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Abstract

Existing information retrieval systems provide users with
limited support for efficient navigation in large semanti-
cally enriched information spaces. Several possible solu-
tions were proposed, such as using faceted metadata search
or semantic clusters of search results. We explore the pos-
sibilities of using enhanced faceted navigation with support
for personalization, collaboration and Semantic Web tech-
nologies for (semantic) information retrieval. Furthermore,
we propose the extension of faceted browsers with support
for dynamic facet generation based on an automatically ac-
quired user model, and evaluate the proposed ideas in mul-
tiple domains – scientific publications, digital images and
job offers.

1 Introduction

The present Web along with many web-based resources
comprise a unique ubiquitous source of information and an
environment for collaboration and interaction of many users
and businesses. While the amount of available information
and the quality and capabilities of information search and
processing tools are growing at an incredible rate, so do the
size and diversity of the Web’s user base and the expecta-
tions and requirements of individual users.

Although existing information retrieval (IR) methods are
continuously improving, they still fail to address the in-
creasing requirements and expectations of many users with
specific needs. For example, most existing search engines
such as Google or MSN Live Search employ keyword-based
search, while sharing systems such as Flickr or YouTube
might extend this with tag-based search. The infamous “ad-
vanced search” interfaces allow users to specify even more
complex (keyword-based)queries, optionally with some ad-
ditional domain specific attributes (e.g., size, filetype for
images). Video search sites such as IMDb and MovieLens

take complexity to another level by offering (multistep) in-
terfaces with many text fields, drop-down menus and multi-
choice listboxes.

However, several studies have repeatedly indicated that
typical search queries are short (up to four words; depend-
ing on the domain) [12] and that advanced search is im-
practical to use for many users [21]. While existing sys-
tems are generally good when searching for very specific
items, they do not support browsing and exploratory tasks
sufficiently [28]. A field study of journalists and news-
paper editors selecting photos for newspaper articles con-
ducted by Markulla and Sormunen reported that “profes-
sional users” needed to search on multiple categories [16],
yet found an elaborate advanced search interface with about
40 input forms unusable.

The Web is a dynamic open information space as
many “information artefacts” – documents, articles, images,
videos, music files etc. are continuously added, modified,
removed, rated or tagged. Thus, user diversity and the evo-
lution of information and user characteristics over time play
a crucial role in effective user-centred IR system design. For
example, people who grew up with the Web and the Inter-
net, i.e. the “Net Generation”, have a natural understanding
of this new ubiquitous environment quite unlike their pre-
decessors [18]. Consequently, they have (radically) new re-
quirements, expectations and modes of operation compared
to the previous generation of web users.

Accordingly, current changes include a shift from tradi-
tional lookup tasks (e.g., fact retrieval) towards more ad-
vanced and open ended learning and investigation tasks
(e.g., knowledge acquisition, comparison, aggregation,
analysis or planning) collectively described as exploratory
search [15]. Furthermore, the trend towards more interac-
tion and active (social) participation encourages the combi-
nation and cross-fertilization of approaches from human-
computer interaction, information retrieval, the Adaptive
Web and the Semantic Web.

In this paper we build upon several existing approaches



and describe an enhanced faceted browser, which is built
around the view-based search paradigm using faceted nav-
igation [11] as suitable means for exploratory search. We
take advantage of Semantic Web technologies (ontologies
in particular) [20] and adaptation based on an automatically
acquired user model to improve usability and reduce infor-
mation overload via personalization [4, 5], ultimately im-
proving overall user experience.

Section 2 describes related work in exploratory search
and faceted browsing. Section 3 outlines our design goals
and provides a high-level overview of our approach, while
section 4 describes the relevance model used to drive our
personalization engine and the corresponding user model-
ing back-end. Next, in sections 5 and 6, we describe the de-
tails of our personalization approach for facets and restric-
tions and for search results respectively. Lastly, we present
our evaluation of the proposed approach in multiple applica-
tion domains in section 7 and draw conclusions in section 8.

