
Disambiguating Search by Leveraging a Social

Context Based on the Stream of User’s Activity

Tomáš Kramár, Michal Barla and Mária Bieliková

Faculty of Informatics and Information Technology
Slovak University of Technology

Bratislava, Slovakia
kramar.tomas@gmail.com, {barla,bielik}@fiit.stuba.sk

Abstract. Older studies have proved that when searching information
on the Web, users tend to write short queries, unconsciously trying to
minimize the cognitive load. However, as these short queries are very am-
biguous, search engines tend to find the most popular meaning – someone
who does not know anything about cascading stylesheets might search
for a music band called css and be very surprised about the results. In
this paper we propose a method which can infer additional keywords for
a search query by leveraging a social network context and a method to
build this network from the stream of user’s activity on the Web.

1 Introduction

Finding a relevant document based on few keywords is often difficult. Many
keywords are ambiguous, their meaning varies from context to context and from
person to person. Some words are ambiguous by nature, e.g., a coach might be
a bus or a person, other words became ambiguous only after being adopted for
a particular purpose, not to mention English nouns, which, apart from their
natural meaning, also name a software, music band or any other entity. There
are also words whose meaning depends on the person who is using them; clearly,
architecture means different things to a processor designer than to an architect.
Based on the previous observations, we might conclude that using short queries
is not a good idea. Unfortunately, this is how we search [1].

The search engines work like databases: they crawl and index documents and
respond to queries with a list of results. The order of documents depends on the
adopted relevance function; the most widely used search engine today – Google
– uses a PageRank relevance function: the more links to a document, the more
likely it is to appear at the top positions. This ordering is however not always
compatible with user’s information needs: a programmer searching for cucumber

probably does not want to make a salad.
We tackle the problem by implicitly inferring the context and modifying

the user’s query to include it. The original query is enriched with additional
keywords which capture the user’s focus. In case of the said programmer, the
resulting query might be cucumber testing which provides much more valuable



and relevant documents than the original query. We select additional keywords
following the social network or rather the virtual community the user belongs
to in this network. The search thus becomes personalized – the same query for
another user from another community might be cucumber salad.

The paper is structured as follows. In next section we talk about related work,
section 3 gives an overview of how the social network is built, how the commu-
nities are extracted and how they are used in the process of keyword inference.
In section 4 we talk about preliminary experiments and give conclusions.

2 Related works

The concept of search disambiguation is certainly not novel. Haveliwala proposed
an alternative method of document ranking – a topic-sensitive PageRank [2]. For
each document, multiple rank values are calculated, each biased in the context of
one root topic from Open Directory Project, ODP1. The search results are then
biased towards the current topic determined from the words of the document
which the user started the search from.

The disambiguation and personalization is often achieved by leveraging some
kind of social connections. In [3], the authors proposed a method for personal-
ising the search results by leveraging communities. First a network of users’
sessions is constructed (offline) from available access logs. Then, this network is
used as a basis for detection of user communities. Subsequently, for each avail-
able document an interest of each community is calculated. When a user starts
searching, her session is matched to the communities using a cosine similarity
and the matching documents are ranked using a Bayesian network computed
from the degree of interest of the matched communities to the document. Ben-
der et al. [4] exploit existing social networks for ranking documents with a model
called UserRank. The documents tagged, bookmarked or rated by user’s friends
get higher ratings. This approach, however, does not solve the problem of ac-
tually getting the document into the list of results. It can only reorder this list
once it was retrieved by other means.

Personalization of the document retrieval itself can be done by automatic
query refinement (also called query expansion), which has been recognized long
ago as an effective technique to improve search results. Many approaches exist,
ranging from an analysis of the lexical affinities [5] to thesaurus based tech-
niques [6]. These methods are however based on a static information which does
not always accurately capture user’s interest. We believe that query refinement
could achieve deeper level of personalization and disambiguation by also analyz-
ing the documents and behavior of similar users as was already shown in [7].

Our method extends and combines the social networks and query refinement
methods. We link the users in a social network not only by analyzing URLs of
the visited pages, but also by analyzing the content features of these pages. We
later use these features to capture user’s current interest when she is searching,
and also to provide the basis for our query refinement methods.

