
Modeling the Reusable Content of Adaptive
Web-Based Applications Using an Ontology

Mária Bieliková and Michal Moravč́ık

Institute of Informatics and Software Engineering, Faculty of Informatics
and Information Technologies, Slovak University of Technology in Bratislava,
Ilkovičova 3, 842 16 Bratislava, Slovakia
bielik@fiit.stuba.sk

Summary. Personalization becomes more common in web-based applications. More
and more adaptive web-based applications that adapt information presentation (the
content or navigation) employing goals and other characteristics of a user or context
are developed. By increasing the number of existing adaptive applications the need
for more effective creating and reusing the content among adaptive applications rises.
In this chapter we present an approach to creating the content using ontological rep-
resentation that is suitable for reusing. The ontology includes a domain model and
domain dependent part of a user model, both specified on several levels of abstrac-
tion. We support the content transformation between several applications and its
cross-system use that enables better use of best characteristics of each application
without the need of manually creation of the content, which already exists. We eval-
uated the method using the domain ontology of teaching programming by examples.
We claim that the content and structure of the adaptive application represented by
the ontology is suitable for sharing and reusing when defining new applications.

1 Introduction

Growths of available information presented by current web-based information
systems requires an assistance to a user in the task of finding relevant infor-
mation. So an intelligent support of navigating in large information spaces by
web-based applications is a key requirement today. One approach to achieve
this is adapting information presentation (its layout or the content itself) or
navigation to each user or a context of the presentation. A need for adaptive
web-based applications was recognized a decade ago, and from that time new
adaptive web-based applications are being still developed.

With respect to the increasing usage of adaptive web-based applications
the need for effective authoring and content delivering becomes increasingly
important. However, the content of current adaptive applications is generally
not designed for cross-system usage. We can improve situation by providing



2 Mária Bieliková and Michal Moravč́ık

means for developing reusable models of adaptive applications together with
tools for creating instances of the models in various domains.

The base idea of modeling is to deliver general, simple, consistent, portable,
reusable representation of the modeled subsystem. These characteristics are
in the goals of several existing adaptive hypermedia reference models. By en-
abling a transformation of the content among adaptive applications the best
features of individual applications can be employed. For example existing au-
thoring systems can be reused as authoring tools not only for adaptive appli-
cations they were developed for but also for other applications which provide
just content presentation. This principle is known as a metaphor “authoring
once, delivering many” [16]. That is, an author should only to create a piece
of information (e.g. educational material) once. This information should be
easily re-usable in many other content presentation systems. This allows for
the cost-effective creation of information as a user can use for authoring just
one application.

Our aim is to support a reuse the content (domain) model of adaptive
web-based applications employing an ontology as the knowledge structuring
approach used extensively for the Semantic Web applications. The goals and
possibilities of the Semantic Web designate the advantage of using the ontol-
ogy as a domain model of adaptive applications. Several approaches express-
ing particular models of adaptive applications by means of the Semantic Web
technologies exist (e.g., [1, 13, 15]). Nevertheless, the lack of effective reuse of
adaptive applications models is still in course.

We present a method for modeling content of adaptive applications us-
ing ontology, exporting the content into intermediate format and importing
it into (possible more than one) adaptive application. This approach enables
also reuse of existing content by its transformation into the ontology. For
evaluation of the method we selected the CAF format (Common Adaptation
Format, [9]) and adaptive web-based application AHA! [10]. Moreover, we
transformed the content of another adaptive web-based system ALEA [4] into
our modeling environment, so enable sharing the content between several ap-
plications. We present proposed core ontology of the content used throughout
the method together with examples from domain of teaching programming.

The chapter is organized as follows. In section 2 we present related work,
i.e. existing approaches to adaptive application content modeling with stress
on the Semantic Web technologies usage. We devote special attention to web-
based application content representation approaches and its transformation
between adaptive applications. Section 3 contains description of proposed
method for domain modeling, importing existing domain model to the ontol-
ogy representation and delivering the ontology content into existing adaptive
applications. In Section 4 we present ontology models of the content used for
domain a nd user modeling. This section is followed by discussing meta-model
of the content that aims at delivery the content into the adaptive system with
defined concept sequences (section 4). Section 6 includes discussion on pro-



Modeling the Reusable Content of Adaptive Web-Based Applications 3

posed method evaluation in the domain of learning programming. The chapter
concludes with conclusions and topis for future work.

2 Related work

Content-oriented adaptive applications modeling can be seen from two points
of view: modeling the architecture of an application (models of generic web-
based applications can be also considered) or modeling the content presented
by the application (represented using a domain model). Architecture of adap-
tive web-based applications can be expressed using methods for modeling
generic web-based applications (e.g., OOHDM [17], WebML [6], Hera [13])
even though the specification of adaptive behavior is not accordingly handled
by all of these methods. Common architecture of adaptive hypermedia systems
reflects reference models such as AHAM [20], Munich reference model [14] or
LAOS [7], which define layers of the adaptive application by separating data
models (e.g., domain, user, context, goals) from an adaptation engine. Refer-
ence models are used as a base for new adaptive applications.

