
Adapting I/O Parameters of Web Services to Enhance Composition∗

Peter Bartalos and Mária Bieliková
Institute of Informatics and Software Engineering, Faculty of Informatics

and Information Technologies, Slovak University of Technology in Bratislava
{bartalos,bielik}@fiit.stuba.sk

Abstract

Web service chaining forms one of the basic operation
during web service composition. To decide whether ser-
vices can be chained, semantic matching between the I/O is
usually evaluated. In this paper we propose an approach
considering possible adaptation of output data before it is
consumed as input by other service. We also define the cor-
responding rules based on which it is evaluated if the chain-
ing is possible or not. Moreover, we deal also with the affect
on workflow and service description, and their execution.

1 Introduction

One of the most studied topic in the field of web services
is the composition – a process when web services are ar-
ranged into one complex service to satisfy a user goal for
which there is no single service. The base of this process
is service chaining. It happens when one service produces
data consumed by another service. It is obvious that to do
this, data level compatibility of the services is necessary.

Current approaches dealing with service chaining are
usually based on semantic web technologies. They deal
with the compatibility of services at the semantic level. This
is possible because of available semantic description of web
services. The aim of the semantic description is to add
meaning to different elements of web services. The descrip-
tion includes also binding of the I/O of services to domain
terms described as concepts. Based on this, the compati-
bility problem is transformed to a decision problem if some
concept is semantically the same (or close) to the other.

In this paper we deal with web service chaining con-
sidering the possibility of data adaptation. Our approach
goes beyond the idea that two services can be chained if the
first produces data which can be directly consumed be the
second service. It takes into account the possible adjusting

∗This work was partially supported by the Slovak Research and Devel-
opment Agency under the contract No. APVV-0391-06 and by the Scien-
tific Grant Agency of Slovak Republic, grant No. VG1/0508/09.

of the produced output data before they are used as inputs.
This way we enhance the possibilities to chain services. The
data adjustment is done by performing data adaptation op-
erations during the execution. The possible operations are:
decomposition, listing, composition, and list arrangement.

This feature affects different aspects of the semantic web
service composition. The semantic description of the ser-
vices must follow some rules. The possible adaptation
brings new opportunities to arrange web services. The
workflow representation must be able to capture them. The
reasoning required to decide the compatibility of web ser-
vices must also consider the possible data adaptation. Fi-
nally, the execution engine must perform the adaptation op-
eration over the data based on the workflow description. We
deal in this paper with each of these issues and focus mainly
on web service annotation and chaining.

Our work is motivated by the SEMCO-WS research
project [11]. This narrowly focused project aims at auto-
mated composition of grid services workflows using seman-
tics and comfortable user interfaces for complex grid mid-
dleware. The domain of SEMCO-WS is crisis management.
The workflows we work with are oriented to simulations of
fictive emergency scenarios. Some example services from
this domain are presented in Fig. 1. Depicted service chain-
ing problem serves also as an example in this paper.

In our example, service S1 computes a simulation of ra-
diation spread based on a defined scenario and region. The
output consists of a 3D grid model containing the radiation
dose rates and a list of risky areas. Service S2 computes the
radiation deposition based on the dose rates from the 3D
model. Service S3 creates the safety precautions for a given
region and risk type. As we can see from the simplified im-
plementation examples of the I/O parameters in Fig. 1, there
is no exact match between services S1 and S2, S3. However,
there is a noticeable interest to chain them. The problem is
that S2 expects as input only a part of the output of S1. This
is true also for S3. Moreover, S3 expects only one item from
the list of risky areas produced by S1.

In this paper we propose a solution for the chaining prob-
lem example depicted in Fig. 1. Using the adaptation oper-



I:RiskyAreaI:Radiation

S2

O:Model

S1

S3

public class Model {

Radiation radiation;

java.util.List<RiskyArea> riskyAreas;}

public class Radiation {

String substance;

double amount;}

public class RiskyArea {

String areaID;

String riskType;}

Figure 1. Examples of web services.

ations it is possible to chain services S1 and S2, S3. Hence,
the composition of these services is enhanced.

