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Abstract: This research investigates ways to bootstrap a socially intelligent tutoring agent 
using a Wizard-of-Oz design in which human teachers work as wizards. Students work in an 
interactive learning environment featuring problem solving and course notes activities, in 
either individual or group mode. They interact with the agent during off-task dialogs. This 
paper explores the effort needed on the part of classroom teachers in order to bootstrap an 
automated agent that can execute near-optimal tutoring actions within the environment. The 
proposed bootstrapping method can detect peers who will be able to interact well socially, and 
it can balance individual and social activities for students. Consequently, an automated tutor 
assisted by classroom teachers, rather than costly expert modeling, can be deployed in 
interactive learning environments in order to supplement and add to the attention a teacher is 
able to give students. 

 
 
 
Introduction 
 
 Time spent on-task and motivation are key factors for effective learning. Therefore, ways for 
improving motivation in online learning environments are repeatedly studied (Rovai, 2007; Kim, 2009). 
Children using instructional tools do not use them to their fullest, frequently engaging in off-task behaviors 
associated with less learning (Baker, 2004). Pedagogical agents used as learning companions have been found 
to increase student motivation (Kim, 2003; Park, 2007). The pedagogical agent facilitates student’s learning in 
that it can allow the student operate in his/her zone of proximal development. However, deploying sophisticated 
intelligent agents requires extensive cognitive modeling of the domain which is time consuming even with 
specialized tools; requiring 200 to 300 hours of development per hour of instruction (Aleven, 2006). Šimko et 
al. (2010) propose an adaptive learning framework that facilitates active student participation as well as course 
adaptation and extensible personalization features. 

The seminal work of Bloom (1984) on human tutoring provides a strong motivation to deploy such 
agents in computerized settings. If the same amount of time is used for individual learning with an 
accomplished tutor, a student’s achievements are two standard deviations higher compared to the conventional 
group instruction – i.e. the average tutored student is above 98% of the students in a conventional classroom. 
Bloom’s study shows that in favorable learning conditions almost all students can reach high levels of 
achievement. Considering that one-on-one tutoring cannot be implemented on a large scale, we are interested in 
replicating the success of human tutors in computer-supported learning environments using artificial tutors. 

Another promising approach to improve students’ motivation is to socialize the learning process. Time 
spent on-task and the social climate in school are important for good teaching learning (Proctor, 1984). 
Collaborative learning systems provide software analogies of classroom resources and collaborative activities, 
such as shared workspaces, synchronous and asynchronous discussions, engaging students in small groups to 
work together on a common task. Grounded in social cognitive theory (Bandura, 2002), learners are self-
organizing and proactive; they ask questions, explain and justify opinions, and reflect upon their knowledge. It 
is believed that through social interaction and communication, students eliminate misconceptions, gain more in-
depth understanding and promote higher-order thinking skills. These benefits are achieved, however, only by 
active participation and teams that function well (Soller, 2001). 

The technology-enhanced learning landscape has been recently influenced by the emergence of social 
networking. Facebook, the most prominent social networking site, is actively used by more than 500 million 
users (Zuckerberg, 2010). In common with other social sites, users can create their own personal profiles on 



 

 

Facebook by providing information that falls into predefined categories, post pictures, participate in 
discussions, view other peoples’ profiles, and communicate with others, link with each other to become 
"friends," or create and join groups. The potential for educational use of such sites seems tempting. Teachers 
can create their own profiles, a course page, and use Facebook's functions (e.g. discussion boards, instant 
messaging) to run the course. However, Facebook does not appear to diminish or eliminate barriers between 
teachers and students. Students use Facebook for student-to-student exchanges but are less likely to use it in 
teacher-student interactions (Towner, 2010). Students using an on-line Facebook course tend to engage in 
passive activities such as viewing others' profiles and reading comments instead of active actions, as, for 
example, commenting and sending a message. (Teclehaimanot, 2009). In addition, only 66% of the students 
sampled consider it acceptable to have teachers on Facebook. Acceptance has huge gender differences – 73% 
of men in the sample consider this acceptable as opposed to only 35% of the women. Issues arise as to what is 
appropriate for teacher-student interactions. For example, students feel uncomfortable poking or befriending 
teachers; they also feel uncomfortable when teachers poke or befriend them. Neither Facebook nor other social 
networking sites have been designed with an educational purpose in mind; educators find it difficult to adjust to 
them (Cain, 2010). There have also been initiatives aimed at using Web 2.0 principles in web-based learning 
systems. Straightforward use of Web 2.0 tools creates problems with respect to how participation in the Web 
2.0 activities translates into learning outcomes (Dohn, 2009). 

