
QoS Aware Semantic Web Service Composition Approach Considering
Pre/Postconditions∗

Peter Bartalos and Mária Bieliková
Institute of Informatics and Software Engineering, Faculty of Informatics

and Information Technologies, Slovak University of Technology in Bratislava
{bartalos,bielik}@fiit.stuba.sk

Abstract

Web service composition is a topic bringing several is-
sues to be resolved. Our work deals with the effectiveness
and scalability of service composition. During composi-
tion we consider QoS and pre-/post-conditions of single ser-
vices to create a composite service satisfying the user needs
the best. Regarding pre-/post-conditions we propose an ap-
proach to fast determination of which services produce re-
sults expected by the user, i.e. the post-condition of which
services implicates the desired condition defined in the user
goal. This paper presents also a renewed version of our ap-
proach to QoS aware service composition. We achieved a
dramatic improvement in terms of composition time by per-
forming a useful restriction on the service space.

1 Introduction

Web services present a topical research area with lot of
attention. One part of this research aims to propose solu-
tions to automatic composition of several web services into
workflows bringing a utility which cannot be provided by
single service. The desired result of such composition is de-
scribed in the user query. The automatic web service com-
position showed to be a challenging task [8].

The research of service composition in last years tends
to focus on issues related to QoS [2, 4, 7, 14], pre-/post-
conditions [3, 9], user preferences (e.g. soft constraints)
[1, 11], service selection considering complex dependen-
cies between services [5, 13]. Our work deals with the ef-
fectiveness and scalability of explorative service composi-
tion aware of QoS and pre-/post-conditions. It is based on
our previous work [3, 4]. Already the previous approach

∗This work was partially supported by the grant VEGA 1/0508/09 and
it is the partial result of the Research & Development Operational Pro-
gramme for the project Support of Center of Excellence for Smart Tech-
nologies, Systems and Services, ITMS 26240120029, co-funded by the
ERDF.

showed to have good performance as it took part at the
Web Services Challenge 2009 and was one of the best so-
lutions. We had enhanced it by a process restricting the set
of services which must be considered when looking for a
solution. As a result we achieve improvement in terms of
shorter composition time in more than one order of magni-
tude. Regarding QoS, we do not present any new method to
evaluation of multi-dimensional quality of a composite ser-
vice. Our approach selects the best solution considering the
aggregated value of a given quality attribute. In the context
of pre-/post-conditions we introduce a novel approach con-
sidering more expressive conditions with value restrictions.

2 Related work

In [4] and [7], two approaches which took a part at the
Web Services Challenge 2009 are presented. Web Services
Challenge is a competition aimed at developing software
components and/or intelligent agents that have the ability to
discover pertinent web services and also compose them to
create higher-level functionality1. In 2009 it focused on au-
tomatic web service composition considering the QoS [8].
Both [4] and [7] proved to be scalable approaches. Even
during the hardest data set at the competition, consisting
from 15 000 web services, they were able to find a solution
in acceptable time2 (below 300 msecs). Both approaches
realize preprocessing during which effective data structures
are build. These are used during the user querying phase
to quickly compose a desired composition. Approach pre-
sented in [4] benefits from a data structure based on a rela-
tional database and parallel process execution. Composition
in [7] is effective due a filtering utilized to reduce the search
space. The pruning removes services i) which have no in-
puts (cannot be executed) and ii) do not have optimal QoS.

1http://ws-challenge.georgetown.edu/wsc09
2The time includes a call of the composition system from a client ap-

plication, composition and result transformation to BPEL format, and re-
alization of a callback from the composition system to submit the result to
the client application.

The removing of unusable services is applied also in [4].
An other approach to QoS aware automatic web service

composition dealing with scalability is described in [2]. Un-
like to [4] and [7], this approach does not deal with a design
of the structure of the composite service. As an input it al-
ready takes an abstract service, i.e. the aim is only to select
concrete services, for each used service class, resulting in
the best aggregated QoS. The two previous approaches find
the best plan for each QoS characteristic separately. This
approach uses a utility function to express the overall qual-
ity from the individual quality attribute values. The cal-
culation of the utility function is based on Simple additive
weighting technique. It involves scaling of the quality at-
tribute values to allow uniform measurement independently
on the unit and range of the given attribute. Then, weighting
process follows to represent user priorities and preferences.
In this context the approach deals with the scalability issues.
It is based on a heuristic algorithm decomposing the orig-
inal optimization problem into sub-problems which can be
solved more effectively. The decomposition allows finding
the best candidate for each service class separately, i.e. it is
not required to check all possible service combinations. Be-
fore this, only two global parameters for each attribute must
be calculated. After this, calculations are performed locally
for each service class. The approach presents good scala-
bility when finding near-to-optimal solution, according the
number of service classes and candidates per class.

