
Computing and Informatics, Vol. 30, 2011, 793–827

AUTOMATIC DYNAMIC WEB SERVICE
COMPOSITION: A SURVEY AND PROBLEM
FORMALIZATION

Peter Bartalos, Mária Bieliková

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava
e-mail: {bartalos, bielik}@fiit.stuba.sk

Communicated by Ladislav Hluchý

Abstract. The aim of Web service composition is to arrange multiple services
into workflows supplying complex user needs. Due to the huge amount of Web
services and the need to supply dynamically varying user goals, it is necessary to
perform the composition automatically. The objective of this article is to overview
the issues of automatic dynamic Web service composition. We discuss the issues
related to the semantics of services, which is important for automatic Web ser-
vice composition. We propose a problem formalization contributing to the formal

definition of the pre-/post-conditions, with possible value restrictions, and their re-
lation to the semantics of services. We also provide an overview of several existing
approaches dealing with the problem of Web service composition and discuss the
current achievements in the field and depict some open research areas.

Keywords: Web services, automatic dynamic web service composition, semantics,
pre-/post-conditions.

1 INTRODUCTION

One of the most important benefits of web services is their interoperability. This
feature allows that in the case of diverse software systems, one system can exploit the
functionality of the second. Moreover, we can build complex systems by integrating
diverse applications independently on the platform and place in which these are
running on. Integral parts of applications are exposed as web services to make
accessible the functionality they perform. These web services are then combined



794 P. Bartalos, M. Bieliková

together to perform more complex tasks. The process of arranging the services into
a complex workflow is called web service composition. The interoperability and
composability capabilities of Web services promote their usability in different areas,
e.g. in science in the context of scientific workflow management [13, 39, 24].

The motivation for web service composition, as just defined, is more about solv-
ing technical problems related to application integration, such as platform diversity.
In the last years the vision of web service composition moved toward this. A lot of re-
search effort has been put towards developing approaches able to provide the systems
user his goal by composing web services. The user must just describe what he wants
to achieve and the application takes care of automatic service composition fulfilling
this goal the best. In this scenario the problem is to find relevant web services and
arrange them in a meaningful, optimal manner. Web service composition is required
because usually there is no single service which can fulfill the user goal completely.

Automation of the service composition is crucial for fulfilling varying composi-
tion goals. To make this possible, we cannot rely only on pure syntactic descrip-
tions of services, since these are insufficient for machine processing and for achieving
meaningful results. Thus, the Web service descriptions are enhanced with seman-
tics. This makes the automatic composition feasible; however, semantic annotation
and correct understanding of semantics still deals with challenges.

Although the basis of the semantic Web service composition problem is easy
to explain, there are numerous details making the whole problem different. Even
small differences can make its complexity significantly different [2]. Thus, the vague
definition is insufficient and precise formalization is required.

Tremendous number of research papers had been published, focusing on different
aspects of the Web service composition [10, 18, 46]. The research tends to focus on
issues related to the QoS [3, 7, 8, 23, 25, 34, 29], the pre-/post-conditions [6, 8, 28,
31, 30, 12, 53, 42], the user constraints and preferences (e.g. soft constraints) [1, 20,
26, 37, 38], the consideration of the user context and complex dependencies between
services [40, 57, 15], and the transactional behavior of Web service compositions
[43, 21].

The objective of this article is to overview automatic dynamic Web service com-
position in wider context. We discuss the issues related to the semantics of services.
To make the service composition problem clear, we propose its formalization. There
are some works formalizing the problem already [31, 30]. Our main contribution
is the formal definition of the pre-/post-conditions, with optional value restrictions,
and their relation to the semantics of services. In opposite to other works, we clearly
state what the pre-/post-conditions and the value restrictions are, how they are re-
lated to the semantics of services, and how they are considered during the compo-
sition process. This article also provides an overview of several existing approaches
dealing with the basic problem of Web service composition. However, it is hard to
strictly categorize existing approaches; we divided them into three groups. First,
approaches considering only the I/O during service chaining are presented. These
usually deal also with the QoS optimization and performance issues. Then, we
discuss approaches considering additional metadata of services, e.g. the pre-/post-



Automatic Dynamic Web Service Composition 795

conditions. This is followed by approaches that allow defining also soft constraints
to the composition goal or used services. Finally, we discuss the achievements in
the field and depict some open research areas, which we believe should obtain more
research attention.

2 AUTOMATIC DYNAMIC WEB SERVICE COMPOSITION

2.1 Overview of Service Composition

The aim of Web services is to provide a functionality, which can produce required
data and effects in a widely accessible, easily discoverable form (by machines). The
philosophy of Web services goes beyond the technical solution of making some pro-
cedures possible to execute remotely, through the Web. The concept of Web services
introduces a new paradigm affecting distributed computation and software system
development [45, 44]. In the context of this new paradigm, the service composi-
tion stands as a mechanism combining multiple services to build up more complex
functionalities. This enhances the potential of single services.

The composition of multiple services supplies more complex needs, which cannot
be achieved using a single service. Even if there is no single service providing the
desired functionality, it may be possible to design a composite service from the
single services, and thus provide the desired functionality. The service composition
is classified based on two main aspects [18]. First, we distinguish between static and
dynamic composition. Second, we divide the composition approaches into manual,
and automatic.

The first perspective concerns the time when the service is selected to be a com-
ponent in the composite service. The static approaches made the selection during
design time. The dynamic approaches select services during run-time, according to
the needs given by the particular user goal. The second aspect deals with the fact
whether the composition is made manually by a designer, or automatically by a com-
position system. In our case, we deal with automatic dynamic service composition.
In this context, the problem is defined as follows: Given a query describing the com-
position goal and providing some inputs, design automatically a composite service
from the available services such that if it is executed, it produces the required goal.

It is important that in our context, the Web service is an abstract entity pro-
viding its functionality on the Web. It consumes inputs and produces outputs. It
can be also associated with pre-/post-conditions. The Web services are divided
into two main classes: RPC style and RESTfull services. Although both of them
are associated with the I/O and pre-/post-conditions, there are fundamental con-
ceptual differences between them. In the case of the RPC style Web services, we
consider them as remotely invocable distributed methods which we communicate
by using messages. In the case of REST-full services, the focus is on distributed
stateful resources over which we perform the standard HTTP operations. Consi-
dering Web service composition, the research attention is almost strictly focused on
RPC style services. However, there are some works dealing with RESTful service



796 P. Bartalos, M. Bieliková

composition [60]. Although both classes of Web services fit our definition, our work
is conceptually about composition of RPC style services, i.e. the focus is on the
operation performed by the service, which is specified by the description of its I/O
and the pre-/post-conditions. Note that in this context, we can consider also human
tasks as services realized by humans. If the procedures performed by humans are
described by the I/O and the pre-/post-conditions, we can consider them during the
composition.

There is a correspondence between service composition and declarative program-
ming. In declarative programming we describe what the program should accomplish
instead of describing how to do it. It is the responsibility of the program interpreter
to accomplish the described intent. Similarly, during service composition, the user
describes what s/he wants to achieve and the mechanism behind the service com-
position takes care of accomplishing it.

From another point of view, artificial intelligence planning and service compo-
sition have much in common [46]. Depending on the concrete assumptions to the
problem, they are more or less overlapping. The basic problem is finding a sequence
of actions, whose execution leads to the achievement of the desired goal, and it is
common for both. Differences may follow for example from a different perception of
the time required to realize an action. Service composition usually does not design
a time schedule of service executions. Another difference is that the service com-
position focuses more on the inputs required to execute a service and the outputs
produced by it. The examination whether the outputs produced by a service can
be consumed as inputs by another service has a lot of attention in the field. Ar-
tificial intelligence planning focuses more on the pre-conditions and effects of the
actions. On the other side, the same techniques can be used when solving service
composition, or artificial intelligence planning problem, i.e. the basis of both can be
transformed to the same problem.

The parallel with the artificial intelligence planning shows an important fact
determining the class of problems solvable by service composition. Note that not
each real problem can be described and solved using planning. Examples are the
environments where the future state cannot be determined before it is reached. For
instance, the n-body problem belongs into this category. It deals with finding of
motions of n bodies determined by Newton’s laws of motion and Newton’s law of
gravity. The first contribution to the solution of the n-body problem has been done
by Poincaré in 1892 and the problem was finally solved by Karl Frithiof Sundman
(for n = 3) in 1912. The result is that, in general, it is not possible to solve the
n-body problem analytically. Only numerical methods can be used to find a solution
with arbitrary precision (greater than zero). Consider a planning problem that we
want to fly to the Mars and land on an exactly specified point. The existence of the
n-body problem proves that a plan which solves this problem cannot be found. The
consequence is that also the Web service composition cannot deal with any problem;
however, the set of solvable problems is wide.

The overall process of the Web service composition should be seen more widely
and includes also the problem of a user goal description, acquisition of the necessary



Automatic Dynamic Web Service Composition 797

input data from the user, design and execution of the best possible composite service,
presentation of the results to the user [55]. As shown in Figure 1, the overall process
incorporates two parties: the user and the composition system. The user, who
may be a human or a software system, requests a composition (1). The request
contains the goal description (2). The user also has to provide some input data (3).
These may be defined by the user him/herself or the composition system identifies
what data are required. After these steps, the workflow design and execution takes
place (4). In common, the user goal can be achieved by several alternative solutions.
These vary in different issues which can be divided into two groups. The first includes
issues affecting the users’ satisfaction degree based on the quality of the result,
achieved by composite service execution, e.g. the user might have preferences. The
second concerns the quality of the execution process affected by the QoS (Quality
of Service) attributes which are non-functional properties of services. The aim is to
find the best solution considering all these issues. Usually there is no solution being
the best from each point of view. Hence, a suboptimal one, having the best total
asset, is selected. The found solution is executed to produce the required result (5).
If the user has requested some data, these are retrieved from the result and provided
to him/her (6). The user is also informed about the resulting status of the execution,
e.g. whether it was successful (7).

4)

Composition

selection

Execution

2) goal

3) input

data

5) result

provision

1) request

6) data

7) status

Fig. 1. Service composition process overview

The user goal has two basic essences: desired data, and effects or state (following
chapter discusses different aspects of the user goal). This corresponds to what can
be produced by web service execution. Usually the desired goal can not be fulfilled
by executing a single service. Instead, complex workflow is designed, in which web
service execution stands as an atomic activity.