In our research, we investigate ways for deploying intelligent pedagogical agents without the need for 
extensive domain modeling. We propose a novel learning framework in which a socially intelligent agent 
(tutor) guides students through appropriate instructional activities. The tutoring strategy is improved 
continuously using a socially augmented reinforcement learning method. In addition to the ordinary exploratory 
part of reinforcement learning, human wizards provide improved guidance in the state and action spaces. In the 
evaluation in a simulated learning environment, we observe that a reasonable number of human actions are 
sufficient to bootstrap the tutoring strategy that is followed by the wizard. 
 
 
The Socially Intelligent Learning Environment 
 

In this section we present our prototype learning environment. The prototype system is an interactive 
web-based environment that helps students learn using a variety of learning opportunities facilitated by a 
socially intelligent tutoring agent. It features pseudo-tutor assessments with free-text answering. Questions for 
assessments and exercises are generated by a task generator discouraging cheating and surface learning. It is an 
attempt to build an integrated environment for: (1) assessments and instruction as they occur in regular 
classrooms; and (2) home study with self exercises. The available learning opportunities are augmented with 
social features. In order to enable socially intelligent instruction, the tutoring strategy operates on top of 
socially augmented components that constitute the learning environment: (1) problem solving, (2) course notes, 
and (3) off-task social dialogs. The components are, then, integrated by the tutoring strategy. A conceptual 
diagram of a student working in the proposed learning environment is provided in Figure 1. 
 

 
 

Figure 1: Diagram of various activities that are facilitated by the tutoring strategy. 
 

Using this approach, we attempt to model a spectrum of learning activities – individual and group, and 
active (problem solving) and passive (reading course notes) – while the tutoring strategy integrates them in a 



 

 

learning experience, and effectively, decides on the pedagogy. That is, we do not rule out any single learning 
theory, but we also do not choose a single one. No single learning theory works for everyone, and the 
reinforcement learning approach to modeling a tutoring strategy can (over time) decide on a suitable tutoring 
strategy (a selection of activities) for each student. 

The approach is more suitable for structured domains (e.g. mathematics, programming) as they can 
better take advantage of the structured problem solving facility. In order to conduct classroom experiments, the 
system also contains generic social features such as messaging, friend management, invitations, and updating 
(the individual) profile. The system is both an individual learning environment and a collaborative learning 
system, and hence is designed as a client-server application. The implementation enables stateful low latency 
interaction required for synchronous activities. 
 
Student Environment 
 

The student begins with a dialog with the tutoring agent (Figure 2a) in which his immediate goals are 
determined, and combined with long-term goals and tendencies; the tutor recommends a learning activity to 
pursue. Either study of course notes or problem solving is selected. For group mode learning activities, students 
can assemble collaborative groups from their available friends; anonymous introductions can be facilitated by 
the tutoring agent. Interactions between users are restricted to friends or tutor-recommended students only; 
hence a student does not come into contact with any entity to which his/her relationship cannot be predicted. 
 

(a) (b) 
 

Figure 2: Prototype system’s screens: welcome dialog with the tutor (a), friends management facility (b). 
 

A student can work both actively (problem solving) or passively (course notes), and individually or in 
collaboration with others. During problem solving, the student is presented with a subtask to solve in a linear 
manner. When an answer is submitted, its correctness is judged, and a new subtask for the student to solve is 
displayed allowing the student to scroll all the way back to the beginning and see the course of action he/she 
took. A free text prompt is used to answer subtasks.  
 

 
 

Figure 3: Collaborative problem solving – free-text task answer with voting mechanism. 
 

