
An approach to object-ontology mapping

Peter Bartalos and Mária Bieliková

Institute of Informatics and Software Engineering, Faculty of Informatics
and Information Technologies, Slovak University of Technology in Bratislava

Ilkovičova 3, 842 16 Bratislava, Slovakia
{bartalos, bielik}@fiit.stuba.sk

Abstract. The use of ontologies has an increasing tendency in new web-
based application development. Although the ontological repositories of-
fer APIs, a more convenient way is a use of objects which handle data. To
take the advantage of the use of objects in the application with the on-
tological domain model, it is necessary to perform the mapping between
ontological instances and objects. In this paper we present an approach
dealing with the automatic creation of the class model (in the sense
of object-oriented paradigm), which handles data. We also discuss two
approaches of mapping between ontological instances and objects. Our
approach is evaluated in two domains – online labor market and scien-
tific publications within a portal offering information based on particular
domain.

1 Introduction

The explosive development of the Web has brought forward the need for machine
processable representations of semantically rich information: a vision at the heart
of the Semantic Web [3]. In presence the relational algebra and relational data-
bases stands as the most popular data representation and storage. This follows
from the huge theory behind relational calculus and relational model design,
good support on application level (available APIs, mappers, etc.), good perfor-
mance of relational databases. In spite of the advantages of relational databases,
the use of upper level ontologies may bring many benefits. These come from their
higher expressivity, flexibility to changes, shareability between different groups
working in the same domain, possible reasoning over the ontology to acquire
additional information.

Having software application where ontologies are used, we often need to work
with data of concepts stored in an ontological repository (i.e., instances of onto-
logical classes). In such case the use of APIs of existing ontological repositories
is pretty difficult. In applications developed with object-oriented approach, it is
more convenient to work directly with objects holding data to be processed. In
such a case an object ontology mapper is necessary to perform transformations
between these two representations.

The use of an object-ontology mapper is useful in applications developed
using object-oriented approach, where ontological data model is created and



ontological repositories are used for persistent data store (instances of classes).
In this paper we deal with automatic mapping ontologies to object-oriented
representation and vice versa. We discuss the creation of classes which can store
data of ontological entities and present a method for generation such classes
automatically from the ontology. We also discuss two approaches of the mapping
between ontology instances and objects (instances of classes of an object-oriented
programming language).

The rest of the paper is structured as follows. Section 2 presents overview
of portal solutions including the framework for the ontology-mapping described
in this paper. In section 3 we give an overview of the object ontology mapping.
Section 4 is devoted to the creation of the object-oriented model of an ontol-
ogy, i.e., the bean generation. In section 5 we deal with the mapping between
ontological instances and objects. Finally, section 6 contains the evaluation of
proposed approach and conclusions.

2 Portal solutions for the Semantic Web

The use of ontologies plays an important role in applications based on the Se-
mantic Web technologies. We name some of the most known recent approaches
developed in the course of research projects and can be considered as a mo-
tivation and inspiration of our work. OntoPortal uses ontologies and adaptive
hypermedia principles to enrich the linking between resources [8]. The AKT
project aims to develop technologies for knowledge processing, management and
publishing, e.g. OntoWeaver-S [9], which is a comprehensive ontology-based in-
frastructure for building knowledge portals with support for web services. The
SEAL [11] framework for semantic portals takes advantage of semantics for the
presentation of information in a portal with focus on semantic querying and
browsing. SOIP-F [12] describes a framework for the development of semantic
organization information portals based on “conventional” web frameworks, web
conceptual models, ontologies as well as additional metadata.

Our work has in common with most of mentioned approaches that we work
on developing methods for information acquisition, analyzing, organizing and
personalized presentation in specific domains employing ontologies in portal so-
lutions. However, while various support for creation of adaptive web-based portal
solutions is provided, ontological representation is not supported in appropriate
level of abstraction. Issues concerning the changeability of open information
spaces should be addressed with respect to effective portal development and
maintenance. We have developed a framework for the creation of adaptive web-
based portal solutions that considers mentioned issues [2]. It is used as an in-
tegration and presentation platform for our tools, developed for the support of
the Semantic Web.