1 ODP, http://dmoz.org



3 Social-Context driven Query Expansion

In order to be able to expand the user’s query with additional keywords, we need
to capture its context and find the most appropriate keywords representing this
context. The process is driven by an underlying automatically constructed social
network and communities found within this network. The network is constructed
from the simple user model based on the stream of user’s activity. It is created
from content features extracted from pages the user visited and an implicitly
acquired user rating of the page.

Fig. 1. Overview of the query expansion process

The overview of the process is depicted in Fig. 1. The user requests a page
via proxy (step 1) configured in her browser. Proxy requests the page from the
target server (step 2) and extracts the characteristic document features (step 4)
– a vector of

– document keywords (using various keyword extraction algorithms and ser-
vices such as tagthe.net or OpenCalais),

– tags from delicious.com (if available) and
– ODP category.

To capture user’s implicit rating of the served webpage, a JavaScript code
is inserted into every page, which detects user’s scrolling and mouse movements
and periodically updates the server’s record about time the user has spent on
the page. The implicit rating is subsequently calculated as a ratio between the
time spent on page and the page size

rating = 1 −

1

1+X
, where X = time_on_page

document_size
.



To improve the accuracy of rating calculation and keyword extraction we
extract and use the cleartext2 version of the page, which holds only the core
content, stripped of the markup and the navigational components.

Based on user’s activity and the extracted features a social network is built
(step 5), where a weight of an edge denotes a similarity of two users connected
by this edge. The network is built in a sequence of steps:

1. New network is created, all users are connected with an edge of weight 0.
2. All documents which have implicit rating lower than the predefined minimal

value are discarded.
3. For all visited domains (as in the Internet DNS system), a weight between

the users who visited the same domain is incremented by a parameter d.
4. For all visited documents, a weight between the users who visited the same

document is incremented by a parameter p (where d < p).
5. For each pair of users, a weight between them is incremented by the size of

the overlap of the features extracted from the documents they visited.

The resulting graph represents the users and relationships among them. The
stronger is their relationship, the more similar interests they have and the higher
is the weight of the edge connecting them.

Next, a community detection algorithm is run (step 6), to partition the net-
work into clusters of similar users (based on the stream of their activity). The
algorithm is designed to take advantage of the weighted relations in the graph
and produces overlapping communities, i.e., a user may belong to multiple com-
munities at one time. This is an important property as a user might have multiple
interests, each represented by one community. The community is created in the
following steps:

1. Select a random vertex, not yet assigned to any community.
2. Spread the activation energy from the selected vertex to the rest of the

network considering weights of the edges.
3. Create new community by collecting all vertices activated via the spreading.
4. If there is an unassigned vertex continue with step 1, otherwise end.

These two stages, the social network creation and community detection are
performed periodically and offline. Found virtual communities then provide con-
text for the search – the content features extracted from documents visited by
the community or the actions carried on by its members.

In order to identify the search context, we capture user’s current interest
(step 7), which in our case is a set of documents features the user is currently
interested in. We construct it dynamically – for every requested document, we
search for an overlap of document’s content features with the content features
from the user’s current interest. If an overlap is found, current interest is enriched
by document’s features. Otherwise, we consider that a new session (and thus a

2 We used custom implementation of the publicly available readability service,
http://lab.arc90.com/experiments/readability/



switch of interests) just got started. When we detect that a search has been
initiated, the current interest helps us to determine all relevant (i.e., sharing
at least one feature) communities (step 8). The top n communities are then
considered as the search context and passed to the final stage of query expansion.

We use two approaches to infer new keywords, each using the data provided
by the members of the communities (step 9) – query stream analysis and keyword

co-occurrence analysis.
Query stream analysis follows a simple observation of how we do our searches.

When a search query does not return relevant documents, it is redefined. The
redefinition continues unless the user finds the information or gives up. A query
stream represents one searching session, an uninterrupted succession of queries
issued by the same user which have some common parts. A sample query stream
is: jaguar, jaguar speed, jaguar car speed. We take all queries issued by
users from the search context and search for query streams where at least one
query matches the user’s query. Query streams which did not lead to a successful
retrieval (the documents visited from a search results page have low implicit
rating) are discarded. The last query is extracted from each successful query
stream and used to enrich the original query.

