
Personalized Faceted Navigation
in the Semantic Web?

Michal Tvarožek, Mária Bieliková

Institute of Informatics and Software Engineering,
Faculty of Informatics and Information Technologies,

Slovak University of Technology
Ilkovičova 3, 842 16 Bratislava, Slovakia

{Name.Surname}@fiit.stuba.sk

Abstract. This paper presents the prototype of an adaptive faceted
semantic browser – Factic. Factic implements our novel method of nav-
igation in open information spaces represented by ontologies based on
an enhanced faceted browser with support for dynamic facet generation
and adaptation based on user characteristics. It is developed as part of a
modular framework that supports personalization based on an automat-
ically acquired ontological user model. We describe software tool design
and implementation together with discussion on several problems mostly
related to the general immaturity of current Semantic Web solutions.

1 Concept overview

The Semantic Web as envisioned by Tim Berners-Lee aims to solve some prob-
lems of the current Web related to its constant change and growth by incorpo-
rating shared semantics i.e. “meaning” thus e.g. significantly improving interop-
erability between systems [1]. Although this idea was proposed several years ago,
it still remains largely unrealized due to various reasons such as the lack of stan-
dards or appropriate software tools. As the need for shared semantics and (web)
data integration grows, the demand for common conceptualizations referred to
as ontologies is also increasing. Some authors argue that the use of ontologies in
the e-science community presages ultimate success for the Semantic Web [1].

Consequently, proper software tools for navigation in the Semantic Web i.e.
for navigation in ontologies (e.g., RDF/RDFS, OWL) are required. While these
will include new types of tools, adding support for ontologies to “classical” tools
is also imperative as these are already widely used in different scenarios. Exam-
ples of existing tools include search engines, web portals or faceted browsers [2].

Furthermore, the size and changeability of the Web and consequently the Se-
mantic Web together with their diverse user base make them prime candidates
for adaptive web-based systems that take advantage of (automatic) user adapta-
tion in order to increase overall effectiveness, productivity and user orientation.
? This work was partially supported by the Slovak Research and Development Agency

under the contract No. APVT-20-007104 and the State programme of research and
development under the contract No. 1025/04.



The concept of the adaptive faceted semantic browser was proposed in [3].
As such, it is an enhanced faceted browser with support for:

– Ontological representation of the application domain by means of a domain
ontology (e.g., in OWL).

– Logging of user actions with semantics within the browser as defined by an
event ontology. The created user action logs are subsequently used for auto-
matic user modeling, which is performed by external user modeling tools [4].

– Personalization based on an ontological user model derived from the domain
ontology and created and maintained by the aforementioned user modeling
tools. The personalization includes the adaptation of facets, facet restrictions
and search results as well as the recommendation of relevant concepts.

Based on its properties, the adaptive faceted semantic browser is suited for
effective viewing and navigating in large open information spaces represented by
an OWL ontology. It can also be used as an information retrieval tool where the
search query is visually created by means of navigation – selecting restrictions
in the set of available facets, which are dynamically adapted to users’ needs.

2 Faceted browser design and implementation

We designed and implemented the adaptive faceted semantic browser in the
form of a software tool called Factic. It is a presentation tool that allows users
to navigate and search in an information space represented by an OWL ontology.
Therefore, we integrated Factic into the personalized presentation layer [5] of a
web-based information portal [6] (see Figure 1).

Portal

HTML

fragments

Events

Presentation

Adaptation

Presentation tools

Presentation

Adaptation

Input / Feedback

Web

browser

Server-side

logging

Client-side

logging

User

characteristic

evaluation

Events

Events

Presentation

layer

Personalization

layer

User modeling

layer

Server Client
Personalized presentation layer

Application logic layer

Data layer

Events

Fig. 1. Architecture of the personalized presentation layer of a web-based portal.



The Factic presentation tool is depicted on the top left and can be divided
into two parts – the presentation and the adaptation part. As input, Factic takes
user input/feedback from the Portal module, to which it also sends the results
of its processing in the form of (X)HTML fragments. The portal serves for the
integration of individual presentation tools (e.g., Factic) and acts as a proxy
towards the client web browser depicted on the right.

Presentation tools as well as the Portal tool perform user action logging with
semantics be means of the user modeling layer depicted at the bottom, which
performs both client-side and server-side logging and user characteristic analysis.

Factic is implemented in Java as an Apache Cocoon coplet (i.e. Cocoon port-
let) and uses Sesame to store ontological data, MySQL to store relational data
and as a back-end for Sesame. For the logging service we use Apache Axis as a
web service container and Apache Tomcat as a servlet container.

Cocoon is based on XML and the pipes and filters architectural pattern where
every request is processed by a given pipeline. Each pipeline consists of a single
generator, zero or more transformers and a serializer. Factic itself as a Cocoon
generator takes full advantage of its XML processing capabilities.

Figure 2 depicts the design and request processing of the Factic tool, which
employs a two-step transform view, where the initial logical XML output de-
scription is transformed by a set of XSL transformations into the final XHTML
document (top) and sent to the client web browser (right). Individual user re-
quests are handled as described by the Sequence 1.