Application domains where we experiment with proposed methods are job
offers ([10], nazou.fiit.stuba.sk) and scientific publications ([4], mapekus.
fiit.stuba.sk). In both domains a framework for portal building is used. Job
Offer Portal (JOP) offers its users ways of navigation through the information



space of job offers using several presentation tools, which present job offers stored
in ontological base acquired by a chain of data harvesting tools that acquire and
process data from the Internet. Employers also have the possibility to submit
new job offers using a set of forms generated by the framework based on the
currently used ontology. Publication Presentation Portal (P3) serves for person-
alized presentation layer for digital libraries. It uses meta-data about scientific
publications and aids users in personalized navigating within the publications
information space.

Fig. 1 depicts an overview of the common architecture of portals developed
using our framework (for more details see [2]).

Corporate Memory

MVC Based Framework

Portlet Management

User ManagementCommon Configuration

Security

Presentation

Presentation Tool BForm Presentation

Presentation Tool A

User Ontology User Profiles

Domain Ontologies Domain Knowledge Bases

Event Ontology User Action Logs

User Modeling Tools

User Model Analysis

User Action Logging

SCRUD Support

Ontology-Object Mapper

Bean Generator

Form Generator

...

User Model Acquision

...

Domain Model Tools

Search Tool

Domain Entity Acquision

...

Fig. 1. Portal architecture

At the bottom the corporate memory is placed which stores the domain,
user and event ontologies [5]. The second layer includes the common modules
for configuration, security, user management and portlet management. The next
layer contains different functional modules. First, the SCRUD support compo-
nent, which employs the methods we deal with in this paper. Second, the domain
model tools with various functionality required in the particular domain. Third,



the user modeling tools for the acquisition, analysis of the user model. The top
layer contains the presentation tools.

The first two layers together with the SCRUD support module are com-
mon for each portal developed with the framework. The remainder parts (not
highlighted in the figure) include software tools which are tailored (or just re-
configured) for the given domain.

The SCRUD support component performs the persistent operations over the
data entities of the domain. It includes the bean generation module, which cre-
ates the class model based on the ontology, see Fig.2. Instances of these classes
are used to manipulate with data stored in the ontology.

The SCRUD support offers methods realizing the persistent storage and re-
trieval of the objects in the ontological repository. During the storage of an
object to the repository, the object to ontology transformation method is em-
ployed. The ontology to object transformation is called when an already stored
instance is retrieved from the repository.

Fig. 2. Mapping utilization.

3 Overview of Object-Ontology mapping

The mapping of an ontology into object-oriented model is a technique, where we
create a model of the ontology in object-oriented paradigm. The motivation is
to manipulate with data stored in an ontology using objects. Majority mapping
principles is independent of the used programming language. Some differences
may occur depending on the support of multiple inheritance. The multiple inheri-
tance problem is solved using interfaces, when the given object-oriented language
does not support it.



Ontology is a conceptualization of a domain. It consists of concepts, relations
between concepts, restrictions and is described in one of the ontological languages
such as the upper level OWL. It can be also considered as a data model. In
this case the T-box of the ontology stands as a schema and data of the concrete
entities are caught in the A-box. Ontological and object-oriented representations
differ in their expressivity. Ontologies have higher expressivity [6]. For example,
in ontologies a membership of an entity to the class can be expressed using
restrictions but in object-oriented paradigm not. In OWL it is also possible to
define hierarchies of properties but in object-oriented environment not. There
are other situations where we see that object-oriented approach is more limited.

In some sense object-oriented representation is similar to the ontological. In
object-oriented approach we have objects with their behavior. Between objects
exist various relations similarly to ontology classes. If we only need to store the
values of the properties of ontological classes, we do not need to represent the
whole complexity of ontological representation (whole schema, restrictions etc.).
In such case we can afford to represent the ontology by object-oriented paradigm
to work with the A-box. In this case we do not cover those aspects of ontologies
that are intended for example for reasoning, we just hold information about
instances in the objects to be able to manipulate them in comfortable way.

The basic idea of the object-ontology mapping is to create a set of classes in
such a way that each ontological class has its equivalent in a class of selected
object-oriented programming language (the use of interfaces can be necessary
when the language does not support multiple inheritance). One example of such
a mapping is shown in Fig. 3 (see Section 4).

