: (i) the Web page content, and (ii) the topology of the network. There
is a growing amount of work directed at the identification of Web communities
according to the topology of the network based on hyperlink structure, i.e., it
is supposed that Web pages which share similar themes, or similar interests of
the authors, are interconnected, or that they belong to the same cluster [5,4,12].
Due to the large size of the Web, the topology of the Web network is largely
unknown or unexplored. A significant step towards using the topology of the
Web for reasoning about its content is the PageRank algorithm [13]. The idea
behind PageRank is that it is possible to extract the quality of a Web page
based on the references (or hyperlinks) leading to it, i.e., from its position on
the network. A different method, but one still relying on topology, is introduced
by Jon Kleinberg [5,6]. In [7,10] the authors show structures observable on the
Web and explain the motivations for searching among communities on the Web.

Our aim is to define a model which captures the concept of Web communities.
The proposed model is tested by constructing an example of a grammar and
analyzing selected properties of the graphs generated according to the defined
grammar. In a way similar to the approaches mentioned above we rely on the
topology of the Web network and assume that the quality of the Web page
content is correlated with the incoming/outgoing links of the page.

The rest of the paper is structured as follows. In section 2 we describe small-
world graphs, which form a viable alternative for Web modeling. Section 3 dis-
cusses the proposed model based on the graph grammar system. In Section 4 we
give an example of a grammar together with generated graphs. The properties
of the generated graphs are described. The paper concludes with a discussion, a
summary, and a description of future directions of our research.

2 Small-world graphs and Web networks

Different types of natural networks share some specific features. Despite their
random character the topology of the graphs representing these networks has
a number of universal scale-free characteristics and displays a high degree of
clustering. The graphs show the so called small-world effect, possessing aver-



age vertex-to-vertex distances which increase only logarithmically with the total
number of vertices, together with a clustering effect (which is missing in a random
graph) [11]. Small-world networks can be observed in many spheres of nature.
The networks of neurons in the brain, genetic networks, social networks of peo-
ple, networks of words in natural languages, the Internet at the router or domain
levels, and networks of Web pages, all share the features mentioned [14,9,2].

Ordered and random networks differ in two seemingly opposed ways. Ordered
networks exhibit high clustering, i.e., neighboring vertices share several common
neighbors. On the other hand, the average distance between any two vertices
in an ordered network is high. Random networks show significant differences
from ordered networks in these two properties. The growth of a random network
with a given coordination number (average number of neighbors of each vertex)
results in a decrease of the number of common neighbors. Furthermore, any two
vertices can be connected by a relatively short path.

The difference in scale between ordered and random networks is large. Models
for scaling the transition from ordered to random networks are studied in [11,15].
Networks called small-world networks share the interesting properties of both
random and ordered networks: high levels of clustering and low relative distances
between the vertices. These properties for small-world networks are as follows.

Average vertex distance. The average distance ` between any two vertices in a
small-world network logarithmically depends on the size N of the network:

` ≈ log (N)

Logarithmic dependence allows the average distance between the vertices to
be quite small even in very large networks. The precise definition of the average
distance between vertices in a small-world network is still a matter of debate,
but it is accepted that ` should be comparable with the value it would have on
a random graph [11].

Clustering. Vertices in the same area are connected to each other. The clustering
coefficient Cv for a vertex v with kv neighbors is

Cv =
2Ev

kv(kv − 1)

where Ev is the number of edges between the kv neighbors of v.
Empirical results indicate that Cv averaged over all nodes is significantly

higher for most real networks than for a random network, and the clustering
coefficient of real networks is to a high degree independent of the number of
nodes in the network [14].

Several authors have studied big portions of the Web network (with vertices
representing the Web pages and connections representing hyperlinks pointing
from one page to another) and demonstrated its small-world properties. In [11,2]
the average diameter for a Web network with N = 8 ∗ 108 vertices is shown to
be `web = 18.59, i.e., two randomly chosen pages on the Web are on average



19 clicks away from each other. The logarithmic dependence of average distance
between the Web pages on the number of the pages is important to the future
potential for growth of the Web. For example, the expected 1 000% increase in
the size of the Web over the next few years will change `web to only 21 [2].