The services are combined together using control constructs such as parallel,
sequential execution. The combination of services is required for two reasons. First,
the user goal may consist of several subgoals, each fulfilled by different service. Sec-
ond, execution of certain services could be required, to produce data or achieve
effects which are necessary to execute other services. The mechanism behind au-



798 P. Bartalos, M. Bieliková

tomatic web service composition must design a schema describing the control and
data flow of the execution, i.e. it depicts the synchronization of the particular ser-
vice executions, and prescribes which service produces output data used as input by
other services or achieves effect required before other service can be executed.

2.2 The Need of Semantics

The Web was primarily designed for use by humans. Nevertheless, there is an ef-
fort to automate its use and bring the Web more accessible for machines. This has
brought forward the need for machine processable representations of semantically
rich information: a vision at the heart of the Semantic Web [14]. Nowadays, ap-
proaches based on giving additional information – semantics, to the content of the
Web are researched. The semantic description focuses both on the content informa-
tion and services available on the Web. The added metadata are used to enhance the
processing of the Web resources (documents, services) and its automation. Without
metadata, we explore only low level data such as HTML and WSDL files. These
are originally not intended to be used for advanced automatic processing, and thus
the accuracy is low in this case. The semantics is a way how more sophisticated
exploitation of the Web resources could be achieved.

Web services enhanced by additional metadata expressing their semantics are
called semantic Web services [17, 52]. Semantic Web services are the result of the
Web evolution in two directions: adding dynamic elements to the Web and enhance-
ment of the syntactic description of Web services, see Figure 2. At the beginning,
the Web was only a collection of documents, i.e. it offered a static content. This
had evolved into an environment offering also different functionalities via services,
i.e. dynamic elements were appended. The additional semantics tends to solve the
problem of hard interpretation of the syntactic description of Web resources. This
causes problems when searching for relevant information or services.

Moreover, the popularity of the Web led to its enormous expansion in the amount
of documents and services available. Processing of these by humans is impossible
without additional machine support. Hence, the Web must be adapted to allow
sophisticated processing by machines. Not only humans are considered as the users
of the Web. The Semantic Web is an initiative aiming to bring the Web accessible
for machines – software agents. These can use methods which are more resistant to
the problem of Web expansion than humans are. The performance of the software
agents is limited due to weak structuring and hard machine interpretation of the
Web resources. The semantic approaches tend to overcome the above problems.
The aim is to automatically process Web resources and to make it fast and with
high accuracy.

In the context of service composition, the semantics helps discover and arrange
services which are relevant for the given request [12, 53]. Without semantics we rely
only on syntactic description of services. These do not provide enough information
to recognize the functionality of the service and thus automatic service composition,
satisfying dynamically varying user goals, is not feasible.



Automatic Dynamic Web Service Composition 799

Web services
Semantic

web services

WWW
Semantic

web content
Static

Dynamic

Syntax Semantics

SEMANTIC WEB

Fig. 2. Web evolution to Semantic Web services

Technically it is possible to design a composite service satisfying only the require-
ment that if some service produces output data used as input by another service, the
output and the input must have the same data type, defined in XML schema within
the WSDL description. Workflows designed in this manner are executable. However,
it is meaningless without considering other aspects. The aim of automatic service
composition is to design a composite service whose execution results in a predefined
user goal. This means that the composite service must be meaningful, which is
achieved by considering the semantics of services. This principle guaranties that the
composite service is not only executable, but also leads to a desired, meaningful goal.
Without semantics, we cannot disambiguate which services realize the required task.

In the context of automatic semantic Web service composition, both the query
and services are described at the semantic level. From the user goal point of view,
the semantics helps the user better express his/her intent. The semantics of services
supports the decision if the execution of the service can result in data and effects
required by the user, or other services. The required/provided data presented in the
query and the I/O of services have defined meaning. To enhance the opportunities
we deal also with states representing the desired effects in the goal, or condition,
which must hold before service execution, or an effect made by service execution.
The meaning of the service elements is provided by their being based to the ontolo-
gy. The ontology presents a shared vocabulary of terms – conceptualization of the
given domain. It is crucial that the semantic annotation of services guaranties that
different systems understand the meaning of service elements in the same way.

2.3 Semantic Annotation of Web Services

From the technical point of view, a Web service is a collection of executable func-
tions, available as a Web resource. Each has a name, unique location specified by its
URL, and a set of operations. The operations have names and defined I/O types.



800 P. Bartalos, M. Bieliková

The information about these is available in the syntactic description using Web Ser-
vice Description Language (WSDL). The WSDL description of the service includes
also all the information necessary to correctly invoke it. In WSDL 2.0, these two
aspects are described in different stages: abstract and concrete. If we deploy the
same implementation of some functionality to several Web service servers, we get
corresponding number of Web services. Each of them is a unique one and has its
own WSDL description. However, they share the same abstract description.

In the semantics based approach, the service provider should create also se-
mantic annotation of the services and provide them in the registry. The semantic
description relates to the abstract definition of services which includes the I/O types.
These attributes do not vary based on the place where the service is deployed. This
means that the same description suits all the deployments of the same implemen-
tation. Moreover, if we implement the same functionality in different programming
languages, we can use the same semantic description in each case. Hence, reusability
of the descriptions is well-advised. The available semantics is then used to enhance
a search considering only pure syntactic descriptions with semantics based search,
to get more appropriate results. The semantics is beneficial also to define the re-
questor’s intent. It allows more expressive definition of the user goal.

Several languages for semantic annotation of Web services are proposed. The
most known ones are OWL-S 1, WSML2, USDL, and WSDL-S 3. They differ in com-
plexity and expressivity of their construction elements. In each case the semantic
annotation binds the elements of Web services to domain terms. It focuses on the
I/O, the conditions under which the Web service can be invoked (pre-conditions)
and the conditions which hold after its execution (post-conditions).

By binding the I/O of services to ontological concepts, we still have only a limited
option to express the functionality of the service. A more natural way to express
some behaviour is by using a cause-effect paradigm. Web services may have defined
pre-/post-conditions to better express what they do. This kind of service modelling
helps improve the way how the user expresses his/her goal, service discovery, and
composition [12, 53].

2.4 Understanding the Semantics

The core of a service composition system can be seen as a black box module with
a defined interface. Its aim is to: based on the query, compose the services which are
made available in such a way that the execution of the composite service satisfies
the goal described in the query. Such a black box requires a specific formulation of
the user goal in a defined language. The results are provided in a specified form
too. These specifications are defined by the interface. Any entity able to fulfil the
requirements defined by the interface and to execute an invocation of the composition

1 http://www.w3.org/Submission/OWL-S/
2 http://www.w3.org/Submission/WSML/
3 http://www.w3.org/Submission/WSDL-S/



Automatic Dynamic Web Service Composition 801

system can utilize it. On the other side, the correct form of the composition request,
followed from the interface specification, does not guarantee successful utilization of
the composition system.

To achieve valuable results, both the requestor and the composition system must
understand the semantics of the query the same way. Moreover, the composition
system should understand the semantics of services created by the providers. Hence,
there are three parties which must share some knowledge. The correct understanding
of semantics of services is a complex task. It is affected by several issues such as
domain orientation, or openness of the services set (i.e. if we deal with a predefined
set of services, or an open service registry). These are important from the point of
view of managing the ontology creation, its maintenance, and service annotation. In
some cases these issues can be handled manually. However, considerable automation
is required for practical usability.

The composition system requires a consistent ontology including all the terms
used to annotate all the services the system uses during the composition. This
ontology may consist of several ontologies depending on the set of considered services
and the ontologies used to annotate them. The service provider may publish services
from one, or multiple domains. In any case, we expect that the ontology used
to annotate the published services is consistent, even if it covers several domains.
Services from one domain may be published by multiple providers. These may
use different ontologies to annotate the services. Hence, to compose services from
different providers, we have to deal with ontology heterogeneity.

The examination of the correspondence between two ontologies is studied as
a field of ontology matching [19]. Its aim is to provide methods enabling interoper-
ability of systems using different ontologies. In the context of service composition,
we exploit these methods to understand the semantics of services from different
providers in the same, consistent way. Moreover, these methods are useful to cor-
rectly understand the user’s desire expressed in the query. They are also used to
estimate the semantic relation (distance) of two concepts associated with Web ser-
vice elements [11, 54].

An interesting solution aiming at capturing the semantics of services is proposed
by USDL (Universal Service-Semantics Description Language) [32]. This language
has much in common with the other languages for semantic annotation of Web
services. On the other side, it concentrates on the problem of creating an ontology
which is understood by all the interested parties. The creation of standard domain
ontologies had shown to be a hard issue. The authors of [32] propose that a universal
ontology, including a sufficiently comprehensive set of concepts, is required. The
ontology fulfilling this requirement is a Lexical database for English – WordNet.

To annotate Web services, a transformation of the WordNet into an OWL on-
tology is used4. Based on this, USDL lacks the semantic aliasing problem. Similarly
to other languages, USDL also maps the parts of the WSDL service description
to concepts of the ontology. In this case, the concepts are basic concepts, or con-

4 http://www.w3.org/TR/wordnet-rdf/



802 P. Bartalos, M. Bieliková

cepts created by a conjunction, disjunction, and negation of basic concepts. The
basic concepts stand as a contact point between USDL and the WordNet. This
approach makes USDL a promising solution able to handle the problem of common
understanding of semantics depicted by an ontology defined by different parties.

3 SEMANTIC WEB SERVICE COMPOSITION FORMALIZATION

3.1 Preliminaries

In our work the ontology is seen as a conceptual model of a reality, as it is usual.
It provides a vocabulary of terms which are used to describe different aspects of
Web services and user goals. If an artefact is annotated by an ontological element,
it is expected that diverse systems understand its meaning in the same way. To
make the definition of the ontology precise, several formal systems can be used. The
most appropriate is the usage of description logic [4]. Description logic is a family
of formal systems differing in the allowed set of operators affecting the expressivity
level and the complexity of the reasoning. The reasoning is applied during service
matchmaking and composition [5]. The conceptualization defined by description
logic can also be expressed using first order logic [4].

We define the ontology by a set of concepts (also called classes) and relationships
between them (also called properties). The world consists of elements. These are
real objects (e.g. a credit card) appearing in the given domain with data attributes
(e.g. credit card number) and states of these objects (e.g. the credit card is charged).
Concept is a collection of elements sharing something in common. For example, the
Credit card concept is a collection of all credit cards. The Charged object concept
is a collection of all objects, which have been charged (not necessarily a credit
card). An element may belong to several concepts, e.g. if a credit card is charged, it
belongs to both Credit card and Charged object concepts. The elements may have
characteristics which are seen as data attributes, e.g. the credit card has a number.
This is depicted as the hasNumber property of the Credit card concept. The property
defines a relationship between the Credit card and the Credit card number concepts.