2 Related Work

Exploratory search encompasses a broad range of re-
search fields and search and navigation approaches –
keyword-based, content-based and view-based search.

2.1 Keyword-based Search

Keyword-based search is currently successfully used,
e.g., in all major web search engines (e.g., Google, Live
Search, Yahoo) thanks to its simplicity and ease of use,
while its disadvantages include ambiguity, low expressive-
ness and the lack of guidance and interaction. Typical
search queries are short (one to three words) though their
length varies between domains [13], while advanced search
forms are too complex to be practical [21]. Moreover,
“guessing” the right keywords is difficult for many users.

The keyword-based IGroup image search engine
presents search results in semantic clusters thus alleviat-
ing some problems with short, general or ambiguous search
queries [25]. IGroup clusters the original result set into sev-
eral clusters and provides users with an overview of the re-
sult set by means of representative cluster thumbnails and
names, which users can choose for further navigation. Thus,
IGroup improves usability and makes users’ search query
formulation easier by providing both query suggestion and
browsing by textual category labels.

2.2 Content-based Search

Interactive content-based approaches, such as query-by-
example (QBE) have been used in multimedia domains
where textual descriptions of instances are sparse, unavail-
able or inconsistent with user expectations. The current

state of the art in content-based IR and its broader implica-
tions, are surveyed in [14]. Unlike keyword-based search,
content-based IR allows users to search interactively – a
query is a set of positive (or negative) examples of instances
similar to the users’ information need.

TagSphere is an approach to visual presentation of search
results obtained by QBE information retrieval using collab-
orative tagging, originally developed for the digital image
domain [3]. It stresses usability and user interaction in the
search process by providing different tools for tag visual-
ization, selection, query construction and recommendation.

In [8], the authors describe mental matching – a QBE
based approach that facilitates exploratory search by bridg-
ing the gap between low-level representation of information
in databases (i.e., what metadata are available) and high-
level semantic descriptions meaningful to end users (i.e.,
how they understand and use them). The approach employs
a Bayesian relevance feedback model and allows users to
interactively choose the most similar images out of a set of
sample images – a “visual query”, which the system than
matches against other images in the collection.

2.3 View-based Search

Similarly, view-based search interactively guides users
by showing them with successive views of the respective
information space and showing them the available options
for further query refinement. In practice, view-based search
is most commonly realized in faceted browsers often used,
for example in online shops for product selection. Faceted
browsers allow users to formulate queries via navigation
by successively selecting metadata terms in a set of avail-
able facets, and to interactively browse the corresponding
search results. Authors in [27] compare three major faceted
browsers developed in course of research projects aimed at
discovering new possibilities of view-based search – Fla-
menco, mSpace and RelationBrowser.

mSpace is a domain specific browser of RDF data, which
provides users with a projection of high dimensional infor-
mation spaces into a set of columns (filters) shown in the
GUI, which can be manually added, rearranged or removed
by users [26]. The ordering of individual columns in the
GUI is important as the contents of the next column are dy-
namically determined based on the selection in the previ-
ous column. If, in the music domain, columns TimePeriod,
Composer and MusicPiece are available, then selecting a
time period updates the composer column to only display
composers from that period. Similarly, selecting a com-
poser populates the MusicPiece column with his works.

Flamenco [28] stresses interface design and guides users
through the information seeking process. Users first see
a high level overview of the available metadata (“open-
ing”), then refine their query and preview results (“middle



game”) and lastly explore individual results via horizontal
navigation (“endgame”). While in Flamenco the facets are
static and predefined, users can manually adapt columns in
mSpace to match their needs. Both Flamenco and mSpace
support keyword-based search over the entire information
space, however only mSpace supports keyword-based fil-
tering in individual facets. Moreover, neither Flamenco nor
mSpace provide personalization nor user adaptation.

The overall user response to these approaches was pos-
itive – nearly all users preferred them over a baseline ap-
proach/interface. Nevertheless, several of the approaches
suffer from scalability and information overload issues.
E.g., the faceted browser in [28] had an average response
time of 3.7s vs. 0.3s for the baseline approach. Further-
more, neither of these solutions provide personalized fea-
tures based on individual users’ characteristics. However,
even though some of the aforementioned solutions work
with RDF data, they do not take advantage of semantic
markup for user interface generation and/or personalization
in open information spaces.