3 Web topology generation using graph grammars

As already mentioned, the Web graph shows the characteristics of a scale-
free network. However, empirical measurements have also shown its hierarchical
topology [14]. The modular organization of the Web is related to the high clus-
tering coefficient. The Web model should reflect these characteristics.

We have proposed to model this kind of the pattern using graph generat-
ing L-systems. L-systems are a class of string rewriting mechanisms, originally
developed by Lindenmayer [8] as a mathematical theory of plant development.
With an L-system, a sequence of symbols (string) can be rewritten into another
sequence, by replacing all symbols in the string in parallel by other symbols,
using so-called rewriting rules (also called production rules).

L-systems are capable of generating fractal-like structures. Self-similarity was
observed also in the Web [3]. General properties of the Web topology discussed in
Section 2 can also be found in its parts. We expect that the proposed approach is
also capable of generating networks that capture the growth of the Web, together
with its Web communities large scale topology with the properties of scale-free
networks with a high clustering.

Definition 1. We call a tuple Gr = (R, σ) a graph generating L-system, where
σ is the initial graph and R is the finite set of production rules written in the
form LHS → RHS.

The production rules of a graph grammar are mappings of the vertices. The
application of a production rule to a vertex of the graph means replacing the
vertex with the vertices defined on the right hand side of the rule. We do not
distinguish between terminal and non-terminal states.

The LHS of a graph generation rule represents a vertex. The RHS of the rule
consists of (a) a list of vertices together with related mappings of edges incident
to these vertices and the LHS vertex, and (b) a list of edges joining the mapped
vertices defined in the RHS.

Definition 2. We denote a production rule as:

v →




(v1, µ1, p1),
(v2, µ2, p2),
. . .



 , η

where
pi ∈ [0, 1] is probability of mapping the vertex v to vi;
µi ∈ [0, 1] is probability of overtaking an incident edge to the vertex v and vi;
η is a subset of edges joining the vertices vi ∈ {v1, v2, . . .} such that



η ⊂ {(ov, iv, p)|ov, iv ∈ {v1, v2, . . .} , p ∈ [0, 1]} .

where p is probability of generating an incident edge to the vertex ov and iv.

An L-system grows the graph starting with the initial graph by applying
production rules. The rule application means a replacement of a vertex with the
vertices mapped by the right hand side of the rule. The rule application is called
an expansion.

Definition 3. Let r ∈ R be a production rule, G a graph, v ∈ G(V ) a vertex,
and e1, e2, . . . ∈ G(E) edges incident to the vertex v. We call an expansion a
mapping:

ApplyRule : G×G(V )×R 7→ G
′

The result of the application of ApplyRule(G, v, r) = G
′
is:

G
′
(V ) = (G(V ) \ {v}) ∪ {p1(v1), p2(v2), . . .}

G
′
(E) = {µ1(e1), µ1(e2), . . . , µ2(e1, . . .), . . .} ∪ η(v1, v2, . . .)

where
pi : {vi} 7→ {vi,⊥}, µi : {ei} 7→ {ei,⊥} is a mapping giving items from the set
{v1, . . .}, {e1, . . .} with probability pi, resp. µi;
η is deduced from pi as η : 2{pi(v1),...} 7→ {outv, inv|outv, inv ∈ {p1(v1), . . .}}.

The graph grows by repeated expansion. The inference step in a grammar is
executed by the application of randomly chosen rule on every vertex.

Definition 4. Let R be a set of rules, and G1 and G2 graphs. We say that G2

is inferred from G1 if a sequence s = (v1, r1), (v2, r1), . . . (vn, rn) exists, where

– ∀v ∈ G1(V )∃i ≤ n∃r ∈ R : si = (v, r) and ∀i, j ≤ n, i 6= j : v(si) 6= v(sj) 1

–
∐n

i=1 ApplyRule(G1, si) = G2
2

G1
¦ÃRG2 denotes that G2 was inferred from G1 in one inference step using R. If

there exists a sequence of inference steps G1
¦ÃRG2, G2

¦ÃRG2, . . . Gn−1
¦ÃRGn,

we say that Gn can be inferred from G1 and denote it as G1ÃRGn.

We note that every vertex is mapped during one inference step once and only
once. Finally we define the language generated by a grammar.