To express the meaning of different aspects of Web services, or user goals, we
bind them to the ontology. For example, a Web service charging a credit card is
bound to Credit card and Charged object concepts. The same is true for a user goal
to charge his/her credit card.

Definition 1 (Ontology). Ontology O conceptualizing the world consisting from
a set of elements E is a 3-tuple 〈C, S, P 〉.

C is a set of unary predicates over E, depicting concepts, i.e. each c ∈ C depicts
one concept. The fact that an element e ∈ E belongs to the concept c is denoted
by the existence of c(e), c ∈ C.

S is a set of binary predicates over C depicting a subsumption relationship
between two concepts, i.e. if c1, c2 ∈ C, s = (c1, c2) ∈ S then c1 subsumes c2,
denoted as c1 ⊑ c2.



Automatic Dynamic Web Service Composition 803

P is a set of binary predicates over E used to depict properties, i.e. each p ∈ P
depicts one property. The fact that there is a property p of element e1 ∈ E, ranging
in element e2 ∈ E, is denoted as p(e1, e2), p ∈ P .

A simple ontology, also presented in Figure 3, from a credit card domain may
look as follows:

C = {Payment card,Credit card,Card number,Charged object,Charged amount,

Stolen object,Active object,Expiration date,Expired object,Transaction detail,

Transaction status,Currency}

S = {Credit card ⊑ Payment card}

P = {chargedTo ⊆ Transaction detail × Charged amount,

isInCurrency ⊆ Transaction detail× Currency,

hasStatus ⊆ Transaction detail × Transaction status,

hasNumber ⊆ Payment card× Card number,

expiresAt ⊆ Payment card × Expiration date,

realizedBy ⊆ Transaction detail× Payment card}

Payment

cardCredit card

Card

number

hasNumber

Charged

amount

Expiration

date

chargedTo
Transaction

detail

Stolen

object

Active

object

expiresAt

realizedBy

Transaction

status

Expired

object

hasStatus

Charged

objectCurrency

isInCurrency

Fig. 3. Conceptualization of the credit card domain

The set C is a collection of terms of the conceptualized domain. The sub-
sumption relation between these is meant to be reflexive, i.e. ∀c ∈ C, c ⊑ c and
transitive, i.e. if c1 ⊑ c2 ∧ c2 ⊑ c3, then c1 ⊑ c3. The subsumption is used to express
the generalization/specialization relationship. The concept subsuming another one
is a more specific term. The properties explicitly defined for some concept are also
meant to be properties of all its subsuming concepts, i.e. if it is explicitly stated
that R ⊆ c1 × c3 and c2 ⊑ c1, then R is implicitly also a property of c2, R ⊆ c2 × c3.
When introducing a property, it is important to be aware of the meaning of the
order of predicate arguments. The property is meant to hold for the first argument.
The second is seen as a range of the property.



804 P. Bartalos, M. Bieliková

Definition 2 (Structural statement). Structural statement over ontology O =
〈C, S, P 〉 is any formula created as a composition of predicates from C

⋃
P , or

other structural statements using logical operators ∧,∨,¬, considering closed world
assumption.

Instead of putting concrete elements to the predicate arguments, we use bound
variables, representing some elements, according to the ontology. Conjunction de-
picts that each of the conjuncts holds. Disjunction expresses that some of the
conjuncts hold. Negation is used to state that something does not hold.

Structural statement can be seen as a semantic model of certain reality in the
world, focusing on its structure. We use it to depict the structure of a user goal, or
I/O and pre-/post-condition of Web services. Note that from description point of
view there is no significant difference between these.

An example structural statement is as follows: Credit card(card)∧expiresAt(card,
date) ∧ Expiration date(date) ∧ hasNumber(card, number) ∧ Card number(number).
The card variable represents a credit card with expiration date date and its number
is number. Another example is as follows: Credit card(card)∧¬Active object(card)∧
(Stolen object(card) ∨ Expired object(card)). Here, the card represents an inactive
credit card which was stolen, or has expired.

The structural statement proposes what holds for the elements which can re-
place the variables appearing in it. Using disjunction we define alternatives. The
conjunction is used to express multiple facts about elements and their relationship,
e.g. an element belongs to multiple concepts, or has several defined properties.

Next, we introduce value restrictions to the variables appearing in structural
statements. The value restriction is expressed using value restriction statement
defined as follows.

Definition 3 (Atomic value restriction statement). Let us denoteO as a set of ope-
rators. Any expression composed from variables, constants, and operators from O,
which can be evaluated as true or false after the variables are valued, is an Atomic
value restriction statement over set O.

An example set of operators is O = {<,>,==}. Using these we can create
atomic value restriction statements depicting (in)equality such as

1. a < b, or

2. a == b,

which are evaluated as true if the value of a is

1. less,

2. the same

as the value of b.



Automatic Dynamic Web Service Composition 805

Definition 4 (Value restriction statement). Any statement composing atomic va-
lue restriction statements over set O using logical operators ∧,∨,¬ is a Value re-
striction statement over set O.

Let us denote the evaluation of the value restriction statement Val as υ(Val), i.e.
υ(Val) → {true, false}. The value restriction statementVal is satisfied υ(Val) = true,
iff the variables are valued in such a way that the resulting statement is true. The
variables appearing in the value restriction statements correspond to the variables
from structural statements, or present local variables.

Definition 5 (Condition). Condition C is a 2-tuple C = 〈Str,Val〉. Str is a struc-
tural statement depicting the structure of the condition. Val is a value restriction
statement over variables appearing in Str.

The structural statements and value restrictions are interconnected through vari-
ables appearing in them. The variables in value restrictions are necessarily mapped
to data fragments described at syntactic level, i.e. the possible values of the variables
must suit the defined data type. The fact that variable v belongs to concept C and
its data type is dataType is denoted as C(v) → dataType.

An example condition C = 〈Str,Val〉 is defined as Str: Transaction detail(tran-
saction)∧chargedTo(transaction, amount)∧Charged amount(amount)∧isInCurrency
(transaction, currency)∧Currency(currency)∧hasStatus(transaction, status)∧Tran-
saction status(status)∧realizedBy(transaction, card)∧Credit card(card)∧hasNumber
(card, number)∧Card number(number)∧expiresAt(card, date)∧Expiration date(date)
and Val: amount = 400.0 ∧ status = approved ∧ date = 2012-09-02T16:24:19.544
+02:00 ∧ number = 5 588 320 123 456 789∧ currency = EUR. The condition depicts
that an active credit card with number 5 588 320 123 456 789 and expiration date
September 2012 is successfully charged by the amount of 400.0e.

Figure 4 depicts the correspondence between the syntactic and semantic descrip-
tion level of Web services in the context of our example condition. Figure 4 a) shows
the ontology prescribing the possible predicates usable in the structural statements.
Figure 4 b) presents the XML schema corresponding to the syntactic level defining
the data types of variables appearing in the structural statements. Figure 4 c) de-
picts the fragment of the SOAP message with concrete data values. Considering for
example the amount of money to which the credit card is charged, we see that at
the semantic level it is described by concept Charged amount. The data type used
to represent it is xsd:double. The value restrictions must be defined according to
this data type, e.g. 400.0.

Definition 6 (Service). Service S is a 4-tuple S = 〈I, O,Pre,Post〉. I/O is a list of
inputs/outputs, i.e. variables based on concepts in the ontology and bound to data
fragments described at syntactic level. Pre is a condition which must hold before
service execution. Post is a condition which holds after service execution. Services
are the elements of service repository R.



806 P. Bartalos, M. Bieliková

Payment

cardCredit card

Card

number

hasNumber

Charged

amount

Expiration

date

chargedToTransaction

detail

Active

object

expiresAt

realizedBy

Transaction

status

hasStatus

<complexType name="PaymentCard">

<sequence>

<element name="hasNumber" type="xsd:string"/>

<element name="expiresAt" type="xsd:dateTime"/>

</sequence>

</complexType>

<complexType name="TransactionDetail">

<sequence>

<element name="realizedBy" type="impl:PaymentCard"/>

<element name="chargedTo" type="xsd:double"/>

<element name="hasStatus" type="xsd:string"/>

<element name="isInCurrency" type="xsd:string"/>

</sequence>

</complexType>

<complexType name="CreditCard">

<complexContent>

<extension base="impl:PaymentCard">

</extension>

</complexContent>

</complexType>

<transaction>

<realizedBy>

<hasNumber>5588320123456789<hasNumber/>

<expiresAt>2012-09-02T16:24:19.544+02:00<expiresAt/>

<realizedBy/>

<chargedTo>400.0<chargedTo/>

<hasStatus>approved<hasStatus/>

<isInCurrency>EUR<isInCurrency/>

</transaction>

b)

a)

c)

Currency

isInCurrency

Fig. 4. Correspondence between syntactic and semantic service description

Definition 7 (Repository of Services). Repository R is a set of available services.
These can be used in the service composition.

Consider a simplified service charging a credit card to a defined amount:

• I : card, amount such that Credit card(card) → type:CreditCard and Charged
amount(amount) → type:double

• O: transDetail such that Transaction detail(transDetail) → type:Transaction-
Detail

• Pre: Credit card(card)∧hasNumber(card, number)∧Active object(card)∧Charged
amount(amount)

• Post: Transaction detail(transaction) ∧ hasStatus(transaction, status) ∧ Tran-
saction Status(status) ∧ realizedBy(transaction, card) ∧ [(Charged object(card) ∧
chargedTo(transaction, chargedAmount) ∧ Charged amount(chargedAmount)) ∨
¬Charged object(card)] and (status = Approved ∧ chargedAmount = amount) ∨
status = Declined



Automatic Dynamic Web Service Composition 807

The pre-condition prescribes what is necessary to hold before the Web service
can be executed. It is an additional requirement to the inputs and their values.
If these are not met, the execution cannot take place, or will result incorrectly.
The post-condition prescribes what holds after the service execution. It is a true
statement which does not have to be checked. Taking our example, after the service
is executed, it holds that the transaction was approved and the credit card was
charged by a given amount, or the transaction was declined and the credit card was
not charged.