Not all layers of adaptive application model are adequate to be shared
and/or transferred between applications. The common for the applications is
the content with definitions of its usage in a user model (expressed in domain
dependent part of the user model).

2.1 Content representation

Modeling the content of a content oriented web-based application and its
efficient representation is as well important as modeling the application itself.
For content modeling it is important to analyze to what extent is a particular
representation flexible for different domains together with the possibility of
reasoning directed to decisions on properties of the information space (e.g.,
consistency). We do not consider proprietary formats as they almost totally
prevent the sharing and reuse of the domain model.

Existing approaches to representing the content of a web-based application
include mainly approaches using a relational database or an XML based lan-
guage. XML offers powerful enough expressiveness. The performance of this
solution is limited by the performance of the used file system (it is effective
for domain models with few instances and rich structure of concept’s charac-
teristics). Reusability and sharing is better than with the database approach,
thanks to the platform independence of XML. Using XML has also the advan-
tage that it can be used directly in the Web environment. However, XML as a
meta-language defines only general syntax without formally defined semantics,
which leads to difficulties when reasoning is required. Moreover, everyone can
invent his own names for tags; somebody stores attributes as tags; somebody
uses the attributes of tags defined by XML syntax.



4 Mária Bieliková and Michal Moravč́ık

Both above mentioned approaches offer only a way of describing charac-
teristics of domain model concepts and do not offer any added value from
the content modeling perspective. Ontology-based approach offers a way of
moving content modeling from the low-level describing of domain concept
characteristics to a higher-level with additional possibilities (reasoning).

According to the most cited definition of ontology in the Semantic Web
community, ontology is an explicit specification of the conceptualization of a
domain [12]. The term ontology includes a whole range of models that show
varied semantic richness. We represent the ontology by RDF/OWL formalisms
(Resource Description Framework; Web Ontology Language). An approach
based on RDF and its extension OWL takes the previously mentioned XML
representation (syntax) and eliminates its disadvantage by defining a vocabu-
lary for describing properties and classes. OWL serves as a common language
for automated reasoning about the content for the vision of the Semantic Web.

The advantages leading to using ontologies for content modeling come
from the fundamentals of this formalism. Ontologies provide a common un-
derstanding of the domain to facilitate reuse and harmonization of different
terminologies. They support reasoning, which is considered as an important
contribution of the ontology-based models. Although there exist several ap-
proaches where ontology is used as a base for models representation [15],
usually specialized ontology for particular case is developed only. We use
the ontology as a universal format for representation of models and define
a method for their reusability.

2.2 Content transformation

Creating a schema of the domain and instances of it is serious bottleneck of
content oriented web-based applications. Using ontology for representation of
the domain increases the probability that domain concepts together with their
characteristics will be shared among a range of applications of the same do-
main (especially on the Web, where most ontologies are currently represented
using OWL).

Reusing the content can be realized using commonly accepted model for
the content of adaptive applications in particular domain, or mapping the
content among adaptive applications. A commonly accepted domain model is
ideal solution. Since we agree that building common vocabularies is important
and useful (we remark the role of standards), considering a large distributed
information space (e.g., the Web) we need to make a compromise between
enabling diversity and looking for mappings between various models. The
idea of commonly accepted domain ontology is simply impossible to reach in
such diverse and distributed environment as the Web.

On the other hand, designing converters for each pair of applications is
rather ineffective and demanding approach. A compromise lays in defining an
intermediate format of the information content for adaptive applications. In
this case it is sufficient to convert the content from the intermediate format



Modeling the Reusable Content of Adaptive Web-Based Applications 5

to the adaptive application format and vice versa. Standards can also help in
this process [5].

One of the first attempts to use information content in several applica-
tions was a conversion from the Interbook to AHA! [11]. In this case the
Interbook system serves as authoring tool and the AHA! system for adap-
tive presentation. Another approach described in [9] defines a conversion from
the MOT system (My Online Teacher, [7]) to adaptive applications of AHA!
and WHRULE systems. MOT is used as an authoring tool, where it is pos-
sible to define the content of adaptive application and adaptation strategy
that specifies personalization of educational content according changing user
characteristics. The conversion from MOT to AHA! uses intermediate format
CAF (Common Adaptation Format) that defines a hierarchy of concepts and
corresponding attributes of concepts using an XML.

3 Development of reusable content

We use the ontology as a mean for representing and maintaining data related
to an application domain. Figure 1 depicts our proposal of domain model
schema as it is modeled using the ontology. Considering adaptive web-based
applications we define also domain dependent part of the user model that is
automatically generated from the domain model.

Domain model

User model

Related

concept

Concept

Related

concept

content

Domain

attribute

Domain

attribute

Attribute

UserViewUser

UserView

attribute

UserView

attribute

Fig. 1. Schema of adaptive application content model

The domain model defines concepts and their content (for the content of
concepts we use term concept attributes), domain attributes of concepts and
typed relations to other concepts. Domain attributes represent information



6 Mária Bieliková and Michal Moravč́ık

important for adapting but they are not necessarily viewable in the content
presentation.