The BrowseRDF faceted browser [19] supports auto-
matic facet generation from arbitrary RDF data and extends
the expressiveness of faceted browsing by extending typi-
cal faceted queries with RDF semantics, e.g. with existen-
tial selection, inverse selection, non-existential selection. It
identifies facets in source data based on several statistical
measures – predicate balance, object cardinality and predi-
cate frequency, yet does not directly address issues of infor-
mation overload or interface usability and adaptivity.

The faceted browser called /facet [10] is intended for het-
erogeneous information spaces consisting of distributed se-
mantic repositories represented in RDFS. It takes advantage
of the rdfs:subClassOf and rdfs:subPropertyOf properties
in order to process facet restriction hierarchies. Further-
more, /facet supports multi-type queries and runtime facet
specification thus greatly increasing flexibility and support
for heterogeneous repositories. The multi-type capability
effectively translates into an additional facet, which is used
to specify the target data type. Based on the selection in the
type facet, other facets are made available.

Moreover, /facet supports keyword-based search, which
allows users to perform keyword-based search on both data
(instances) and metadata (facets and restrictions). Lastly,
/facet supports the grouping of search results based on indi-
vidual properties and timeline visualization of dates. How-
ever, it does not support personalization nor advanced link
generation and recommendation techniques.

Even though the described approaches present progress
in improving search mechanisms, there is still much space
left in the sense of combining different approaches together
and adapting the resulting approach to individual users’
needs ultimately changing the way we search for informa-
tion in the new [social adaptive semantic] Web.

3 Personalized Faceted Navigation Overview

We propose a method for personalized faceted naviga-
tion using an enhanced faceted browser, which takes advan-
tage of Semantic Web techniques for ontological knowledge
representation, and Adaptive Web techniques for personal-
ized facet and search results recommendation.

Our primary design goals were:

• Information overload prevention by recommending
relevant content while hiding less relevant content
(e.g., facets, restrictions, result attributes).

• Guidance support via navigational shortcuts, which
streamline navigation in deep/complex faceted hierar-
chies (e.g., restriction recommendation).

• Orientation support by showing additional informa-
tion/cues simplifying user decisions about further nav-
igation (e.g., tooltips showing future facet contents).

• Improved response times due to selective processing
of facets and restrictions, since advanced (semantic)
approaches proved to be “time consuming”.

• Universality and flexibility – suitability to dif-
ferent/changing application domains facilitated by
(semi)automatic user interface generation.

In order to achieve the aforementioned goals, we take
advantage of ontological data representation in OWL:

• The domain ontology describes domain concepts, the
relations between them and their attributes. It con-
tains metadata that describe the structure of the domain
model (i.e., classes and properties) as well as actual
domain data (i.e., instances). For example, in the sci-
entific publications domain, it describes authors, pub-
lications and venues.

• The user ontology describes the characteristics and
preferences of users as well as their broader context –
the time, location and properties of the device and net-
work they use. Since we address generic browsing in
large information spaces, we focus on individual user
characteristics and omit the issues of acquiring and us-
ing a broader user context, which would be required,
e.g., for mobile applications.

• The event ontology describes the events that occur in
the faceted browser and its states during user interac-
tion so that they can be used for the subsequent auto-
mated user characteristics acquisition.

The enhanced faceted semantic browser extends the typ-
ical request handling of faceted browsers with additional
steps that perform specific tasks (see Figure 1).
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Figure 1. Request handling of the enhanced faceted browser, extensions shown in gray.

Facet processing is extended with facet recommendation
– active facet selection, facet and restriction ordering and
annotation, which improve orientation and guidance sup-
port, reduce information overload and alleviate some disad-
vantages of faceted classification (Figure 1, bottom left). If
the set of available facets is insufficient (e.g., the refinement
options were exhausted), we use dynamic facet generation
to add new facets at run-time on a per user basis thus allow-
ing the user to further refine the search query.

