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Abstract. A model of web information system content is crucial for its effective 

manipulation. We employ knowledge tags – metadata that describe an aspect of 

an information artifact for purpose of the modeling. Knowledge tags provide 

a lightweight semantics over the content, which serves web information systems 

also for sharing knowledge about the content and interconnections between in-

formation artifacts. Knowledge tags represent not only content based metadata, 

but also a collaboration metadata, e.g. aggregations of an implicit user feedback 

including interactions with the content. To allow this type of metadata we 

should provide means for knowledge tags repository providing flexible and fast 

access for effective reasoning. In this paper we address issues related to 

knowledge tags repository and its automatic maintenance. Main design issues 

are based on considering dynamic character of the web of information artifacts, 

which results in content changes in time that can invalidate knowledge tags. We 

realized the web-scale repository via the MongoDB database. Proposed reposi-

tory stores knowledge tags in Open Annotation model and supports inference 

via distributed SPARQL query processing algorithm for MapReduce. 

Keywords: lightweight semantics, knowledge tag, annotation, maintenance, 

MapReduce, SPARQL, distributed repository. 

1 Introduction 

Effective web content manipulation such as personalized search, recommendation or 

context aware navigation requires explicit representation of a content model. It obvio-

usly includes metadata on the content as an explicit representation of the content 

model. Moreover, interactions or user activities are recorded and used for intelligent 

content processing, e.g. employing collaborative filtering techniques. Here, the se-

mantics is often represented implicitly, e.g. by computing similarity of users for rele-

vant information artifact recommendation based on activities of similar users.  

For large, dynamic or not completely known information content a lightweight se-

mantics is often the only possible alternative to heavyweight representations, that 

offer advanced complex reasoning but they cannot be acquired automatically. Light-

weight semantics representations form only basic conceptual structures [1]. We pro-

pose its representation based on a homogeneous underlying metadata representation: 
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knowledge tags – metadata that describe an aspect of an information artifact, which 

can be either content-based or artifact’s manipulation-based.  Knowledge tag is 

an extension to the basic concept of a tag as a simple keyword or a term assigned to 

an information artifact. They represent any metadata that add additional value to the 

information artifact and represent some knowledge on web information system con-

tent. Knowledge tags for web-based information systems can contain explicit and 

implicit feedback generated by developers working on the source code [2].  

Existing web information systems already assign metadata that can be considered 

as knowledge tags to documents – either manually or automatically [3]. By sharing of 

these knowledge tags, a new layer of the lightweight semantics over the web infor-

mation system content can be created. In addition, the knowledge tags layer can be-

come web information systems integration and sharing space based on metadata reuse 

either on the content itself or characteristics of its manipulation including user interac-

tion or users. Web information systems can take metadata gained by other systems, 

use it for reasoning a new metadata and share it in the knowledge tags layer again. As 

a result, web information systems can collaboratively build and improve the semantic 

layer over the Web content.  

However, existing systems obviously store the metadata in their private reposito-

ries, so other systems could not use the metadata. Moreover, an issue of dynamic 

change of information artifacts that can lead to invalidation of knowledge tags should 

be considered. We present an approach to knowledge tags maintenance, which allows 

systems to share their metadata in a consistent form via addressing issues related to: 

─ The repository: knowledge tags repository has to store a large amount of 

knowledge tags in a flexible open format which has to be understandable for web 

information systems and the repository has to still provide fast parallel access for 

a numbers of web information systems. 

─ Dynamicity of the Web: a content of the Web repositories is not stable. Stored doc-

uments arise, are deleted and modified without a notice. In addition, web users use 

the web content differently over the time. The Web content instability, diversity in 

usage of the Web content and also a time aspect can lead to invalidation of 

knowledge tags (e.g., new and favorite marks) that have to be updated or deleted. 

We propose the knowledge tags repository and a method for storing and querying 

knowledge tags in it. For the repository design it is important to understand require-

ments for the repository, in particular automatic knowledge tags maintenance. We 

present also our presumptions on how third-party systems can use knowledge tags. 