In [6] the authors present a composition approach han-
dling so called user constraints. These represent value re-
striction constraints to input, output or local parameters of
services. The approach has a differing composition prob-
lem definition as in [3] and [9]. It seems that the prob-
lem neglects the design of the composite service’s struc-
ture, i.e. the set of used services and the control/data flow
are partially known (similarly as in [2]) and the related is-
sues are not a part of the problem solving. For each service
the user may define value restrictions over the services’ pa-
rameters. Thus, the user should know which services are
used in the composition. The approach takes care about sat-
isfying these constraints during service execution. Before
execution, it is checked if the input data hold the constraints
to input parameters. Constraints to output parameters are
checked after execution. If these do not hold, the user is
informed about the failure, or a back-track mechanism is
realized. The user may define also multi-service restric-
tions. Such constraint is checked for first services. After
it is executed the value of the constraint is updated and used
for checking the next services. In opposite to [3] and [9],
this approach takes care only about conditions defined by
the user. It does not deal with the pre-/post-conditions of
services during chaining.

In the approach proposed in [9] the USDL language
is used to specify the formal semantics of services [10].

The pre-/post-conditions are expressed as atomic statements
combined with conjunction, disjunction, and negation. The
approach focuses also on other important features of effec-
tive composition. One of them is the ability of incremental
updates. In dynamic world the set of composed services is
changing. Services may be added/removed. The composi-
tion system should react to these changes quickly. This usu-
ally can not be achieved if the change requires a complete
reconstruction of the internal service repository. It is desired
to handle the change by adding new data to the repository
affecting only a local part of it.

Our previous approach to pre-/post-condition aware au-
tomatic web service composition is described in [3]. It uses
OWL-S to depict the semantics of services. The condi-
tions are described using SWRL (Semantic Web Rule Lan-
guage) and its extension to first order logic (http://www.
daml.org/2004/11/fol/proposal). From the expressiv-
ity of pre-/post-conditions point of view, this approach is
equivalent to [9]. The aim of the work is a scalable, pre-
/post-condition aware composition. The approach bases on
an effective service representation in an internal data struc-
ture having two parts. One part is stored in a relational
database (RDB) and the second in operational memory. The
RDB is used to select services directly satisfying the user
goal (final services in the composition) and services hav-
ing all inputs provided in the user query (initial services).
The capabilities of RDB are used to quick selection of these
services. Moreover, RDB takes care also about finding ser-
vices having post-condition satisfying the condition defined
in the user goal. This is achieved by a normalization of
the formulae expressing the conditions to disjunctive nor-
mal form (DNF). The overall reasoning required to decide
which services have satisfying post-condition is realized
using the capabilities of RDB management systems and a
piece of program. Similarly to [9], also this approach is able
to react to changes in the service set quickly, by performing
only a local change in the internal service registry.

3 Service composition preliminaries

The aim of semantic web services is to provide func-
tionality, which can produce required data and effects in a
widely accessible, easily discoverable form (by machines).
Semantic web service composition enhance to potential of
single services. Its aim is to combine several services to
supply more complex needs.

Web service composition problem is defined as follows:
given a query describing the goal and providing some in-
puts, design a workflow (depicting the data- and control-
flow) from available services such that if it is executed, it
produces the required goal. In this context, both the query
and services are described at the semantic level. The re-
quired/provided data presented in the query and the I/O

of services have defined meaning. This is done by their
grounding to concepts in the ontology. To enhance the op-
portunities we deal also with conditions representing the de-
sired effects in the goal, conditions which must hold before
service execution, or hold after service execution. These
are defined using predicates forming a logical formula. The
condition may have defined semantics by grounding the
predicates to properties in the ontology and grounding the
predicate arguments to concepts in the ontology. However,
in this case we can use only binary predicates. The predicate
arguments are variables corresponding to the I/O or repre-
sent local, ground variables. In the following, we formalize
the service composition problem.