Definition 8 (Query). Query Q is a 3-tuple Q = 〈I ′, O′, C ′〉. I ′ is a list of provided
inputs. O′ is a list of required outputs. Both I ′ and O′ consists of variables ground
to the concepts in the ontology. C ′ is a condition which is required to hold after
execution of the service composition.

Definition 9 (Service composition). Service composition is a directed acyclic
graph G = (V, E) prescribing the control-/data-flow of execution of services used in
the composition. The nodes represent those services from the repository, which are
meant to be executed, i.e. ∀S ∈ V : S ∈ R. The edges depict the control-/data-flow.
If service Ssucc should be executed directly after execution of Sanc, or Ssucc takes as
inputs the outputs of Sanc, there is an edge e ∈ E such that e = (Sanc, Ssucc), i.e.
Sanc is chained with Ssucc. Based on the complexity level of the service composition,
additional requirements are applied to the composition.

Definition 10 (Final services). Set of final services FS is a subset of all services
in the service composition G = (V, E), which do not have a successor, i.e. FS ⊆ V
such that ∀S ∈ FS : ∄Ssucc ∈ V, ∃e = (S, Ssucc) ∈ E.

3.2 Service Compatibility During Composition

Web service composition can be stated as a problem of different complexities. The
complexity is affected by several issues. It depends on the options offered to the user
when expressing his/her goal and the overall objectives of the composition. These
issues impose new requirements to the composition method and require different
information about the services, or the ontology. At the basic level, the composition
focuses on the core essences of the user goal and Web services. These are the data
and states described by conditions.

The basic step during Web service composition is to decide if the service exe-
cution might result in data and effects required by the successor services, or in the
user goal. The decision is made by checking the data and condition compatibility.
From the data perspective, we examine semantic type restriction, i.e. if the service
output data suit the required semantic type. To check condition compatibility, we
need to verify condition restrictions, i.e. to check whether the service post-condition
describes a state which is required to hold.

Next we formalize the problem of data and condition compatibility. Examples
will be used from the domain of traveling. A simple conceptualization of the domain



808 P. Bartalos, M. Bieliková

is presented in Figure 5. To keep the visualization of the ontology simple, some
details are not depicted.

Booked

object

Flight

Domestic

flight

Destination

Price

Flight

time

isa

hasDestination

hasPrice

hasFlightTime

Hotel

hasPrice

Insurance
includesInsurance

TrainTravel

hasPrice
Cancelled

object

Delay isDelayed

Currency

isInCurrency

Fig. 5. Conceptualization of the traveling domain

3.2.1 Data Compatibility

At the simplest level, the semantics of the services and the user goal are expressed
only by binding them to a concept defined in the ontology. No pre-/post-conditions,
or goal condition are considered. In this case it is also enough to have a low level
ontology defining only a set of domain terms. It is not required to propose properties
of concepts. We define only a set of concepts. By binding them to the I/O of services,
we define their meaning. Even the subsumption relations need not be defined. This
means that the ontology is defined as O = 〈C, S, P 〉, where S = ∅, P = ∅. For
a service S = 〈I, O, Pre, Post〉, both Pre and Post are empty. Analogically, the
user goal is defined as a list of concepts related to provided inputs and required
outputs, i.e. Q = 〈I ′, O′, C ′〉 where C ′ = ∅. An example goal is as follows: The user
wants a flight reservation. Here, the user expresses that as a result s/he expects
data which are of Flight semantic type.

Definition 11 (Type restriction aware service composition). Service composition
G = (V, E), for a user goal depicted by query Q = 〈I ′, O′, C ′〉, C ′ = ∅, satisfies
type restrictions if the following holds:

1. Each service S = 〈I, O, Pre, Post〉, Pre = ∅, Post = ∅, S ∈ V , in the service
composition must have provided each input i ∈ I . The input is provided in the
query, or as an output of ancestor service Sanc = 〈Ianc, Oanc, Preanc, Postanc〉,
Preanc = ∅, Postanc = ∅. Each input i must subsume its provider ip. ∀S ∈
V, ∀i ∈ I, ∃Sanc ∈ V, ∃ip ∈ Oanc

⋃
I ′ such that ip ⊑ i.

2. Each required output from O′ is provided by some service S ∈ V , i.e. ∀o′ ∈
O′, ∃S, ∃o ∈ O where o ⊑ o′.



Automatic Dynamic Web Service Composition 809

3.2.2 Condition Compatibility

The pre-/post-condition aware service composition brings the option to describe
a state the user wants to achieve. An example goal is defined as follows: The user
wants to book a flight. In this case, the user goal is described as a condition which is
required to hold. The aim of the composition is to design a composite service having
a post-condition implicating the goal condition. In general, the conditions prescribe
several alternatives from which some holds after the service execution. Consider two
conditions C1, C2 for which we evaluate the implication, i.e. if C1 implicates C2. The
condition C2 may implicate

1. none of the alternatives of C1,

2. some of the alternatives of C1, or

3. each alternative of C1.

In the first case we are sure that the execution of C1 cannot result in a state suiting
C2. The second case is a situation when the execution may result in a state suiting
C2. In the third situation we are sure that the execution will result in a suitable
state. In the next, we formalize these statements.

Definition 12 (Weak condition implication). Let us denote the set of sub-
formulae representing the respective conjunctions of the formula F , transformed
to DNF, as FDNF . Condition C1 = 〈Str1, V al1〉 weakly implicates condition
C2 = 〈Str2, V al2〉, iff the following holds:

1. There is a conjunction str1 ∈ Str1DNF and conjunction str2 ∈ Str2DNF for
which we can find a unique, one-to-one mapping between variables in str2 to
variables in str1 such that we can get a formula ŝtr1 implying str2 as a result
of

(a) substituting the variables in str1 based on the mapping with the variables
in str2 and

(b) substituting the unary predicates in str1 to predicates subsumed by them,

i.e.: ∃str1 ∈ Str1DNF , ∃str2 ∈ Str2DNF such that ∃ŝtr1, |= ŝtr1 ⇒ str2.

2. The value restriction of C2 is not violated by the value restriction of C1, i.e. the
mapped variables in V al1 and V al2 can be valued to the same values in such
a way that if υ(V al1) = true then also υ(V al2) = true.

Definition 13 (Strong condition implication). There is a strong implication be-
tween conditions C1 = 〈Str1, V al1〉 and C2 = 〈Str2, V al2〉, iff the following holds:

Point 1. from Definition 12 holds for each str1 ∈ Str1DNF , i.e. ∀str1 ∈ Str1DNF ,
∃str2 ∈ Str2DNF such that ∃ŝtr1, |= ŝtr1 ⇒ str2.

Point 2. from Definition 12 holds for any valuation of variables in V al1 and V al2.



810 P. Bartalos, M. Bieliková

Condition C1 implicates condition C2 if there is a weak or strong implication
between them. The fact that C1 implicates C2 is denoted as C1 ⇛ C2.

Definition 14 (Condition restriction aware service composition). Let us denote
the set of final services of the composition as FS = {S1, . . . , Sn}. Let FStr be
a structural statement created as a conjunction of all structural statements of the
final services, i.e. FStr = Str1 ∧ . . . ∧ Strn. Analogically, let FV al be a value
restriction statement created as a conjunction of the value restriction statements
of all final services, i.e. FV al = V al1 ∧ . . . ∧ V aln. The resulting condition of the
composition is FC = 〈FStr, FV al〉. Service composition G = (V, E), for a user goal
depicted by query Q = 〈I ′, O′, C ′〉, satisfies condition restrictions iff the following
holds:

1. For each pair of services Sanc = 〈Ianc, Oanc, Preanc, Postanc〉, Ssucc = 〈Isucc, Osucc,
Presucc, Postsucc〉 which are chained, it must hold that the postcondition of
the ancestor service implicates the precondition of the successor service, i.e.
∀e = (Sanc, Ssucc) ∈ E, Postanc ⇛ Presucc.

2. FC is implicated by C ′, i.e. FC ⇛ C ′.

Based on the set of operators used in the value restriction statements, the process
of evaluating the value restrictions is of different complexity. The simplest case is
when variables are restricted to constant numeric or string values. Here, we have to
check whether the mapped variables from the considered conditions are valued to
the same value. More complex evaluation is required if we use inequality operators
6=, >, <, ≥, ≤, and if we use a variable in the value restriction which is defined
based on other variables, e.g. price = flightprice+ hotelprice.

3.3 Quality of Service

The I/O, pre-/post-conditions of services are used to describe their behavior. They
express their functional properties. During Web service composition, these are ne-
cessary to consider design a composite service fulfilling the user goal. Beside the
functional properties of the composite service, the user may be interested also in
some non-functional properties determining the quality of the service (QoS) [59, 58].
The usual QoS attributes of services are response time, throughput, availability,
price, and reliability. The values of these are monitored, measured and stand as
a subject of a contract between the service provider and consumer. When com-
posing services, the QoS attributes of services are taken into account to design
a composite service maximally satisfying also the non-functional requirements. The
requirements define hard and soft constraints. Hard constraints define require-
ments which must be satisfied. Soft constraints define preferences over the QoS
attributes.

In the context of QoS-driven composition we usually consider only properties
which can be expressed numerically. The aim is to select the composite service
having the best overall quality characteristic from all candidates. Depending on the



Automatic Dynamic Web Service Composition 811

concrete attribute, the best means the highest, or the lowest value (e.g. for response
time, the lower value is better, but considering throughput, the higher value is
better). To have a uniform view such that the higher value is better, the attributes
for which the lower value is better are multiplied by −1.

Calculation of the overall quality of the composition includes

1. calculation of the particular characteristics for a composition from the QoS va-
lues of single services,

2. calculation of the uniform quality representative.

Calculation of the particular characteristic for the composition is based on aggrega-
tion functions [59, 58, 3, 34]. These define how we calculate the aggregated quality
of a given characteristic regarding the composite service structure.

Calculation of the uniform quality representative is based on a utility function.
It calculates one representative value from all the aggregated property values of dif-
ferent unit and range, i.e. we evaluate the multi-dimensional quality with one value.
This value is used to rank the compositions. The calculation of the utility function
is usually based on Multiple Attribute Decision Making method [56]. This method
is based on scaling and weighting [59, 3, 48]. Scaling allows a uniform measurement
of multi-dimensional attributes, independently on their units and ranges. Weighting
allows expressing preferences over different quality attributes.