A keyword co-occurrence analysis is based on analyzing which additional key-
words frequently occur with the words from the query in the documents viewed
by the users from the current search context. The original query is enriched with
the top n co-occurring keywords.

4 Preliminary experiments and conclusion

We evaluate the method of query refinement within a platform of an enhanced
proxy server [8]. The proxy plays a crucial role in the experiment setup as it
allows us to log each user request and further process and modify the response
from a webserver. This way we modify the page before it is displayed and include
the search results provided by the expanded query. We also use the modification
features to insert scripts into pages to monitor user’s activity. We do not need
to cope with the user identification as this is all handled by the proxy itself.

The goal of the preliminary experiments was to verify that, given the context
and the access logs, the proposed query expansion methods would give satisfac-
tory results, generating queries which achieve subjectively better search results.

To evaluate the query stream analysis, we used AOL search engine data3. This
dataset contains roughly 20M of queries from 650k users. Table 1 summarizes
some queries and how they would be reformulated using this approach.

For the evaluation of the keyword co-occurrence, we used the data collected
by the proxy server during its development, that is four users and 310 visited
documents. Results provided by this method are also summarized in table 1.

The results of preliminary experiments are promising, as both approaches
are capable of redefining the queries to rule out the ambiguity and to provide
(subjectively) more relevant search results.

3 AOL search engine logs, http://www.gregsadetsky.com/aol-data/



Table 1. Some examples of query reformulation using different approaches

Method used

Query stream analysis Keyword co-occurrence

Original query Expanded query Original query Expanded query

java history history of java indonesia passenger passenger apache
jaguar jaguar animal branch branch git
sphinx sphinx cats apache apache server

The key parts of the method are based on the keywords and on the keyword
overlap. We work on improvement of the keyword extraction process by extract-
ing the parent keywords (hypernyms) as proposed in [9]. That should improve
the chance for a match between two related documents. For example, documents
with keywords ruby and python do not match, but when extended with their
parent category programming they generate a match on programming.

The proposed method combines social networks and query expansion ap-
proaches based on the characteristic content features of the documents. User’s
current interest is mapped to the interests of the communities and the semantics
of the query is inferred from the behaviour of these communities.

Acknowledgment. This work was partially supported by the Scientic Grant
Agency of Slovak Republic, grant No. VG1/0508/09 and it is the partial result
of the Research & Development Operational Programme for the project Support
of Center of Excellence for Smart Technologies, Systems and Services II, ITMS
26240120029, co-funded by the ERDF.

References

1. Jansen, J., Spink, A., Saracevic, T.: Real Life, Real Users, and Real Needs: a Study
and Analysis of User Queries on the Web. Information Processing & Management
36(2) (2000) 207–227

2. Haveliwala, T.H.: Topic-sensitive Pagerank. In: WWW 2002, ACM (2002) 517–526
3. Almeida, R.B., Almeida, V.A.F.: A Community-aware Search Engine. In: WWW

2004. (2004)
4. Bender, M., et al.: Exploiting Social Relations for Query Expansion and Result

Ranking. In: ICDEW 2008, IEEE (2008) 501–506
5. Carmel, D., et al.: Automatic Query Refinement using Lexical Affinities with Max-

imal Information Gain. In: SIGIR 2002, ACM (2002) 283–290
6. Liu, S., et al.: An Effective Approach to Document Retrieval via Utilizing WordNet

and Recognizing Phrases. In: SIGIR 2004, ACM (2004) 266–272
7. Kajaba, M., Návrat, P., Chudá, D.: A simple personalization layer improving rele-

vancy of web search. Computing and Information Systems Journal 13 (2009) 29–35
8. Barla, M., Bieliková, M.: "Wild" Web Personalization: Adaptive Proxy Server. In:

Workshop on Intelligent and Knowledge Oriented Tech., WIKT 2009. (2009) 48–51
9. Barla, M., Bieliková, M.: On Deriving Tagsonomies: Keyword Relations Coming

from Crowd. In Nguyen, N., et al., eds.: ICCCI 2009. LNAI 5796, Springer (2009)
309–320


