
Semantic Web Service Composition Framework Based on Parallel Processing∗

Peter Bartalos and Mária Bieliková
Institute of Informatics and Software Engineering, Faculty of Informatics

and Information Technologies, Slovak University of Technology in Bratislava
{bartalos,bielik}@fiit.stuba.sk

Abstract

The process of semantic web service composition ar-
ranges several web services into one composite service to
realize complex workflows with an exploitation of seman-
tics. This paper proposes a framework to automatic se-
mantic web service composition. Its advantage is that a
huge amount of computation is performed during prepro-
cessing and the composition approach is designed to exploit
the parallel execution of processes which is nowadays sup-
ported in multiprocessor platforms. The framework is built
to suit the WS Challenge competition requirements.

1 Introduction

Semantic web services present a topical research area
aimed at exploiting semantic annotation of web service de-
scriptions [14]. One of the most studied topics in this area
is the automation of the semantic web service composition
aiming at arranging several services into one complex ser-
vice to be able to realize more complicated workflows. The
composition is studied in different contexts to achieve prac-
tical applicability [1, 6, 9].

Several methods used in semantic web service compo-
sition based mostly on AI planning techniques were pro-
posed. These include among others the state space search,
graph based planning, Hierarchical Task Network (HTN)
planning and approaches based on logic programming [11].

Even though a lot of work has been done in the field of
semantic web service composition, there still remain prob-
lems. These are mainly related to insufficient automation of
composition and execution, and scalability of approaches.
Accordingly current research is more oriented to solve the
issues related to scalability from performance point of view,

∗This work was partially supported by the Slovak Research and Devel-
opment Agency under the contract No. APVV-0391-06, ”Semantic Com-
position of Web and Grid Services” and the Scientific Grant Agency of
Slovak Republic, grant No. VG1/0508/09.

QoS (Quality of Service) consideration and regarding the
pre/postconditions of services.

Promising results dealing with scalability are presented
in [7, 12]. The authors perform the composition in in-
significant time (in msecs) even if the number of services
rises to thousands. Both approaches realize preprocessing
to decrease the computation required during the compo-
sition. They also consider pre/postconditions of web ser-
vices. Other approaches considering pre/postconditions are
described in [5, 13].

The research behind considering QoS attributes of web
services during composition is motivated by the assump-
tion that there are several web services having similar func-
tionality. These can be alternatively used to accomplish the
same goal. However, the services having similar function-
ality often differ in QoS attributes. Hence, to create the
composition having the best aggregated QoS characteristic,
the QoS of single services have to be considered. Some
approaches dealing with QoS aware composition are pre-
sented in [4, 8].

In this paper we give an overview of our framework
for semantic web service composition. It is designed
to suit the requirements of the WS Challenge compe-
tition (http://ws-challenge.georgetown.edu/
wsc09/index.html). We have adapted our approach
described in [2] to fit the requirements of the competition.
Our work is motivated also by the SEMCO-WS research
project [10]. Our composition framework is here used to
automate the process of a workflow creation in the context
of a multi user workflow editor [3].

Our approach bases on the following issues:

• Find all possible solutions. We find all possible solu-
tions and select the best based on the QoS.

• Maximize preprocessing. We perform a huge amount
of computation in preprocessing phase and build a data
structure allowing quick response to the user query.

• Parallel processing. We build our framework in such
a way that it effectively exploits the possibilities of
multiprocessor platforms.



2 Preparing Data for Composition

We represent the web service composition as a DAG (di-
rected acyclic graph). The nodes represent web service in-
vocations. There is an edge between two nodes if the web
service invocation represented by the first node produces
data which may by consumed during the invocation of the
web service represented by the second node. In this case
we say that the services can be chained. The edges are seen
also as connectors between the outputs of the first service
and the inputs of the second service. During the creation of
the composition we depict whether the connection is con-
sidered to be alternative or parallel with other connections.
Hence, one DAG can represent more than one (partially or-
dered) sequence of the web service invocation producing
required data based on the given input data. Acquired solu-
tions may differ in their QoS characteristics.

Our approach to web service composition is based on a
preprocessing. During the preprocessing we create a data
structure used to quickly answer two queries. The first
query (Q1) serves to select services providing data required
in the user query. The second query (Q2) selects services
providing data required as input for a given service. These
two queries are used to perform the web service compo-
sition. In the following, we present the used data structure
and the process populating this data structure with data con-
sidering the given web services set.

Our data structure is based on a relational repository hav-
ing two parts, see a scheme in Fig. 1. The first stores data
about the I/O of services. After the first part is populated,
we query it to evaluate which services can be chained. Dur-
ing the evaluation we consider also the subsumption relation
between the I/O. If there is found a suiting I/O pair, we store
this information in the second part.

Figure 1. Data structure creation.

