
Fast and Scalable Semantic Web Service Composition Approach Considering
Complex Pre/Postconditions∗

Peter Bartalos and Mária Bieliková
Institute of Informatics and Software Engineering, Faculty of Informatics

and Information Technologies, Slovak University of Technology in Bratislava
{bartalos,bielik}@fiit.stuba.sk

Abstract

The process of semantic web service composition ar-
ranges several web services into one composite service to
realize complex workflows with an exploitation of seman-
tics. This paper proposes an approach to automatic se-
mantic web service composition. Its advantage is good
scalability regarding the complexity of user constraints and
pre/postconditions. Based on these conditions it propagates
the value restrictions constraint from the user goal through
the overall composite service. The resulting plan depicts
all the possible branches of the workflow leading to a goal.
This includes the automatic generation of the conditions de-
ciding which branch will be chosen during the execution.
Finally, our approach exploits available data which can be
used as input parameters for web services. If these are not
offered, it searches for a web service producing them.

1 Introduction

Semantic web services present a topical research area
aimed at exploiting semantic annotation of web service de-
scriptions [14]. One of the most studied topic in this area
is the automation of the semantic web service composition
aiming at arranging several services into one complex ser-
vice to be able to realize more complicated workflows. The
composition is studied in different contexts to achieve prac-
tical applicability [5, 9].

Even though a lot of work has been done in the field
of semantic web service composition, there still remain
problems. These are mainly related to insufficient automa-
tion of composition and execution, and scalability of ap-
proaches. Our approach to semantic web service composi-
tion deals with a semantic description of pre/postconditions

∗This work was partially supported by the Slovak Research and Devel-
opment Agency under the contract No. APVV-0391-06, ”Semantic Com-
position of Web and Grid Services”.

of web services and a goal we intend to achieve using the
service composition. The main contribution is related to
the composition algorithm taking into consideration com-
plex pre/postconditions. It finds all possible branches of
the workflow leading to the specified user goal. The condi-
tions affecting which branch will be taken during the execu-
tion are created automatically. We perform a huge amount
of computation in the preprocessing phase, which allows
for fast response to user queries. Moreover, already during
composition, we automatically identify data to be presum-
ably used as inputs during execution. To do this, data avail-
able in the operating environment (dedicated data reposi-
tory) or values from the given goal are used. This way we
prepare the workflow for execution. In the whole process
we exploit the semantics related to the data.

Our work in this area is motivated by the SEMCO-WS
national research project [10]. Its aim is to expand and
refine several approaches developed in project Knowledge
Based Workflow System for Grid Applications – K-Wf Grid
(http://www.kwfgrid.eu/). The aim of this European
project was the automated composition of workflows of grid
services using semantic support and comfortable user inter-
faces for complex grid middleware.

The main goal of SEMCO-WS considering this paper
is improving the composition and execution of workflows.
This includes the selection of inputs for web services. The
overall architecture of the developed system includes a
repository of semantically annotated data, which may be
used as inputs. Our approach is based on performing se-
mantic querying over this repository to find suitable data
for composition.

The domain of SEMCO-WS is crisis management. Our
pilot application refines the architecture of an existing, com-
plex commercially used crisis management and decision
support system for the radiological, environmental, hydro-
logical as well as seismological emergencies. The system
allows users to simulate fictive emergency scenarios at the
moment of the accident or during the long-term actions im-
plemented months or years after an accident.



2 Related Work

Several methods used in semantic web service compo-
sition based mostly on AI planning techniques were re-
cently proposed. These include state space search, graph
based planning, HTN (Hierarchical Task Network) plan-
ning, approaches based on logical programming and others
[11]. A lot of approaches also employ pre/postconditions
and consider them during service chaining. There ex-
ist several formalisms to describe them. The most
known are OWL-S http://www.daml.org/services/

owl-s/1.0/owl-s.html, WSDL-S http://www.w3.

org/Submission/WSDL-S/ and WSML http://www.

wsmo.org/wsml/. They differ in the complexity and ex-
pressivity of their construction elements. In each case the
semantic annotation binds the elements of the web service
to domain terms described by ontologies. From all the el-
ements it focuses on the I/O of the web services and the
conditions under which the web service can be invoked and
the conditions which will hold after its execution. OWL-S
provides a dedicated part in its structure for the description
of pre/postconditions (process:hasPrecondition for precon-
dition and process:hasEffect for postcondition), yet does not
specify how to describe them specifically and allows differ-
ent languages to be used.