In Table 1, the relations between elements of object-oriented paradigm and
ontologies are shown. The creation of the class model can be performed au-
tomatically, i.e., generated. Classes aggregate other classes which correspond
to object-type properties of ontological classes (e.g., the JobOffer class has at-
tribute hasSalary of type Salary, see Fig. 3). Data-type properties of an on-
tological class have their corresponding attributes in the program class (e.g.,
xmls:float is mapped to the Float Java class), see attribute amount of the Salary
class in Fig. 3. An instance of the ontological class is mapped to an instance of
the corresponding program class (the object of that class). One example of the
mapping is shown in Fig. 4 (see Section 5).

Table 1. Relation between elements of the object-oriented paradigm and ontologies

Ontology OO environment

class ←→ class
class instance ←→ object

property ←→ attribute
subject ←→ ID propertya

predicate ←→ attribute name
object ←→ attribute value

aexplained in section 5



An object-ontology mapper is similar to an object-relational mapper [1] (one
known implementation is Hibernate www.hibernate.org). It performs the trans-
formation of the instances of the ontological classes into objects and vice versa,
i.e., fills up the values of the corresponding properties (see example in Fig. 4).

The idea of object-ontology mapping is not new. In [7] the basic ideas of cre-
ation of a class model in Java, which encompass the OWL ontology are described.
We have extended this approach to employ the object-ontology mapping.

4 Bean generation

We have proposed a method for a Java bean generation, which automatically
generates required classes (beans) and interfaces. For each ontological class it
generates a source code of the equivalent class (and necessary interfaces) in Java
programming language. The class contains attributes equivalent to ontological
class properties with get, set, add methods (add method is necessary if the prop-
erty has multiple cardinality, to add an item to a list representing the property).

The name of the bean and corresponding interface is the same as the name of
the corresponding ontological class, see part 1 on Fig. 3. It is necessary to take
into consideration the fact that there may exist two classes with the same name
varying in the prefix (namespace). To ensure that each ontological class name is
mapped to a unique bean name, we include the prefix into it – hash value of the
prefix (in examples the hash is not included to preserve simplicity). The result
is used as the bean name and also as the file (containing the source code) name.

To be able to determine the type of the instance (i.e., the class of the in-
stance) we added a static final attribute type to each class. Its value is set to the
ontological class name including prefix. It is hard coded during the generation
process and is used to set the instance type when an object to ontology mapping
is performed (i.e., a triple 〈value of attribute ID, rdf:type, value of attribute type 〉
is added to the created RDF graph), see part 2 in Fig. 3.

The bean attributes names are created similarly from the hash of the prefix
and the property name, see part 3 in Fig. 3. The type of the attribute is in the
case of object-type property determined as a bean which represents the property
(part 4). In the case of data-type property, the classes of the Java framework are
used (class Integer, Float, etc.). For each attribute there exists a subsistent get,
set and if the property is multiple also the add method (part 5). These methods
are included also in interfaces (part 6).

Different class relations are reflected in the object-oriented model such as
inheritance. The detailed description how these relations are considered in the
object-oriented model can be found in [7]. In our example in Fig. 3 it is shown
how the rdfs:subClassOf relation between classes jo:Offer and jo:JobOffer is
reflected in the object-oriented model, part 7. In this case, the interface JobOffer
extends the interface Offer. If a united interface is created (for example when
owl:equivalentClass relation is mapped its name is a composition of names of
the corresponding classes including prefix.



+getID()

+setID()

+getType()

+getName()

+setName()

+getHasSalary()

+setHasSalary()

-ID : string

-type : string = jo:JobOffer

-hasSalary : Salary

-name : string

JobOffer

+geID()

+setID()

+getType()

+getAmount()

+setAmount()

-ID : string

-type : string = jo:Salary

-amount : Float

Salary

jo:JobOffer

jo:Salary

jo:hasSalary

xsd:float

jo:amount

xsd:string

jo:name

jo:Offer

rdfs:subClassOf

+getName()

+setName()

«interface»

Offer

+getHasSalary()

+setHasSalary()

«interface»

JobOffer

+getID()

+setID()

+getType()

+getName()

+setName()

-ID : string

-type : string = jo:Offer

-name : string

Offer

1

1

+getAmount()

+setAmount()

«interface»

Salary

<<implements>>

<<implements>>

<<implements>>

<<extends>>

1)

1)

2)

3)

5)

6)

4)

7)

Fig. 3. Mapping of the T-box to class model

The OWL language defines the owl:Thing superclass. This class is a super-
class of each class defined in the ontology. To bring this aspect into the generated
class model, we define an super–interface which must be extended by each other
generated interface and implemented by each generated class. This is then used
in the case when some property has not defined its range. In this case, the cor-
responding attribute in the class is of type of the super–interface. Because of
polymorphism, any instance of the generated classes can stand as that attribute
value. In the case that a property has not defined domain, each class has a
corresponding attribute.