Search result recommendation extends the processing of
search results with support for personalized result ordering,
annotation and view adaptation (Figure 1, right). We em-
ploy external tools that evaluate the relevance of individual
search results, e.g., by means of concept comparison with
the user model [2] or via the evaluation of (explicit) user
feedback [9]. Subsequently, we reorder the search results
or annotate them with additional information. We also gen-
erate adaptive views, which show only selected search result
attributes to prevent information overload.

To facilitate automatic user model acquisition, which is
crucial for our personalization approach, we take advan-

tage of the personalized presentation layer described in [22].
We log events that occurred as results of user interaction
with the browser and the current state of the browser via
a specialized external logging service which preserves the
semantics of events [1] (Figure 1, bottom right). The ac-
quired events are processed by the user modeling back-end
and and in turn retrieved as an updated relevance model,
which drives our personalization engine (Figure 1, top left).

4 Model for Relevance Evaluation

Figure 2 shows our user modeling and personalization
loop. Our personalization engine logs user actions and their
semantics explicitly as opposed to traditional web server
logs, which store them only implicitly in request URLs
(Figure 2, top). Each logged event uses our event ontology
to specify the semantics of the respective user action and
also references the domain and user ontologies as required.

Since the detailed description of the event ontology and
logging approach are beyond the scope of this paper, we
give only a simplified example. If a user selects New York
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personalization loop (in gray) and the used
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in a location facet, we log the event sl:SelectRestriction,
whose attributes are sl:Facet and sl:Restriction describ-
ing the respective URIs of the used facet and restriction –
r:Facet location and r:NewYork.

The user modeling back-end provides us with several
sources of adaptation, which we employ with different
weights depending on how closely related they are to the
current user task (Figure 2, bottom):

• In-session user behavior – user navigation, facet and
restriction selection during the current user session
(i.e., user clicks). Frequent use of specific items in-
dicates higher relevance to the current task and/or user
interest in the corresponding domain concepts. For ex-
ample, if ConferencePaper is selected as the publica-
tion type, showing user interest, additional facets asso-
ciated with the domain concept Conference are likely
to be generated in order to allow the user to further
refine her query.

• Short/long term user model – user characteristics ac-
quired during multiple sessions described by their rele-
vance to the user and the confidence in their estimation
in the range 〈0, 1〉. High relevance in the user model
denotes good choices for facet generation and restric-

tion recommendation, while high confidence results in
high weights when considering the user’s needs.

• Similar/related user models are assumed to belong to
users with similar needs and are thus used for relevance
evaluation if user specific data is unavailable or has low
confidence. Social user context can be exploited by
assigning custom weights to specific relations between
users resulting in social recommendation. Moreover, if
usage data about other users are “publicly” available,
users might directly browse the trails of their peers
(e.g., see what images their friends viewed or what pa-
pers their colleagues downloaded).

• Global usage statistics computed from the overall rel-
evance and usage of individual domain concepts (e.g.,
facets, restrictions, target objects – be it images, publi-
cations or job offers) from all user models. The over-
all “popularity” of facets and restrictions increases the
likelihood of their recommendation for a specific user,
especially if his or her specific preferences are un-
known or have low confidence.

Let LU (X) = relevanceU (X) be the local relevance
of concept X from the domain ontology for user U . For
example, X might be a facet, a restriction, a search result
or a property. We define CU (X) as the cross relevance of
X determined as the average local relevance for all users V
weighted by their similarity sim (U, V ) to user U (1), and
G (X) as the global relevance of X defined as its mean local
relevance for all users (2).