Definition 1 (Repository of Services): Repository R is a
set of available services.

Definition 2 (Condition): Condition C is a 2-tuple C =
(Str, V al). Str is a logical formula consisting from n-
ary ground predicates combined using logical operators
∧,∨,¬. It depicts the structure of the condition. V al is
a list of value restrictions of the variables appearing as the
arguments of the predicates. These variables are ground to
concepts in the ontology.

Definition 3 (Condition implication): Let denote the set of
sub-formulae representing the conjunctions of the formula
Str transformed to DNF, as StrDNF . Condition C1 =
(Str1, V al1) implicates condition C2 = (Str2, V al2), de-
noted as C1 V C2, iff the following holds:

1. There is a conjunction in Str1DNF implying some con-
junction in Str2DNF , i.e. ∃str1 ∈ Str1DNF ,∃str2 ∈
Str2DNF such that |= str1 ⇒ str2.

2. Each variable v1 appearing in str1 subsumes the cor-
responding variable v2 in str2, i.e. v1 v v2.

3. If the variable of str2 has defined a value restriction,
this is not violated by the value restriction of the corre-
sponding variable of str1.

Definition 4 (Service): Service S is a 4-tuple S =
(I, O, Pre, Post). I/O is a list of inputs/outputs, i.e. vari-
ables ground to concepts in the ontology. Pre is a condition
which must hold before service execution. Post is a condi-
tion which holds after service execution. Services are the
elements of service repository R.

Definition 5 (Query): Query Q is a 3-tuple Q =
(I ′, O′, Conds). I ′ is a list of provided inputs. O′ is a
list of required outputs. Both I ′ and O′ consists of vari-
ables ground to the concepts in the ontology. Conds is a
list of conditions which are required to hold after execution
of service composition. Each condition corresponds to one
required output.

Definition 6 (Service composition): Service composition
is a directed acyclic graph G = (V,E), where ∀S ∈ V :
S ∈ R. The following conditions must hold:

1. Each service Sm = (Im, Om, P rem, Postm) in the
composition must have provided each input i ∈ Im. The
input is provided in the query, or as an output of ances-
tor service Sn = (In, On, P ren, Postn). Each input i
must be subsumed by its provider ip.
∀Sm ∈ V,∀i ∈ Im : ∃ip ∈

⋃
n On∪I ′ such that ip v i.

2. For each chained service pair Sanc, Ssucc, it must hold
that the postcondition of the ancestor service implicates
the precondition of the successor service, i.e. ∀e ∈
E, e = (Sanc, Ssucc) : Postanc V Presucc.

3. Each required output from O′ is provided by some ser-
vice Sm, i.e. ∀o′ ∈ O′ : ∃o ∈

⋃
m Om where o v o′.

If there is defined a value restriction for o′, this is not
violated by the value restriction of o.

4. Each required condition C ′ from Conds corresponds to
some required output o′. C ′ is implicated by the post-
condition Post of each service S producing the required
output o′, i.e. ∀C ′ ∈ Conds it holds that if S produces
o such that o v o′, then Post V C ′.

The first basic step in the service composition is to decide
which services can produce the required data and achieve
a desired state. The first issue is simpler. Here, the task
is only to decide if the given output of the potential ser-
vices subsumes the output required in goal. The second
issue requires evaluation of a logical formula, i.e if a post-
condition of a potential service implicates a given condi-
tion in goal. The post-condition of service in general pre-
scribes several alternative conditions which may hold af-
ter execution. These correspond to the respective conjunc-
tions of the post-condition transformed to DNF. Thus, the
evaluation whether the post-condition of the service impli-
cates the required goal condition can be done only after its
execution. The only situation when execution is not re-
quired is when each conjunction of the post-condition im-
plicates some conjunction of the goal condition. The im-
plication holds only in the case that certain conjunction of
post-condition is the same or an extension of the conjunc-
tion of goal condition (it may contain additional predicates).
Moreover, there has to be a unique mapping between the
variables appearing in the conjunctions.

Also in the context of value restrictions, the execution is
required in general. The values of the variables appearing
in post-condition, which correspond to some outputs, are
known after execution. Hence, it does not make sense to
have a concrete value restriction in the description of the
service’s postcondition. This would mean that we know
the value of the output before execution. In some cases,

the character of the service may allow to define a mini-
mal/maximal value of the output.