The bean generation process proceeds in two phases:

1. The first phase – analysis – is necessary to find out the relations between
ontological classes (rdfs:subClassOf, owl:equivalentClass, etc.). This infor-
mation is then used to build correctly the necessary interfaces. Also the
properties of the ontological classes are identified in the analysis phase.

2. In the second phase – file building – the Java interface and class source code
files are generated. Firstly, it is determined which interfaces must the class



implement and then for each property, an attribute with access methods is
added to the class. For each class, also the related interfaces are generated.
Finally, serialization into source code is performed.

5 Instances mapping

The Java beans generated by the algorithm described in Section 4 are used to
store data about the ontological entities. To make a use of these beans effective,
we need a mechanism performing transformation between instances of Java beans
(objects) and ontological instances. This process can be performed in two ways:

– the first approach is a development of an add hoc mapper (coupled to the
concrete ontology) and

– the second one is a use of universal mapper (universal in the sense of inde-
pendency of the ontology).

Both approaches perform the transformation between ontological instances
and corresponding objects, see Fig. 4. This transformation includes the creation
of an object with filled attributes (based on the mapped RDF graph) when the
ontology instance is mapped to the object. On the other hand, the transforma-
tion includes the creation of an RDF graph describing the entity whose object
representation was mapped to ontological.

A special property ID is used to store the URI of the ontological instance
(this URI is also the URI of the subjects of each triple describing the entity)
– for example jo:jobOffer 0123 in Fig. 4. When object to ontology mapping is
performed with new entity, it is necessary to create an URI for it. This URI
contains the common prefix of the ontology and a string of randomly generated
GUID. If an entity is only updated (it already exists in the ontology), it is
necessary to remove the old data from the ontology, which creates a need to
delete the RDF graph related with the URI of the instance (this has to be done
recursively to object properties).

5.1 Add hoc mapping method

An add hoc mapper performs transformations between objects and instances
of ontological classes using hard coded methods. Such a method realizes the
mapping between all data-type properties of an entity and calls other similar
methods to map the object properties (note that object properties represent
other entities, so it calls a method for mapping that entity).

Disadvantage of this add hoc approach is the coupling to the given ontology
and the need of specify the applicable transformation method when mapping is
required. The advantage is that it is more effective (in the sense of performance)
than a universal method. Although for each ontology we need a special mapper,
its creation can be automated, i.e., the add hoc mapper can be generated.



ID : string = jo:contactInfo_6134

type : string = jo:ContactInfo

email : string = bob@mail.com

fax : string = 421533633

contactInfoObject : ContactInfo

jo:jobOffer_0123

jo:salary_5050

jo:organization_3636

jo:isOfferedBy

jo:hasSalary

jo:hasContactInfo

bob@mail.com

1300

421533633

jo:minAmount

jo:email

jo:fax

ID : string = jo:jobOffer_0123

type : string = jo:JobOffer

isOfferedBy : Organization = organizationObject

hasSalary : Salary = salaryObject

name : string = Java programmer

jobOfferObject : JobOffer

ID : string = jo:organization_3636

type : string = jo:Organization

hasContactInfo : ContactInfo = contactInfoObject

organizationObject : Organization

jo:contactInfo_6134

Java
programmer

jo:name

ID : string = jo:salary_5050

type : string = jo:Salary

minAmount : Float = 1300

salaryObject : Salary

1

*

1

*

1
*

jo:Salary

rdf:type

jo:JobOffer

rdf:type

jo:contactInfo

rdf:type

jo:Organization

rdf:type

Fig. 4. Mapping between ontological instances and Java objects.

Mapping ontology to objects. The pseudo code of the method which maps
RDF triples of job offer entity to job offer object (see Fig. 4), is presented as
Algorithm 1. It contains simple loop mapping each RDF triple to corresponding
attribute values. In each round, based on the predicate it finds the corresponding
attribute and sets its value. If the property is an object property, it calls the
proper method to map it into aggregated object.