The rest of the paper is structured as follows. Section
2 deals with problem overview and presents related work.
It focuses on web service description and chaining at both
syntactic and semantic level. The chaining problem is dis-
cussed from semantic content and pre/postcondition point
of view. In section 3 we present notes and recommenda-
tions regarding web service annotation which are important
to effectively exploit the possibility of data adaptation. The
web service compatibility in the context of data adaptation
is discussed in section 4. We present devised new rules
based on which the decision if services can be chained is
done. These formally described rules enhance the possibil-
ity of service chaining in the case when data adaptation is
performed. For each adaptation operation we also discuss
the basic affects related to the workflow representation and
execution engine. Finally, section 5 concludes our approach
and presents future direction of our work.

To formalize our ideas in this paper, we utilize set alge-
bra, first order and description logic. The following notation
is used in the paper to formalize our statements. Symbols
from set algebra and logic are used as usual. Symbol O
denotes an output of a service. Symbol I denotes an input
of a service. Symbols rdf:List refers to the class defined in
RDF (Resource Description Framework1) as a list. Symbols
rdf:first, rdf:rest refer to RDF properties expressing the first
element of a list and the sublist without the first element.

2 Problem Overview and Related Work

2.1 Web service description

The basic document describing web services is WSDL
(Web Service Description Language). The aim of WSDL

1http://www.w3.org/RDF/

is to provide information necessary to invoke the web ser-
vice. For us the most important issue is that it defines the
structure of the messages sent between the service invoker
and provider. These messages describe data corresponding
to the services’ I/O parameters serialized into XML. The
message consists of one or more parts each corresponding
to one parameter. These have defined type which can be
simple (string, integer) or complex. This corresponds to the
primitive data types and classes in an object-oriented (OO)
language. WSDL is considered to be a syntactic description
of the service.

Semantic web services are web services enhanced by se-
mantic description, i.e. they are semantically annotated.
The most known languages for this purpose are OWL-S2,
WSDL-S3 and WSML4. They differ in the complexity and
expressivity of their construction elements. In each case
the semantic annotation binds the elements of the web ser-
vice to domain terms described by ontologies. From all of
the elements it focuses on the I/O of the web service and
the condition under which the web service can be invoked
and the condition which will hold after its execution. The
domain ontology is usually defined using OWL (Ontology
Web Language) [10] based on description logic [1].

The semantic annotation of the I/O describes the seman-
tics of the attributes defined within the WSDL message.
This way we define also the meaning of the attribute, not
only its data type.

The pre/postconditions of services are usually ex-
pressed as logical statements. In [7], the authors define
pre/postconditions as a list of predicates which hold be-
fore/after execution. There is an implicit conjunction be-
tween them, i.e. all the predicates must hold. The predicates
cannot be combined using other logical operations such as
disjunction. The same approach is used in [12].

In our previous work [3] we proposed an approach to
describe complex pre/postconditions. It allows to com-
bine simple statements using first order logic operators
such as negation, conjunction, disjunction. Moreover, it
is also possible to use universal and existential quantifi-
cation to increase the expressivity of pre/postconditions’
description. The complex conditions are expressed us-
ing an extension of SWRL – Semantic Web Rule Lan-
guage5. The SWRL expressions are then included within
the process:hasPrecondition and process:hasEffect parts of
the OWL-S service description which are dedicated for this
purpose.

Other approaches describing complex
pre/postconditions are presented in [5, 8]. The ap-

2http://www.daml.org/services/owl-s/1.0/
owl-s.html

3http://www.w3.org/Submission/WSDL-S/
4http://www.wsmo.org/wsml/
5http://www.daml.org/2004/11/fol/proposal



proach in [8] uses USDL language to define the formal
semantics of the service. Its disadvantage is that it allows
not to use existential and universal quantification. In [5]
the authors present an extension of OWL-S to describe
pre/postconditions. They do not use the dedicated parts of
OWL-S to express them. However, their approach seems to
have the same expressivity as our.

2.2 Web service chaining

2.2.1 Semantic content point of view

Two services Sanc and Ssucc can be chained, i.e. are com-
patible if Sanc produces data which can be consumed by
Ssucc. This means that the output of Sanc is used as one
of the inputs of Ssucc. In this paper the service produc-
ing data for other service is called ancestor service. On the
other hand, the service consuming data produced by ances-
tor service is called successor service. The question if two
services can be chained is answered at both syntactic and
semantic level.

