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Abstract. Quality of collective inference relational graph classi�er de-
pends on a degree of homophily in a classi�ed graph. If we increase
homophily in the graph, the classi�er would assign class-membership to
the instances with reduced error rate. We propose to substitute tradition-
ally used graph neighborhood method (based on direct neighborhood of
vertex) with local graph ranking algorithm (activation spreading), which
provides wider set of neighboring vertices and their weights. We demon-
strate that our approach increases homophily in the graph by inferring
optimal homophily distribution of a binary Simple Relational Classi�er
in an unweighted graph. We validate this ability also experimentally us-
ing the Social Network of the Slovak Companies dataset.

1 Introduction

Relational classi�ers extend the attribute-based classi�ers by adopting relations
between classi�ed instances, treating the dataset as a mathematical graph. For
example, we can classify web pages according to their content only, however in-
corporating the content or class-membership of neighboring web pages1 provides
better results [1,2].

Methods which utilize the relations between classi�ed instances are well
suited for domains where instances have variable number of attributes (e.g., ac-
tors in a movie), attribute values are very sparsely distributed and inadequately
correlate with classes, or instances have very few attributes but many relations
(e.g., person in a social network identi�ed by its nickname only but connected
to many other people via friendship relation).

Univariate relational classi�ers with collective inference [3,4] compose an in-
teresting branch of classi�cation methods where classi�ed instances share only
their class-membership between themselves via their relations (edges in a graph).
The mechanism of �nal resolution of instance's class-membership is based on
assumption of homophily � the classi�er assumes that related (neighboring) in-
stances are more likely to share similarities (e.g., the same class) as nonrelated

1 neighboring web pages = connected via hyperlinks



instances [5]. This phenomenon is present in many graphs and mostly in social
networks � people tend to group according to their race or ethnicity very strongly
[6], and similarly it is with other person attributes (i.e., class-membership). Ho-
mophily is also induced in graphs where vertices are somewhat more abstract,
like web pages or avatars, but generally they are created by humans and so they
contain homophily tendencies.

In our work we analyze a Simple Relational Classi�er [7] and discuss its de-
pendency on homophily (Section 2). We draw the attention to the basic method
of neighborhood acquisition applied in the Simple Relational Classi�er and put
it into contrast with a local graph ranking algorithm named spreading activation
as an alternative in order to increase homophily. Next, we de�ne how to measure
homophily in a classi�ed graph utilizing information entropy and we derive re-
lationship between homophily and Simple Relational Classi�er class assignment
mechanism (Section 3). In Section 4 we provide an experimental evaluation that
neighbors acquired via spreading activation outperform simple direct neighbor-
hood in terms of homophily, using the Social Network of the Slovak Companies
dataset. Section 5 contains related work and Section 6 concludes the paper and
points out some issues requiring further work.

The goal of our work is to bring following contributions:

� we propose to use spreading activation as a better method to neighborhood
acquisition in order to increase performance of the classi�er,

� point out the close relation between classi�er performance and dataset ho-
mophily,

� de�ne how to measure the homophily in a classi�ed graph,
� utilize homophily as a measure of classi�er quality as an alternative to tra-
ditionally used supervised learning schema.

2 Neighborhood in Simple Relational Classi�er

Simple Relational Classi�er [7] estimates class-membership of the classi�ed in-
stance according to its neighborhood, exploiting a graph based data set G = (V,E).
If p(cm|vk) is de�ned as a class-membership probability that vertex vk belongs
to class cm then the Simple Relational Classi�er assumes class-membership of
vk using Formula 1.

p(cm|vk) =
1
W

∑
vj∈Vk|class(vj)=cm

w(vk, vj) (1)

where Vk is the set of neighboring vertices of vertex vk, w(vk, vj) is a weight

of the edge between vertices vk and vj , and W =
∑

vj∈Vk

w(vk, vj) normalizes the

result. The set of neighbors Vk contains all vertices directly connected to the
classi�ed vertex vk via edges. If the class-membership consists of classes cm ∈ C
(C is the set of all classes), the �nal class assigned to vk is in Formula 2.

class(vk) = argmaxcm [p(cm|vk)] (2)



Neighborhood Acquisition

In original Simple Relational Classi�er as well as in other relational classi�ers
[2,8] neighborhood of a vertex vk is designed as a set of vertices directly connected
via edges, so that Vk = {vj : vj ∈ V, exists(ekj)}, where exists(ekj) denotes an
event that the graph contains an edge between vertices vk and vj .