Mapping objects to ontology. The pseudo code of the method mapping
job offer object to RDF triples is shown in Algorithm 2. It consists of a loop
creating an RDF triple for each attribute. If the attribute corresponds to an
object property, the proper method is called to create the RDF graph of entity
(entity which is the value of the property), which is added to the resulting graph.

5.2 Universal mapping method

The universal mapping method performs a mapping between any given ontology
(any RDF graph) and corresponding objects. As each time the same method is
used, it is not needed for the mapper to specify which entity is mapped (like
in the case of add hoc mapper). The universality is possible because of the
reflection. Using the reflection it is possible to invoke get, set and add methods
over the objects.



Algorithm 1 MapJobOffer Input : rdf graph Output : object
object.setID(root node.URI)
for all triple related to root node of rdf graph do

if triple.predicate is isOfferedBy then
object.setIsOfferedBy(MapOrganization(triple.object))

else if triple.predicate is hasSalary then
object.setHasSalary(MapSalary(triple.object))

else if triple.predicate is name then
object.setName(triple.object)

end if
end for
return object

Algorithm 2 MapJobOffer Input : object Output : rdf graph
for all attribute of object do

if attribute is isOfferedBy and not null then
triple = createTriple(object.getID(), jo:isOfferedBy, attribute.value.getID())
graph.addTriple(triple)
graph.addGraph(MapOrganization(attribute.value))

else if attribute is hasSalary and not null then
triple = createTriple(object.getID(), jo:hasSalary, attribute.value.getID())
graph.addTriple(triple)
graph.addGraph(MapSalary(attribute.value))

else if attribute is name and not null then
triple = createTriple(object.getID(), jo:name, Java programmer ˆ xsd:String)
graph.addTriple(triple)

end if
end for
return graph

A disadvantage of this approach is that it is slower than add hoc mapping
(just because of the reflection). The advantage is that each time the same mapper
with the same transformation method is used.

Mapping ontology to objects. The mapping of the RDF graphs into Java
objects is a recursive process, which begins at the root node of the RDF graph,
see pseudo code in Algorithm 3 (the root node is the URI node of the mapped en-
tity). In one call of recursion, each property related to the root node is processed.
First, the attributes of a Java object which represent a data-type property of
the ontological class are set to the corresponding value that is retrieved from the
object of the corresponding RDF triple. Also those attributes which represent
object properties of an ontological class are set to newly created Java objects.
The attributes of these new objects are then set in the recursive call, where the
root node is represented by a node representing the object property.



Algorithm 3 RDF2Object Input : rdf graph Output : object
object.getID() = rootNode.URI
for all triple related to root node of rdf graph do

if propertyTypeOf(triple.predicate) is data-type property then
object.setAttribute(triple.object)

else {property is object-type property}
object.setAttribute(RDF2Object(property))

end if
end for
return object

Mapping objects to ontology. The mapping of the Java objects to the RDF
graph is also recursive process, see pseudo code in Algorithm 4. In one call of
recursion, attributes of one Java object are transformed to corresponding RDF
triples. Those attributes which represent object properties of ontological classes
are transformed in recursive calls. Here a corresponding subgraph is created and
then added to the existing one.

Algorithm 4 Object2RDF Input : object Output : rdf graph
triple = createTriple(object.getID(), rdfs:type, object.getType())
graph.addTriple(triple)
for all attribute of object do

if propertyTypeOf(attribute) is data-type property then
triple = createTriple(object.getID(), attribute.name, attribute.value)
graph.addTriple(triple)

else {property is object-type property}
subgraph = Object2RDF(attribute)
graph.addGraph(subGraph)

end if
end for
return graph

6 Evaluation and conclusions

In this paper we have presented an approach to object-ontology mapping. Our
work is a step forward to make the ontologies more usable in new web-based
applications for the Semantic Web. The relational model and storages have cur-
rently undisputable benefits towards ontological approach and will not be re-
placed by them. There is no doubt of existence of situations when the use of
upper level ontologies can be very useful. Those applications can benefit from
the higher expressivity power, semantic enrichment of data, shareability and
reasoning possibilities.



Methods presented in this paper are usable in any object-oriented language.
We have evaluated it in Java programming language. It is applicable anywhere in
the application, where data of ontological entity is required and processed. This
can be done by instantiating the classes generated by the Java bean generator.
These instances can be updated and retrieved to/from the repository by the
object ontology instance mapper to realize persistent data store.