Definition 15 (Aggregated QoS characteristics). Aggregated QoS characteristics
of a composite service G = (V, E), for a given characteristics q, is a number, cal-
culated based on the corresponding aggregation rules for the composition G. It is
denoted as QoS�(G, q).

Definition 16 (Uniform QoS characteristics). Uniform QoS characteristics of
a composite service G = (V, E), is a number, calculated from the aggregated QoS
characteristicsQoS�(G, q). It represents a uniform QoS characteristics of the service
composition where the higher value is better. It is denoted as QoS(G).

Definition 17 (Optimal composite service). A composite service G = (V, E) is op-
timal, denoted as QoS+(G), if QoS(G) is the best considering any other composite
service G′ = (V ′, E ′), i.e. ∄G′ such that QoS(G′) > QoS(G).

4 OVERVIEW OF EXISTING APPROACHES

4.1 QoS Focusing Approaches

In [7, 9, 8] and [23, 25], two approaches which took a part at Web Services Challenge
2009 are presented. Web Services Challenge is a competition aimed at developing
software components and/or intelligent agents that have the ability to discover per-
tinent Web services and also compose them to create higher-level functionality5.

5 http://ws-challenge.georgetown.edu/wsc09/index.html



812 P. Bartalos, M. Bieliková

In 2009 it focuses on automatic web service composition considering the QoS [29].
Both [7] and [23] proved to be scalable approaches. Even during the hardest data
set at the competition, consisting from 15 000 Web services, they were able to find
a solution in acceptable time6 (below 300 milliseconds). Both approaches realize pre-
processing during which effective data structures are built. These are used during
the user querying phase to quickly compose a desired composition. The approach
in [7] benefits from a data structure based on a relational database and parallel
process execution. Composition in [23, 25] is effective due to a filtering utilized to
reduce the search space. The pruning removes services

1. which have no inputs (thus cannot be executed and used in the composition)
and

2. which are not optimal from QoS point of view.

The removal of unusable services is applied also in [7].
Another approach to QoS aware automatic Web service composition dealing

with scalability is described in [3]. Unlike [7] and [25], this approach does not deal
with design of the structure of the composite service. As an input it already takes
an abstract service, i.e. the aim is only to select concrete services for each service
class used, which is the best considering the QoS characteristics. The previous ap-
proach [25] finds the best plan for each QoS characteristics separately. This approach
uses a utility function to express the uniform QoS characteristics. Calculation of
the utility function is based on Simple additive weighting technique. It involves
scaling of the quality attribute values to allow uniform measurement independently
on the unit and range of the given attribute. Then, weighting process follows to
represent user priorities and preferences. In this context the approach deals with
the scalability issues. It is based on a heuristic algorithm decomposing the original
optimization problem into sub-problems which can be solved more effectively. The
decomposition allows finding the best candidate for each service class separately, i.e.
it is not required to check all the possible service combinations. Before this, only
two global parameters for each attribute must be calculated. After this, calculations
are performed locally for each service class. Based on this, the approach presents
good scalability when finding near-to-optimal solution, according to the number of
service classes and candidates per class.

The same problem as approach in [3] deals with, is the objective of the work
presented in [48]. The aim of the approach is a large-scale QoS aware service com-
position. The used composition model allows a flexible specification of the QoS
constraints based on hierarchies. The authors present a metaheuristics-based opti-
mization approach able to find a near-to-optimal solution, even in large-scale situa-
tions. Similarly to [3] and [59], here also the authors use simple additive weighting
to find the uniform QoS characteristics. Both approaches presented in [3] and [48]

6 The time includes a call of the composition system from a client application, compo-
sition and result transformation to BPEL format, and realization of a callback from the
composition system to submit the result to the client application



Automatic Dynamic Web Service Composition 813

show promising results in the performance context. Due to incomparable test sets,
it is not possible to properly compare their effectiveness.

Almost all approaches consider two services chainable, if there is a subsumption
relation between the output and input parameters. In [34, 35] the authors use
a notion of semantic link to denote the service chain. They define five semantic
matching types:

1. Exact, i.e., |= O ≡ I

2. PlugIn, i.e., |= O ⊑ I

3. Subsume, i.e., |= O ⊒ I

4. Intersection, i.e., |= ¬(O ⊓ I ⊒ ⊥)

5. Disjoint, i.e., |= O ⊓ I ⊒ ⊥.

The usual subsumption relation explored by other approaches corresponds to the
PlugIn matching type. Two services can be directly chained if there is an Ex-
act, or PlugIn matching type between the I/O. Other approaches do not chain
services if there is another relation. In [34] the services can also be chained in
the case of Subsume and Intersection. In this case the output does not provide
all information required as input. To define the missing information, Concept ab-
duction is used [33]. It produces a description of the information which is miss-
ing and should be provided. Although the idea of concept abduction is nice, it
is not clear if it is practical to realize it. The authors do not discuss how the
missing information is provided to ensure correct data flow. One option could be
their acquisition from the user. During composition, the proposed approach also
considers the QoS. It introduces also a function combining the quality of the se-
mantic link and non-functional properties to evaluate the overall quality of the
composition. Using a Hill climbing based algorithm, they search for a solution
satisfying the user goal at certain level, i.e. they do not guarantee the optimal solu-
tion.

4.2 Approaches Exploiting Additional Meta-Data

In [49] the authors claim that it is not enough to chain services by considering their
I/O only. They state that composite services produced this way cannot guarantee
the required functionality. Their solution is based on explicit definition of functional
semantics of the services. It is done by description of the Web service functionality
with an action-object pair (the action is meant to be performed over the object).
The actions are mapped to concepts in a special part of an ontology – Domain-
action. The objects and I/O of services are mapped to another part called Domain-
data. By this extension of service descriptions the authors ensure functionality
in compliance with user expectations. We believe that all this can be solved by
introducing the pre-/post-conditions of services as we see in several approaches.
At least the motivating examples in the paper can be easily solved by involving



814 P. Bartalos, M. Bieliková

this approach. The additional information about service in a form of action-object
annotations can be transformed to simple pre-/post-conditions consisting from one
predicate. Moreover, we believe that the aspect of pre-/post-conditions is more
expressive.

In [20] the authors present a composition approach handling so called user con-
straints. These represent value restriction constraints to input, output, or local
service parameters. To describe the constraints a KIF language is used. For bind-
ing the constraints to service parameters they have extended OWL-S. Our sug-
gestion is to use the existing construct of OWL-S for this purpose, namely pro-
cess:hasPrecondition and process:hasEffect. We believe that expressivity of the user
constraints in the approach is the same as in [6]. However, the overall approach
has a differing composition problem definition as in [6] and [30]. It seems that the
problem neglects the design of the composite service structure, i.e. the set of used
services and the control-/data-flow are partially known (similarly as in [3]) and the
related issues are not a part of the problem solving. For each service the user may
define value restrictions over the service parameters. The approach takes care about
satisfying these constraints during Web service execution. Before the execution, it
is checked whether the input data hold the constraints to input parameters. Con-
straints to output parameters are checked after execution. If these do not hold,
the user is informed about the failure or a backtrack mechanism is realized. The
user may also define multi-service restrictions. Such constraint is checked for first
services. After it is executed, the value of the constraint is updated and used for
checking the next services. Unlike [6] and [30], this approach only takes care of
conditions defined by the user. It does not deal with the pre-/post-conditions of
services during chaining.

In [28] a composition tool called OWLS-Xplan is presented. It uses OWL-S
Web service descriptions converted to Planning Domain Description Language –
PDDL 2.1 and an artificial intelligence planner called Xplan to generate a compo-
sition. The service descriptions include also pre-/post-conditions, which are simple
conjunctions of predicates. Xplan extends an action based FastForward-planner
(graph based planning) with HTN planning and re-planning component. Xplan
consists of several modules for preprocessing and planning. Preprocessing includes
creation of the required data structures, generation of the initial connectivity graph,
and goal agenda. The planning consists of two interleaving activities: the heuristi-
cally relaxed graph-plan generation and enforced hill-climbing search. The heuristics
approximates the distance between the current state and the goal state. This is used
to guide the forward search process. The algorithm is a forward search with the fol-
lowing steps. First, the distance between the starting state and the goal state is
computed. Second, the set of helpful actions is determined. Third, enforced hill-
climbing analyzes all reachable states. If a better state is found, it is included into
the plan and used for next search. The search terminates if the goal state is reached.
If there are several actions with the desired effects, heuristics is used to select the
one which will be used. The resulting heuristic goal distance is simply a sum of all
actions in the relaxed plan [22].



Automatic Dynamic Web Service Composition 815

In [50] a prototype of a semi-automatic composer is presented. It has two basic
components: a composer and an inference engine. The inference engine stores in-
formation about the available services in a knowledge base. It also provides a way
to find matching services. The composer presents a user interface to the inference
engine. The inference engine is an OWL reasoner built on Prolog and is used to cre-
ate entailments in the knowledge base. The composer enables creating the workflow
by interacting with the user. In [50] the composition starts by selecting one of the
available services. Based on the knowledge about the inputs for this service a query
is sent to the knowledge base to get a list of services providing the input data. The
user has the possibility to define constraints on the attributes of a service to filter
the list of offered services and choose the most appropriate one.

The composer presents options for the composition by allowing choosing from
the fitting services. This is based on the information from the service profile. Two
types of matches between the I/O are defined: exact and generic match. The exact
match means that the parameters are restricted to the same OWL class. The generic
match means that the output type of the found service is a subclass of the input
type of the selected service. In the list of matching services, the services with exact
match are placed at the top.

The presented prototype is one of the earliest implementations of a Web ser-
vice composer. Its main disadvantage is the level of automation of the composition.
In [51] the authors propose an approach using artificial intelligence planning to au-
tomate the Web service construction process. They use a system called SHOP2 [41]
based on hierarchical task networks.

SHOP2 automatically composes Web service described in OWL-S. The authors
state that OWL-S does not have control constructs to flexibly describe abstract
processes. To overcome this problem, they use its extension including a definition
of a new process type. We believe that OWL-S provides enough constructors to
define the service at abstract level. To compose services SHOP2 uses hierarchical
task network planning technique. The planning algorithm starts with one or more
tasks. These are decomposed until each of them is decomposed to an operator. The
resulting plan is a sequence of operators which can be executed to achieve a used
defined goal.