Our hypothesis is that the neighborhood method should be more robust in
order to absorb broader set of vertices along with weights indicating degree of
vertex proximity. Due to this reason, we propose to adopt activation spreading
algorithm [9,10], which is a local graph ranking method with following pseu-
docode2:

activate (energy E, vertex vk) {

energy(vk) = energy(vk) + E
E' = E / |Vk|
if (E' > T) {

for each vertex vj ∈ Vk {

activate(E', vj)

}

}

}

Activate is a recursive algorithm, its output is a set of vertices along with their
weights (energy), indicating degree of a�nity between vk and ranked vertices.
Minimum energy threshold T provides quick convergence of algorithm and |Vk|
is a number of neighboring vertices. Spreading activation assigns energy values
to the vertices, not to the edges � in order to be consistent with (1) we establish
w(vk, vj) in Formula 3.

w(vk, vj) =
energy(vk)
energy(vj)

(3)

Fig. 1(a) depicts example of a graph with unweighted edges. If we would
classify v1, then V1 = {v2, v3, v4}. However, if we adopt spreading activation
(Fig. 1(b)), we get V1 = {v2, v3, v4, v5, v6} along with weights indicating a�nity

between vertices, so that w(v1, v2) = energy(v1)
energy(v2)

, w(v1, v3) = energy(v1)
energy(v3)

, etc.

Discussion on alternative graph ranking methods is in Section 5.

3 Measuring Homophily

Evaluating the di�erence between original and proposed neighborhood acquisi-
tion method in terms of classi�er error rate draws our attention to an observation
that quality of Simple Relational Classi�er class assignment depends on degree of

2 In order to maintain simplicity and to be coherent with graph used in experimental
evaluation, following algorithm is designed for unweighted graph, the original one
can deal with weighted graphs.
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Fig. 1. Two methods of neighborhood acquisition.

homophily in the classi�ed graph. First we introduce homophily and its measure
and then point out its relation to the Simple Relational Classi�er.

Assumption of homophily is informally de�ned as following [6]:

Related instances are more likely to share same class

as nonrelated instances.

We can rewrite this sentence in terms of probability theory in following way:

p(exists(ekj)|class(vk) = class(vj)) >

> p(exists(ekj)|class(vk) 6= class(vj)) (4)

where class(vk) ∈ C is class-membership of vertex vk. We de�ne the degree
of homophily of vertex vk as a measure based on class-membership distribution
of its neighboring vertices by adopting information entropy:

homophily(vk) = 1.0 +
∑

cm∈C

p(cm|vk) logbase p(cm|vk) (5)

This measure is designed to deal with unlimited number of classes and the
homophily is in range 〈0, 1〉, so that 0 is the lowest homophily and 1.0 is the
highest homophily.

If we consider binary classi�cation with classes C = {c+, c−}, base = 2 and
weights of all edges are set to 1.0 (i.e. unweighted graph), we gain following
boundary states:

� the highest homophily(vk) = 1.0 if all neighboring vertices are assigned to
c− or c+ exclusively (Fig. 2(a));

� lowest homophily(vk) = 0.0 occurs if 50% of neighboring vertices are as-
signed to class c−, the rest belongs to c+ (Fig. 2(b)).
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Fig. 2. Examples of homophily in a graph, each vertex in (a) has the same level of
homophily (similarly (b)).

If we include substitution W =
∑

vj∈Vk

w(vk, vj) into (1) we can rewrite the

general Simple Relational Classi�er formula as following:

p(cm|vk) =

∑
vj∈Vk|class(vj)=cm

w(vk, vj)∑
vj∈Vk

w(vk, vj)
=

Wkcm

Wk
(6)

It is obvious that Wk =
∑

cm∈C

Wkcm
.