CU (X) =

∑

V ∈users

(sim (U, V ) ∗ LV (X))

1 +
∑

V ∈users

sim (U, V )
, U �= V (1)

G (X) =

∑

V ∈users

LV (X)

|users| (2)

To evaluate the user similarity sim (U, V ) ∈ 〈0, 1〉 we
employ external concept comparison tools [2]. Alterna-
tively, similarity can be evaluated via the sum of square dif-
ferences in concept relevance between users (3).

sim (U, V ) = 1 −

∑

X∈concepts

(LU (X) − LV (X))2

|concepts| (3)

We define TU (X) as the temporary in-session relevance
of concept X determined as the percentage of user clicks on
concept X from the total number of clicks on that concept
type – e.g., a facet or a restriction (4).



Static relevance SU (X) defines the relevance of concept
X based on the user model and the respective confidence in
the relevance estimation (5). Dynamic relevance DU (X)
defines the total relevance of concept X based on the user
model and the current in-session user behavior (6).

TU (X) =
Clicks (X)

1 + TotalClicks
(4)

SU (X) = LU (X) ∗ confidenceU (X)+
(CU (X) + GU (X)) ∗ (1 − confidenceU (X))

(5)

DU (X) = SU (X) + TU (X) (6)

As an alternative and/or addition to cross relevance, we
use weighted social relevance ĈU (X) if social network
data for a specific relation rel (U, V ) are available (7).

ĈU (X) =

∑

rel(U,V )∈relations

(w (rel) ∗ LV (X))

|rel (U, V )| (7)

5 Facet Recommendation

Facet recommendation distinguishes three types of facets
adapted at run-time to the specific needs of individual users:

• Active facets are fully accessible facets (also known as
primary facets), which can be used for faceted query
construction, and whose content (i.e., restrictions) is
visible and entirely processed (e.g., annotated).

• Inactive facets are partially accessible facets (also
known as secondary facets), which are used in faceted
queries if they have active selections. While their con-
tent is not directly visible and thus left unprocessed,
they can be activated automatically or per user request.

• Disabled facets are partially accessible facets, which
are only available after all active/inactive facets were
exhausted or on specific user demand. They are not
used in queries and their content is not visible.

5.1 Facet and Restriction Personalization

The adaptation process first determines the relevance of
individual facets and restrictions in our relevance model
(see section 4) and then uses it in these steps:

1. Active facet selection – the total number of active
facets is reduced to a relatively low number, e.g. 2
or 3 facets, since many facets are potentially available

in complex information spaces. Active facets are se-
lected based on relevance and on recency and number
of accesses – the most relevant facets or recently/often
accessed facets are likely to be active. The rest of the
facets is made inactive or left in disabled state.

2. Facet and restriction ordering – all facets are ordered
in three groups (i.e., active, inactive, disabled) in de-
scending order based on their relevance with the last
used facet always being at the top. Restrictions are or-
dered alphabetically, since alternative orderings based
on relevance or the number of matching search results
were not well accepted by users as they made it diffi-
cult to search for specific items.

3. Facet and restriction annotation – active facet re-
strictions are annotated with the number of match-
ing instances, the relative number of matching in-
stances by means of font size/type, or directly rec-
ommended (e.g., with background color or the “traf-
fic lights” metaphor) effectively providing shortcuts
to deeply nested restrictions. Additional tooltips can
describe individual facet/restriction meanings (e.g.,
the rdfs:comment annotation in ontologies), annotated
child restrictions with relevance, or (personalized) an-
notations generated by external tools [17].

5.2 Dynamic Facet Generation

Normally, facet generation is only triggered when the set
of available facets is exhausted, i.e. when no or very few
active/inactive facets are available.

During facet generation we examine the attributes of tar-
get instances as defined in the domain ontology. For exam-
ple for images, we examine attributes of the domain concept
Image and its associate concepts (via properties), e.g., Lo-
cation denoting the place where the image was taken.

We search for eligible candidate properties of individ-
ual instance types, which can be used for facet construction
based on low-level metadata facet templates used for au-
tomated facet construction from the domain ontology (we
manually used these templates to create the initial user inter-
face). For example in the publication domain, a class hier-
archy facet for the property rdf:type is constructed from the
rdfs:subClassOf class hierarchy rooted at pub:Publication.