In the social mode, students can work on problems in groups. Additional interactions such as 
synchronous messaging within the group and a voting facility are utilized (Figure 3). We do not describe the 



 

 

course notes facility in this paper. Other generic social features include sending messages, friend management 
(Figure 2b), invitations, and updating the individual’s user profile. When a student assembles a study group 
consisting of friends, he/she is provided with the live status of the friends (contacts) so that the group will be 
comprised of active users. 

 
Wizard Interface 
 

On the other side of the barricade is the user interface for human wizards. The human wizard must 
analyze student behavior and take appropriate action. Obviously, a wizard (or two) cannot be provided for each 
student. The human wizard's interface (Figure 4) is intended to streamline wizard activity to service multiple 
students simultaneously. 

 

Figure 4: Experimental wizard interface, featuring live/replay-able tracking of student's user interface (A), 
student's events timeline (B), recommended actions to execute (C), and tools for editing the timeline (D). 

 
During problem solving, the wizard is expected to judge student answers in a timely manner. Judging 

an answer requires the wizard to manually select a suitable category from a set of pre-defined categories. In an 
earlier experiment (Tvarožek, 2008), we observed that a single wizard is able to judge student answers for a 
class of 20 to 30 students without any noticeable lag.  
 The wizard can observe student's state of client environment, and is capable of executing user interface 
actions within the client environment. Past student actions in the session can be replayed (Figure 4A) from the 
very beginning watching the succession of events that led to the current environment state. The socially 
intelligent tutor (server) analyzes the client's environment state continuously using feature detectors. When a 
state is recognized recommended action for the human wizard to execute is offered (Figure 4C). 
 
Course Design 
 

Teachers can use the prototype system to design blended courses. In a blended course, students work 
on exercises during classroom time, while human teachers provide them with immediate assistance and/or 
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timely instruction. After class, students can resume unfinished work and/or further strengthen their 
understanding at home using the identical online learning environment. 
 The course curriculum involves planning for activities within individual lessons, as well as activities 
between the lessons. The teacher plans for timed activities (e.g. assessment, collaborative activity) within a 
lesson. During the actual lesson, the timing is enforced by the system. Hence, the teacher is in complete control 
of student use of learning system time and means in class. Outside-lesson activities are also planned by the 
teacher beforehand. These activities are pursued freely by the students. They can strengthen previous learning 
experiences, as well as prepare students for the next lesson. The core idea is that teacher plan both in-lesson and 
outside-lesson activities ahead of time. Consequently, the reinforcement learning-based intelligent agent can 
base its behavior (recommendations to students) on the teacher-planned curricula. This lets the agent guide 
students to learning experiences that are relevant for their imminent school needs, providing yet another bit of 
motivation for students to actually listen to the artificial tutor. 
 
Evaluation Studies 
 

In previous evaluation studies (Tvarožek, 2010) we observed that without any instructions given 
before the treatment some 56% of students engaged in the dialog with the tutor, revealing on average 1.56 
(st.dev 1.75) features (e.g. I like swimming, watching TV) about themselves. Moreover, students that engaged in 
a conversation with the tutoring agent exhibited higher learning gains. The not engaged group showed 
relatively low learning gain 3.7% vs. 12.3% exhibited by the engaged group. 

In summary, students that engaged in social off-task dialogues with the tutor were more effective in 
solving problems correctly (57% vs. 37%), and liked the system more (4.22 vs. 2.86 points out of 5 in a 
questionnaire), suggesting that learning environments may produce higher learning gains by "being friends" 
with the students, providing them with socially relevant motivation. A single human teacher cannot provide for 
each student in the class individually during instruction. The proposed apporach to a socially intelligent tutor is 
designed to fill this gap when students use computer-supported learning environments. 
 
 
Bootstrapping the Socially Intelligent Tutoring Strategy 
 

The components of our learning environment can operate in individual and social modes and provide 
diverse opportunities for instruction. The role of the socially intelligent tutor, then, is to identify an appropriate 
learning activity for each student at a given time. In other words, the tutor recognizes the student's state and 
performs an action that guides him/her to the appropriate learning activity. In this section, we propose a method 
that integrates the individual components into a tutoring strategy, i.e. a policy that can select an appropriate 
action for the tutor to take in the learning environment. 
 