In general, the evaluation whether some conjunction im-
plicates an other one, is a problem of high complexity. This
problem can be transformed to subgraph isomorphism prob-
lem. A conjunction is transformed to a labeled graph, where
each node corresponds to one variable. There is a directed,
labeled edge between two nodes iff there is a predicate be-
tween the variables corresponding to these nodes. Then,
the evaluation of the implication is equivalent to evalua-
tion if there is a subgraph isomorphism between the graphs.
It is known that subgraph isomorphism problem is NP-
Complete. Hence, the known algorithms perform in expo-
nential time. However, there exists an algorithm running
efficiently in practical scenarios [12].

The situation in conjunction implication evaluation in
practical examples is easier that in subgraph isomorphism.
Several characteristics of conjunctions, which are fast to
evaluate, can be used to quickly claim that the implication
does not hold. Speculating practical examples, the prob-
lem is not NP-hard. Neglecting everything else, if there is
at least one pair of mapped variables in the conjunctions,
then the problem can be solved in polynomial time. In the
context of service composition, there is always at least one
variable in the goal conjunctions which is mapped implic-
itly, e.g. the variable representing the output parameter.

4 Method of effective composition

Our approach (see Fig. 1) is based on a lot of prepro-
cessing done before responding to user queries. During it
we create data structures which are used to quickly answer
the query. The most important is that we evaluate which ser-
vices can be chained, i.e. which services produce data and
have a post-condition required by the other services. This
can be done without a knowledge of any query which will be
processed. The fast evaluation of the implication between
two conditions is based on encoding of their different char-
acteristics. The encoding of services’ pre-/post-conditions
and the evaluation if the post-condition of the service pro-
ducing required data for another service implicates its pre-
condition are done during preprocessing. The problem still
remaining is to i) select services producing the required out-
puts and condition (final services in the workflow), Fig. 1-a)
and ii) evaluate which services can be used, since they have
provided inputs and how they interconnect (design of the
data-/control-flow), Fig. 1-b). The latter is significantly af-
fected also by the selection of the service combination with
the best aggregated QoS. This is computed from the respec-
tive QoS values of used services based on aggregation rules,
just as defined in [14]. Preprocessing may be used to precal-
culate the overall QoS characteristic of a single service from
its individual quality attributes based on a utility function.

Foreach service Foreach service

Preprocessing

Querying

Read service

descriptions
Evaluate

pre/post

Encode goal

condition

Find output

providers

Filter providers

Select usable

services

Select unusable

services

Read solution

Encode

pre/post

Find input

providers

Find initial

services

a)

b)

Figure 1. Overview of composition process.

4.1 Finding services producing goal

To find the services directly producing the required goal
(final services in the workflow) a two step process is per-
formed, Fig. 1-a). First, we find services providing the re-
quired outputs. Second, we filter these services based on
post-conditions. Instead of searching for a service produc-
ing desired post-condition in the whole service registry, we
only check whether the service providing the required out-
puts satisfies the condition restriction.

The search for the services providing the required out-
puts is done in O(1) time for each required output, i.e. in
O(|O′|) at all. To achieve this, during preprocessing we
create a hash table storing lists of services producing cer-
tain concept. The concept is used as a key in the table. The
respective list includes also services producing an output
subsuming the concept used as the key.

The evaluation if Post V C ′, where C ′ =
(Str′, V al′), C ′ ∈ Conds and Post = (Str, V al) is re-
alized as a search for a mapping between variables from
str′ ∈ Str′

DNF to variables from str ∈ StrDNF . To faster
the mapping, we encode several characteristics of the con-
junctions and their elements. The selection of characteris-
tics is based on our analyzes of what can be relatively easy
to calculate and strongly specific for a conjunction and vari-
ables appearing in it. The characteristics are encoded as a
unique number having such a property that, any two sub-
jects of encoding having the same code are equivalent based
on the properties which are considered in that encoding.
The overview of encodings is presented in Tab.1. Due the
lack of space and straightforwardness of the process, we do
not provide algorithmic description of the encoding. In the
next CODE(subject) denotes a given encoding of subject.
The uniqueness of the encoding is a key to make unique
mapping of variables. If more than one subject is encoded
to the same code, it is useless to faster the implication eval-
uation process. The encodings related to post-conditions of
services are made during preprocessing and stored in hash
tables (we symbolize them by postfix ”HT” after the code

Table 1. Encodings overview.