In the approach proposed in [31], the USDL language is used to specify the formal
semantics of services [32]. This OWL based language uses WordNet as a common
basis for understanding the meaning of services. In [30] the authors extend the
notion of composition presented in [31] to handle non-sequential conditional compo-
sition. The pre-/post-conditions are expressed as atomic statements combined with
conjunction, disjunction, and negation. The approach focuses also to other impor-
tant features of a composition system. One of them is the ability of incremental
updates. In dynamic world the Web service set used during the composition may
change. Services may be added/removed. The composition system should react
to these changes quickly. This usually cannot be achieved if the change requires
a complete reconstruction of the internal service repository. It is desired to handle
the change by adding new data to the repository affecting only a local part of it.



816 P. Bartalos, M. Bieliková

Another approach to pre-/post-condition aware service composition is described
in [6, 9, 8]. It was already introduced as a QoS aware service composition approach.
From the expressivity of pre-/post-conditions point of view, this approach is the
same as [30]. To make the processing of the pre-/post-conditions effective, during
the preprocessing, several characteristics of the conditions are precalculated and
encoded. The encodings are then used to quickly evaluate the compatibility between
two conditions. This approach showed to be effective enough to deal also with
conditions of non-trivial complexity. Similarly to [30], this approach is also able to
react to the changes in the service set quickly, by performing only a local change in
the internal service registry [9].

4.3 Approaches Considering User Preferences

In [37] the user may define his/her preferences over generic and also domain specific
service quality criteria. The preferences are formalized as fuzzy sets. Using fuzzy
expressions, the user may also define trade-offs among the criteria. Overall user
preference can be seen as a disjunction of conjunctions of preferences over a quality
attribute, i.e. a disjunctive normal form over atomic fuzzy expressions. The atomic
expression is expressed as a fuzzy set. The user may select one from five predefined
sets expressing satisfaction from poor to extreme. The composition algorithm is
based on Depth-first Branch and Bound Method methods. Instead of looking for
a best solution (highest satisfaction degree), it finds a good enough solution sav-
ing much composition time. The user may define a minimal satisfaction degree
which must be fulfilled by the found composition. To reduce useless search, the
authors propose a simple uncritical consistency checking algorithm. However, from
the experiments realized by authors, it is shown that if looking for a first accept-
able solution, when the minimal satisfaction degree is high, the algorithm without
consistency checking is much better in most cases.

Similarly to [37], the authors of [1] also deal with fuzzyfication of user constraints
over QoS attributes. In this approach the user may define his/her preferences using
fuzzy IF-THEN rules. The fuzzy rule expresses which combination of attribute va-
lues the user is willing to accept at which satisfaction degree. The user may combine
atomic preferences, expressed as fuzzy sets, using fuzzy conjunction, disjunction, and
negation. The user should define at most as many rules as many degrees of satisfac-
tion s/he wants to differentiate. Unlike [37], the aim of this approach is to rank the
solutions fulfilling the user goal based on the satisfaction degree. For each composi-
tion, based on the calculated aggregated quality attributes it calculates the degrees
of fulfillment of the rules (i.e. the rule is interpreted and the results are aggregated
as usual in IF-THEN rule based fuzzy optimization). At this point, we get a fuzzy
representation of the result. After this, deffuzyfication is applied to get a number
representing the overall satisfaction degree. This degree determines the position of
the particular composition in the ranking. Unlike [37], the authors of [1] do not
deal with performance issues of their approach. Hence, the practical applicability
due to performance and scalability issues is unknown. From the user perspective,



Automatic Dynamic Web Service Composition 817

the approaches offer similar opportunities. However, the approach from [1] performs
more complex calculations to determine the satisfaction degree. The approach in [1]
does only a part of these. It is questionable whether the more complex approach
brings more appropriate results. Our opinion is that from practical usability point
of view the simpler approach is sufficient and more applicable.

In [38] the authors present a hierarchical task network based automatic Web
service composition approach satisfying user preferences. It does not try to satisfy
them necessarily in absolute manner. If this is not possible, it looks for a compo-
sition satisfying the user preferences as much as possible. The user may express
constraints over the states and the state trajectory corresponding to the plan using
a special preference language. It allows to define basic and temporal preferences.
Basic preference is a first order logic formula. Temporal preferences define addi-
tional restrictions over basic preferences. Let us denote the basic preference as BP.
Using a temporal preference the user may express that:

1. BP must hold in each state,

2. BP must hold in some state,

3. BP must hold at most once,

4. BP must hold in the final state,

5. BP must hold after some state, or

6. BP must hold before some state.

The work mainly describes how these kinds of preferences augment service composi-
tion and how are they mapped into a planning language for HTN. They also present
a Best-first search based planning algorithm which showed to be useful during ex-
periments realized by the authors.

In [26] the authors present a composition framework allowing modeling and
scheduling composite Web services under user constraints. In this case, the com-
position starts with a manual modeling of the abstract workflow using a graphical
interface. The abstract workflow includes abstract services depicting template of
the service which must be used at this point. After this, the framework finds con-
crete services to create a composite service fulfilling the user constraints. The user
may define value restriction constraints with IF-THEN rules. Moreover, dependen-
cies between services may be defined. First, the dependency may depict that if
service S1 executes, S2 must execute as well. The second kind of dependency may
state that if abstract service AS1 is done by S1, the same/different service must be
used to do the abstract service AS2. To satisfy the constraints, the approach uses
an external tool Choco. It is a Java library for constraint satisfaction problems. The
experiments realized by authors show good scalability of the approach regarding

1. the number of candidate services,

2. flow complexity – the number of AND, OR, XOR, sequence and iteration blocks,
and

3. the number of variables and constraints.



818 P. Bartalos, M. Bieliková

In [36] an approach to personalized Web service composition is presented. It
considers hard and also soft constraints during composition. Hard constraints are
value restriction statements. Soft constraints express the user preferences. To or-
der the compositions based on user satisfaction, the Pareto dominance principle is
applied. Composition C1 pareto dominates composition C2, iff there is an atomic
preference satisfied more by C1 than by C2 and there is no atomic preference satis-
fied more by C2. A composition is said to be pareto dominant, iff there is no other
composition pareto dominating it. The principle is implemented introducing a relax-
ation degree of the composition. It expresses the level of satisfaction. The proposed
algorithm finds the composition with the minimal relaxation degree and thus with
the highest satisfaction degree. It is proved in the paper that such a composition is
pareto dominant.

5 DISCUSSION

5.1 Achievements

Table 1 summarizes selected characteristics of the presented approaches. We depict
whether the approach deals with the design of the control-/data-flow, whether it
considers additional information about the Web services beside the I/O, whether it is
QoS-driven, and whether it calculates a uniform representative of the QoS attribute
values. We also show whether the approach aims to find an optimal solution from
the QoS point of view, whether performance evaluation is presented, and whether
it deals with the dynamic changes in the service environment.

Approach Control-/data- Functional QoS Uniform Optimal Performance
flow design extension QoS plan evaluation

Bartalos et al. [9, 8] Yes Yes Yes No Yes Yes
Huang et al. [23, 25] Yes No Yes No Yes Yes
Alrifai et al. [3] No No Yes Yes No Yes
Rosenberg et al. [48] No No Yes Yes No Yes
Lécué et al. [34] No No Yes Yes No Yes
Shin et al. [49] Yes Yes No – – Yes
Gamha et al. [20] Yes No No – – No
Klusch et al. [27, 28] Yes Yes No – – Yes
Sirin et al. [51] HTN Yes No – – No
Kona et al. [31, 30] Yes Yes No – – Yes
M. Lin et al. [37] No No Yes Yes Yes Yes
Agarwal et al. [1] No No Yes Yes Yes No
N. Lin et al. [38] HTN Yes No – – No
Karakoc et al. [26] No Yes No – – Yes
Li et al. [36] HTN Yes No – – Yes

Table 1. Overview of selected properties of composition approaches

From the semantic compatibility at the I/O level point of view, the approaches
evaluate the semantic relation between the concepts associated with I/O. Most of
the approaches consider the exact match and the subsumption relation. A few
approaches look also for other relations such as plug-in, intersection, and disjoint



Automatic Dynamic Web Service Composition 819

relations. The problem is that these are not sufficient to get the desired results. Ad-
ditional data must be provided to absolutely satisfy the demands. The identification
of the missing data is done by concept abduction. Nevertheless, the provision of the
data is a complication which must be solved to make the approach applicable.

The semantics of services is crucial to make the automatic composition feasible
and to get meaningful results. There is a consensus that the semantics is necessary.
However, it has not been decided yet what level of semantics is sufficient. It has
already been shown that considering only the semantics of the I/O is not enough.
Since the aim of semantics is to capture the behavior of services, more complex
information is required. It seems that for most services and a lot of practical com-
position scenarios, good results can be achieved when also pre-/post-conditions are
used to express the functionality of the services. The formalism suitable to describe
these conditions is a predicate logic. However, the pre-/post-conditions aware com-
position achieves much better results, the consideration of the conditions involves
more complicated processing. Despite of this, handling the conditions is feasible and
required in practical scenarios.

Beyond the functional properties of services, also the non-functional properties
are necessary to deal with. The QoS-driven service composition has a lot of atten-
tion. In addition to the functional requirements, the user may specify also some
constraints and preferences regarding the non-functional properties. From the non-
functional properties, usually the approaches consider the technical QoS such as
response time, availability, and throughput. The user may define hard and also soft
constraints over multiple properties. Moreover, the requirements do not have to be
defined with absolute precision. Fuzzy approaches are exploited to allow more vague
definition of the user demands. This is very important from the user point of view.
To express the requirements in a more vague form is more convenient and feasible.
The approaches dealing with satisfaction of the non-functional requirements can be
usually generalized to any attributes which can be expressed in a numerical form.
They are not delimited to the technical QoS. In total, these approaches are basi-
cally used to optimize the composition. In general, multiple compositions satisfy
the functional requirements. Consideration of the non-functional properties allows
to select the best, or the near-to-optimal solution. The QoS-driven service com-
position showed to be important and several approaches show that the additional
requirements can be handled effectively.

The overall composition process, including the processing of semantics and con-
sideration of the QoS with optimization, involves a lot of computations to do. Several
issues require calculations which rise exponentially regarding certain parameters.
This makes the process NP-hard. Moreover, as the Web grows, also the number
of available services rises. There are several public service repositories consisting
of thousands, or even tens of thousands of services and their count is raising. Due
to this, several approaches care about the performance and scalability. Currently,
the approaches achieve good experimental results even when considering repositories
consisting from thousand up to hundred thousand services. This is mainly true for
the QoS-driven approaches which do not deal with the pre-/post-conditions. Only



820 P. Bartalos, M. Bieliková

a little attention is devoted to the effectiveness of the pre-/post-condition aware
composition.