Method Overview 
 

The proposed method for bootstrapping a socially intelligent tutoring strategy is based on 
reinforcement learning that is modified to be able to optimize the policy for a single student efficiently as well 
as when rewards for many students need to be considered, i.e. the method is suitable for social learning 
environments in which a large number of students participate. In this section, we: (1) describe the state-action 
view of how the learning environment can be interpreted as a reinforcement learning problem; (2) present the 
reinforcement learning method for a solitary student; and (3) augment the method with a social graph in order 
to handle large number of students efficiently 

Reinforcement learning is a machine learning approach that induces the optimal policy for an agent to 
follow in a stochastic environment while, at the same time maximizing cumulative rewards (Sutton, 1998). The 
agent repeats the following steps indefinitely. At each step: 

 
1. the agent observes the environment recognizing the current state; 
2.  selects an action to perform; 
3.  a reward (scalar in R) may be received from the environment; and 
4.  the environment changes according to the action executed. 

 



 

 

The idea is to observe which actions (solving a problem, reading a course note, interacting with a peer, 
interacting with the tutor) produce positive rewards, and progressively calculate better estimates of action utility 
values in each state. Ultimately, the policy should be able to select "good" actions in each possible state. 
Positive rewards are received when a problem is solved successfully or the student demonstrates positive 
emotional dialog utterances, etc. Similarly negative rewards are received when an inappropriate behavior is 
observed. Depending on what we want to achieve. 
 How do we translate our learning environment to this formalism? We cannot possibly hope to observe 
what students actually do at their computer desks; we can only observe the actions that students have performed 
within the learning environment. Sets of features of the current situation in the learning environment constitute 
states which, in turn, constitute the total state space for an individual student in our learning environment. 
Actions – user interface actions, learning activity actions, or social actions – that are executed in the learning 
environment are based on action templates that were originally performed by human wizards, i.e. there is no 
"chaotic" exploration of the state and action spaces. Finally, at times when an activity produces 
positive/negative results, multidimensional rewards are received (task vs. non-task, emotional vs. social). To 
find a globally optimal tutoring strategy, the computer tutor cannot follow two independent goals at once but 
needs to assign weights to the respective reward dimensions. For example, an individual learning-only strategy, 
a group learning-only strategy, an emotional-only, a social-only, or a weighted combination of any of these 
strategies can be followed, but in the end, a single scalar reward in R must be received after executing an 
action. 
 In addition to traditional exploitation (selecting the best possible action at a state) and exploration 
(selecting a random action) we extend the reinforcement learning method with human wizard interventions 
(Figure 5). Wizard actions are welcome at any time, but the assumption is that because the wizard is a real 
person his/her actions are expensive. As a result, we are interested in minimizing the number of human wizard 
actions required to learn the optimal policy. 
  

 
 

Figure 5: Reinforcement learning approach enhanced with Wizard-of-Oz action selection. 
 
 The generic reinforcement learning approach can be used for optimizing the tutoring strategy for a 
single (solitary) student in the environment. The approach, however, is not applicable to learning optimal policy 
in a large population of students. We have proposed a modified algorithm that in the case of a social scenario 
(when multiple students within the learning environment are be considered) aggregates the individual states of 
other students into a combined shared state, thus reducing the state space to a manageable size. Hence, the 
proposed method can run efficiently even when a large population of students is serviced. 

The environment's state and action spaces are practically infinite. In a face-to-face tutoring session, the 
human tutor may employ any enlightened tutoring approach; obviously the computer tutor cannot tractably 
enumerate and explore all the options available in the computer setting. Therefore, guidance by human wizards 
in exploring applicable actions is indispensable for the computer tutor to obtain knowledge of the relevant 
states. 
 