The user model defines for each concept a User View and a set of User
View Attributes. The user view makes a connection among specific user, con-
cept and attributes, which frame together an overlay user model used in most
of the adaptive web-based applications and defined in both AHAM and LAOS
reference models. Our approach is mainly oriented towards the content mod-
eling. The user model is defined in such a way that can be semiautomatically
derived from the domain model. Its actual representation strongly depends on
the adaptive application and the means for user characteristics acquisition.

Boxes in Figure 1 represent classes in the ontology (we represent it in
OWL/RDF) and every connection (except those deriving the attributes)
stands for a relation in the ontology. Specification of a structure of the adap-
tive application content is done by defining classes and their relations in the
ontology. The content of adaptive application itself is represented by instances
of classes defined in the ontology with connections specified by relations.

3.1 The method for domain modeling

We proposed a method for modeling the content of adaptive application that
uses core ontology designed for adaptive application content modeling. It de-
fines steps essential for creating a new domain ontology, which is compliant
with the core ontology, describes an export of the ontology into an intermedi-
ate format, which is used for importing into existing adaptive applications. We
assume also a situation where the domain model already exists and provide a
mapping into proposed domain model schema.

The method defines following steps for authoring adaptive application do-
main model represented by ontology:

Method 1 Modeling reusable content for adaptive applications
1. Specify the concept classes and the concept class hierarchy
2. Define attributes for the concept classes
• data attributes
• domain attributes
• user attributes

3. Specify and type relations between concepts of specified classes
4. Create concept instances as the class instances of the ontology

Steps 1. to 3. are not as a rule performed in this order and in one iteration.
Actually they are often mixed and reordered in several iterations with aim to
develop consistent model of the content. Developing domain model is followed
by the step of delivering the ontology content into existing adaptive application.



Modeling the Reusable Content of Adaptive Web-Based Applications 7

Step 1: Specify the concept classes and the concept class hierarchy

In this step we classify information fragments which are supposed to be used
in the adaptive application. Information fragments serve as a basis for deter-
mining the concepts and concept classes, which are identified for example by
means of text analysis, i.e. subjects and nouns used in application context
are considered (e.g., exercise, example, explanation in programming learning
domain).

Concept classes are organized into a hierarchy based on their common
properties. In this step the concept class hierarchy is not final and is often
changed when discovered duplicate attributes or relations among the concepts.
Entry point to the adaptive application is a concept of special type root (base).

Step 2: Define attributes for the concept classes

Concept class defines its information fragments, attributes, which have defined
their values in the concept instances. For each attribute we specify a type and
a flag indicating whether the attribute has single or multiple values. Data
or domain attribute value is assigned to the concept instance while the user
attribute value is assigned to the concept and the user instance.

If there is a need in the adaptive application to monitor, for example the
level of user knowledge about particular data attribute, good practise would
be to transform the data attribute to particular concept class and define the
user attribute knowledge for that class. In this way we can model a domain
using existing standards for meta-data, e.g., IEEE LOM (Learning Object
Metadata) or SCORM (Shareable Content Object Reference Model).

Step 3: Specify and type relations between concepts of specified classes

There are various ways of concept interconnections and dependencies with
significant impact on the adaptive application behavior. We specify a relation
between concept classes by defining a name of the relation, sets of source and
target concept classes and type of the relation. In defining generic structure we
use several obvious relations (such as those depicted on Figure 2. Rectangles
represent concept classes, lines represent named relations. Relation of type
fragment is drawn without the lines. Relations can be specialized according
specific need in particular application domain.

Concept classes relations produce a structure of the content. The parent
of all concepts is a single concept of the type root. If the content is modeled
by more than one concept, at least one child relation where the parent is the
root concept should be defined.

Step 4: Create concept instances as the class instances of the ontology

Performing steps 1-3 leads to a structure of domain ontology. Step 4 is devoted
to filling the information content into the ontology, i.e. information fragments



8 Mária Bieliková and Michal Moravč́ık

prerequisite

prerequisite

fragment

fragment

a) child relation b) prerequisite relation c) fragment relation

child

child

child

Fig. 2. Examples of types of relationships between concepts

are defined. This is needed for later content exporting into existing adaptive
application.

Good practice is first to create an instance of the root concept and there-
after instances of concept classes in relation to the root concept class. Process
is similarly performed for other concept classes. Creating a concept instance
requires specifying the concept name, filling the values of concept attributes
and assigning the other related concept instances.

Our method is not aimed at creating actual content of the adaptive appli-
cation in the ontology. This can be done by various ways (e.g., manually using
an ontology editor, automatically by transformation learning objects knowing
core ontology and the source format using an existing OWL API). We con-
centrate on creating a model of the adaptive application not the application
itself, therefore we define only what content should be present in the ontology
in order to be able to perform delivering the ontology content into existing
adaptive application.