Code symbol Encoding subject Encoded properties
WITH variable appearance in predicates

concept
WITHOUT variable appearance in predicates

for all variables:
CONJ conjunction appearance in predicates

concept
UNQCON variable concept

symbol). In these, the key is a code and the value is a sub-
ject of encoding. The encodings of goal-conditions can be
realized only during composition. During evaluation, we
take unique codes related to Str′

DNF and check if the hash
table storing the corresponding code of StrDNF contains
such code. The check is done in O(1) time.

Alg. 1 depicts more details about implication evaluation.
For all str′ ∈ Str′

DNF we check if CONJ(str′) is present
in CONJHT storing codes of all str ∈ StrDNF (lines 2
to 3). If it is, StrDNF contains the same conjunction as the
given str′. In this case we only have to map variables and
check if the value restrictions are not violated. This is done
in linear time regarding the number of variables.

Algorithm 1 Evaluate implication

1: for all str′ ∈ Str′DNF do
2: if CONJ(str′) found in CONJHT then
3: map vars and check value restrictions
4: for all str ∈ StrDNF do
5: for all var in str′ having WITH code do
6: if WITH(var) found in WITHHT then
7: map vars and check value restriction
8: for all var in str′ having WITHOUT code do
9: if WITHOUT (var) found in WITHOUTHT

AND subsume ok then
10: map vars and check value restriction
11: for all var in str′ having UNQCON code do
12: if UNQCON(var) found in UNQCONHT AND

appearance ok then
13: map vars and check value restriction
14: while new mapping found do
15: for all predicate in str′ with one mappedvar do
16: for all suitablepredicate in str do
17: potentialvar = unmapped in

suitablepredicate
18: check appearance
19: if only one potentialvar with appearance ok then
20: map vars and check value restriction

If there is no equivalent str for any str′, we try to find
unique mapping between variables. First, we map vari-
ables having unique WITH code (lines 4 to 7). For all

variable var in str′ having a WITH code, we check if
WITHHT contains a variable under key WITH(var). If
it does, we map var to the value of WITHHT under key
WITH(var) and check the value restriction. The mapping
based on WITHOUT code is similar to WITH (lines 8
to 10). The difference is that WITHOUT code does not
include the concept type of the variable. The benefit is,
that we find corresponding variables also in the case that
the variable in str is not ground to the same concept as the
variable from str′, but to concept subsuming it. Of course,
in this case we must check if subsumption holds, in contrast
to mapping based on WITH code.

For each variable still being unmapped, we check (lines
11 to 13) if there is some variable in str for which it holds
that: i) it is ground to the same concept as the given variable
in str′, ii) no other variable is ground to that concept. These
two conditions hold, if there is some variable in the str hav-
ing the same UNQCON code as the variable from str′. If
we find such variable, we have to check if it appears in the
same predicates. This is done in linear time regarding the
number of predicates where the variable from str′ appears.
If appearance is as required, value restriction is checked.

Even if we apply all the coding mechanisms to find map-
ping between variables, some of them may still remain un-
mapped. For these we start an iterative process. In each
iteration, at least one variable should be mapped. If this is
not true, there is no unique mapping between the variables.
In each iteration (lines 14 to 20), we look for a predicate in
str′ having one unmapped variable. Then, we find the same
predicates in str. We filter them to get only those where the
mapped variable is mapped to the mapped variable in str′.
All unmapped variables in remaining predicates of str be-
come potential variables for mapping. Note that in most
cases there will be only one potential variable. For each po-
tential variable we check its appearance in predicates where
the unmapped variable from str′ appears. If there is only
one potential variable appearing in the required predicates,
we found a new unique mapping. Otherwise, we look for
an other predicate in str′ having only one mapped variable.

4.2 Creating workflow structure

This section explains the process of finding services
which are used in the composition to produce data for the
final services, if these are not provided in the query. In gen-
eral, this set in not empty. The empty set refers to a situation
that all final services have inputs provided in the user query.
Usually, this set consists of several interconnected services.