Java bean generator, which creates class source codes based on the proposed
method has been developed. Also a universal mapper was developed which per-
forms described mapping of instances. The bean generator and the instance
mapper were successfully tested on ontologies developed within two research
projects mentioned in section 2 for job offer domain and domain of scientific
publications.

Our job offer ontology is a complex ontology represented in OWL with 740
classes (670 belong to taxonomies). It is filled with some 1 000 instances of
manually filled job offers and several thousands instances provided by a wrapper
from job offer sites on the Web. The scientific publications ontology contains
390 classes (360 belong to taxonomies) and several thousands of instances. Our
approach was employed also with a user model ontology in mentioned projects.

The generator and instance mapper showed that an application can benefit
from their use. Without automatized bean generation, the creation of the object-
oriented model is hardly realized if the ontology is complex and contains many
classes. Also the use of the universal instance mapper or the generation of an
add hoc mapper is more convenient than the mapper development usual way.

Object-ontology mapping deals (similarly to the object-relational mapping)
with a problem of decision, when to stop the loading process during mapping
ontological instance to object (this is because the instance can be indirectly
related through properties with a lot of other individuals in the ontology). This
problem can be solved using lazy load technique. Our future work is to examine
this solution and implement it into our mapper. We also want to further research
the polymorphism of the object-oriented paradigm and ontologies. We will focus
on the impact of the limitations of the object-oriented paradigm in applications.

Acknowledgments. This work was partially supported by the Slovak Research
and Development Agency under the contract No. APVT-20-007104 and the Slo-
vak State Programme of Research and Development ”Establishing of Information
Society” under the contract No. 1025/04.

References

1. S.W. Ambler. Mapping Objects to Relational Databases: O/R Mapping In Detail.
J. Wiley & Sons, 2003.

2. M. Barla, P. Bartalos, M. Bieliková, R. Filkorn, and M. Tvarožek. Adaptive portal
Framework for Semantic Web applications. In 2nd Int. Workshop on Adaptation
and Evolution in Web Systems Engineering at ICWE 2007, Como, Italy, 2007.

3. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
pages 34–43, 2001.



4. M. Bieliková and P. Návrat. Modeling and acquision, processing and exploiting
of knowledge about user activities in the hyperspace of the Internet. In Znalosti
2007, 6th Annual Conf., Ostrava, Czech republic, pages 368–371, 2007.

5. M. Ciglan, M. Babik, M. Laclavik, I. Budinska, and L. Hluchy. Corporate memory:
A framework for supporting tools for acquisition, organization and maintenance of
information and knowledge. In J. Zendulka, editor, 9th Int. Conf. on Inf. Systems
Implementation and Modelling, ISIM’06, pages 185–192, Perov, Czech Rep., 2006.

6. M. Dumas, L. Aldred, M. Heravizadeh, and A. Hofstede. Ontology markup for
web forms generation. In Workshop on Real World RDF and Semantic Web Ap-
plications, 2002.

7. A. Kalyanpur. Automatic mapping of OWL ontologies into Java. In F. Maurer
and G. Ruhe, Proc. of the 17th Int. Conf. on Software Engineering and Knowledge
Engineering, SEKE’2004, 2004.

8. S. Kampa, T. Miles-Board, L. Carr, and W. Hall. Linking with meaning: Ontolog-
ical hypertext for scholars, 2001.

9. Y. Lei, E. Motta, and J. Domingue. Ontoweaver-s: Supporting the design of knowl-
edge portals. In E. Motta et al., editor, EKAW, volume 3257 of LNCS, pages
216–230. Springer, 2004.

10. P. Návrat, M. Bieliková, and V. Rozinajová. Methods and Tools for Acquiring and
Presenting Information and Knowledge in the Web. In Int. Conf. on Computer
Systems and Technologies, CompSysTech’05, Varna, Bulgaria, 2005.

11. N. Stojanovic, A. Maedche, S. Staab, R. Studer, and Y. Sure. SEAL: a framework
for developing SEmantic PortALs, 2001.

12. E. D. Valle and M. Brioschi. Toward a framework for semantic organizational infor-
mation portal. In Ch. Bussler et al., editor, European Semantic Web Symposium,
ESWS 2004, volume 3053 of LNCS, pages 402–416. Springer, 2004.