At the syntactic level the compatibility concerns the
structure of the messages wrapping the service’s I/O data.
The output data of the ancestor service must be serialized
into a XML fragment which is correctly deserialized into
the successor service’s input.

The approaches to semantic web service composition
evaluate the matching between the I/O parameters at seman-
tic level. They usually chain services if there is a subsump-
tion between the I/O parameters: O v I (O subsumes I).
In [9] the authors present four matching functions based on
which services can be chained: Exact, PlugIn, Subsume, In-
tersection. If some of these hold for the I/O, a Valid causal
link between them is established. If the matching function
is Exact or PlugIn, a Robust causal link is established. This
means that the output O can be directly consumed by the
successor service. If the matching function is Subsume or
Intersection, abduction and constraint relaxation is applied
to make possible the service chaining.

Our attitude regarding service chaining is that it is not
enough to consider only one compatibility level. To get sen-
sible service composition both levels must be considered.

If the services are compatible only at the syntactic level,
it means that the data produced by the ancestor service
can be successfully used as input for the successor service.
Hence, the execution of the successor service with the given
input will be successful. However, it will not make sense to
do that. One example is the chaining of a service producing
an integer expressing the number of the risky areas and a
service expecting as input an integer expressing the number
of endangered people.

If the services are compatible only at the semantic level,
it means that the successor service cannot consume data
produced by the ancestor service. This again means that

it makes no sense to chain the services because the execu-
tion of the successor service is not possible. This situation
may occur when wrong annotation is created. For example
we annotate two different weather forecast models with the
same concept.

2.2.2 Considering pre/postconditions

When dealing with the compatibility question of seman-
tic web services considering pre/postconditions we refer
to our previous work. In [3] we describe how complex
pre/postconditions are expressed to annotate web services.
The paper presents also rules deciding if two services are
compatible. We distinguish between weak and strong com-
patibility. It depends on the certainty of the compatibility.
If the execution of the ancestor service results always in a
condition matching the precondition of the successor ser-
vice, there is a strong compatibility between them. If this
is not assured, i.e. such condition is achieved only in some
cases, there is a weak compatibility. This situation may oc-
cur by means of the disjunction operation usage. In this case
the compatibility type is known only at the execution time.

The complex pre/postconditions are expressed as first or-
der logic formulae. Predicates are combined using logical
operators. At the semantic level, the predicates correspond
to the properties between two concepts. The predicate pa-
rameters may refer to instances representing I/O parameters
of services, other instances, owl data values or owl vari-
ables.

Our approach to decide the compatibility is based on nor-
malization of the pre/postconditions into disjunctive normal
form (DNF). Let denote the set of subformulae representing
the respective conjunctions of the pre/postcondition DNF of
service S as Cpre(S) and Cpost(S). To decide if two ser-
vices can be chained we present the following compatibility
statements:

Statement 1:

Services Sanc and Ssucc are not compatible if:
∀cpre ∈ Cpre(Ssucc), @cpost ∈ Cpost(Sanc) :

cpost ⇒ cpre is true.

Statement 2:

Services Sanc and Ssucc are weakly compatible if:
∃cpre ∈ Cpre(Ssucc),∃cpost ∈ Cpost(Sanc) :

cpost ⇒ cpre is true.

Statement 3:

Services Sanc and Ssucc are strongly compatible if:
∀cpost ∈ Cpost(Sanc),∃cpre ∈ Cpre(Ssucc) :

cpost ⇒ cpre is true.



3 Annotating Web services

Upper part of Fig. 2 depicts the common data model
in object-oriented paradigm (for simplicity we neglect the
primitive data types). This model describes the structure of
any data. Hence, it models also the I/O parameters of web
services at the syntactic level. Each wsdl:part element in the
WSDL document has defined the attribute type correspond-
ing to some Class, see Fig. 2. At the semantic level we
annotate wsdl:part element by some owl class. This class
can subsume rdf:List to express multiplicity.

Figure 2. Common data model.

The OWL and OWL-S provide a lot of freedom when
annotating web services. As languages, they allow to create
also meaningless annotations which are incorrect consid-
ering the goal of the annotation. It is up to the designers
creating the ontology and the services’ semantic descrip-
tions to create useful annotation. They must be aware of
the goal of the annotation which is the enhancement of web
service discovery or composition. Hence, the knowledge of
the mechanisms behind these processes is required.