Because our experiments are based on binary classi�cation, with set of classes
C = {c+, c−}, we get Wk = Wkc+

+Wkc−
. If we consider this adjustment within

(2), in order to determine impact of various neighborhood acquisition methods

we only need to observe the ratio Wkc+
: Wk. If

Wkc+
Wk

> 0.5, classi�ed vertex

vk is assigned to positive class, if
Wkc+
Wk

< 0.5 then class(vk) = c−, otherwise

class(vk) is left unassigned.

4 Experimental Evaluation

If we return to our hypothesis presented Section 2, our goal is to compare basic
direct neighborhood with neighbors acquired with spreading activation and de-
termine how these two approaches in�uence homophily in a graph (which in turn
in�uences classi�er performance). With this knowledge we will be able to dis-
tinguish which neighborhood method should be included into Simple Relational
Classi�er with the aim to decrease its misclassi�cation rate.

We employ dataset based on social network of Slovak Companies register
(http://foaf.sk/) [11]. A bipartite graph consist of two vertex types, Company

and Person and a relation between them (is_in), which indicates that person P



plays a role in company C as a shareholder, director, etc. The dataset contains
350 000 persons, 168 000 companies and 460 000 edges between them. It is a
typical social network with exponential distribution of vertex degree and graph
component size.

Vertices in the graph hold several attributes � name, address, basic capital,
scope of business activity, etc. A vertex class-membership is then derived from
one of these attributes. We use class-membership named is_in_Bratislava which
de�nes that class(vk) = c+ if person or company is located in the city Bratislava
(capital city of Slovakia), otherwise class(vk) = c−. The distribution of c+ : c−
is 27 : 73.

In practice, such a classi�cation task is useful for two reasons: derive (at
least at the regional level) addresses of people and companies with unknown
location and validate address of instances a�ected by noise of the data acquisition
method3.

In our experiment we put into contrast ratios from (6). The results are sum-

marized in Fig. 3, x -axis represents the ratio of
Wkc+
Wk

and y-axis is average vertex

homophily, where vertices are grouped according to x -axis4.
In Fig. 3 we compare three curves: the optimal homophily function (as de-

�ned in (5)) is put into contrast with the two observed homophily rates: basic
neighborhood and spreading activation. We see that spreading activation �ts
optimal homophily much better than basic neighborhood. In terms of root mean
square error (RMSE) we gain:

� Company : RMSEbasic_neigh = 0.360 and RMSEact_spread = 0.219
� Person: RMSEbasic_neigh = 0.374 and RMSEact_spread = 0.222

For a comparison a list of contingency table derived measures is in Table 1.
We see that spreading activation clearly outperforms basic neighborhood in all
measures except the recall of Person vertex type. Imbalance of recall is induced
by imbalance between c+ : c− ratio in the dataset, where c− is assigned to 73%
of vertices, but recall is computed on the subset of c+ vertices.

Table 1. Contingency table derived measures.

Company Person

basic neigh. spread. act. basic neigh. spread. act.

recall [%] 85.8 90.8 71.0 56.8
precision [%] 18.2 59.5 24.3 89.1
f1 [%] 74.7 86.1 77.5 79.4
accuracy [%] 30.0 71.9 36.2 69.4

RMSE 0.360 0.219 0.374 0.222

3 http://foaf.sk/ dataset is gathered via wrapping the Slovak Companies register
http://orsr.sk/ administrated by the Ministry of Justice of the Slovak Republic.

4 x -axis is sampled with step = 0.1, e.g., when a vertex vk has three neighbors with

positive class and one neighbor with negative class,
Wkc+

Wk
= 3

4
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Fig. 3. Homophily comparison for basic neighborhood and spreading activation.