In [6], the authors present a method working with the
OWL-S service descriptions. The pre/postconditions are
defined as a list of predicates which hold before/after ex-
ecution. There is an implicit conjunction between them,
i.e. all the predicates must hold. The predicates cannot be
combined using other logical operations such as disjunc-
tion. The composition is based on forward chaining and is
speeded up using heuristics based on relaxed graph. From
the description of the pre/postconditions and the application
of relaxed graph based heuristics, the approach presented in
[13] seems to be similar to [6]. From the papers, it is not
clear how these approaches scale when a huge number of
services is used, e.g. thousands.

From the scalability point of view, more promising re-
sults are presented in [8, 12]. Similarly to our approach
they perform composition in insignificant time (in msecs)
even if the number of services rises to thousands. Both of
them realize preprocessing to decrease the computation re-
quired during composition. In the approach proposed in
[8] the USDL language is used to specify the formal se-
mantics of services [1]. This OWL based language uses
WordNet as a common basis for understanding the mean-
ing of services. If we neglect the fact that in our approach
we can also use existential and universal quantification in
the formulae describing pre/postconditions, USDL has the
same expressivity of conditions. In [7] the authors extend
the notion of composition presented in [8] to handle non-
sequential conditional composition. Our workflow repre-

sentation uses a similar notion. The approach described in
[12] does not consider any pre/postconditions. It chains ser-
vices based only on semantic matching of I/O considering
also subsumption.

In [4] the authors present a composition approach han-
dling so called user constraints. These represent value re-
striction contraints to input, output or local parameters of
services using the KIF language. To bind the constraints
to service parameters the OWL-S extension is used. For
us, it is not clear why the authors do not use the pro-
cess:hasPrecondition and process:hasEffect parts of the
OWL-S. Their approach seems to be equivalent to the us-
age of these parts of the language. Our approach based on
OWL-S offers the same possibility to express the user con-
straints and the pre/postconditions of web services.

3 Approach Overview

Our approach is based on using semantics throughout the
whole process of service composition and brings the follow-
ing aspects:

• Complex pre/postconditions. We propose a solution
to complex web services pre/postcondition description
based on existing standards and approaches. It al-
lows expressing sufficiently complicated statements by
combining predicates with first order logic operators.

• User goal description. The definition of the goal is
represented as a pair: concept type and constraint. The
concept type is a concept from the ontology used for
semantic annotation of web services. The constraint is
defined as a first order logic formula, similarly to the
pre/postconditions. The predicate’s arguments in the
formulae may be restricted to concrete values.

• Value restriction propagation. We propose an ap-
proach propagating the value restrictions from the goal
through the chained web services in the plan to the in-
puts. As a result, the corresponding input parameters
are bound to concrete values without the need of other
specification (more details in section 4.1).

• Automatic decision on alternatives of the composed
plan. We employ decision blocks to define the alter-
natives of the composed plan. The conditions serve for
the respective branch selection during the execution of
the workflow and are defined in an automatic manner.

• Data awareness. The composition algorithm takes the
available data into consideration. If the available data
satisfy the given constraint, they are used as input pa-
rameters for the respective web services. Otherwise
the planning continues by searching for a web service
providing the required data.



3.1 Complex pre- and post-conditions

To depict the semantics of web services, we use OWL-
S. As there is no common consensus which language
should be used, we present our proposition to complex
pre/postcondition description in OWL-S. It is based on
SWRL (Semantic Web Rule Language, http://www.w3.
org/Submission/SWRL/) and its extension. We use its
atomic statement to express simple conditions (unary and
binary predicates). At the semantic level they are modeled
as properties between OWL variables (of defined type –
concept), individuals or data values. The variables repre-
sent I/O parameters or local variables.