Definition 5. Let Gr = (R, σ) be a graph generating L-system. We call set of
graphs L a language generated by the grammar Gr if every graph contained in
L can be inferred from the initial graph σ using the rules from the finite set R:
L = {G|σÃRG}.
1 v(si) is the first (vertex) item of the tuple.
2 ∐3

i=1 ApplyRule(G1, si) = ApplyRule(ApplyRule(ApplyRule(G1, s1), s2), s3)



4 Graph grammar application

We have used the proposed language in our experiments to generate a topology
with properties similar to the Web network. Our approach is demonstrated by a
simple grammar containing three rules. We measure two properties of the gen-
erated graphs: the clustering coefficient and the graph diameter. We show that
the formalism presented in the previous section is strong enough to generate
graphs with properties that resemble small-world networks. Although the gener-
ated graphs are directed, in our measurements of the clustering coefficient and
network diameter we consider them as undirected, which suffices for the pur-
poses of evaluating the characteristics of the generated graphs. We developed
a software prototype for graph generation using the specified grammar, in the
Python programming language. The visualization of the generated graphs was
performed by the BioLayout software3.

4.1 Definition of the example grammar

The example grammar contains three rules generating three kinds of structures:

– hierarchies: a vertex is mapped to one central and several child vertices;
– bipartite graphs: generated vertices are divided into two sets such that no

edge connects vertices in the same set;
– cliques: a vertex is mapped to the graph where a majority of vertices is

connected.

Fig. 1 shows examples of the first expansion of each rule: a hierarchy with
three child vertices, a bipartite structure with two sets by three vertices and a
five clique cluster. Fig. 2 presents graphs generated by several expansions using
again each rule. The grammar of every example produces graphs from an initial
graph of a single vertex: Gr = (R, σ = G({v} , ∅)). The rules R are defined
thereinafter.

Fig. 1. Illustration of one expansion for (a) hierarchy, (b) bipartite structures and
(c) cliques.

Hierarchies. Hierarchical organization can be observed in several real complex
networks including the Web. A graph theoretical discussion related to the fact
that the hierarchy is a fundamental characteristic of many complex systems can
be found in [14].

3 http://www.ebi.ac.uk/research/cgg/services/layout/



Fig. 2. Structures generated by the hierarchy production rule after 4 inference steps
(a), bipartite (b) and clique (c) generation rule after 2 inference steps.

An example of a hierarchy generation rule is defined as follows:

v →





(vcentral, 1.0, 1.0),
(vchild1 , 0.2, 0.8),
(vchild2 , 0.2, 0.8),
(vchild3 , 0.2, 0.8)





,





(vcentral, vchildi , 0.8),
(vchildi , vcentral, 0.2),
(vchildi , vchildj , 0.2)|i, j ≤ 3, i 6= j





The hierarchy generation rule of our grammar produces a structure contain-
ing one central and a maximum of three child vertices. The central vertex is with
high probability connected with the child vertices. We set a lower probability for
generating connections between the child vertices.

The graph generated by four inference steps has a clustering coefficient of
0.475. The diameter of the largest component is 8, and the total number of
vertices and edges is 93 and 169, respectively (see Fig. 2a).

Bipartite graphs. Bipartite structure models service-provider relationships,
which occur on the current Web quite often. Web communities in this case are
formed implicitly, i.e., the community is formed by unconnected vertices (an
actual example of this is where providers’ pages on similar topics do not provide
links to each other).

The rule defined below generates a bipartite graph K3,3. The clustering coef-
ficient of the structure after the first expansion is 0. The clustering remains low
after two inference steps. The graph in Fig. 2b has clustering coefficient 0.111.

v →





(vservice1 , 0.3, 0.8),
(vservice2 , 0.3, 0.8),
(vservice3 , 0.3, 0.8),
(vcustomer1 , 0.3, 0.8),
. . .
(vcustomer5 , 0.3, 0.8)





,

{
(vservicei , vcustomerj , 0.8),
(vcustomerj , vservicei , 0.8)|i ≤ 3, j ≤ 5

}



Cliques. The clique structure models mutually interconnected Web pages. This
kind of structure can be found, for example, in Web portals such as corporate
Web sites or home pages. An example of a clique generation rule is defined as
follows:

v →





(v1, 0.6, 0.8),
(v2, 0.6, 0.8),
. . .
(v5, 0.6, 0.8)





, {(vi, vj , 0.8)|i, j ≤ 5, i 6= j}

The clustering coefficient of the graph in Fig. 2c generated by two inference
steps is 0.619.