2 Related Work 

Generally, there are two basic issues caused by dynamicity of the Web. Changes in 

tagged document can have influence to a content of knowledge tags. The influence of 

modifications in tagged documents to the content of knowledge tags is closely related 

to a type of knowledge tags and an algorithm, which created metadata stored in 

knowledge tags. Due to the complexity of change types identification and application 



to knowledge tags, knowledge tags are often deleted and recreated, although rebuild 

operations are time expensive and documents modifications require no or only small 

corrections of knowledge tags in the most of cases. 

The second issue is knowledge tags’ anchoring in documents, especially in textual 

documents that are frequently modified documents on the Web. In this case, the 

knowledge from annotation methods can be utilized, because of knowledge tags and 

annotations have common characteristics. Both of them are anchored to specific parts 

of documents and they contain small information on these document parts.  

Popular methods of annotations anchoring are based on the start and the end letter 

indexes of an annotation. But this simple anchoring is not well-usable in dynamic 

documents on the Web, because web documents are changed without a notice and the 

index-based anchoring is not automatically repairable without change-set in docu-

ments. Moreover, the index-based anchoring is not able to reflex complex modifica-

tions, when a document was edited at the annotation’s place and the modification has 

straight influence to both the anchoring and also annotation’s content. In this case it is 

necessary to make decision if the anchoring would be updated or the annotation 

would become orphaned (new position of the annotation could not be assigned) and 

also how the annotation’s content has to be updated [4]. 

Phelps and Wilensky proposed a method of robust annotations anchoring [5] with 

aim to start up development of an anchoring standard. They define criteria of anchor-

ing robustness that are mainly focused on anchoring simplicity and its automatic cor-

rection based on new version of anchored document without necessity of a change-

set. They also proposed their own anchoring based on SGDOM (simple, general doc-

ument object model) which describes tree structure of textual documents. Every 

SGDOM logical part has its own identifier. Phelps and Wilensky utilize these identi-

fiers and define three descriptors of a anchoring – SGDOM identifier, path in 

a SGDOM tree and context. Each descriptor is tolerant to different document change 

complexity on the expense of computational complexity. 

iAnnotate tool [6] anchors users’ annotations in webpages to DOM objects. iAnno-

tate does not reflect a webpage modifications, but it is focused on changes in the 

webpage presentation (e.g., a zoom or a change of resolution), to which iAnnotate 

easily reacts by obtaining new positions of DOM objects. iAnnotate stores annota-

tions in a relational MySQL store which has good performance, but it is not easily 

distributable and it does not provide necessary flexibility for general annotations. 

Anchoring representation based on a tree structure is used in Annotea system [7], 

too. HTML tree structure is utilized and anchoring descriptors defined by xPath. An-

notea repository stores data in RDF model, which gives great flexibility to structure of 

annotations. Authors did not fully take this great advantage, but this approach to a 

repository inspired The Open Annotation Collaboration (www.openannotation.org) to 

a proposition of flexible open annotation model (www.openannotation.org/spec/beta), 

which allows storing and sharing annotations in unified form.   

Annotations in this model consist of:  

─ oac:Body
1
 – represents annotation’s content which is stored in an annotation; 
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─ oac:Target – represents target document which is annotated. An annotation can 

contain multiple targets; 

─ oac:Constraint – constrains annotation’s body or target to their parts. A constraint 

on a body (an object of the type oac:ConstrainedBody derived from oac:Body) is 

applicable, if only a part of a body is the real body of the annotation. Target con-

straint (an object of the type oac:ConstrainedTarget derived from oac:Target) 

specifies concrete part of the target, to which an annotation is anchored. 

Some authors assign annotations only to concrete version of a document and they 

mark annotations as voided in each other version of a document. In work [8], authors 

proposed annotations maintenance method based on OA model and Memento frame-

work [9], from which they determine versions of documents, for which annotations 

were created and after that they filter out voided annotations. 