OWL-S allows creating any number of
pre/postconditions for one web service. The interpre-
tation is that each precondition must hold before execution
and each postcondition will hold after execution, i.e.
there is an implicit conjunction. The creation of more
complex statements is required to increase the expressivity
of web service pre/postcondition annotation. We use
a proposition for SWRL extension to first order logic
(http://www.daml.org/2004/11/fol/proposal) for
this purpose. It allows creating more complex formulae
using negation, conjunction, disjunction, etc.

Figure 1 depicts an example of two pairs of services
which can be chained because they have compatible I/O and
pre/postconditions. Services S1, S2 have the same output of
type Model at the semantic level, which is consumed by ser-
vice S3. The Model represents a meteorological model of
a region, during a certain time interval, given as input to
services S1, S2. Based on it, service S3 computes which
areas of the region, to which the model corresponds to, are
endangered by a storm.

The pre/postcondition of service S3 expresses that the
region corresponding to the model given as input and the
region corresponding to the resulting alert are the same.
It also expresses that the model must have high precision.
Hence, if we search for a web service providing data to ser-
vice S3, we require a service resulting in the Model and sat-
isfying the condition that the model corresponds to a certain
region and has high precision.

Service S1 obviously satisfies this condition. The map-
ping of the symbols in the pre/postcondition is the follow-
ing. The O of S1 is mapped to I of S3 and the R of S1 is
mapped to the R of S3. Now consider service S2. Its post-
condition expresses that its output model corresponds to a
certain region and is of low or high precision (imagine that
the precision depends on the region). Hence, it also satisfies
the precondition of S3 in the case that it computes a model
with high precision.

Now we formalize when the postcondition of one service
satisfies the precondition of another service, i.e. when two
services are compatible and can be chained. To simplify

the explanation, we express the predicates of the conditions
as follows: region by symbol R, hasPrecision by symbol
PL if the second argument is lowPrecision, hasPrecision by
symbol PH if the second argument is highPrecision.

S3

I:Model

O:Alert

O region R

I region R

&

I hasPrecision highPrecision

I:Region

O:Model

O region R

&

(O hasPrecision lowPrecision

Xor

O hasPrecision highPrecision)

R subRegion I

S2

I:Region

O:Model

O region R

&

O hasPrecision highPrecision

R subRegion I

S1

Figure 1. Web service chaining example.

The fact that two web services are compatible and can
be chained means that there exists such a combination of
predicate values in the pre/postcondition formulae that they
are evaluated as true (we consider the same values for the
mapped symbols in pre/postcondition). Specifically, we
must check each predicate value combination where the
postcondition formula is true and check if for some com-
bination also the precondition formula is true. Additionally,
the ancestor service’s output must subsume the successor
service’s input from the semantic type point of view.

From the planning point of view we can chain two ser-
vices if they are compatible. Reasoning is required to eval-
uate web service compatibility and can be performed by
evaluating whether the postcondition formula implies the
precondition formula. We consider only those predicate
value combinations where the postcondition is true. Let
us denote Pre(S) the precondition formula of service S
(analogically postcondition). The question if two services
Sanc (ancestor service) and Ssucc (successor service) can be
chained is easy to answer using truth tables of Pre(Ssucc),
Post(Sanc), and Post(Sanc) ⇒ Pre(Ssucc). Taking ser-
vices S1 and S3 we check the combination R, PH which
is the only one where Post(S1) is true, see Table 1. This
table holds also for Pre(S3) because they are the same.
When deciding if S1 and S3 are compatible, we evaluate
Post(S1) ⇒ Pre(S3) which is R ∧ PH ⇒ R ∧ PH ,
see Table 3 (unconsidered predicate value combinations are
omitted). It contains only one true value and no false val-
ues. This means that these services are strongly compatible,
i.e. the ancestor service results in a postcondition satisfying
the successor service’s precondition in each case.