When annotating web services it is important to follow
the rule that never create annotation leading to a situation
that some services are not compatible at the syntactic level
but at the semantic level they do match. The annotations
should be created in such a way that it is always true that
if some services are compatible at the semantic level, then
they are compatible also at the syntactic level. Following
this rule allows to omit the checking of the compatibility at
the syntactic level because if it holds at semantic level, it
implicitly holds also at the syntactic level.

We recommend to design the semantic description in
such a way that it is in strong correspondence with the syn-
tactic level. The designer should be aware of the knowl-
edge behind object-ontology mapping [2, 6]. The base is
that classes in OO paradigm correspond to the ontological
classes. If a class has attributes, i.e. it aggregates other
classes (or data types), there is a property between the on-
tological equivalent of this class and the ontological equiv-
alent of the aggregated class. The property corresponds to
the name of the attribute.

From the point of view of web service chaining consid-
ering data adaptation it is important to correctly express at
the semantic level the cardinalities of the class attributes.
This is important because from this we know which at-
tributes must be filled in the input or output of services.
If the attribute cannot be null, we define a cardinality re-
striction (on the property corresponding to this attribute) to
value 1. If the attribute represents a collection (list, field)
we annotate it with a class C defined as C v rdf:List and
C ≡ ∀rdf:first.Cel u∀rdf:rest.C. The element of the collec-
tion corresponds to ontological class Cel.

4 Data Adaptation

In the following we deal with service chaining consider-
ing also the possibility of data adaptation. The data adapta-
tion is realized by four operations: decomposition, listing,
composition, and list arrangement. The goal of the adap-
tation is to prepare the input data for a web service from
the outputs of the ancestor services. It is applied when
the data cannot be used directly but the adaptation makes
them usable. To decide if services can be chained we check
if the data match from the semantic content and also the
pre/postcondition point of view. For each adaptation opera-
tion we propose rules deciding the compatibility from these
two viewpoints.

Let conj be a conjunction. ∇(conj, symbol) denotes a
formula which is a conjunction of predicates constructed as
follows. First, we add into it those predicates from conj
where the first parameter is symbol. In each subsequent
iteration we add into it those predicates from conj where
the first parameter is a symbol appearing as a second pa-
rameter of some predicate which already is contained in
∇(conj, symbol). The iteration finishes when there are no
more predicates which may be added.

To evaluate the compatibility at the pre/postcondition
level we regard to the compatibility statements presented in
section 2.2.2. Also when considering data adaptation the
compatibility is evaluated as none, weak or strong. The
difference is that we must consider other implication (not
cpost ⇒ cpre) or other formula Cpost against the original
definition. These facts are depicted in the following.

4.1 Decomposition

Decomposition is an operation which decomposes a
complex data into its components. It is applied when a web
service requires as input only a part of the complex data
produced by the ancestor service.

From the semantic content point of view, two services
can be chained if the output of the ancestor service has such
a property R whose range subsumes the input of the succes-
sor service, i.e. O ≡ ∃R.Oi u ≥1R u ≤1R and it holds



that Oi v I . This is the case of services S1 and S2 from our
example.

Let oi to be a symbol used in the postcondition formula
to denote that component of O which is required as input.
Based on the compatibility statements, services can be
chained considering their pre/postcondition if we consider
the implication ∇(cpost, oi) ⇒ cpre (only non empty
∇(cpost, oi) are considered). Cpost is defined as originally.

In the case that decomposition is used, the workflow
representation must depict which services are chained and
which part of the ancestor service’s output is used as input
of the successor service. The execution engine must decom-
pose the output and retrieve the required part. This is then
used as input to invoke the successor service.

4.2 Listing

Listing is an operation during which we get the elements
of a given list for further separated processing. This is the
case of services S1 and S3 from our example. It is applied
when the successor service processes each element of the
output list separately.

From the semantic content point of view, two services
can be chained if the output of the ancestor service is de-
fined as O v rdf:List and O ≡ ∀rdf:first.Oel u ∀rdf:rest.O
and it holds that Oel v I .