Factic

Corporate

Memory

Cocoon Pipeline Processing

Domain Model

User Model

SemanticLog

Log Event

Client

Click

Web

Browser

Log Event

User Logs

XHTMLXML

XSLT

XML

DataProviders

Core

Session

Generator

XSLT

Fig. 2. Design of the Factic presentation tool.



Sequence 1 HandleRequest Input : URL request Output : XHTML response

1. Session: Preprocess request, update session state
2. Core: Process request, create and execute query
3. DataProviders: Retrieve domain and user data
4. Core: Process results, evaluate adaptation and annotation
5. Session: Log event via the SemanticLog logging service
6. Generator : Generate logical output description in XML
7. Cocoon: Transform XML output to formatted XHTML response

3 Discussion and conclusion

We evaluated Factic in the domain of online job offers1 and in the domain of
scientific publications2. In both cases, we used Factic for the presentation of and
navigation in the respective domain ontology as well as for information retrieval.

Figure 3 shows the experimental results that we achieved. The time and num-
ber of clicks represent the total user effort that was necessary to complete a given
scenario i.e. to find a certain set of ontological instances. The results indicate
that adaptive selection of active facets can significantly improve total processing
time, which depends linearly on the number of displayed facets. Furthermore,
recommendation of suitable ontological concepts based on the user model further
reduces the number of necessary clicks as well as overall task completion time.

While the results that we achieved are promising we also encountered several
problems in the form of several performance bottlenecks:

– The logging of user actions together with the display state of the GUI via web
services was very slow because a lot of data had to be serialized/deserialized
via SOAP. We solved this by using a hybrid logging approach where some
of the data are logged via web services (e.g., client-side logging) and some
data are logged directly by means of an API (e.g., display state of the GUI).

– The cost of ontological queries is high and consequently, the processing of
ontological queries is slow. We were unable to resolve this problem although
we improved overall performance by caching data in Factic. Furthermore, the
ontological repository Sesame is rather immature – it is slow, unoptimized
and contains several bugs, which prevent correct evaluation of queries.

– SeRQL – the recommended query language for Sesame and thus Sesame lack
several important features such as COUNT() or ORDER BY. These must
thus be emulated by our application which further reduces performance.

The primary advantage o‘f our approach lies in the use of ontologies. The
shared conceptualization provided by ontologies improves tool interoperability.
E.g., our automatic user modeling is not hard-coded to the output of specific pre-
sentation tools nor does it require extensive preprocessing as seen in traditional
analysis of web server logs. Furthermore, the stored semantics of user actions
are directly used in the user modeling process to estimate user characteristics.

1 NAZOU Project, http://nazou.fiit.stuba.sk
2 MAPEKUS Project, http://mapekus.fiit.stuba.sk



0

2

4

6

8

10

12

1 facet 2 facets 3 facets 11 facets

Number of active facets

N
u

m
b

e
r

o
f
c
lic

k
s

0

50

100

150

200

250

300

350

T
im

e
[s

]

Clicks with recommendation Clicks with adaptation Clicks without adaptation

Time with recommendation Time with adaptation Time without adaptation

Fig. 3. Evaluation results for different adaptation modes (non-adaptive, with adapta-
tion, with recommendation).

The acquired user characteristics are used in the adaptation process to im-
prove efficiency and overall user experience without the need for direct conscious
user involvement. As a result, the user can focus on the tasks at hand without
the need to perform tedious system and/or user model settings.

Lastly, the Cocoon presentation framework allows us to easily integrate addi-
tional presentation tools as well as to further customize the processing pipeline
by using additional transformers. Thus future work will include the integration
with additional presentation/navigation/information retrieval tools and the im-
plementation of new adaptation functions, such as dynamic facet generation.

References

1. Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intelli-
gent Systems 21(3) (2006) 96–101

2. Instone, K.: How user interfaces represent and benefit from a faceted classification
system. In: SOASIST. (2004)

3. Tvarožek, M.: Personalized Navigation in the Semantic Web. In V. Wade et al., ed.:
Proc. of 4th Int. Conf. on Adaptive Hypermedia and Adaptive Web-Based Systems,
AH’06, Springer, LNCS 4018 (2006) 467–471

4. Andrejko, A., Barla, M., Bieliková, M.: Ontology-based User modeling for Web-
based Information Systems. In: ISD 2006, Budapest, Springer Verlag (2006)

5. Tvarožek, M., Barla, M., Bieliková, M.: Personalized Presentation in Web-Based
Information Systems. In J. van Leeuwen et al., ed.: Proc. of SOFSEM 2007, Springer,
LNCS 4362 (2007) 796–807

6. Barla, M., Bartalos, P., Sivák, P., Szobi, K., Tvarožek, M., Filkorn, R.: Ontology as
an Information Base for Domain Oriented Portal Solutions. In: ISD 2006, Budapest,
Springer Verlag (2006)