If the postcondition formula contains also symbols



Table 1. Post(S1), Pre(S3)
R ¬ R

PH 1 0
¬ PH 0 0

Table 2. Post(S2)
R ¬R

PL PH 0 0
PL ¬ PH 1 0
¬ PL PH 1 0
¬ PL ¬ PH 0 0

Table 3. Post(S1)⇒
Pre(S3)

R ¬ R
PH 1
¬ PH

Table 4. Post(S2) ⇒
Pre(S3)

R ¬ R
PL PH
PL ¬ PH 0
¬ PL PH 1
¬ PL ¬ PH

(predicates) which are not contained in the precondition,
we have to consider each extended expression. In our
example this means that for service S2 and S3 we have
to consider also R, PH, PL and R, PH, ¬PL, however
the interesting symbols are R, PH, see Table 2 depicting
Post(S2). Table 4 depicts Post(S2) ⇒ Pre(S3) which is
R ∧ ((¬PL ∧ PH) ∨ (PL ∧ ¬PH)) ⇒ R ∧ PH . It con-
tains one true value and one false value. This denotes that
the services are weakly compatible. The case when service
S2 can provide data for service S3 is if the execution of S2

results in the condition R, PH, ¬PL, i.e. not in each case.
Now we generalize the explanation of the compatibil-

ity of two services Sanc and Ssucc. Let denote the set
of formulae representing the respective conjunctions of
the pre/postcondition DNF of service S as PreC(S) and
PostC(S). The three cases of service compatibility are:

1) Services Sanc and Ssucc are not compatible if:
∀cpre ∈ PreC(Ssucc), @cpost ∈ PostC(Sanc) :

cpost ⇒ cpre is true.

2) Services Sanc and Ssucc are weakly compatible if:
∃cpre ∈ PreC(Ssucc),∃cpost ∈ PostC(Sanc) :

cpost ⇒ cpre is true.

3) Services Sanc and Ssucc are strongly compatible if:
∀cpre ∈ PreC(Ssucc),∃cpost ∈ PostC(Sanc) :

cpost ⇒ cpre is true.

3.2 Creating representation of the plan-
ning domain for fast composition

Our approach to fast web service composition is based
on preprocessing. During it we create a data structure used
to quickly answer two queries. The first query (Q1) serves
to select services satisfying a given user goal. The second
query (Q2) selects services providing data required as input
for a given service. These two queries are used to perform
fast web service composition satisfying pre/postconditions.
In the following, we present the used data structure and the
process populating this data structure with data considering
the given web services set.

Our data structure is based on a relational repository hav-
ing two parts, see a scheme in Figure 2. The first stores data

about the pre/postconditions (Part 1a) and I/O (Part 1b) of
services. After Part 1 is populated, we query it to evalu-
ate which services can be chained. The results are stored in
Part 2. During realization of Q1, Part 1 is used. To answer
Q2 only Part 2 is employed, which also contains data about
the mapping between symbols in pre/postconditions of the
chained services.

In the previous section we mentioned that to decide if
two services can be chained, reasoning is employed. Our
approach realizes this reasoning using a programmed func-
tion and the querying mechanism of relational databases.
Before the pre/postconditions are stored in our data struc-
ture, we transform them into disjunctive normal form
(DNF). They are stored in the relational database in tables
Predicate, Conjunction, Condition.

Service

Input

Condition

Conjunction

Parmap

Predicate

OWL-S

Pre/Post

I/O
Chaining

evaluation

Part 2

Part 1a

Part 1b

Normalization

to DNF

Figure 2. Data structure creation.



From the precondition point of view, it is important that
it is enough to satisfy one conjunction from the all from
which the DNF representing the precondition consists of.
This is because if one (or more) conjunctions in DNF are
evaluated as true, the overall DNF is true. Hence, the re-
spective conjunctions represent alternatives, from which it
is enough to satisfy one, to fulfill the precondition.

From the postcondition point of view, the conjunctions
from which the DNF representing it consists of, correspond
to the respective cases in which the execution of the web
services can result in. In other words, after the service is
executed, at least one conjunction is evaluated as true.

To decide whether two services are compatible, we need
to find at least one conjunction in the precondition DNF,
which is covered by at least one conjunction of the post-
condition DNF. Covered means that there exists a mapping
between the symbols of the conjunctions that the conjunc-
tion from the postcondition implies the conjunction from
the precondition. If for each conjunction of the precondi-
tion there is no covering conjunction of the postcondition,
the services are not compatible. If each conjunction of the
postcondition covers at least one conjunction of the precon-
dition, the services are strongly compatible. If at least one
conjunction of the postcondition covers at least one con-
junction of the precondition, the services are weakly com-
patible.