Our approach is based on two processes, Fig. 1-b). The
first selects services which can be used because they have
provided inputs. The second selects services which cannot
be used because they do not have provided all inputs. The
latter is not necessary to find a composition. It is used only

to faster the select usable process, which is necessary.
The selection of usable services starts with a selection of

the initial services. Analogically to selection of final ser-
vices, it is done in O(1) time for each input provided in
the user query, i.e. in O(|I ′|) time at all. Each service hav-
ing provided inputs is added into list inputProvidedServices.
This list is the input for a process presented in Alg. 2.

Usable services are selected in a loop. In each iteration
we process the first service from inputProvidedServices.
For this service we check each provider of each input. If
the provider is usable and it improves the aggregated QoS
of service, we update the link to the best provider of the
respective input. If for each input we found at least one
provider, the service is usable. In this case, we update its
aggregated QoS. Then, we traverse all its successors. Each
successor which was not processed, or the service improves
its aggregated QoS is added into inputProvidedServices to
be processed.

Algorithm 2 Find usable services

1: while inputProvidedServices.size > 0 do
2: service = inputProvidedServices.removeFirst()
3: for all input provider of service do
4: if provider is usable then
5: update best QoS providers A
6: if all inputs provided then
7: update aggregated QoS
8: for all successors of service do
9: if successor is unprocessed OR service improves suc-

cessor’s aggregated QoS then
10: inputProvidedServices.add(successor) B

The problem with Alg. 2 is that it wastes a lot of time by
processing services for which it will not find providers for
all inputs. To avoid this, we propose a process restricting
the set of services which must be processed by Alg. 2. The
restriction is based on the idea that several services have at
least one input which is not provided by any other service.
These services are usable only if those inputs are provided
in the user query. We call them user data dependent ser-
vices. The list of these is created during preprocessing.

The selection of unusable services starts by evaluation
which user data dependent services have not provided in-
puts in the user query. These services are unusable. More-
over, each service having at least one input for which the
only provider is an unusable service is unusable too. The
selection of these is depicted in Alg. 3.

Alg. 3 starts with a list of services for which it is not eval-
uated if they are unusable. These services are processed in
a loop until there is a chance that new unusable service may
be found. This is in the case when some service was se-
lected as unusable, what means that some of its successors
may become unusable too. After the overall process fin-

ishes, all user data dependent services or their successors,
for which some input is not provided, are selected as unus-
able. There may be still services which are not selected as
unusable even if they are unusable. These are those which
are not user data dependent, but some of their inputs have
no usable providers.

The select unusable services process affects the selection
of usable services in such a way that the unusable services
are not processed, i.e. they are not added into inputProvid-
edServices. It is important that the selection of usable and
unusable services may run in parallel.

Algorithm 3 Find unusable services

1: unusable found = true
2: while unusable found do
3: unusable found = false
4: for all service in undecidedServices do
5: if some input depends on unusable then
6: service is unusable
7: unusable found = true

5 Evaluation

The evaluation of our approach is split into evaluation
of i) process selecting last services in the workflow taking
into account also the pre-/post-conditions, ii) process creat-
ing the structure of the composite service. All experiments
were realized using a Java implementation of our composi-
tion system. The computations were run on a machine with
two 64-bit Quad-Core AMD Opteron(tm) 8354 2.2Ghz pro-
cessors with 64GB RAM.

The experiments were realized using data sets generated
by a third party tool used to create data sets for Web services
Challenge 2009 (http://ws-challenge.georgetown.edu/
wsc09/software.html). We generated test sets consist-
ing from 10 000 to 100 000 services. For each test set,
the solution requires at least 50 services to compose. The
number of concepts in the ontology is from 30 000 to
190 000. To allow others to evaluate their composition
system on same data, we made the test sets available at
http://semco.fiit.stuba.sk/compositiontestsets/.

5.1 Implication of conditions

The generator tool from WS-Challenge does not create
pre-/post-conditions, nor goal condition. Due this, we de-
veloped our own condition generator extending the data sets
from WS-Challenge. It generates random conditions and
value restrictions. It takes as parameters the maximal size
of Str and each str of the generated condition. We can
generate the test sets in such a way, that the evaluation of

the implication is done based on one of the proposed en-
codings, or the iterative process. This is because we wanted
to evaluate each mechanism separately.