Let oel to be the symbol of the element of the list pro-
duced by the ancestor service in its postcondition formula.
To evaluate the compatibility at pre/postcondition level the
following implication must be considered: ∇(cpost, oel)⇒
cpre (only non empty ∇(cpost, oel) are considered). Cpost

is defined as originally.
When listing is applied, the workflow representation

must express which services are chained. During the ex-
ecution, the successor service is invoked for each element
of the list produced by the ancestor service. The respective
element is used as the input parameter.

4.3 Composition

Composition is an operation which composes the re-
quired data from its parts. These parts are produced by dif-
ferent web services.

From the semantic content point of view, services
Sanc1, . . . , Sancn with corresponding outputs O1, . . . , On

and a service with input I can be chained if I is de-
fined as I ≡ ∃R1.I1 u ≥ 1R1 u ≤ 1R1 u . . . u
∃Rn.In u ≥ 1Rn u ≤ 1Rn and it holds that O1 v
I1, . . . , On v In. R1, . . . , Rn are symbols of any prop-
erties.

To evaluate the compatibility at the pre/postcondition
level, we must construct Cpost as formula which is a con-

junction of the postconditions of Sanc1, . . . , Sancn, i.e.
Cpost = Cpost(Sanc1) ∧ . . . ∧ Cpost(Sancn). The impli-
cation is defined as originally, i.e. cpost ⇒ cpre.

In the case that composition is used, the workflow rep-
resentation must depict which ancestor services produces
which components of the data expected by the successor
service. The execution engine must compose the input data
after each ancestor service returned the output. The result-
ing composite data are used as the input to invoke the suc-
cessor service.

4.4 List arrangement

List arrangement is an operation where we arrange a list
from elements. There are three cases how the elements can
be provided. First, they are a result of multiple invocation
of the same service. Second, they are a result of the invo-
cations of different services. The third, most general case
combines the first two with a situation that into a resulting
list we include also lists of elements which are produced
by some ancestor service. This means that the resulting list
is arranged from elements which are a result of a single or
multiple invocation of some services and lists of elements
produced by some other services. The practical usefulness
of this case is disputable. In the following, in each case the
input of the successor service I is defined as I v rdf:List
and I ≡ ∀rdf:first.Iel u ∀rdf:rest.I.

Multiple invocation of the same service

From the semantic content point of view, service with out-
put O can be chained with service with input I if it holds
that O v Iel.

When considering compatibility from pre/postcondition
point of view, both Cpost and implication are defined as
originally.

Single invocation of different services

From the semantic content point of view, services
Sanc1, . . . , Sancn with corresponding outputs O1, . . . , On

and a service with input I can be chained if it holds that
Oi v Iel for i = 1, . . . , n.

To decide the compatibility at the pre/postcondition level
we must enhance the compatibility statements. First we
evaluate the compatibility for each ancestor service with
the successor service separately based on the rules hold-
ing in the case of multiple invocation of the same service.
Based on this, services Sanc1, . . . , Sancn are not compati-
ble with service Ssucc if there exist at least one service from
Sanc1, . . . , Sancn which is not compatible with Ssucc. Ser-
vices Sanc1, . . . , Sancn are weakly compatible with service
Ssucc if each service from Sanc1, . . . , Sancn is weakly or
strongly compatible with Ssucc. Services Sanc1, . . . , Sancn



are strongly compatible with service Ssucc if each service
from Sanc1, . . . , Sancn is strongly compatible with Ssucc.

Combined

In this case we combine the outputs of services producing
one or more elements and arrange them into a resulting list.
To decide the compatibility we must combine the rules de-
fined for previous two cases. It is straightforward that each
element produced by the ancestor services which is put in
the list must subsume the element of the list correspond-
ing to the input. From the pre/postcondition point of view,
Cpost is a conjunction of postcondition of each ancestor ser-
vice contributing into a resulting list. The postconditions
are normalized into DNF. In the case of a service producing
a list, we apply ∇(cpost, oel) for each conjunction of the
postcondition before it is put into Cpost.

To apply list arrangement in the workflow, we must de-
pict which services are contributing to the list. Moreover,
hence some services may be invoked multiple times to pro-
duce elements, we must also express the number of invo-
cations. It is important to note that multiple invocation of
some service is possible only if listing was applied previ-
ously in the workflow. Hence, the number of invocations
is equivalent to the size of the list for which listing was
applied before. The execution engine must arrange the re-
quired list after each service produced the expected number
of elements. In the case of single invocation, one element is
expected.