There are more reasons why spreading activation outperforms basic neigh-
borhood method and provides smoother and more robust homophily lapse. Con-
sider a graph in Fig. 4. If we use basic neighborhood method, vertex v1 is sur-
rounded by vertices V1 = {v2, v3}. This constellation implies very disadvan-

tageous homophily; class(v2) = c− and class(v3) = c+, so that
W1c+

W1
= 0.5

and homophily(v1) = 0.0. However, if we consider neighborhood computed with
spreading activation (starting with energy E = 1.0 and threshold T = 0.15), we
get neighbors with weights as depicted in Fig. 4. If we compute homophily for

this kind of neighborhood we get
W1c+

W1
= 0.625 and homophily(v1) = 0.045.
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Fig. 4. Example of a graph with varying homophily according to the neighborhood
acquisition method.

The spreading activation energy was set to 300.0 in the experiment and
threshold T = 1.0 so that the neighborhood usually contains between 10 and
100 vertices and the ranking converged very quickly. Increasing the energy or



decreasing the threshold would provide us broader neighborhood of a vertex,
however the computational time will heighten. Decreasing the activation energy
should not be bene�cial as then the energy would spread to direct neighbors
only (the �ow will be then stopped by the threshold limit), providing the same
information about vertex' neighborhood as the basic method.

5 Related Work

Relational classi�ers (also called 'collective') are new and a developing branch of
predictive methods. Overview and classi�cation of relational classi�ers is avail-
able in [3,4]. More complex alternatives to Simple Relational Classi�er are It-
erative Reinforcement Categorization Algorithm [2] and Relational Ensemble
Classi�er [8], both capable to deal with more types of classi�ed instances as well
as handle more than one relation in a graph.

Graph ranking algorithms as spreading activation are well analyzed, mainly
due to popularity of global ranking algorithms as PageRank and HITS in web
search, an overview of these methods is in [10]. Spreading activation is a local
ranking method similar to Random Walks with Restart [12]. We decided to em-
ploy spreading activation due to its simple understandability and e�ective run-
time execution � we use the same method in real time on http://foaf.sk portal
when searching for related people and companies, serving more than 500 000 page
views per month.

There exist few proposals of alternative neighborhood acquisition methods to
direct vertex neighborhood composed of directly connected vertices. Gallagher
et al. [12] employs Random Walks with Restart method in order to improve
classi�er performance in graphs with weakly connected nodes, however without
deeper homophily phenomenon analysis. An overview work by Jensen et al. [4]
contains a neighborhood method concerning distance of neighboring objects but
its impact on classi�er performance is not provided.

Homophily in the task of classi�cation is referenced in several works [5,12],
using synonyms as 'auto-correlation' or 'local consistency'. A discussion of ho-
mophily measurement methods is in [13], however the degree of homophily is
set-based (a homophily of chosen attribute in a set of vertices), while we are
focused on homophily from a single vertex' point of view.

According to our contribution in previous sections we can refer to homophily
as a quality metric of a relational classi�cation. Classical measures as accuracy,
recall, precision or F1 can be only derived from true and false positives/negatives
from the contingency table, which subsequently requires the data set to be di-
vided into a training and testing set, usually using some cross validation method
[14]. Quality of relational classi�ers evaluated via these contingency table mea-
sures is a subject of bias induced by relations between vertices in the training
and the testing set [13,15]. On the other side, homophily explicitly requires these
relations, being capable for relational classi�er only (excluding attribute-based
methods).



6 Conclusion and Further Work

We analyzed quality of class assignment in a relational classi�er and its cor-
relation with homophily in the classi�ed data set represented as a graph. We
proposed to adopt spreading activation as an alternative to traditionally used
direct neighborhood in the classi�cation of graph vertices using Simple Relational
Classi�er. We demonstrated that to determine the positive impact of spreading
activation on the misclassi�cation rate it is sustainable to simply observe the
homophily induced by this neighborhood method rather than set up an experi-
ment with training and test set and calculate contingency table metrics, which
acquits us from the bias induces by relational component in the dataset.

In further work we derive the relation between homophily and classi�er qual-
ity of other relational classi�ers, mainly Iterative Reinforcement Categorization
Algorithm [2] and Relational Ensemble Classi�er [8]. It is an interesting notice
that Simple Relational Classi�er is in fact a kind of Iterative Reinforcement
Categorization method under speci�c conditions.
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