In the preprocessing phase we also analyze the given web

service set and evaluate their characteristics. The result of
the analysis consists in additional data exploited during the
composition to speed it up. Our first analyzes results in a se-
lection of those concepts for which there is no web service
producing data annotated with an instance of that concept.
If some service has at least one input annotated with an in-
stance of such a concept, the only situation when this ser-
vice can be used in the composition is if such input is pro-
vided in the user query. If it is not, we do not consider this
service during the composition. If the unconsidered service
is the only source providing input data for other services, we
do not consider also these. This rule is applied recursively.
We denote these services as user data dependent services.

After the user data dependent services are selected we
rate them. We evaluate the effect of the case when the re-
quired data are not provided in the user query. The rating is
higher, if an unusable service affects more services which
cannot then be considered during the composition. Here we
again apply this rule recursively on those services for which
the only source of input data is the unusable service.

3 Composition Algorithm

The aim of our composition algorithm is to find effec-
tively all possible solutions of the web services composi-
tion. It is based on the fact that only those services can
be considered during the composition which have available
input data. These are provided in the user query or as out-
puts of previously invoked services. Because of this, we
mark the web services to denote if they can be used during
the composition or not. At the beginning we do not know
which services can be considered. Hence, we initially mark
all services as undecided. If we realize that we have avail-
able all input data for some service, we mark it usable. On
the other hand, if we realize that there is no source provid-
ing required input data for a service, we mark it unusable.
Based on this, our composition approach is a combination
of three separated processes operating over the same data
structure: 1) Finding usable services, 2) Finding unusable
services, 3) Backward chaining.

Finding usable services (see Algorithm 1) is based on
forward chaining starting with those services for which we
have input data from the user query. The aim of this process
is to mark services as usable and build the composition from
services having available input data.

The goal of the finding unusable services process is to
restrict the set of services which are considered during the
composition. It is based on the idea that if we remove unus-
able services, we improve the performance of the two other
processes, because they will not waste time by processing
such services. The process is executed over each service
from the list of user data dependent services for which the
inputs are not provided in the user query, (see Algorithm 2).



Here we consider also the rating of the services described
in the Section 2. The algorithm runs with higher priority for
services with higher rating, i.e. these are removed first. The
idea is that if we first remove services with higher rating,
we save more time because the other processes waste less
time by processing unusable services and branches.

The aim of the backward chaining (see Algorithm 3) is
to build the composition backward from the goal. First,
services providing data required in the user query are se-
lected by Q1. Here the querying mechanism of relational
databases is exploited to quickly select the required ser-
vices. Then, Algorithm 3 is performed over each service
with unsatisfied inputs. For each of them we look for an
other web service producing them. This is performed by
Q2 over a runtime in-memory data structure.

Algorithm 1 FindUsableServices: Input: service

for all successor of service do
if isUnusable(successor) == true then

continue;
end if
set connectedInput of successor as provided;
chain(service, successor);
if areAllInputsProvided(successor) == true then

mark successor as usable;
FindUsableServices(successor);

end if
end for

Algorithm 2 FindUnusableServices: Input: service

for all successor of service do
if isOnlyInputSource(connectedInput, service) == true then

mark successor as unusable;
FindUnusableServices(successor);

end if
end for

Algorithm 3 BackwardChaining: Input: service

for all input of service do
if isProvided(input) == true then

continue;
end if
S← getProviders(input)
for all provider in S do

if isUnusable(provider) == true then
continue;

end if
chain(provider, service);
if isUsable(provider) == false then

BackwardChaining(provider);
end if

end for
end for

The first two processes finish when there are no services
having successors which have not been processed. The
backward chaining ends when there is no service having in-
put for which not each source providing the required data
is checked. After finishing each process we traverse the
chained services and create the solution. Here we consider
the QoS attributes of services. We select the solution quali-
fied as the best considering QoS.

4 Framework Architecture

The architecture of the composition framework is di-
vided into two main subsystems, see Fig. 2. The first in-
cludes components responsible for the bootstrap phase. The
second is responsible for the user querying phase. Each sub-
system has access to a relational database storing informa-
tion about the given web service set. The functionality of
both subsystems is provided via a web service interface.

The Bootstrap subsystem is coordinated by the System
initializer. Via the WS interface this component is directed
to start the bootstrap process. During it, System initializer
step by step calls the WS Reader, Chaining evaluator and
WS analyzer. WS Reader is responsible for reading the ser-
vice description files (wsdl, owl and wsla – QoS). It parses
these files and stores the data in the relational database. The
stored data are then processed to create data used during the
composition. The Chaining evaluator decides which web
service can be chained. The WS analyzer investigates the
dependency of the services on the user input data and eval-
uates the related rating as discussed in the Section 2. The
results of the chaining evaluation and web service analysis
are stored in the respective parts of the relational database
and in a runtime in-memory data structure. After the boot-
strap finishes, the system is ready to answer the user queries.