Fig. 2 depicts results of the experiments with conditions
of different average sizes of Str and str. The size of Str′

is in each case |Str|/4 and |Conds| = 4 . As it is obvious,
most of the time is spent by encoding. Our deeper analysis
showed that the slowness is caused by the transformation
of the goal condition into DNF. After encoding, the evalu-
ation is performed relatively fast. There are minor differ-
ences between the applications of different encodings. This
is why we depict only the maximum over evaluation times
of different encoding application. The evaluation using the
iterative search process performs slightly slower than if en-
coding may be used to map variables. This is in compliance
with our theoretical analysis.

0

20

40

60

80

100

|str|−|Str|

T
im

e
(m

se
c)

encoding eval
iterative eval
encoding

5−12 10−12 15−12 5−20 10−20 15−20 10−30 5−30 15−30

Figure 2. Implication evaluation.

5.2 Workflow design

The aim of evaluating the workflow design phase of the
composition is to show i) dramatic improvement of the com-
position time resulting from the usage of unusable services
selection, ii) efficiency and scalability of our composition
approach. The results achieved by our composition system
are summarized in Tab. 2. The results for composition time
present significant improvement against the approach with-
out service space restriction (Without). In both cases, when
selection of unusable services runs in parallel (NewP), and
in sequence before select usable services process (NewS),
the time is reduced in more than one order of magnitude,
see also Fig. 3. To clarify the reason of the improvement, we
measured also how much times did the execution of select
usable services process cross the code at lines 5 (marked as
A), and 12 (marked as B), see also Fig. 4. The decrease of
the crosses explains the improvement of composition time.
The parallel version presents an improvement from 15 to 46
times in terms of composition time and adequate improve-
ment in terms of crossing lines A, B, see Fig. 5.

1 2 3 4 5 6 7 8 9 10

x 10
4

10
0

10
1

10
2

10
3

10
4

Number of services

C
om

po
si

tio
n

tim
e

(m
se

c)

parallel
serial
without

Figure 3. Composition time.

1 2 3 4 5 6 7 8 9 10 11 12

x 10
4

10
2

10
3

10
4

10
5

Number of services

N
um

be
r

of
 c

od
e

lin
e

cr
os

se
s A parallel

A serial
A without
B parallel
B serial
B without

Figure 4. Code line crosses.

1 2 3 4 5 6 7 8 9 10 11

x 10
4

5

10

15

20

25

30

35

40

45

50

Number of services

Im
pr

ov
em

en
t

composition time
A
B

Figure 5. Improvements.

6 Conclusions and future work

This paper presents a composition approach focusing on
problems related to efficiency and scalability. At conceptual
level, it takes into consideration pre-/post-conditions of ser-
vices and finds a solution having the best QoS. As far as we
know, there is no other work dealing with scalability regard-
ing the complexity of the user goal condition and pre-/post-
conditions. Our current approach is able to evaluate impli-
cation even if the complexity of the conditions is not trivial.

Table 2. Experimental results.
Services Composition time (msec) Number of code line crosses Improvement

NewP NewS Without NewP A NewS A Without A NewP B NewS B Without B CT A B
10 000 6 7 97 991 976 30767 552 149 5079 16.2 31.0 9.2
20 000 11 19 336 1728 1611 53686 831 263 9249 30.5 31.1 11.1
30 000 42 49 718 3041 3018 72825 539 319 12325 17.1 23.9 22.9
40 000 29 44 932 1144 1136 52368 606 204 8438 32.1 45.8 13.9
50 000 22 49 1022 1674 1661 55542 376 248 12023 46.5 33.2 32.0
60 000 60 94 1454 2613 2581 62142 1361 199 11645 24.2 23.8 8.6
70 000 82 106 2070 1577 1413 76288 751 254 12713 25.2 48.4 16.9
80 000 76 75 2806 2194 2174 76390 602 290 11230 36.9 34.8 18.7
90 000 173 222 2613 3299 3262 50183 471 329 11025 15.1 15.2 23.4
100 000 121 179 3009 2711 2667 75202 895 256 14589 24.9 27.7 16.3

As our experiments showed, our approach suffers by the
dependence on the difficulty to transform a logic formula
into DNF. We were speculating and suppose that conditions
required by a user in practical scenarios are more like con-
junctions of relatively independent sub-formulae (indepen-
dent in terms of distinct predicates and variables used in dis-
tinct sub-formulae). Instead of transforming the condition
to DNF, we should use conjunctive normal form (CNF). Our
preliminary experiments show that the transformation into
CNF is fast if the input is a formula which is a conjunction
at the first level. Our idea of encoding application and the
algorithm to decide if an implication between two formulae
holds, can be relatively easily adapted to work with CNF.
Our future research evaluates this in details.