3.2 Importing existing domain model ontologies

Assume that a class in an existing ontology represents a concept class. Then
all the data properties of the class represent data attributes and all object
properties represent relationships with other concept classes. All the classes
in existing ontology including their properties represent the domain model
structure of the adaptive application. Instances of all the classes in existing
ontology represent the content of domain model of the adaptive application.

This approach helps to use existing sources in form of the ontology as
domain models in adaptive applications. All original classes and object prop-
erties need to be additionally derived from the core ontology components,
which keeps original ontology structure. All instances, data properties and
restrictions remain unchanged.

When existing ontology is used as a domain model above described method
for reusable domain model development is replaced by the following Method 2.



Modeling the Reusable Content of Adaptive Web-Based Applications 9

Method 2 Importing existing ontology domain model
1. Transform all classes in the ontology to concept classes
2. Transform all relations in the ontology to relations between concepts
3. Define attributes for the concept classes
• domain attributes
• user attributes

4. Specify types of relations between concepts
5. Specify root concept class

When transforming ontology classes to concept classes in step 1 all data
properties of ontology classes become data attributes of concept classes. Ad-
ditionally we can define other attributes in step 3.

We assume that the existing ontology includes also classes’ instances which
are treated as concept instances after performing steps 1 and 2. Consequently
we have omitted the step of creating concept instances from the original
method. In the case the ontology does not contain instances, we follow the
original step 4 after specifying the root concept class.

Existing ontology is treated as the pure domain model which is extended
by other properties of an adaptive application content by performing steps
3-5. Relation types in step 4 are needed to be refined in order to accurate
interpretation of concept relations. The root concept class in step 5 is necessary
for specifying the entry point of the adaptive application.

3.3 Delivering ontology content into existing adaptive application

Our aim is to reuse the domain model across several adaptive web-based ap-
plications. Creating reusable domain model is used for delivering the content
into existing adaptive application. The process results in creating the inter-
mediate format for adaptive application content and importing the content
into particular adaptive application. The intermediate format contains con-
cept instances, attribute values and concept relationship bindings. Next step
is specific for each adaptive application as a transformation should be devel-
oped depending on actual domain model representation. In general following
steps are needed:

• Create concepts and generate concept content from data and domain at-
tributes.

• Create concept user attributes in user model.
• Link concepts according to concept relationships.

The intermediate format has to be efficient for reuse and delivering to
adaptive systems, consistent and general enough to store the content of adap-
tive application. Our proposal for an intermediate format was inspired by the
already mentioned CAF (Common Adaptation Format) used for a conversion
from the MOT system do adaptive applications AHA! and WHRULE [9]. We



10 Mária Bieliková and Michal Moravč́ık

have extended CAF to the CAFE (CAF Extended) format, which simplifies
CAF format and introduces possibility of complete and consistent definition
of concept attributes and relations.

The CAFE format defines the domain model by listing concepts and their
data elements, domain attributes, user model attributes and relationships
with other concepts. The relations among concepts may be more complex
than only parent-child relation type represented in original CAF format. The
lesson model from the CAF format is no longer needed, while the concept
hierarchy can be derived from concept relations.

The attributes in CAFE format are explicitly divided into concept (data),
domain and user model attribute sets. Each attribute has its value type de-
fined. Each concept in CAFE lists its relationships to other concepts with
defined relation type and the set of target concepts (relationLink).

An example bellow illustrates main parts of the concept description.

<cafe>
<domainmodel>
<concept id="LispA1418" name="Lesson exercise">

<conceptattributes>
<attribute type="string" name="hint">

<contents type="individual">Use the template ...</contents>
</attribute>

</conceptattributes>
<domainattributes>...</domainattributes>
<userattributes>...</userattributes>
<conceptrelations>

<relation type="linked" name="template">
<relationlink conceptid="T_PROJECTION" />

</relation>
</conceptrelations>

</concept>
</domainmodel>
</cafe>

Our method can be used with other intermediate formats. However, num-
ber of various formats obviously leads into explosion of possibilities of transfor-
mations that should be specified manually (with little help of software tools
developed just for this purpose similarly as wrapper specification tools are
being developed).

Export of the content into the intermediate format is performed in a cycle
where all concept instances are read and parsed to retrieve values of attributes
and relations to other concepts. Importing the content into existing adaptive
application is specific for each application based on its domain model repre-
sentation. One way wrapper for each particular model should be written.



Modeling the Reusable Content of Adaptive Web-Based Applications 11

4 Ontology models of the content

4.1 Core ontology of content model

The core ontology is depicted in Figure 3. It defines generic terms of adaptive
application content and relations between them. We concentrate on domain
modeling and recognize user attributes only on the level of automatic gener-
ation of domain dependent part of the user model. Interconnection of both
domain and user models is realized using attributes and views.