3 Knowledge Tags Maintenance 

Current annotation systems support only specific types of annotation for specific 

types of target documents (e.g., text highlighting in HTML documents). They also 

provide basic annotations maintenance, mostly in a form of an annotations repository 

and an automatic anchoring repair based on predefined rules. We are working on 

knowledge tags maintenance approach to an automatized repair of knowledge tags 

after updating of tagged documents. A repair of a knowledge tag means discarding of 

a knowledge tag or updating its anchor and content. If a knowledge tag is not repaira-

ble, we mark the knowledge tag as voided and we yield decision how to modify the 

knowledge tag or if it have to be completely discarded to another system (if it is pos-

sible, the system which created the knowledge tag).  

We address this goal via the method which consists of three main parts (Fig. 1): 

─ Knowledge Tags Repository – stores knowledge tags in flexible Open Annotation 

model; 

─ Maintenance – provides automatic maintenance over knowledge tags stored in the 

knowledge tags repository; 

─ Access Provider – provides access to the repository and notifies Maintenance about 

updates in the repository and detected new versions of tagged documents. 

The maintenance part is responsible for the maintenance of knowledge tags consisten-

cy. It means that the maintenance guarantees for a correctness of knowledge tags 

(their anchoring, content and validity mark) that are provided to web information 

systems as a reaction to their requests (e.g., loading of knowledge tags anchored to 

a document). We achieve this via rules for knowledge tags maintenance. These rules 

are specific to each type of knowledge tags and they are defined by authors of con-

crete knowledge tag type. We also suppose that the rules are automatically derivable 

by watching of a knowledge tag life cycle and a life cycle of tagged documents. 

The knowledge tags repository is core element, from which usability and perfor-

mance of whole method is dependent. To achieve overall usability, the knowledge 

tags repository has to implement flexible and generally acceptable knowledge tags 



model and provide effective and powerful data access even with non-trivial amount of 

knowledge tags stored in it. 
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Fig. 1. Architecture of proposed knowledge tags maintenance approach 

4 Knowledge Tags Repository 

To supply acceptable knowledge tags model, we made decision to utilize existing 

Open Annotations model, which is currently in beta version but it is already used by 

a numbers of systems and projects [8], [10], [11]. The model is based on RDF and it 

is highly recommended to implement it by RDF triple databases and support at least 

a basic data access (e.g., querying by SPARQL) with RDF serialization output format. 

To provide effective and powerful data access, we analyzed standard use cases of 

annotation repositories and itemize a list of requirements that respect these use cases 

and specific requirements of OA model and maintenance part of proposed method: 

─ Storing of a knowledge tag – creation of new knowledge tag for a document; 

─ Updating of a knowledge tag – e.g. after modification of a tagged document; 

─ Obtaining of concrete knowledge tag – retrieve the knowledge tag by its URI; 

─ Access to knowledge tag’s history – obtaining of previous versions; 

─ Obtaining of knowledge tags anchored to a document; 

─ Knowledge tags querying by SPARQL – compatibility with OA model; 

─ Distributed processing – maintenance over non-trivial amount of knowledge tags. 

Manipulation with the whole knowledge tag and not only with its parts is the main 

component of almost all standard use cases. It is a consequence of the fact that 

a knowledge tag has sense only as complete information with its content and also with 

its anchoring in tagged document. But this is in a disagreement with RDF triple data-

bases that have good deduction possibilities but, they have serious issue with obtain-

ing complete information about an object, when several simple queries have to be 

processed and each query can take several seconds in large datasets [12]. To address 

this issue, we set up hypothesis, that we can build efficient RDF-like repository for 

objects of one type (including types derived from this type) based on another than 

RDF triple stores, which allows efficient access to complete objects and also supports 

basic SPARQL query processing with a performance comparable to classical graph-

based RDF stores. 



4.1 Knowledge Tags Repository Structure 

Document databases are in a correlation with our need of an access to whole 

knowledge tags, while they store documents (in general objects) as one item and not 

sparse over several tables or collections. This allows fast access to whole objects 

without necessity of time expensive joins [13]. We decided for MongoDB
2
 which 

matches our requirements: it provides efficient data access (loading and updating) and 

supports distributed data processing via MapReduce [14]. 