Since the Web in general and also the service change over time, the Web service
composition system must adapt to the evolution of the environment it operates in.
Most of the composition approaches are based on different data structures storing
information about the service set. The change of these is required as the service
environment evolves. Due to this, the data structures should be designed in such
a way that they can be easily updated. There are only a few works addressing
this problem and no detailed evaluation of the effect of the changes to the overall
composition time has been presented.

5.2 Open Research Areas

Web services design. As far as we know, there is no methodology describing how
should the Web services be aimed to be automatically composed and designed.
It is quite obvious that the design of a Web service significantly affects the
ability to use it during the composition. The most important aspects include
granularity and the interface of the domain services. Coarse-grained services,
providing complex functionality, could potentially not fit all the requirements.
Fine-grained services provide higher variability and allow designing a composi-
tion fitting the requirements better. On the other side, the composition process
is more challenging in this case.

Semantics. The approaches assume in general that all the required semantics is
available and correctly defined in a desired form. It is known that to make
the idea of the Semantic Web and the Semantic Web services a really working
and beneficial implementation, the semantic methods must provide much higher
precision in recognition of the semantics made by distinct parties. Creation of
the ontologies, semantic annotation, and maintenance of the semantics must
be supported by tools and methodologies must be developed to make the whole
idea practically manageable. More attention should be devoted to the pre-/post-
conditions. It has been shown that they are necessary to precisely define the
functionality of the service; however, their description and management is more
difficult than considering the I/O only.

Service composition utilization. Only a few works have been devoted to the way
how dynamic service composition can be utilized by the user. Most approaches
do not deal with this and focus only on the phase when the user goal is already
known. Service composition allows different ways how to exploit it. One option is
to use the composition system as an integral part of a complex system to realize
tasks, which are not suited to be hard-coded. Another option is to develop
an application standing as a mediator between a human and the composition
system. Its task is to

1. transform the user goal of the human to the representation required by the
composition system,



Automatic Dynamic Web Service Composition 821

2. invoke the composition system, and

3. present the results to the user.

An idea of provisioning dynamic composition of services is introduced as Com-
position as a Service (CaaS) [47, 16]. Its aim is to reduce the complexity of
developing a composite application by providing dynamic composition features.
CaaS allows dynamically composing and deploying composite services based on
a specification. The CaaS concept is useful in situations when a composite ap-
plication is being developed and realization of some parts of the application is
not clear to its designer. In this case, s/he can specify the requirements and use
the CaaS to design the missing part.

Killer application. The research of Web service composition has started a quite
long time ago already and numerous problems have been solved already. How-
ever, the research was motivated rather by artificial scenarios far-away from the
reality. We believe that the current methods are sophisticated enough, so we
should try to apply them in scenarios coming from practice. Business process
management and SOA are here to help applying information technologies in
a changing world, where the business processes evolve in time to adapt to the
changing demands. It should be studied how the dynamic Web service composi-
tion could be applied in this context. The research attention should try to look
for a killer application, showing the real benefits of the dynamic Web service
composition.

6 CONCLUSIONS

As it is true and natural for any young branch of research, also the area of Web
service composition is currently bringing solutions for more or less isolated prob-
lems: I/O and pre-/post-condition semantic compatibility, optimization according
to non-functional properties, performance, user context and personalization, and
transactional behavior of service compositions. To draw the whole picture and make
a practical utilization of service composition a reality, several other problems and
their dependencies must be addressed.

We suppose that service composition should be studied also from software engi-
neering point of view. A methodology must be developed describing the process of
Web service design, semantic annotation, maintenance, and the utilization of Web
service composition. Tools supporting these tasks must be provided. Currently, it
is not clear in which way is it beneficial to exploit service composition. We do not
know if it can be applied only in closed domains, if we really can effectively use
public services or must rely on private ones only. Research attention should be de-
voted to find a killer application showing the real benefits and limitations of service
composition in practice.

It is questionable whether a more visionary exploitation of the service compo-
sition is feasible. In this scenario a software agent, acting on behalf of a human,



822 P. Bartalos, M. Bieliková

having knowledge about the human, automatically constructs a composition goal
and utilizes service composition to satisfy it. This agent should be a delegate who
actively uses the possibilities of service composition to continuously achieve user
satisfaction. This agent must maintain a user model of the human and know its
actual context.

Acknowledgement

This work was supported by the Scientific Grant Agency of Slovak Republic, grant
No. VG1/0508/09 and it is a partial result of the Research and Development Ope-
rational Program for the projects Support of Center of Excellence for Smart Tech-
nologies, Systems and Services, ITMS 26240120005 and Research and Development
Operational Program for the projects Support of Center of Excellence for Smart
Technologies, Systems and Services II, ITMS 26240120029, co-funded by ERDF.

REFERENCES

[1] Agarwal, S.—Lamparter, S.: User Preference Based Automated Selection of
Web Service Compositions. In ICSOC Workshop on Dynamic Web Processes, 2005,
pp. 1–12.

[2] Agarwal, V.—Chafle, G.—Mittal, S.—Srivastava, B.: Understanding Ap-
proaches for Web Service Composition and Execution. In COMPUTE ’08: Proceed-
ings of the 1st Bangalore Annual Compute Conference, New York, NY, USA, ACM
2008, pp. 1–8.

[3] Alrifai, M.—Risse, T.—Dolog, P.—Nejdl, W.: A Scalable Approach for
Qos-Based Web Service Selection. In Service-Oriented Computing 2008 Workshops,
Springer-Verlag, 2009,.pp. 190–199.

[4] Baader, F.—Calvanese, D.—McGuinness, D. L.—Nardi, D.—Patel-

Schneider, P. F. (Eds.): The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press, New York, NY, USA 2003.

[5] Bab́ık, M.—Hluchý, L.: Optimizing Description Logic Reasoning for the Service
Matchmaking and Composition. Computing and Informatics, Vol. 27, 2008, No. 4,
pp. 681–698.

[6] Bartalos. P.—Bieliková, M.: Fast and Scalable Semantic Web Service Composi-
tion Approach Considering Complex Pre/Postconditions. In WSCA ’09: Proc. of the
2009 IEEE Congress on Services, Int. Workshop on Web Service Composition and
Adaptation, IEEE CS 2009, pp. 414–421.

[7] Bartalos, P.—Bieliková, M.: Semantic Web Service Composition Framework

Based on Parallel Processing. In Int. Conf. on E-Commerce Technology, IEEE CS,
2009, pp. 495–498.

[8] Bartalos, P.—Bieliková, M.: QoS Aware Semantic Web Service Composition
Approach Considering Pre/Postconditions. In Int. Conf. on Web Services, IEEE CS
2010, pp. 345–352.



Automatic Dynamic Web Service Composition 823

[9] Bartalos, P.—Bieliková, M.: Effective QoS Aware Web Service Composition in

Dynamic Environment. In: Int. Conf. on Information Systems Development, Springer
2010.

[10] Bartalos, P.: Effective Automatic Dynamic Semantic Web Service Composition.
Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 3, 2011,
No. 1, pp. 61–72.

[11] Bellur, U.—Kulkarni, R.: Improved Matchmaking Algorithm for Semantic Web
Services Based on Bipartite Graph Matching. IEEE International Conference on Web
Services, 2007, pp. 86–93.

[12] Bellur, U.—Vadodaria, H.: On Extending Semantic Matchmaking to Include
Preconditions and Effects. In ICWS ’08: Proceedings of the 2008 IEEE International
Conference on Web Services, Washington, DC (USA), 2008, pp. 120–128.

[13] DiBernardo, M.–Pottinger, R.—Wilkinson, M.: Semi-Automatic Web Ser-
vice Composition for the Life Sciences Using the Biomoby Semantic Web Framework.
Journal of Biomedical Informatics, Vol. 41, Issue 5, Semantic Mashup of Biomedical
Data, ISSN 1532-0464, 2008, pp. 837–847.

[14] Berners-Lee, T.—Hendler, J.—Lassila, O.: The Semantic Web. Scientific
American, Vol. 2001, pp. 34–43.

[15] Bertoli, P.—Kazhamiakin, R.—Paolucci, M.—Pistore, M.—Raik, H.—

Wagner, M.: Control Flow Requirements for Automated Service Composition. In
Int. Conf. on Web Services 2009, IEEE CS 2009, pp. 17–24.

[16] Blake, M.B.—Tan, W.—Rosenberg, F.: Composition as a Service. IEEE In-
ternet Computing, Vol. 14, 2010, No. 1, pp. 78–82.

[17] Cardoso, J.—Sheth, A.P.: Semantic Web Services, Processes and Applications.
Springer 2006.

[18] Dustdar, S.—Papazoglou, M.P.: Services and Service Composition – An Intro-
duction (Services Und Service Komposition – Eine Einführung). IT – Information
Technology, Vol. 50, 2008, No. 2, pp. 86–92.

[19] Euzenat, J.—Shvaiko, P.: Ontology Matching. Springer Verlag, Berlin Heidelberg
2007.

[20] Gamha, Y.—Bennacer, N.—Naquet, G. V.—Ayeb, B.—Romdhane, L. B.:
A Framework for the Semantic Composition of Web Services Handling User Con-
straints. In ICWS ’08: Proc. of the 2008 IEEE Int. Conf. on Web Services, IEEE CS
2008, pp. 228–237.

[21] El Haddad, J.—Manouvrier, M.—Rukoz, M.: TQoS: Transactional and QoS-
Aware Selection Algorithm for Automatic Web Service Composition. IEEE Transac-
tions on Services Computing 99 (PrePrints), 2010, pp. 73–85.

[22] Hoffmann, J.: A Heuristic for Domain Independent Planning and Its Use in an
Enforced Hill-Climbing Algorithm. In ISMIS ’00: Proc. of the 12th Int. Symposium on
Foundations of Intelligent Systems. Springer-Verlag, London, UK 2000, pp. 216–227.

[23] Huang, Zh.—Jiang, W.—Hu, S.—Liu, Zh.: Effective Pruning Algorithm for
QoS-Aware Service Composition. In Int. Conf. on E-Commerce Technology 2009,
IEEE CS 2009, pp. 519–522.