Concept

Defined

Concept

Parent

Concept

Application

Concept

RelationalConcept

ChildConcept

Linked

Concept

Domain

Attribute

Attribute

UserView

View

User

View

Attribute

UserView

Attribute

isa

isa

isa

isa

isa

isa

isa

isa

isa

isa

hasDomain

Attribute*

hasUserView*

hasUser*

hasUserView

Attribute*

hasView

Attribute*

hasLinkedConcept* hasParent

Concept*
hasChild

Concept*

Fig. 3. Core ontology of adaptive application content model

Concepts

The Concept class is the base class for all concept classes. It presents abstract
information unit (e.g., knowledge in educational application) while concept
instance presents concrete information fragment (the content). Concept class
defines basic data which include conceptName, conceptDescription and con-
ceptText. We assume bidirectional relations between concepts which are sup-
ported and simple to maintain in OWL.

We specify three types of concepts on the highest level (classes derived
directly from the Concept class):

• DefinedConcept : is the base class for all user defined concept classes. By
deriving classes from the DefinedConcept class we differentiate user defined
classes from standard classes from the core ontology.



12 Mária Bieliková and Michal Moravč́ık

• ApplicationConcept : stands for the root concept class, which is an entry
point to the adaptive application. The ApplicationConcept class is also
derived from the ParentConcept class, which defines its relation of type
parent-child with some other concepts (application content).

• RelationalConcept : is the base class for classes in a relation. It indicates
that the concept is in a relation with other concept. Type of the relation is
defined by source and target relational concept classes, which are derived
from the RelationalConcept class.

Relations

Hierarchy of RelationalConcept classes is depicted on Figure 4. It demon-
strates a technique of defining relation types using the ontology. It is possible
to define new types of relations by adding new classes and relations. Each
relation is complemented by an inverse relation that is used as reference and
is treated automatically. Inverse relations are not depicted in Figure 4.

Relational

Concept

Parent

ConceptLinked

Concept

Child

Concept

Alternative

Concept Outcome

Concept

Prerequisite

Concept

Composite

Concept

Fragment

Concept

isa

isa isa

isa

isa

isa

isa

isahasLinked

Concept*

hasAlternativeConcept*

hasPrerequisiteConcept*

hasChildConcept*

hasFragmentConcept*

Fig. 4. Hierarchy of relational concept classes

For each relation type in the ontology there is a source and target rela-
tion class which are connected by object relation. Figure 5 demonstrates a
creation of relationships between the concept classes. When we are creating
a relationship between two concept classes we need to name the source and
target relation classes and the relation itself. Base relation concept class is the
RelationalConcept class and the base relation is the hasRelatedConcept object
relation. They are used to derive more specific relations and relation classes
like the ParentConcept, ChildConcept classes and the hasChildConcept object
relation on the Figure 5.



Modeling the Reusable Content of Adaptive Web-Based Applications 13

Relational

concept

Relational

concept

Parent

concept

Child

concept

Child

concept

hasRelated

Concept

derived

relationship

derived

target class

hasChildconcept

hasChildconcept

Fig. 5. Creation of relationships between the concept classes

To define a relationship of type parent-child we need to derive the source
concept class from the ParentConcept class, derive the target concept class
from the ChildConcept class and create the object relation derived from the
hasChildConcept relation, which interconnects the source and the target con-
cept classes. For each relationship we consider also an inverse relationship,
which is considered only due to completeness of the model and for assisting
reasoning in the ontology.

Views

The View class represents an abstract view on the concept. View defines a set
of attributes concerning the adaptive application entity, which can be used
for adaptation purposes. For basic modeling we consider one type of view, the
view of a user on the concept represented by the UserView class.

Views (represented as defined attributes sets) are defined to conform the
consistence of modeling. In one of our drafts we considered to insert attributes
directly into concept classes. This approach would define only the user meta-
model and would not allow to store actual user attribute values. Moreover,
the problems with determining attribute sets by ontological restrictions would
not be trivial. By defining views we separated the definition of attributes
from the content, which simplifies the ontology modeling, the ontology itself
becomes usable as a model of adaptive application content for direct use and
it is possible to employ actual standards of meta-data representations for
particular domain.

User view on the concept implements the overlay user model in the ontol-
ogy. UserView defines the set of attributes for the user model by relational
property hasUserViewAttribute. The hasUser relation connects the view with
factual user or with the set of users (in this case stereotype user model). User
view defines the ConceptVisited attribute, which is common for all concepts.
It specifies information whether the user has already visited the concept. This
attribute is a standard in adaptive web-based applications. More such often



14 Mária Bieliková and Michal Moravč́ık

used attributes (e.g., showability, suitability, knowledge) according existing
adaptive applications can be defined by extending the UserView with addi-
tional attributes.

Attributes

Attribute is a base class for all attributes except concept data attributes. It
presents information processed by adaptive application with purpose to per-
form the adaptation. Attribute class represents identification and definition of
information fragment for particular concept class, user or other entity from a
domain model. For example, in the domain of learning programming the at-
tribute can represent the information about solving the programming exercise
or understanding exercised programming concepts. Detaching the attributes
into separate classes we have enforced an abstraction from the attribute source
and processing attribute values at the level of instances.