The decision process whether two services can be
chained is realized as follows. For each input parameter
of each web service (stored in table Input), we search for
services providing the required data (output parameter is
stored within table Service) and satisfies the precondition.
The compatibility of two services is caught in table Parmap.
It stores all possible input and output parameter pairs, and
the mapping of symbols in pre/postcondition of the corre-
sponding services. This is exploited during composition to
quickly propagate the value restrictions. Table Parmap con-
tains compatible I/O pairs considering also subsumption be-
tween them.

To get the list of compatible services for the respec-
tive input parameter, we perform the query Q1 over Part 1
of the relational database. The query is dynamically con-
structed based on the given conjunction of the precondi-
tion. It exploits the logical AND operator and the capa-
bilities of the relational database systems’ to evaluate log-
ical expressions. Because we already work with normal-
ized formulae and at this point only with conjunction, we
do not need any other operator. The overall reasoning re-
quired to decide if two services are compatible based on
their pre/postcondition is moved to a programmed function
and the relational database querying system. We do not em-
ploy any specific logical reasoner.

The overall filling of the database is realized as pre-
processing. Our aim is to move all possible computa-

tion required to compose web services into preprocessing.
Based on the presented data structure stored in the relational
database we realize fast web service composition. One im-
portant property of our data structure is that if a new web
service is available, the information about it can be added
incrementally and no complete rebuilding of the database
is required, which is also true in the case of web service
removal.

4 Composition algorithm

In this section we present our two phase web service
composition algorithm. First, query Q1 is used to select
services satisfying the given goal. In the second phase, we
perform composition based on back chaining for each ser-
vice with unsatisfied inputs. Here we would again use Q1

because there is no difference between searching for ser-
vices resulting in the user goal or a required input data with
the corresponding constraint. The only difference is that we
cannot search for services satisfying the user goal before
we know it, i.e. we cannot preprocess this. In the case of
input parameters, we performed preprocessing resulting in
Part 2 of our data structure. Hence, we do not realize the
demanding, dynamically constructed Q1 but we only select
its results using fast Q2 with static structure.

The main idea of the back chaining (second phase of
composition) is depicted in Algorithm 1. For each input pa-
rameter and corresponding constraint it first checks if there
is a value restriction for it arising from the user constraint.
If not, the available data repository is checked whether it
contains the required data. If not, we search for web ser-
vices satisfying the input and its constraint, using Q2. After
the proper services are selected, we check if they are al-
ready used in the composition. If this is true and also the
constraint related to that service call suits the current con-
straint, we chain these services. This leads to parallelism or
choice between the current service and the service for which
the service call was planned in some previous planning step.
Otherwise we plan a new call of that service.

From the performance point of view, it is important that
the demanding Q1 is realized during the composition only
once, in first phase. During the service chaining, we realize
only the fast Q2. Hence, we speed up the process.

4.1 Value restriction propagation

This section explains how we realize value restriction
propagation from the user goal to the services used in the
composition. After the services resulting in the user goal are
selected, we also examine the mapping between the sym-
bols in the user constraint and the postcondition formula.
All the value restrictions in the user goal constraint are prop-
agated to the respective service. If we restricted some pred-



Algorithm 1 SatisfyInputs: Input: service, constraint:

for all input of service do
if isValueRestricted(input, constraint) then

continue;
else if isDataInRepository(input, constraint) then

bindDataToInput();
else if S← getSatisfyingServices(input, constraint) then

for all satisfyingService in S do
if plannedService ← isAlreadyPlanned(satisfyingService)
then

if suitConstraints(plannedService.constraint, constraint)
then

chain(service, usedService);
end if

else
newService← satisfyingService;
newConstraint ← propagateConstraint(newService, con-
straint);
chain(service, newService);

end if
end for

end if
end for

icate’s argument in the user constraint to a specific value,
based on the symbol mapping we also restrict the corre-
sponding argument in the postcondition. If such a symbol
appears also in the precondition of the service, the prop-
agation is repeated also when other services are chained
with it. If some symbol in the successor service’s precon-
dition formula is restricted to some value, we restrict also
the corresponding symbol in the ancestor service’s postcon-
dition formula. The mapping between the symbols in the
pre/postcondition of the chained services is retrieved from
table Parmap.