The User querying subsystem is managed by the Pro-
cess manager. Via the WS interface this central component
provides the composition functionality. It is also responsi-
ble for calling a call back web service submitting the re-
sulted composition. After receiving the user query, the Pro-
cess manager manages Composition realizer to compute the
composition. The Composition realizer is built in such a
way that it runs different number of parallel threads to exe-
cute processes presented in the Section 3. The creation and
running of the threads is controlled by the Process manager.
It adapts the number of running threads based on the actual
state of the composition process. The maximal number of
threads is influenced by the hardware platform (number of
processors/cores) in which the system is running. Each pro-
cess operates over a single data structure managed by the
Data structure manager. After the solution is found, Solu-
tion generator retrieves the solution from the data structure
and serializes it into the required format (BPEL). After this,
the call back web service is invoked to submit the solution.



System

initializer

Web

service

database

WS reader

WS analyzer

Chaining

evaluator

Process

manager

Data structure

manager

Composition

realizer

Solution

generator

WS

interface

initialize(wsdlURL, owlURL, wslaURL)

stopComposition()

startQuery(wsdlQuery, callbackURL)
User querying

subsystem

Bootstrap

subsystem

Figure 2. Composition framework architecture.

5 Conclusions and Future Work

In this paper we presented the concept of our framework
for semantic web service composition. The composition al-
gorithm is designed to effectively exploit the possibilities of
multiprocessor platforms. The framework’s architecture is
adjusted to parallel processing over a single data structure.

Our future work deals with the problem of integrating
service composition into applications from software engi-
neering point of view. We study how the service composi-
tion can be effectively applied to automatic business process
creation. This includes also an examination of the effects to
the software architecture of the application.

References

[1] P. Bartalos and M. Bielikova. Enhancing semantic web ser-
vices composition with user interaction. In SCC ’08: Proc.
of the 2008 IEEE Int. Conf. on Services Computing, pages
503–506. IEEE CS, 2008.

[2] P. Bartalos and M. Bielikova. Fast and scalable seman-
tic web service composition approach considering complex
pre/postconditions. In WSCA ’09: Proc. of the 2009 IEEE
Congress on Services, Int. Workshop on Web Service Com-
position and Adaptation. IEEE CS, 2009. Accepted.

[3] P. Bartalos, I. Kapustik, and V. Rozinajova. Visual support
of workflow composition involving collaboration. In GCCP
’08: Proc. of the 2008 Int. Workshop on Grid Computing for
Complex Problems, pages 120–127. SAS, 2008.

[4] R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Stein-
metz. Heuristics for qos-aware web service composition. In
ICWS ’06: Proceedings of the IEEE Int. Conf. on Web Ser-
vices, pages 72–82. IEEE CS, 2006.

[5] Y. Gamha, N. Bennacer, G. V. Naquet, B. Ayeb, and L. B.
Romdhane. A framework for the semantic composition of

web services handling user constraints. In ICWS ’08: Proc.
of the 2008 IEEE Int. Conf. on Web Services, pages 228–237.
IEEE CS, 2008.

[6] L. Hluchy, O. Habala, M. Babik, M. Laclavik, Z. Balogh,
and E. Gatial. Knowledge-based platform for environmental
risk management. In ISPDC ’07: Proc. of the Sixth Int.
Symposium on Parallel and Distributed Computing, pages
3–9, Washington, DC, USA, 2007.

[7] S. Kona, A. Bansal, and G. Gupta. Automatic composition
of semantic web services. In ICWS ’07: Proc. of the 2007
IEEE Int. Conf. on Web Services, pages 150–158. IEEE CS,
2007.

[8] A. Liu, Q. Li, L. Huang, M. Xiao, and H. Liu. Qos-aware
scheduling of web services. In WAIM ’08: Proceedings of
the 2008 The Ninth Int. Conf. on Web-Age Information Man-
agement, pages 171–178. IEEE CS, 2008.

[9] J. Paralic and M. Paralic. Some approaches to text mining
and their potential for semantic web applications. Informa-
tion and Organizational Sciences, 31(1):157–170, 2007.

[10] M. Paralic, O. Habala, J. Paralic, and P. Bartalos. Semantic
composition of web and grid services. In Znalosti 2009,
pages 355–358, Brno, 2009.

[11] J. Peer. Web Service Composition as AI Planning – a Survey.
University of St.Gallen, 2005.

[12] K. Ren, X. Liu, J. Chen, N. Xiao, J. Song, and W. Zhang. A
qsql-based efficient planning algorithm for fully-automated
service composition in dynamic service environments. In
SCC ’08: Proc. of the 2008 IEEE Int. Conf. on Services
Computing, pages 301–308. IEEE CS, 2008.

[13] A. Sirbu and J. Hoffmann. Towards scalable web service
composition with partial matches. In ICWS ’08: Proc. of the
2008 IEEE Int. Conf. on Web Services, pages 29–36. IEEE
CS, 2008.

[14] R. Studer, S. Grimm, and A. Abecker. Semantic Web Ser-
vices: Concepts, Technologies, and Applications. Springer,
2007.