We mention three attribute types represented in core ontology:

• DomainAttribute: differentiates domain attributes from other types of at-
tributes. Typical usage of domain attribute is meta-data related to a con-
cept, which is not displayed in presentation but influences the adaptation
process (e.g., difficulty of the programming exercise concept).

• ViewAttribute: deriving the attribute class from the ViewAttribute speci-
fies the attribute of a view. Deriving is not stright but through additional
attribute class specifying the type of the view, e.g., UserViewAttribute for
the UserView view.

• UserViewAttribute: specifies that derived attribute class is valid for par-
ticular view class derived from the UserView class. Default user model
attribute valid for all concept classes is the ConceptVisited attribute.

Domain attributes are not contained directly in the concepts, but rather
assigned to concepts using object relations between the concept classes and
the domain attributes classes. The Concept class is in relation hasDomainAt-
tribute with instances of the DomainAttribute class. To define new domain
attribute for the concept class we create a new attribute class derived from
the DomainAttribute class and assign it to the concept class with new object
relation derived from hasDomainAttribute relation (see Figure 6).

Domain

Attribute
Concept

ConceptA AAtribute A

hasDomain

Attribute

hasAAtribute

Fig. 6. Definition of a domain attribute



Modeling the Reusable Content of Adaptive Web-Based Applications 15

Users

Instance of the User class represents a user of adaptive application. The User
is referenced by multiple user views for multiple concepts. Creating view in-
stances, setting view attribute values and their modification is the role of
the adaptive application. Domain model ontology defines default user at-
tribute values for particular concepts. Creating the instances of users is out
of the scope of domain modeling. It is in common provided manually (fill-
ing forms by the user) or (semi)automatically employing knowledge discovery
techniques [18].

4.2 Domain and user models interconnection

Domain model defines concepts including their information content, relations
between concepts and domain attributes for the concepts. User model consists
of user views for each concept class from the domain model. The user view
defines a set of attributes for domain concepts which are stored in the user
model. We do not consider the domain independent user model while we
concentrate on domain modeling. We model the user only to such extent
that can be automatically gathered from developed domain model. Domain
independent part of the user model is often defined in separated ontology or
it can be accessed from shared source [2].

Interconnection between a domain model and a user model is depicted on
Figure 7. The Concept, UserView, User and ConceptVisited classes demon-
strate the basic interconnection. The DefinedConcept does not define any at-
tributes for the user model. As an example we consider e-learning domain
where the EducationalConcept is specified. It defines two user model attributes
EducationalKnowledge and EducationalInterest for which we have derived new
view class EducationalUserView, which defines relations for connecting these
attributes.

5 Meta-model of the adaptive application content

In ontology it is possible to define data and object properties as functional
or non-functional (multiple). Non-functional properties are represented and
handled as sets with no regard on ordering the elements contained. This can
result into unsuitable attributes order after delivering the content ontology
into adaptive application where sequences of concepts or information frag-
ments present important knowledge on the presentation (beside dynamically
generated sequences). Explicit specification of elements ordering in the on-
tology would uselessly embarrass the domain model. We have proposed a
meta-model, which contains a list of all concept classes and corresponding at-
tributes and relationships. Each attribute and relationship in the meta-model
has defined an order index and a flag of its visibility in the presentation.



16 Mária Bieliková and Michal Moravč́ık

Concept

UserView

User ConceptVisited

DefinedConcept

EducationalConcept

EducationalUserView

EducationalInterest EducationalKnowledge

isa

isa

isa

hasUserView*

hasUser*

hasConceptVisited

hasEducationalUserView*

hasEducationalInterest
hasEducationalKnowledge

Fig. 7. Interconnection between domain and user models

After generating the meta-model from the ontology the ordering of at-
tributes and relationships conforms their physical ordering in the ontology
which can be random in general. Our method for delivering content into ex-
isting adaptive application uses the meta-model in the process of exporting
the adaptive application context from the ontology into the intermediate for-
mat where the attributes and relations are stated in such order as will be
presented after importing into the adaptive application.

Bellow is an example of meta-model for sequencing information fragments
for a programming exercise in e-learning domain.

<meta_caf>
<meta_concept name="ExerciseConcept">

<meta_concept_attributes>
<meta_attribute type="concept" show="true" order="1"

name="exerciseHint"/>
<meta_attribute type="domain" show="false" order="2"

name="exerciseDifficulty"/>
</meta_concept_attributes>
<meta_concept_relations>

<meta_relation type="fragment" show="true" order="1"
name="hasExerciseDefinition"/>

</meta_concept_relations>
</meta_concept> ... </meta_caf>



Modeling the Reusable Content of Adaptive Web-Based Applications 17

6 Evaluation of proposed method

In our experiments we focused on adaptive web-based system AHA! [10] and
authoring tool for adaptive applications MOT [9]. The AHA! system is par-
tially compliant with the AHAM model and the MOT system is based on the
LAOS model. Both provide authoring tools for creating adaptive applications.
Level of authoring is superior in MOT, which provides simple and powerful
definition of domain concept maps, lesson model (defined in the LAOS model)
and adaptation strategies (LAG programs, [8]). On the other side, AHA! pro-
vides superior adaptive techniques for defining an adaptive presentation. This
resulted to a proposal to use MOT as an authoring system and AHA! as a
delivery system supported by transforming the content between these two
systems (MOT2AHA, [9]). Transformation is either straightforward, or con-
sists of two steps where the intermediate format (CAF, Common Adaptation
Format) extended to CAFE (Common Adaptation Format Extended) is used.