4.2 Mixed structures

We have generated various mixed structures using a grammar consisting of the
three rules defined above. The rules are applied randomly, each vertex is mapped
by one of the three rules in every step of inference. Two exampes of graph
evolution are illustrated in Fig. 3. The measured values are listed in Tab. 1.

Fig. 3. Illustration of graph evolutions. Evolution of the graph I is started by a clique
structure, whereas graph evolution II starts as a hierarchical structure. The initial
shape of the graph persists over the growth, however after several iterations the two
graphs become similar in shape and properties (see Tab. 1).

5 Discussion and conclusions

The main contribution of this paper is to propose a formalism capable of mod-
eling the topology of Web communities. The results in Tab. 1 support our aim
to generate graphs with small-world effects. The clustering coefficient is much
higher than in random graphs. However, more experiments are needed in order
to tune the parameters defined within the production rules, or to define new
useful production rules that would improve the small-world characteristics of
the generated graphs. One such extension is to introduce edges between distant
vertices.



inf. steps |G(V )| |G(E)| clustering diameter avg. out deg. avg. in deg.

I-1 4 11 1.0 1 2.75 2.75
I-2 21 100 0.3657 3 5.0 4.76
I-3 81 423 0.3542 5 5.42 5.29
I-4 370 2 352 0.3254 7 6.60 6.44
I-5 1 719 11 997 0.2788 10 7.18 7.01
I-6 7 856 60 206 0.2744 14 7.88 7.73

II-1 4 4 0.5833 2 1.33 1.33
II-2 14 56 0.6418 4 4.31 4.31
II-3 71 371 0.2788 7 5.46 5.3
II-4 330 2 063 0.2844 9 6.47 6.29
II-5 1 519 10 852 0.2841 11 7.37 7.2
II-6 7 094 55 272 0.2841 14 8.01 8.85

Table 1. Properties of generated graphs illustrated in Fig. 3/I in the first half and
fig. 3/II in the second half of the table.

Naturally several directions for future work emerge. We give a list of possible
usages of the formalism presented in this paper.

Analysis of graph properties based on the rules. The results presented in Tab.1
show that although the initial properties of the graphs differ, after several it-
erations the resulting generated graphs have similar clustering coefficients and
diameters. These properties depend on the rules of the grammar. So we assume
that the properties can be computed without the inference of the graphs, which
can save considerable resources when experimenting with appropriate rules for
Web topology generation.

Modeling interactions between web pages. Currently we map only one vertex to
a set of the vertices. By mapping more vertices we could model also interactions
between Web sites. Such a model requires also modeling of attributes of the
Web pages and a definition of strategies for identification of those vertices, which
repose in the LHS of the rules. Although our current model produces expanding
graphs, a set of rules extended by the possibility of a definition of more vertices
on the RHS could also decrease the number of vertices or edges.

Definition of scalable models. Models introduced in [1,11] are scalable. Similar
scale parameters can be introduced into the formalism proposed here. Tweaking
of these parameters would result in grammars with different properties.

Graph pattern recognition. The proposed formalism can be used for testing or
modeling some aspects of natural networks. A tool for generating networks sim-
ilar to natural ones can be useful for testing algorithms for identification of the
structure of the network, which was our main intention. However, another as-
pect that we also found interesting was the recognition of patterns defined on the
RHS of grammar rules of a natural network. We expect to be able to identify a
network’s structure by working backwards through the inference sequence using
recognition of RHS patterns. This process is far from simple. We should at least



ensure the continuous backward chaining and effective recognition of isomorphic
graphs.

The proposed model extends classical L-systems by defining probabilities
of the mapping of vertices and edges. By not using exact patterns we hope to
decrease the complexity of the problem of computation. We believe that the work
presented in this paper can be of great help in the analysis of Web communities.
The characteristics of generated graphs are promising in the sense that they
possess similar properties to those expected of actual Web graphs. Generated
graphs could serve as a basis for identification of Web communities and their
use in searching for information and recommending of high quality.
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