 
Evaluation 
 

We evaluated the feasibility of the proposed approach in a series of simulated scenarios: solitary 
student scenario, social-only scenario and mixed scenario. The scenarios simulate a wizard's decisions using a 
hidden model of the environment allowing us to explore the way in which the number of wizard actions affects 



 

 

bootstrapping efficiency. 
In each scenario the activities for a student or a population of students are optimized. The activities are 

organized in a timeline containing N action slots. In each slot, the student can perform one of two actions 
RELAXING or LEARNING. In social and mixed scenarios the students can perform an additional action 
SOCIAL-LEARNING during which a peer student from the population needs to be selected and the action is 
performed by both students in the same time slot. 
 The actual learning of a student is modeled using cyclical efficiency, that is, each person has a single 
peak mental capacity at a time of day; possibly different across persons. Initially, the student has zero energy, 
and has learned nothing. When the RELAXING action is performed, the student gains two energy units. Energy 
is needed for effective learning although learning has variable efficiency depending on the time step executed. 
The LEARNING action consumes one unit of energy. When enough energy is available, the student will learn 
an amount equal to the current value of learning efficiency after consuming one unit of energy. When not 
enough energy is available, the LEARNING action uses the remaining energy and the student learns the amount 
of learning efficiency proportional to the energy spent. 
 In this scenario, the individual learning of student u in step i has cyclical efficiency: 
 

 
 

Rewards in the reinforcement learning method are given only for LEARNING actions and are equal to 
the amount of learning that occurred. In a way, the cyclical nature of rewards reflects the student's daily routine. 
The tutoring policy selects actions for each successive step sequentially meaning that the tutor recommends that 
the student perform the selected action. In a real world setting, the student is free to choose which action he/she 
will perform; in this scenario, we assume the student executes the requested (tutor-recommended) action. 

In social scenarios, the learning of M students is optimized simultaneously. Each student has a timeline 
consisting of N action slots. The RELAXING action is used to acquire two energy units as was the case in the 
previous scenario. Similarly, the SOCIAL-LEARNING action requires one unit of energy to be effective; 
however, this (social) action must be undertaken with another student. Because a joint effort is required, the 
given SOCIAL-LEARNING action is executed in both the student's environment and in a peer's environment, 
that is, in another student's timeline. When no peer is selected for a learning action, its efficiency drops to zero. 
Each student has a predefined value (hobbyi) of interest in a hobby (for simplicity of the scenario, the hobby is 
the same across students); the closer the values of the two students’ interests are, the better the fit for the social 
learning activity. As a result, when an unsuitable peer is selected, learning efficiency is lowered proportionally 
to the mismatch. 

The individual learning efficiency is further affected by the social efficiency as follows: 
 

 

 
 
As previously, scalar (in R) rewards are awarded to students for learning activities depending on 

efficiency (learning that occurred); in other words, a student can learn at any time with any peer, but may end 
up learning nothing (or very little) if the circumstances including being relaxed, or collaborating with a suitable 
peer are not sufficiently satisfied. 
 Using this model, optimal action can be selected at each time for each student. The model of individual 
learning efficiency intuitively follows student's daily routine, and the fact that different students may reach their 
peak mental efficiency at different times of day. Similarly, the social efficiency model intuitively reproduces a 
possible indirect relation of group efficiency to individual member's efficiency via hobbies. In practice, 
however, the individual efficiency is estimated based on student's past interactions, and (should it be found too 
unfitting) the social efficiency model can be altered once significant data becomes available. The bootstrapping 
method is not bound to any particular model, and hence we believe that the improvements translate to other 
(possibly implicit) models as well. The following experiments are simulations of Wizard-of-Oz design. That is, 
the model is used to simulate human actions at a given participation rate. There are no actual human operating 
in the experiment runs. 

We only present results for the more complex social scenarios. The experiment was run for N=20, 



 

 

cycle=3, M=10; seed was set randomly for each student. For each wizard participation rate, the experiment was 
run 100 times, and the results averaged. Within the reinforcement learning method we used typical values for 
learning rate 0.1, and discount factor 0.8. The learning speed for selected wizard participation rates is shown in 
Figure 6. With at least some (5%) wizard participation, roughly 85% of the expected maximum policy can be 
learned. Interestingly, participation of 10% is sufficient to induce a good tutoring strategy rapidly in the first 
five epochs. Note that in a single epoch the actions for all of the students are selected, i.e. actually M times 
more action selections (and reinforcement learning updates) are performed compared to when the same number 
of epochs were used in the individual scenario. 
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 Figure 6: Learning the social-only policy with different wizard participation rates. 
 