We have used the core ontology for authoring described in this chapter
together with existing converting tools for delivering the content into the
AHA! application (CAF2AHA! tool developed at Eindhoven University).

Evaluation was realized in three stages:

1. Definition of prototype ontology in domain of learning programming by
examples.

2. Export the prototype ontology into the adaptive application.
3. Developing software support for authoring the adaptive application con-

tent ontology.

In the first stage we developed the ontology describing a programming
course using program exercises for languages Lisp and Prolog (based on the
adaptive web-based system ALEA used for learning programming in Func-
tional and Logic programming course at the Slovak University of Technology
in Bratislava [4]). At the same time we provided manual transformation of
a part of the ALEA content into the AHA! application [3] in order to verify
developed ontology.

Structure of the domain model is shown in Figure 8. For simplicity we
omit here inverse relations between the concepts. ProgrammingExercises rep-
resents the root concept of the application, which can include a set of program
schemata (TemplateConcept) and a set of exercises (ExerciseConcept). Pro-
gram schemata include concepts describing the program schema usage (Tem-
plateUsage) and concepts containing exercises (ExerciseConcept). Each exer-
cise contains one or more concepts defining the exercise (ExerciseDefinition)
and its solution (ExerciseSolution). The hasSubTemplate relation enables to
build a hierarchy of the template concept instances.

After defining a structure of ontology for learning programming domain,
we filled the ontology up with instances of programming templates and exer-
cises to enable further evaluation.



18 Mária Bieliková and Michal Moravč́ık

ProgrammingExercises

TemplateConcept

TemplateUsage

ExerciseConcept

ExerciseDefinition ExerciseSolution

hasTemplate*

hasExercise*

hasSubTemplate*

hasTemplateUsage*

hasTemplateExercise*

hasExerciseDefinition* hasExerciseSolution*

Fig. 8. Programming course domain model

During the second phase in order to solve a problem of unwanted misplac-
ing concept attributes in generated presentation we developed an ontology
meta-model, which defines concept classes and their attributes and relations
(see Section 5). By editing the meta-model and applying it during exporting
to CAF format concept attributes and relations are resorted as specified in
the meta-model.

Second and third stages of the evaluation are supported by software tools
developed in order to make proposed sequence of steps defined by the method
for modeling the content of adaptive application practicable. We developed
tools for editing, importing and exporting the ontology defining the content
of adaptive application. Figure 9 visualizes a process of transforming content
represented by the domain model in ontology to the AHA! system. Moreover
we added importing the content from the ALEA system, which was realized
by a set of developed software tools for transformation XML representation
of the content in ALEA into ontological representation.

7 Conclusions

In this chapter we described a method for adaptive application content mod-
eling using ontology that allows the content reuse between applications. It is
based on designed core ontology that is open and can be used for integrat-
ing other aspects of adaptive behavior and other layers of reference models.
Adaptive applications benefit also from generated domain dependent part of
user model.

Our long term goal is a use of ontology as knowledge representation in
adaptive web-based applications. It allows building both closed and open cor-



Modeling the Reusable Content of Adaptive Web-Based Applications 19

Editor Metamodel

Domain model

(ontology)
CAF(E)

External

ontology

Application, tool

CAF(E)2AHAExport

Import

Process

Data form
Legend

Adaptive

strategy

Transform ALEA

AHA!

other AH applications

other AH applications

Fig. 9. Content transformation possibilities

pus systems using the same processes. Knowledge representation using the
ontology reveals possibilities of reasoning and thus supports defining adap-
tive behavior. Moreover, automatic means for sequences of content generation
(e.g., using knowledge on user behavior [19]) or checking its consistency could
be employed.

Our work was aimed at delivering adaptive application content into ex-
isting adaptive systems or content conversion between content oriented web-
based applications. We have demonstrated authoring of adaptive application
content using the ontology and its delivering into existing system in terms
of ”authoring once, delivering many”, which is promising real utilization of
value-added possibilities for modeling adaptive applications with means of the
Semantic Web. Described approach of modeling adaptive applications content
employing the ontology is a step to support the Semantic Web technologies
in adaptive web-based systems.

Acknowledgements. This work was partially supported by the Scientific Grant
Agency of Slovak Republic, grant VG1/3102/06 and by the Cultural and Ed-
ucational Grant Agency of the Slovak Republic, grant No. KEGA 3/5187/07.