If we restrict to some value a symbol representing some
input parameter, we do not search for another source provid-
ing the corresponding data and continue by satisfying other
inputs. During the workflow execution the restricted inputs
are set to the value arising from the restriction. An exam-
ple of service chaining and value restriction propagation is
provided in section 5.2.

4.2 Alternative and parallel branches in
the composition

During composition we may be in need of planing a ser-
vice that already is used in the plan. The most obvious case
is when we have two or more services which are equivalent,
i.e. they have the same functionality and hence also the se-
mantic description. The difference may be for example in
their QoS. If we look for the input data for some services
and realize that there is already another service in the plan
providing the required data, we chain the services together.
During workflow execution, the output will be consumed in
parallel or alternatively by these services.

The pre/postconditions of the chained services decide if
the connection between the ancestor and successor services
will be parallel or alternative. If two or more services con-
nect to the same service and they satisfy the same conjunc-
tion of the ancestor service’s postcondition, there is a par-
allel between them. If they satisfy different conjunctions,
there is an alternative between them. In this case a deci-
sion block is created. The condition controlling the deci-
sion is created automatically. This is done based on the
matching conjunctions of the pre/postcondition. The exe-
cution engine decides to continue the execution taking such
a branch which fits the condition that was the result of the
ancestor service invocation (note that at this moment we al-
ready know the values of the predicates in the postcondition,
i.e. we know which conjunctions resulted in true value). If
there are more than one fitting branches, other rules are ap-
plied. During workflow creation we can set priorities for
each branch and the execution engine takes the branch with
the highest priority. Alternatively, we ask a user to decide
which branch to take. The involvement of the user in the
composition process is discussed in our previous work [2].

5 Evaluation

5.1 Performance evaluation

To evaluate the performance of our approach, we have
implemented a test service generator. Using it, we create a
user goal and a set of services which are composed to sat-
isfy it. The services are generated in such a way that there is
only one composition leading to the goal, i.e. one workflow
is possible. Each service is used in the workflow exactly
once. The generation is based on the following parame-
ters: web service count (WS), mean input parameter count
(MIN), disjunction size (DS), conjunction size (CS), choice
and decision count (CDC). DS and CS specify the character
of the user constraints and pre/postconditions, normalized
to DNF. DS expresses the size of the DNF; DC expresses
the size of each respective conjunction of the DNF. Hence,
the number of predicates (NP) in the DNF is DS × CS. We
employ random generators to create workflows of varying
structure.

In our experiments we used workflows consisting from
100 to 200 000 services and the DNF with 4 to 250 predi-
cates. From the experiments the following conclusions can
be made. The composition time is independent on the fol-
lowing parameters: MIN, CDC, and the number of values
restricted in DNF. The composition time scales linearly de-
pending on the following parameters: WS, DS, and CS. This
is in compliance with the results of our theoretical analyses
of the composition algorithm’s complexity.

Due the space constraints, we present only a represen-
tative sample of all our results. The computations for WS



from 1 000 to 10 000 were realized on an Intel T5870 2GHz
Dual core, 2GB RAM with 256MB memory limitation for
JVM. The computations for higher WS were realized on an
Athlon 64 X2 4200+ 2.2GHz Dual core, 8GB RAM with
1.5GB memory limitation for JVM. For each workflow pa-
rameter combination, we generated from 200 to 1 000 work-
flows. Hence, each result is the average mean of at least 200
runs. The graph in Figure 3 presents results for workflows
consisting from 1 000, 10 000 and 100 000 services. The
x-axis specifies the values of DS and CS. The y-axis rep-
resents composition time which is normalized to fit in the
graph – the composition time for WS = 10 000 is divided by
10 and for WS = 100 000 by 100 (this way we get relative
values related to WS = 1 000). As we can see from Figure
3, the composition time is more affected by NP for lower
WS. This is because during composition we always perform
one query selecting the services resulting in a goal (this is
independent on WS and affected only by NP). After this, we
realize service chaining strongly depending on WS. Hence,
as WS increases the NP becomes less influential. From the
same reason, the relative composition times from Figure 3
are lower for higher WS.