824 P. Bartalos, M. Bieliková

[24] Hull, D.—Wolstencroft, K.—Stevens, R.—Goble, C.—Pocock, M.—

Li, P.—Oinn, T.: Taverna: A Tool for Building and Running Workflows of Services.
Nucleic Acids Research, Vol. 34, Web Server issue, pp. 729–732, 2006.

[25] Jiang, W.—Zhang, C.—Huang, Zh.—Chen, M.—Hu, S.—Liu, Zh.: Qsynth:
A Tool for QoS-Aware Automatic Service Composition. In Int. Conf. on Web Services

2010, pp. 42–49. IEEE CS 2010.

[26] Karakoc, E.—Senkul, P.: Composing Semantic Web Services Under Constraints.
Expert Syst. Appl., Vol. 36, 2009, No. 8, pp. 11021–11029.

[27] Klusch, M.—Gerber. A.: Evaluation of Service Composition Planning With
Owls-Xplan. Web Intelligence and Intelligent Agent Technology – Workshops 2006,
pp. 117–120.

[28] Klusch, M.—Gerber, A.—Schmidt. M.: Semantic Web Service Composition
Planning with Owls-Xplan. In AAAI Fall Symposium on Semantic Web and Agents,
Arlington (VA), USA, AAAI Press 2005, pp. 55–62.

[29] Kona, S.—Bansal, A.—Blake, B.—Bleul, S.—Weise, T.: A Quality of
Service-Oriented Web Services Challenge. In Int. Conf. on E-Commerce Technology
2009, IEEE CS 2009, pp. 487–490.

[30] Kona, S.—Bansal, A.—Blake, M.B.—Gupta, G.: Generalized Semantics-
Based Service Composition. In ICWS ’08: Proc. of the 2008 IEEE Int. Conf. on
Web Services. IEEE CS 2008, pp. 219–227.

[31] Kona, S.—Bansal, A.—Gupta, G.: Automatic Composition of Semantic Web
Services. In ICWS ’07: Proc. of the 2007 IEEE Int. Conf. on Web Services, IEEE CS
2007, pp. 150–158.

[32] Kona, S.—Bansal, A.—Simon, L.—Mallya, A.—Gupta, G.—Hite, T.D.:
USDL: A Service-Semantics Description Language for Automatic Service Discovery
and Composition. Int. J. Web Service Research, Vol. 6, 2009, No. 1, pp. 20–48.

[33] Lécué, F.—Delteil, A.—Leger, A.: Applying Abduction in Semantic Web Ser-
vice Composition. In ICWS ’07: Proc. of the 2007 IEEE Int. Conf. on Web Services,
Los Alamitos, CA (USA), IEEE CS 2007, pp. 94–101.

[34] Lécué, F.—Mehandjiev, N.: Towards Scalability of Quality Driven Semantic Web
Service Composition. In Int. Conf. on Web Services 2009, IEEE CS 2009, pp. 469–476.

[35] Lécué, F.—Salibi, S.—Bron, Ph.—Moreau, A.: Semantic and Syntactic Data
Flow in Web Service Composition. In ICWS ’08: Proceedings of the 2008 IEEE In-
ternational Conference on Web Services, Washington, DC (USA), IEEE Computer
Society.2008, pp. 211–218.

[36] Li, Y.—Huai, J. P.—Sun, H.—Deng, T.—Guo, H.: PASS: An Approach to
Personalized Automated Service Composition. IEEE International Conference on Ser-
vices Computing, Vol. 1, 2008, pp. 283–290.

[37] Lin, M.—Xie, J.—Guo,H.—Wang, H.: Solving QoS-DrivenWeb Service Dynamic
Composition As Fuzzy Constraint Satisfaction. In EEE ’05: Proceedings of the 2005
IEEE International Conference on e-Technology, e-Commerce and e-Service, EEE ’05,
Washington, DC (USA), IEEE Computer Society 2005, pp. 9–14.



Automatic Dynamic Web Service Composition 825

[38] Lin, N.—Kuter, U.—Sirin, E.: Web Service Composition With User Preferences.

In European Semantic Web Conference 2008, Vol. 5021 of LNCS, Springer, 2008,
pp. 629–643.

[39] Mart́ınez Carreras, M.—Gómez Skarmeta, A.: Combining Web 2.0 and Web
Services in Collaborative Working Environments. In Computing and Informatics.
Vol. 30, 2011, No. 1, pp. 137–164.

[40] Mokhtar, S.—Fournier, D.—Georgantas, N.—Issarny, V.: Context-Aware
Service Composition in Pervasive Computing Environments. In: Nicolas Guelfi,
Anthony Savidis (Eds.): Rapid Integration of Software Engineering Techniques,
Vol.e 3943 of Lecture Notes in Computer Science, Springer Berlin/Heidelberg 2006,
pp. 129–144.

[41] Nau, D. S.—Au, T.C.—Ilghami, O.—Kuter, U.—Murdock, W.—Wu, D.—

Yaman, F.: Shop2: An HTN Planning System. J. Artif. Intell. Res. (JAIR), Vol. 20,
2003, pp. 379–404.

[42] Kirci Ozorhan, E.—Kuban, E. K.—Cicekli, N.K.: Automated Composition
of Web Services With the Abductive Event Calculus. Information Sciences, Vol. 180,
2010, pp. 3589–3613, ISSN 0020-0255.

[43] Papazoglou, M.P.: Web Services and Business Transactions. World Wide Web,
Vol. 6, 2003, No. 1, pp. 49–91.

[44] Papazoglou, M.P.—Traverso, P.—Dustdar, S.—Leymann, F.: Service-
Oriented Computing: State of the Art and Research Challenges. Computer, Vol. 40,
2007, pp. 38–45.

[45] Papazoglou, M.P.: Service-Oriented Computing: Concepts, Characteristics and
Directions. IEEE Computer Society, Washington, DC (USA) 2003, pp. 3–12.

[46] Peer, J.: Web Service Composition as AI Planning – A Survey. University of
St. Gallen 2005.

[47] Rosenberg, F.—Leitner, P.—Michlmayr, A.—Celikovic, P.—Dustdar,

S.: Towards Composition as a Service – A Quality of Service Driven Approach.
In ICDE ’09: Proceedings of the 2009 IEEE International Conference on Data Engi-
neering, IEEE Computer Society, Washington, DC (USA) 2009, pp. 1733–1740.

[48] Rosenberg, F.—Muller, M.B.–Leitner, P.—Michlmayr, A.—

Bouguettaya, A.—Dustdar, S.: Metaheuristic Optimization of Large-Scale

QoS-Aware Service Compositions. In IEEE International Conference on Services
Computing, Los Alamitos, CA (USA), IEEE Computer Society 2010, pp. 97–104.

[49] Shin, D.H.—Lee, K.H.: An Automated Composition of Information Web Ser-
vices Based on Functional Semantics. In 2007 IEEE Congress on Services, July 2007,
pp. 300–307.

[50] Sirin, E.—Hendler, J.—Parsia, B.: Semi-Automatic Composition of Web Ser-
vices Using Semantic Descriptions. In Web Services: Modeling, Architecture and
Infrastructure workshop in conjunction with ICEIS 2003, 2002.

[51] Sirin, E.—Parsia, B.—Wu, D.—Hendler, J.A.—Nau, D. S.: HTN Plan-
ning for Web Service Composition Using Shop2. J. Web Sem., Vol. 1, 2004, No. 4,
pp. 377–396.



826 P. Bartalos, M. Bieliková

[52] Studer, R.—Grimm, S.—Abecker, A.: Semantic Web Services: Concepts, Tech-

nologies, and Applications. Springer 2007.

[53] Urbieta, A.—Azketa, E.—Gomez, I.—Parra, J.—Arana, N.: Analysis of
Effects- and Preconditions-Based Service Representation in Ubiquitous Computing

Environments. International Conference on Semantic Computing, Los Alamitos, CA
(USA), IEEE Computer Society 2008, pp. 378–385.

[54] Williams, A.B.—Padmanabhan, A.—Blake, M.B.: Experimentation with Lo-

cal Consensus Ontologies with Implications for Automated Service Composition.
IEEE Transactions on Knowledge and Data Engineering, Vol. 17, 2005, pp. 969–981.

[55] Yang, J.—Papazoglou, M.P.: Service Components for Managing the Life-Cycle
of Service Compositions. Inf. Syst., Vol. 29, 2004, No. 2, pp. 97–125.

[56] Yoon, P.K.—Hwang, C.L.—Yoon, K.: Multiple Attribute Decision Making:
An Introduction (Quantitative Applications in the Social Sciences). Sage Publications
Inc., 1995.

[57] Yu, H.Q.—Reiff-Marganiec, S.: A Backwards Composition Context Based Ser-
vice Selection Approach for Service Composition. In: Int. Conf. on Services Comput-
ing 2009, IEEE CS 2009, pp. 419–426.

[58] Zeng, L.—Benatallah, B.—Dumas, M.—Kalagnanam, J.—Sheng, Q. Z.:
Quality Driven Web Services Composition. In Int. Conf. on World Wide Web 2003,
ACM, 2003, pp. 411–421.

[59] Zeng, L.—Benatallah, B.—Ngu, A.H.H.–Dumas, M.—Kalagnanam, J.—

Chang, H.: QoS-Aware Middleware for Web Services Composition. IEEE Trans.
Softw. Eng., Vol. 30, 2004, No. 5, pp. 311–327.

[60] Zhao, H.—Doshi, P.: Towards Automated Restful Web Service Composition. IEEE
International Conference on Web Services 2009, pp. 189–196.

Peter Bartalos received his Master degree (with cum laude)

in 2007 and his Ph.D. degree in 2011, both from the Slovak
University of Technology in Bratislava. Since 2006 he has been
working as a researcher at the Institute of Informatics and Soft-
ware Engineering, Slovak University of Technology in Bratislava.
His research covers the Web services area with the focus on dy-
namic composition of semantic Web services. Since May 2011 he
is a postdoctoral research associate at the University of Notre
Dame, Indiana, USA. His research at this university is more
oriented to Green IT.



Automatic Dynamic Web Service Composition 827

Mária Bielikov�a received her Master degree (with summa cum

laude) in 1989 and her Ph.D. degree in 1995, both from the Slo-
vak University of Technology in Bratislava. Since 2005, she has
been a Full Professor, presently at the Institute of Informatics
and Software Engineering at the Slovak University of Technol-
ogy. Her research interests are in software web-based informa-
tion systems, especially personalized context-aware web-based
systems including user modelling and social networks.