MongoDB organizes stored objects in collections that allow developers to organize 

similar or related data to one collection. We design a structure of the knowledge tags 

repository based on two collections: 

─ Tags – contains knowledge tags in open structure which only have to meet with 

OA model. The collection provides fast access to knowledge tags by their URI, but 

access by URI of tagged document is inefficient, because the structure of OA mod-

el does not enable effective index over documents URIes; 

─ Documents – contains a mapping of documents to knowledge tags. The mapping 

has fixed format – a document URI, a knowledge tag URI, a validity of 

a knowledge tag and access rights. The fixed format allows fast filtrations and ac-

cess to URIes of knowledge tags anchored to a document. 

4.2 Distributed SPARQL Query Processing 

MongoDB meets with almost all requirements to the repository. But it does not pro-

vide support for SPARQL query processing which is implementable via MapReduce. 

Several approaches to SPARQL query processing via MapReduce [15], [16] exists 

already, but all of them are proposed for Apache Hadoop
3
 which has some differences 

in processing of Map and Reduce phases and proposed approaches work with RDF 

triples stores. MongoDB additionally provides Finalize function for efficient finaliza-

tion of results of Reduce function. 

 

Fig. 2. Iterations of assembly algorithm (join graphs – left, join tree – right) for the example 

with four triple patterns: P1 – ?annot1 oac:hasTarget ?target; P2 – ?annot2 oac:hasTarget 

?target; P3 – ?annot1 dcterms:creator ?creator1; P4 – ?annot2 dcterms:creator ?creator2  
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Our algorithm for distributed SPARQL query processing firstly determines optimal 

join strategy to minimalize count of necessary join iterations via optimal join tree, the 

tree with minimal depth. Leafs of the optimal join tree are triple patterns and internal 

vertexes are join attributes. The tree assembly algorithm runs in a cycle until all join 

attributes are used in the tree. Each of iterations creates one layer of the tree (Fig. 2): 

1. Create a join graph, the graph whose nodes are join attributes with a set of joined 

triple patterns (if two join attributes have equal set of covered triple patterns, these 

join attributes are represented by one node) and edges are inserted between nodes 

with intersecting set of joined triple patterns.  

2. Until the join graph is not empty, select one node with the smallest degree and re-

move the node with incident nodes from the join graph. 

3. Add join attributes from selected nodes to the optimal join tree and connect them to 

vertexes that are in previous layer and join common triple patterns. 

4. Join triple pattern from selected nodes to new patterns. 

The MapReduce algorithm uses an ordered list of join attributes with their values as 

a key and a list of deducted objects that consists of an ordered list of joined pattern ids 

and an ordered list of attributes from patterns with their values as a result. The algo-

rithm is processed in two phases. The first phase is executed with join attributes on 

the lowest layer of the optimal join tree. In this phase Map function emits results from 

knowledge tags stored in the repository. Reduce function creates results as Cartesian 

products of Map results with same keys, where each of newly deducted objects con-

tains complete list of pattern ids, from which it was built and a list of attributes and 

values from these patterns. Finalize function removes deducted objects that do not 

have complete list of patterns mapped to processed join keys (see Table 1).  

Table 1. Examples of results of Map, Reduce and Finalize functions from the first phase 

Function Results 

Map {key : (annot1[X]), value : ( { (P1), (annot1[X] | target[page.html]) } ) } 

{key : (annot1[X]), value : ( { (P3), (annot1[X] | creator1[John]) } ) } 

{key : (annot1[Y]), value : ( { (P1), (annot1[Y] | target[style.css]) } ) } 

Reduce {key : (annot1[X]), value : ( { (P1|P3), (annot1[X] | creator1[John] |  

target[page.html]) } ) } 

{key : (annot1[Y]), value : ( { (P1), (annot1[Y] | target[style.css]) } ) } 

Finalize {key : (annot1[X]), value : ( { (P1|P3), (annot1[X] | creator1[John] | tar-

get[page.html]) } ) } 

The second phase iteratively process remaining layers of the optimal join tree. Map 

function of this phase emits for each result from previous iteration new result with 

a key from current join attributes and unchanged value. Reduce and Finalize functions 

are same as in the first phase.  