5 Conclusions and Future Work

In this paper we presented an approach enhancing the
possibilities to chain services. It goes beyond the simple
checking of the subsumption relation between the I/O. It
considers the possible adaptation of the output data before
it is used as input. We propose devised new rules for web
services chaining and corresponding data adaptation opera-
tions, which are necessary during the execution of the com-
posite service. Our approach is integrated in our automatic
web service composition method. This method is experi-
mentally evaluated within a multi-user workflow editor tool
[4]. It supports user collaboration during the creation and
execution of workflows. The composition method is inte-
grated into the editor to automate this process. It considers
the matching rules when deciding whether the services can
be chained. The workflow execution engine of the multi-
user editor was extended to realize the data adaptation op-
erations over outputs to create the required inputs.

Our common, domain independent approach showed
usefulness in the context of crises management workflows
we deal with in SEMCO-WS. Currently we deal with exam-
ination of other adaptation mechanisms and their affect on

service description and execution. We also research other
levels at which compatibility of services should be consid-
ered. An example in this direction of our work is a study
based on a hypothesis that a chaining of some services may
be not successful because the resulting QoS attributes of the
chain are of poor quality.

References

[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and
P. F. Patel-Schneider, editors. The description logic hand-
book: theory, implementation, and applications. Cambridge
University Press, New York, NY, USA, 2003.

[2] P. Bartalos and M. Bieliková. An approach to object-
ontology mapping. In 2nd IFIP Central and East European
Conf. on Software Engineering Techniques CEE-SET 2007,
2007.

[3] P. Bartalos and M. Bielikova. Fast and scalable seman-
tic web service composition approach considering complex
pre/postconditions. In WSCA ’09: Proc. of the 2009 IEEE
Congress on Services, Int. Workshop on Web Service Com-
position and Adaptation. IEEE CS, 2009.

[4] P. Bartalos, I. Kapustik, and V. Rozinajova. Visual support
of workflow composition involving collaboration. In GCCP
’08: Proc. of the 2008 Int. Workshop on Grid Computing for
Complex Problems, pages 120–127. SAS, 2008.

[5] Y. Gamha, N. Bennacer, G. V. Naquet, B. Ayeb, and L. B.
Romdhane. A framework for the semantic composition of
web services handling user constraints. In ICWS ’08: Proc.
of the 2008 IEEE Int. Conf. on Web Services, pages 228–237.
IEEE CS, 2008.

[6] A. Kalyanpur. Automatic mapping of OWL ontologies into
Java. In F. Maurer and G. Ruhe, Proc. of the 17th Int.
Conf. on Software Engineering and Knowledge Engineer-
ing, SEKE’2004, 2004.

[7] M. Klusch, A. Gerber, and M. Schmidt. Semantic web ser-
vice composition planning with owls-xplan. In AAAI Fall
Symposium on Semantic Web and Agents, Arlington VA,
USA, 2005. AAAI Press.

[8] S. Kona, A. Bansal, and G. Gupta. Automatic composition
of semantic web services. In ICWS ’07: Proc. of the 2007
IEEE Int. Conf. on Web Services, pages 150–158. IEEE CS,
2007.

[9] F. Lecue, A. Delteil, and A. Leger. Applying abduction in
semantic web service composition. In ICWS ’07: Proc. of
the 2007 IEEE Int. Conf. on Web Services, pages 94–101,
Los Alamitos, CA, USA, 2007. IEEE CS.

[10] D. L. McGuinness and F. van Harmelen. OWL Web
Ontology Language Overview. 2004. retrieved from
http://www.w3.org/TR/owl-features/, 2007.

[11] M. Paralic, O. Habala, J. Paralic, and P. Bartalos. Semantic
composition of web and grid services. In Znalosti 2009,
pages 355–358, Brno, 2009.

[12] A. Sirbu and J. Hoffmann. Towards scalable web service
composition with partial matches. In ICWS ’08: Proc. of the
2008 IEEE Int. Conf. on Web Services, pages 29–36. IEEE
CS, 2008.