In the mixed scenario (where students can perform both individual and social actions, influencing each 
other), the interaction between individual and social actions caused the bootstrapping method to take longer. 
Wizard participation of 10% is sufficient to attain 85% to 90% of the theoretical maximum expected mixed 
(social and individual) policy. Higher wizard participation does not affect the quality of the policy identified but 
only improves the learning speed, and can produce a good policy very early in the bootstrapping process. The 
learning speed for selected wizard participation rates is shown in Figure 7. 
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Figure 7: Learning the mixed (social and individual) policy with different wizard participation rates. 

 
The interaction between individual and social actions caused the bootstrapping method to take longer. 

Wizard participation of 10% is sufficient to attain 85% to 90% of the theoretical maximum expected mixed 
(social and individual) policy. Higher wizard participation does not affect the quality of the policy identified but 
only improves the learning speed, and can produce a good policy very early in the bootstrapping process. 



 

 

The socially augmented approach used for social scenarios is able to detect peers who will be 
appropriate for effective social interactions. When individual and social actions need to be balanced, the 
method may take longer, and greater wizard participation will be needed to attain the theoretical maximum for 
the expected policy. Wizard participation of between 10% and 20% appears to be sufficient to bootstrap policy 
that will be followed by human wizards. In other words, the simulations suggest that a socially intelligent 
tutoring strategy that allows the computer tutor to manage students in the proposed learning environment can be 
bootstrapped with a reasonable amount of human participation. 
 
 
Conclusions 
 

This paper investigated a Wizard-of-Oz-driven reinforcement learning approach to bootstrap a socially 
intelligent tutoring strategy that operates on top of typical components of learning environments. An automated 
computer tutor that follows the strategy can select appropriate learning activities for students. The method is 
designed to be able to balance individual and social, and cognitive (on-task) and affective (off-task) activities. 
Combined with the off-task dialog facility guided by human wizards, the proposed bootstrapping method is 
designed to provide novel interaction patterns in order to maintain their motivation and increase the time 
students invest in study. Human wizards are costly compared to fully automatized tools. The evaluation in 
simulated scenarios suggests that as much as 10% of wizard participation in making decisions is sufficient to 
learn an 80% optimal policy i.e. the tutoring strategy followed by the human wizards. This suggests that the 
(typically demanding) domain modeling by artificial intelligence engineers can be, to an extent, replaced by less 
qualified teachers working as human wizards. In the future, we aim to conduct a follow up study in real world 
setting with the human teachers. 

The proposed socially intelligent tutoring strategy is designed to pick suitable learning activities for 
each student depending on the current state of the student's ability. Using this approach, different pedagogical 
styles and strategies can be varied to fit the needs of the learner. In the current prototype environment, either (1) 
individual or group work; or (2) problem solving or working on course notes can be used. Various pedagogical 
strategies not often used in regular classrooms can be employed on top of these resources, e.g. collaborative 
learning, observational learning, peer learning, and others. All too often, teachers are currently unable to these 
pedagogical strategies in classrooms because of their mixed effects on different students. Using the proposed 
approach however, the learning experience can be personalized differently for each student. 
 
Acknowledgment 
 
This work was partially supported by the grants VG1/0508/09, KEGA 345-032STU-4/2010 and it is the partial 
result of the Research & Development Operational Program for the project Research of methods for 
acquisition, analysis and personalized conveying of information and knowledge, ITMS 26240220039, co-
funded by the ERDF. 
 
References 
 
Aleven, V., McLaren, B. M., Sewall, J. & Koedinger, K. R. (2006). The Cognitive Tutor Authoring Tools 
(CTAT): Preliminary Evaluation of Efficiency Gains. In Proceedings of the 8th International Conference on 
Intelligent Tutoring Systems (pp. 61–70), Taiwan, Springer. 
 
Baker, R.S., A.T. Corbett, K.R. Koedinger, & A.Z. Wagner. (2004). Off-Task Behavior in the Cognitive Tutor 
Classroom: When Students "Game The System." In Proceedings of the SIGCHI conference on Human factors 
in computing systems (pp. 383–390), ACM, 2004. 
 
Bandura, A. (2002). Social cognitive theory of mass communications. In J. Bryant, & D. Zillman (Eds.). Media 
effects: Advances in theory and research (2nd ed., pp. 121-153). Hillsdale, NJ: Erlbaum. 
 