Since it is not desirable to generate all possible facets
due to the their large number, we evaluate the aggregate
suitability of individual attributes based on the aforemen-
tioned relevance model (see section 4). Lastly, we deter-
mine a suitable presentation method for each new facet and
forward the resulting set of new facets to the following facet
personalization stage. Figure 3 illustrates the proposed facet
presentation methods:



• Simple facets – top-level facets based on direct or indi-
rect attributes of target instances, e.g. directly for im-
ages – the object, keywords or location, or indirectly –
the resolution of the camera used to take the photo.

• Nested facets – facets that in addition to (or instead
of) a set of individual restrictions contain a set of child
facets, e.g., a facet that contains facets for the type of
place, popularity and climate of the location where a
photo was taken.

Type
Landscape (1010)

Portrait (2570)...

Location

Climate
Temperate (25)

Tropical (17)

Season
Winter (872)

Summer (3609)

Camera resolution
Large (>10MP) (427)

Small (<2MP) (335)

...

...

Indirect 

Facet

Direct 

Facet

...

Nested Facet0

Nested Facet1

...

...

Nested Facet2

Nested Facet2
...

...

...

Typical climate in mid -latitudes 

with four seasons annually. 

Precipitation develops along 
cold and warm fronts as rain, 

snow or hail.

Figure 3. Facet presentation methods (left)
and adaptation examples (right). Bold text
is used for recommendation, tooltips and in-
stance counts for annotation.

Direct attributes of target instances are presented via
simple (direct) facets. If only one indirect attribute of an as-
sociated instance type is presented a simple (indirect) facet
is used. If multiple indirect attributes of the same type are
presented a nested facet can be used so that each nesting
level corresponds to one level of attribute indirection.

6 Search Result Recommendation

Based on the computed relevance and the results of ex-
ternal tools, we perform these recommendation steps:

1. Search result ordering – we support simple results or-
dering – unordered results or ordered based on a sin-
gle attribute (e.g., date). Additionally, we employ ex-
ternal ordering (relevance evaluation) tools, which ei-
ther evaluate relevance based on common global pref-
erences, or on personalized ratings constructed from
explicit user feedback (i.e., rating of instances) [9].
Furthermore, we employ external similarity evaluation
tools, which enable users to search for instances simi-
lar to a given search result [17].

2. Search result annotation – individual search result at-
tributes are annotated similarly to facets and restric-
tions. Tooltips show their meanings (rdfs:comment)
or their properties from the domain ontology. Alter-
natively, external annotation tools are used to provide
custom (personalized) annotations generated from the
domain and user ontologies [17]. For example, in
the movie domain, we can display the suitability of a
movie, based on its estimated relevance to the user’s
preferences, as background color or via emoticons.

3. View adaptation – we support several adaptive views –
simple overview, extended overview, thumbnail matrix
or detailed view, which display increasingly more de-
tailed information about individual search results (on-
tology instances). The attributes of the displayed in-
stances are adaptively chosen and ordered based on
their estimated relevance derived from the user model.
Moreover, the faceted browser can show instances of
different types so that the user can seamlessly switch
from browsing/searching for e.g., images to videos,
then to actors and back to images.

7 Evaluation

7.1 Architecture and Implementation

For evaluation, we developed Factic – a prototype of
our enhanced faceted browser [24], which implements se-
lected parts of the proposed navigation method based on the
faceted browser processing pipeline described in section 3.
The overall architecture of our solution is based on the inte-
gration and cooperation of several loosely coupled compo-
nents – software tools, as defined by the personalized pre-
sentation layer architecture [22]. We used Apache Cocoon
(cocoon.apache.org) as the underlying portal frame-
work, which is based on the pipelines architectural pat-
tern, and thus allowed us to construct different XML based
pipelines to handle our request processing and XML/XSL
transformations.

Factic is divided into two relatively independent parts
each facilitating the presentation of information and adapta-
tion of the GUI respectively (Figure 4, top left). The adap-
tation part of Factic performs faceted queries and relevance
model updates with the successive adaptation of facets and
views, while the presentation part transforms its XML out-
put via XSLT into the final XHTML rendered on the client
web browser.