0

10

20

30

40

50

C
om

po
si

tio
n 

tim
e 

(m
se

cs
)

WS=1000
WS=10000
WS=100000

2,2 10,2 2,10 10,10 2,2 10,2 2,10 10,10 2,2 10,2 2,10 10,10 

Figure 3. Experimental results.

5.2 Usefulness evaluation

In the following we concentrate on the evaluation of our
approach from the usefulness point of view. In the con-
text of project SEMCO-WS we are developing a multi-user
workflow editor [3]. Its aim is to provide a tool support-
ing user collaboration during the creation and execution of
workflows. At the client side, different users are allowed
to manually edit the same workflow, see Figure 4. We in-
tegrated our web service composition tool into the editor to
support automation of the editing process.

Here we provide an example of workflow from the
crisis management domain which is composed automat-
ically by our tool. In this use case we use web services
developed in project SEMCO-WS and show how value
restriction propagation is useful. The goal of our workflow
is to get an alert for a specified region and term, in the

context of a simulation of a contamination by a certain
released substance. The goal is defined like this: Concept
Type=Alert, Constraint= (region(alert, ′Slovakia′) ∧
simulationTermFrom(alert, ′05/01/2009′) ∧
simulationTermTo(alert, ′10/01/2009′).

Our automatic composition tool created a workflow
shown in Figure 4. It contains services providing differ-
ent geographical or meteorological data (Landuse, DEM,
Meteo). These are inputs for a dispersion model service
simulating the release of a given substance in the specified
conditions (Dispersion). The conditions are provided as a
Scenario. This is provided using a human task (activity
in the workflow realized by human – provision of data in
this case). Based on the dispersion model the dose rates
are computed on the surface and atmosphere (DoseRate).
Based on this, the alert service provides a list of cities where
the dose rates exceed a safe limit (Alert).

Figure 4. Multiuser workflow editor.

Services Landuse, DEM, Meteo require input data of
type Area. This data specifies the area using the left
lower and right upper corner of a covering rectangle.
The corners are defined by latitude and longitude. The
pre/postconditions of the services are designed in such a
way, that this area corresponds to the region for which the
alert is computed. The region defines the names of cities,
districts, etc. This is contained as the value restriction in
the goal (Slovakia). Based on the pre/postconditions, our
value restriction propagation mechanism assigns the value
Slovakia to the input of the RegionToArea conversion ser-
vice. Hence, there is no need nor possibility to define this
data in another way. Since the service has no other inputs,
the corresponding branch of the workflow is complete and
is ready for execution. The same mechanism sets also the
input parameters for the Meteo service defining the term for



which the weather forecast is to be computed (05/01/2009
and 10/01/2009).

The output of the RegionToArea service is consumed by
three services. This is possible because of the satisfied
value restriction. After the execution of this service was
planned for the first time, the value restriction constraint
was set in such a way, that the input parameter’s value is
Slovakia. When the execution was planned for the second
time, the composition approach examined that the execution
of the service was already planned. Hence, it checks if the
set value restrictions constraint satisfies also the restrictions
propagated through the second branch. In the example, this
was satisfied and the output of the RegionToArea service ex-
ecution was bound to input the second time. This situation
repeated also in the case of the third service. If the value
restrictions constraint was not satisfied, a new invocation of
the RegionToArea service would be planned.

6 Conclusions and Future Work

We have presented an approach for web service com-
position aimed at creating workflows satisfying a given
goal, which is defined using concept type and constraint
described as first order logic formula. Based on the goal
our approach creates a plan resulting in the corresponding
data and the specified constraint. The plan contains all the
possible alternative branches leading to the user goal. The
condition determining which branch will be taken is evalu-
ated during execution.