The research regarding QoS aware service composition
is noticeably farther as research dealing with pre-/post-
conditions. As this paper presents, it is feasible to compose
services in acceptable time even if the size of the service
repository rises to 100 000. We suppose that the research
attention in future might move to other problems than ef-
ficiency of QoS aware composition. Since there is still no
practical application of service composition, we should an-
alyze what are the real scenarios where it could be applied
and which problems have to be solved before it can be done.

We had adapted the proposed approach to effectively
handle update requirements regarding the service set. We
are able to quickly manage the adding/removal of service,
or change of the QoS attributes. As a result, the user query
is responded based on the actual situation without signifi-
cant delay.

References

[1] S. Agarwal and S. Lamparter. User preference based au-
tomated selection of web service compositions. In ICSOC
Workshop on Dynamic Web Processes, pages 1–12, 2005.

[2] M. Alrifai, T. Risse, P. Dolog, and W. Nejdl. A scalable
approach for qos-based web service selection. In Service-
Oriented Computing ICSOC 2008 Workshops, pages 190–
199, Berlin, Heidelberg, 2009. Springer-Verlag.

[3] P. Bartalos and M. Bielikova. Fast and scalable seman-
tic web service composition approach considering complex
pre/postconditions. In WSCA ’09: Proc. of the 2009 IEEE
Congress on Services, Int. Workshop on Web Service Com-
position and Adaptation, pages 414–421. IEEE CS, 2009.

[4] P. Bartalos and M. Bielikova. Semantic web service com-
position framework based on parallel processing. IEEE Int.
Conf. on E-Commerce Technology, pages 495–498, 2009.

[5] P. Bertoli, R. Kazhamiakin, M. Paolucci, M. Pistore,
H. Raik, and M. Wagner. Control flow requirements for au-
tomated service composition. IEEE Int. Conf. on Web Ser-
vices, pages 17–24, 2009.

[6] Y. Gamha, N. Bennacer, G. V. Naquet, B. Ayeb, and L. B.
Romdhane. A framework for the semantic composition of
web services handling user constraints. In ICWS ’08: Proc.
of the 2008 IEEE Int. Conf. on Web Services, pages 228–237.
IEEE CS, 2008.

[7] Z. Huang, W. Jiang, S. Hu, and Z. Liu. Effective pruning al-
gorithm for qos-aware service composition. IEEE Int. Conf.
on E-Commerce Technology, pages 519–522, 2009.

[8] S. Kona, A. Bansal, B. Blake, S. Bleul, and T. Weise. A
quality of service-oriented web services challenge. IEEE Int.
Conf. on E-Commerce Technology, pages 487–490, 2009.

[9] S. Kona, A. Bansal, B. Blake, and G. Gupta. Generalized
semantics-based service composition. In ICWS ’08: Proc.
of the 2008 IEEE Int. Conf. on Web Services, pages 219–
227. IEEE CS, 2008.

[10] S. Kona, A. Bansal, L. Simon, A. Mallya, G. Gupta, and
T. D. Hite. Usdl: A service-semantics description language
for automatic service discovery and composition. Int. J. Web
Service Research, 6(1):20–48, 2009.

[11] N. Lin, U. Kuter, and E. Sirin. Web service composition
with user preferences. In ESWC, pages 629–643, 2008.

[12] J. R. Ullmann. An algorithm for subgraph isomorphism.
Journal of ACM, 23(1):31–42, 1976.

[13] H. Q. Yu and S. Reiff-Marganiec. A backwards composition
context based service selection approach for service compo-
sition. IEEE Int. Conf. on Services Computing, pages 419–
426, 2009.

[14] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and
Q. Z. Sheng. Quality driven web services composition. In
WWW ’03: Proceedings of the 12th international conference
on World Wide Web, pages 411–421, New York, NY, USA,
2003. ACM.