Since Factic relies heavily on user characteristics stored
in the user model, it forwards events with semantics oc-
curring during user interaction to the user modelling back-
end consisting of components for server-side and client-side
user behaviour evidence acquisition and user characteristics



evaluation (Figure 4, centre). In our solution, these cor-
respond to tools the SemanticLog, Click and LogAnalyzer
respectively [1]. In order to further enhance the function-
ality offered to end users, Factic also takes advantage of
several external information retrieval (CriteriaSearch), rel-
evance evaluation (UpreA/TopK), annotation (Pannda) and
concept comparison (ConCom) agents from the application
layer of our solution (Figure 4, lower centre) [9, 2, 17].

Lastly, the aforementioned components all work over
common knowledge repositories comprised of the domain
ontology, user ontology and event ontology corresponding
to the domain model, user model and event logs respec-
tively (Figure 4, bottom). We store the populated domain
and user ontologies in the Sesame ontological repository
(openrdf.org) for easy access via ontological query lan-
guages, and the event logs in a relational database for quick
incremental stream processing of incoming events. Dur-
ing evaluation, we identified several scalability issues with
the ontological repository, which forced us to perform ad-
ditional optimizations (e.g., caching, query tuning) though
satisfactory response times were still difficult to achieve.

7.2 Examples and Domains

We applied our approach to three different ap-
plication domains – online job offers (project NA-
ZOU [17], nazou.fiit.stuba.sk), scientific publica-
tions (project MAPEKUS, mapekus.fiit.stuba.sk)
and digital images.

For each domain, we have constructed both a domain
and a user ontology describing the main domain concepts
and their properties. The job offer ontology had the most
complex schema consisting of some 740 classes with hier-
archical classifications up to 6 levels deep. The publication
ontology was of medium complexity with only one hier-
archical classification (the ACM classification), while the
digital image ontology had a relatively simple flat schema.

We populated the ontologies with instance data of
different sizes acquired from publicly available web re-
sources (e.g., careerbuilder.com, eurojobs.com,
profesia.sk, DBLP, Springer and ACM DL). We
worked with manually/semi-automatically created “toy-
size” datasets having 100s-1000s of instances to auto-
matically acquired, large integrated datasets in excess of
100,000s of instances and several times that many triples.

To demonstrate the flexibility and relative domain inde-
pendence of our approach, we configured Factic for use in
individual application domains (i.e., for their domain and
user ontologies). We build upon existing successful faceted
browser interface concepts and adaptive hypermedia inter-
faces. Figure 5 shows the sample GUI of our adaptive
faceted browser in the digital image domain employing the
general faceted browser layout (facets on the left, query at

the top, search results in the centre, optional manual search
result customization, e.g. sorting, above search results).
Our enhanced faceted browser offers a combined searching
and browsing interface, and is suited for effective viewing
of and navigating in large open information spaces repre-
sented by an OWL ontology. It can also be used as an in-
formation retrieval tool where the search query is visually
created via navigation – the selection of restrictions in the
set of available facets, which are dynamically adapted to
users’ needs. We also provide users with advanced brows-
ing, searching and visualization features as described below.

Information overload prevention. We adaptively reduce
the number of accessible items so that users can efficiently
focus on the most relevant facets and restrictions without
having to scroll several screens down. If users seek images,
only facets for the creation date, object and tags would be
displayed while others concerning image size and acquisi-
tion data would be available on demand (Figure 5, left).

Orientation and guidance support. We provide visual
cues recommending further navigation – the number of in-
stances matching restrictions, and textual descriptions of
their meanings. Background color indicates restriction
recommendation for navigational shortcuts, while “traffic
lights” denote their relation to the users’ fields of interest
(Figure 5, left). Individual search results show additional
attributes along with average user ratings (Figure 5, centre).

Query refinement. If the available set of facets becomes
exhausted, additional facets created via dynamic facet gen-
eration allow users to refine their queries beyond what
would have been possible with statically defined facets.