The authors would like to thank members of PeWe group (www.fiit.
stuba.sk/research/pewe) and participants of the SMAP 2006 workshop
(www.smap2006.org) for fruitful discussions and feedback on work presented
in this chapter.



20 Mária Bieliková and Michal Moravč́ık

References

1. Andrejko A, Barla M, Bieliková M, Tvarožek M (2006) Ontology-based user
modeling for web-based information systems. In: Proc. of Int. Conf. on Infor-
mation Systems Development, ISD’06, Budapest, Hungaria

2. Bieliková M, Kuruc J (2005) Sharing user models for adaptive hypermedia
applications. In: Proc. of 5th Int. Conf. on Intelligent Systems Design and
Applications, ISDA’05, Wroclaw, Poland, ACM Press, 506–511

3. Bieliková M, Kuruc J, Andrejko A (2005) Learning programming with adaptive
web-based hypermedia system AHA! In: Jakab F et al. (eds) Proc. of Int. Conf.
on Emerging e-Learning Technologies and Applications, ICETA’05, Koice, Slo-
vakia, 251–256

4. Bieliková M (2006) An adaptive web-based system for learning programming.
Int. J. Continuing Engineering Education and Life-Long Learning, Inderscience,
16(1/2):122–136

5. Bureš M, Jeĺınek I (2005) Reusable Adaptive Hypermedia E-learning Content
Using AICC. In: Proc. of the IADIS Int. Conf. WWW/Internet’05, Lisboa,
Spain, IADIS Press, vol. I, 376–378

6. Ceri S, Fraternali P, Matera M (2002) Conceptual modeling of data-intensive
web applications. In: IEEE Internet Computing, 6(4):20–30

7. Cristea A I, De Mooij A (2003) LAOS: Layered WWW AHS authoring model
and their corresponding algebraic operators. In: Proc. of 12th Int. World Wide
Web Conf., WWW’03, Budapest, Hungary, ACM Press

8. Cristea AI, Verschoor M (2004) The LAG grammar for authoring adaptive web.
In: Proc. of Int. Conf. on Information Technology: Coding and Computing,
ITCC’04, IEEE Computer Society Press, 382–386

9. Cristea AI, Smits D, De Bra P (2005) Writing MOT, reading AHA! – converting
between an authoring and a delivery system for adaptive educational hyperme-
dia. In: Proc. of 3rd Int. Workshop on Authoring of Adaptive and Adaptable
Educational Hypermedia, A3EH’05 at AIED’05, Amsterdam, The Netherlands

10. De Bra P et al. (2003) AHA! - The adaptive hypermedia architecture. In: Proc.
of the ACM Hypertext Conf., Nottingham, UK, 81–84

11. De Bra P, Santic T, Brusilovsky P (2003) AHA! meets Interbook, and more.
In: Proc. of the AACE ELearn’03 Conf., Phoenix, Arizona, 57–64

12. Gruber TR (1993) Towards principles for the design of ontologies used for
knowledge sharing. In: Guarino N, Poli R (eds) Formal Ontology in Conceptual
Analysis and Knowledge Representation, Kluwer

13. Houben GJ, Barna P, Frasincar F (2003) HERA: development of semantic web
information systems. In: Proc. of Int. Conf. on Web Engineering, ICWE’03,
LNCS 2722, Springer, 529–538

14. Koch N, Wirsing M (2002) The Munich reference model for adaptive hyperme-
dia applications. In: De Bra P, Brusilovsky P, Conejo R (eds) Proc. of Int. Conf.
on Adaptive Hypermedia and Adaptive Web-based Systems, AH’02, LNCS
2347, Springer, 213–222

15. Seefelder PA, Schwabe D (2004) A semantic meta-model for adaptive hyper-
media systems. In: Proc. of 3rd Int. Conf. on Adaptive Hypermedia and Adap-
tive Web-Based Systems, AH’04, Eindhoven, The Netherlands, LNCS 3137,
Springer, 360-365



Modeling the Reusable Content of Adaptive Web-Based Applications 21

16. Stewart C, Cristea AI, Brailsford T (2005) Authoring once, delivering many:
creating reusable adaptive courseware. In: Proc. of 4th IASTED Int. Conf. on
Web-Based Education, WBE’05, Grindelwald, Switzerland

17. Schwabe D, Rossi G: An object-oriented approach to web-based application
design. In: Theory and Practice of Object Systems, Special issue on the Internet,
4(4):207–225

18. Tvarožek M, Barla M, Bieliková M (2007) Personalized Presentation in Web-
Based Information Systems. In: Proc. of SOFSEM 2007, J. van Leeuwen et al.
(ed), Springer, LNCS 4362, 796–807

19. Velart Z, Šaloun P (2006) User behavior patterns in the course of programming
in C++. In: Proc. of the Int. Workshop on Adaptivity, personalization & the
Semantic Web, Odense, Denmark, 41–44

20. Wu H, Houben GJ, De Bra P (1998) AHAM: A reference model to support
adaptive hypermedia authoring. In: Proc. of the Conf. on Information Science,
Antwerp, 51–76