The composition algorithm performs until each sub-goal
is satisfied, i.e. there is no web service which has not speci-
fied the source for its input data. The source can be defined
as the output of web service invocation or as data available
in the operating environment. It is not necessary to combine
these two possibilities. During the composition, the value
restrictions defined in the goal are back propagated based
on the pre/postconditions of chained services. Our exper-
iments showed good scalability of the planning approach
with respect to the number of used service invocations, goal
constraint and pre/postcondition formulae complexity.

Our future work deals with the problem of integrating
service composition into applications, from software engi-
neering point of view. We will study how service composi-
tion can be effectively applied to automate business process
creation. This includes also the examination of the effects
to the software architecture of the application.

References

[1] A. Bansal, S. Kona, L. Simon, and T. D. Hite. A univer-
sal service-semantics description language. In ECOWS ’05:
Proc. of the Third European Conference on Web Services,
pages 214–225, Washington, DC, USA, 2005. IEEE CS.

[2] P. Bartalos and M. Bielikova. Enhancing semantic web
services composition with user interaction. In SCC ’08:
Proc. of the 2008 IEEE International Conference on Ser-
vices Computing, pages 503–506, Washington, DC, USA,
2008. IEEE CS.

[3] P. Bartalos, I. Kapustik, and V. Rozinajova. Visual sup-
port of workflow composition involving collaboration. In
GCCP ’08: Proc. of the 2008 International Workshop on
Grid Computing for Complex Problems, pages 120–127,
Bratislava, 2008. Institute of Informatics SAS.

[4] Y. Gamha, N. Bennacer, G. V. Naquet, B. Ayeb, and L. B.
Romdhane. A framework for the semantic composition of
web services handling user constraints. In ICWS ’08: Proc.
of the 2008 IEEE International Conference on Web Services,
pages 228–237, Washington, DC, USA, 2008. IEEE CS.

[5] L. Hluchy, O. Habala, M. Babik, M. Laclavik, Z. Balogh,
and E. Gatial. Knowledge-based platform for environmental
risk management. In ISPDC ’07: Proc. of the Sixth Interna-
tional Symposium on Parallel and Distributed Computing,
pages 3–9, Washington, DC, USA, 2007.

[6] M. Klusch, A. Gerber, and M. Schmidt. Semantic web ser-
vice composition planning with owls-xplan. In AAAI Fall
Symposium on Semantic Web and Agents, Arlington VA,
USA, 2005. AAAI Press.

[7] S. Kona, A. Bansal, M. B. Blake, and G. Gupta. Generalized
semantics-based service composition. In ICWS ’08: Proc. of
the 2008 IEEE International Conference on Web Services,
pages 219–227, Washington, DC, USA, 2008. IEEE CS.

[8] S. Kona, A. Bansal, and G. Gupta. Automatic composition
of semanticweb services. Web Services, IEEE International
Conference on Web Services, 0:150–158, 2007.

[9] J. Paralic and M. Paralic. Some approaches to text mining
and their potential for semantic web applications. Informa-
tion and Organizational Sciences, 31(1):157–170, 2007.

[10] M. Paralic, O. Habala, J. Paralic, and P. Bartalos. Semantic
composition of web and grid services. In Znalosti 2009,
pages 355–358, 2009.

[11] J. Peer. Web Service Composition as AI Planning – a Survey.
University of St.Gallen, 2005.

[12] K. Ren, X. Liu, J. Chen, N. Xiao, J. Song, and W. Zhang. A
qsql-based efficient planning algorithm for fully-automated
service composition in dynamic service environments. In
SCC ’08: Proc. of the 2008 IEEE International Conference
on Services Computing, pages 301–308, Washington, DC,
USA, 2008. IEEE CS.

[13] A. Sirbu and J. Hoffmann. Towards scalable web service
composition with partial matches. In ICWS ’08: Proc. of
the 2008 IEEE International Conference on Web Services,
pages 29–36, Washington, DC, USA, 2008. IEEE CS.

[14] R. Studer, S. Grimm, and A. Abecker. Semantic Web Ser-
vices: Concepts, Technologies, and Applications. Springer,
2007.