Social navigation and collaboration. Collaboration and
social networks are considered via Global relevance, which
describes the overall “popularity” of concepts (i.e., what
others think is good) while cross relevance also considers
similarity and/or relations between users. We can also de-
fine additional facets based on social network data (e.g., re-
lation types) allowing users to browse their peers’ “trails”
directly. Hence, users might access facets, which select only
content, e.g., created, viewed, tagged or rated by their peers.

7.3 Experiments and Discussion

In total, we performed several different sets of experi-
ments to validate our approach. We present some of the
experimental results in the job offers domain, where our ap-
proach proved to be particularly suitable, since it is a very
complex information spaces with several deep hierarchical
classifications (e.g., regions or positions) and intricate con-
cept relations. We experimented with different adaptation,
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annotation and recommendation modes. Figure 6 illustrates
the time and number of user clicks, which represent the total
user effort that was necessary to complete a given scenario,
i.e. to find a set of job offer instances.

Our evaluation showed that adaptive selection of active
facets can significantly reduce total processing time which
depends roughly linearly on the number of displayed facets
(assuming an average branching). However, the number of
clicks increased since the right facets were not always active
and thus had to be manually enabled. This results in shorter
refresh times and consequently shorter total task times.

Recommendation of suitable ontological concepts based
on the user model further improved total task time and also
decreased the number of necessary clicks due to the effec-
tive creation of navigational shortcuts that allowed users to
skip several clicks by directly recommending suitable re-
strictions within a restriction hierarchy. As before, the num-
ber of clicks increased as the number of active facets de-
creased as more facets had to be manually activated.

We encountered one significant bottleneck that seri-
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Figure 5. Example GUI of our enhanced faceted browser Factic in the digital image domain.

ously limits widespread deployment of Semantic Web ap-
plications – the immaturity of ontological repositories (we
used Sesame) in terms of their query processing speed,
and query language deficiencies that had to be emulated
(missing aggregation and ordering operators in SeRQL).
While SPARQL addresses some problems, the one most
crucial aggregate operator – COUNT() is still unavailable
(or MINCOUNT() due to the open world assumption).

Furthermore, effective evaluation of Semantic Web ap-
proaches is still somewhat difficult since few “good” – rich,
complex and large enough ontological datasets are avail-
able, while the bad scaling of ontological repositories puts
strong bias on every real-world usability study. Our larger
datasets yielded only limited results due to their “quality”
– their effective use would require extensive preprocess-
ing, which can be only partially achieved by automated
means [7].

8 Conclusions

We presented a novel method of personalized faceted
navigation in semantically enriched information spaces us-
ing dynamic facet generation with successive facet recom-
mendation as an enhancement for generic faceted browsers.
Our approach is suitable for open information spaces as it
not very susceptible to changes which are a distinguishing
characteristic of open information spaces.

The main advantages of our approach are:

• the visual construction of semantic queries via naviga-
tion aided by personalized recommendation of brows-
ing in a faceted browser,

• the improved user experience due to decreased infor-
mation overload and navigation guidance and orien-
tation support in large information spaces,



• the flexible (semi)automatic interface generation and
dynamic facet generation based on semantic metadata
from the domain and user ontologies.

We already see several promising direction of future re-
search, which are likely to further improve overall user ex-
perience. Visual presentation methods for facets, search
result overviews and details are likely to improve the un-
derstandability of the domain and the available data. Vi-
sual navigation in clusters might provide users with the
necessary “global” overview of the respective information
subspace selected in a faceted browser, while incremen-
tal horizontal navigation might be used for details brows-
ing [23]. Likewise, the integration of novel social and col-
laborative approaches as well as the inclusion of mobile ap-
plication considerations has potential to improve navigation
efficiency and ubiquitous deployment. Lastly, the design of
optimized graphical user interfaces from the HCI perspec-
tive with the corresponding usability studies would be of
great interest for practical applications.
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Presentation in Web-Based Information Systems. In J. van
Leeuwen et al., editor, Proc. of SOFSEM 2007, LNCS 4362,
pages 796–807. Springer, 2007.
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