Bloom, B.S. (1984). The 2 Sigma Problem: The Search for Methods of Group Instruction as Effective as One-
to-One Tutoring. Educational Researcher, 13(6), pp. 4–16. 



 

 

Cain, C., Seals, C. & Nyagwencha, J. (2010). Social Networking Teaching Tools: A Computer Supported 
Collaborative Interactive Learning Social Networking Environment for K-12. In: Proc. of World Conference on 
E-Learning in Corporate, Government, Healthcare, and Higher Education 2010 (pp. 1612–1617), AACE. 
 
Dohn, N. (2009). Web 2.0: Inherent tensions and evident challenges for education. International Journal of 
Computer-Supported Collaborative Learning, 4(3), pp. 343–363. 
 
Kim, K.J. (2009). Motivational Challenges of Adult Learners in Self-Directed e-Learning. Journal of 
Interactive Learning Research, 20(3), 317-335. Chesapeake, VA: AACE. 
 
Kim, Y. (2003). Things that Make Agent as Learning Companion Effective. In A. Rossett (Ed.), Proceedings of 
World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education 2003 (pp. 
1659-1666). Chesapeake, VA: AACE. 
 
Park, S., Lim, J., McBride, R., McFerrin, K. & Kim, K. (2007). Designing Effective On-line learning 
Environments Using Emerging Educational Technologies. In Proceedings of Society for Information 
Technology & Teacher Education International Conference 2007 (pp. 464-471). Chesapeake, VA: AACE. 
 
Proctor, C. (1984). Teacher expectations: A model for school improvement. The Elementary School Journal, 
pp. 469–481. 
 
Rovai, A., Ponton, M., Wighting, M. & Baker, J. (2007). A Comparative Analysis of Student Motivation in 
Traditional Classroom and E-Learning Courses. International Journal on E-Learning, 6(3), 413-432. 
Chesapeake, VA: AACE. 20022. 
 
Soller, A. (2001). Supporting social interaction in an intelligent collaborative learning system. International 
Journal of Artificial Intelligence in Education 12, pp. 54–77. 
 
Sutton, R.S. & Barto, A.G. (1998). Reinforcement Learning: An Introduction. MIT Press, Cambridge. 
 
Šimko, M., Barla, M. & Bieliková, M. (2010). ALEF: A Framework for Adaptive Web-Based Learning 2.0. In 
Proceedings of IFIP Advances in Information and Communication Technology, Vol. 324/2010, (pp. 367–378), 
Springer. 
 
Teclehaimanot, B. & Hickman, T. (2009). Student-Teacher Interaction on Facebook: What Students Find 
Appropriate. In: Proceedings of World Conference on E-Learning in Corporate, Government, Healthcare, and 
Higher Education 2009 (pp. 3181–3190), AACE. 
 
Towner, T.L. & Muñoz, L.C. (2010). Let’s ‘Face’ It: Facebook as an Educational Tool for College Students. In: 
Proceedings of World Conference on E-Learning in Corporate, Government, Healthcare, and Higher 
Education 2010 (pp. 1953–1958), AACE. 
 
Tvarožek, J., Kravčík, M. & Bieliková, M. (2008). Towards Computerized Adaptive Assessment Based on 
Structured Tasks. In: Proceedings of Adaptive Hypermedia and Adaptive Web-Based Systems (AH 2008), 
LNCS, Vol. 5149, Hannover, (pp. 224–234), Springer. 
 
Tvarožek, J. & Bieliková, M. (2010). Feasibility of a Socially Intelligent Tutor. In: Proceedings of Intelligent 
Tutoring Systems (ITS 2010), LNCS, Vol. 6095, Pittsburgh, USA, (pp.423–425), Springer. 
 
Tvarožek, J. & Bieliková, M. (2010). Enhancing Learning with Off-Task Social Dialogues. In: Proceedings of 
European Conference of Technology-Enhanced Learning (EC-TEL 2010), LNCS, Vol. 6383, Barcelona, Spain, 
(pp. 445–450), Springer. 
 
Zuckerberg, M. (2010). 500 Million Stories. July 21, 2010. 
URL: http://blog.facebook.com/blog.php?post=409753352130 (accessed December 16, 2010). 