The SPARQL query processing algorithm is optimized for minimal count of join 

MapReduce cycles (one for each level of the optimal join tree), what decreases 

a number of necessary time expensive I/O operations between cycles. 



5 Evaluation 

To evaluate proposed repository, we realized knowledge tags repository solution 

based on MongoDB and repository based on Bigdata
4
 RDF triple database powered 

by NanoSparqlServer. We selected Bigdata because of its performance and horizontal 

scalability, what makes possible to store non-trivial amount of knowledge tags. We 

also looked at in-memory databases (e.g. Trinity or JPregel) that have good perfor-

mance but they have some issues with horizontal scalability and data persistence. For 

preliminary evaluation we deploy these repositories only on one node with Intel Core 

i7-640M processor, 8 GB DDR3 RAM and Seagate Momentus 7200.4 HDD. 

During the evaluation we incrementally load one hundred of simple knowledge 

tags anchored to one (not same) document. Each of knowledge tags consists of six-

teen RDF triples in OA model. After each load, we measured times of a load, a re-

trieving one knowledge tag by its URI, a retrieving URI list of knowledge tags an-

chored to a document, a retrieving knowledge tags anchored to a document and an 

execution of simple SPARQL query with one join attribute. 

Measured values oscillate around linear function. These oscillations were mainly 

caused by background system processes and make impossible straight comparison of 

measured times. For this reason we made linear transposition function of measured 

values (e.g., Fig. 3) and compared transposed values. 

 

Fig. 3. The dependency of incremental data load duration (in milliseconds) to Bigdata database 

from a number of knowledge tags (in hundreds) in the repository 

The comparison of these two repository realizations shows that the proposed solution 

based on MongoDB is more effective than the repository based on Bigdata. It is most-

ly visible on primary operations over knowledge tags. These operations were from 

400 to 600 times faster (Fig. 4). Very important is also that less important operation, 

SPARQL query evaluation, took approximately same time in both realizations. 

                                                           
4 http://www.systap.com/bigdata.htm 



Fig. 4. The comparison of Bigdata and MongoDB realizations. The Y axis presents measured 

times ratio (how many times is the Bigdata realization slower than the MongoDB realization) 

and the x axis presents hundreds of knowledge tags stored in the repository in a measuring case. 

6 Conclusions and Future Work 

In this paper we have presented novel concept of employing knowledge tags for rep-

resentation of semantics over the web information content. We concentrate on main-

taining knowledge tags within proposed knowledge tags repository based on Open 

Annotation model and realized by MongoDB. The knowledge tags represent light-

weight semantics, which includes not only already used content annotations such as 

relevant domain terms or concepts in educational content [3] or named objects on 

pictures [17], but also other indices representing various characteristics related to 

particular information artifact, e.g. its popularity, aggregated users’ activity logs or 

inferred characteristics such as quality. The knowledge tags in that manner create a 

collaboration space of the web information system, where several web information 

systems can reuse existing knowledge tags to infer new knowledge tags and so to 

enrich and improve lightweight semantics over the information space [2]. 

We also present results of preliminary performance evaluations of the repository. 

These results indicate that proposed repository is much effective than classical RDF 

triple stores for our use cases. But for general confirmation of our hypothesis we have 

to evaluate our approach with more RDF triple databases (including in-memory data-

bases) distributed to several nodes. 

Our next steps lead to a proposal of a rule engine based on MapReduce for auto-

matic knowledge tags maintenance. The rule engine employs machine learning to 

automatically deduce new rules for the maintenance of knowledge tags and improve 

existing rules by watching of knowledge tags life cycle. These rules are not independ-

ent (modification of one knowledge tag can lead to a necessity of modification of 



several other knowledge tags), so the rule engine should provide effective strategy of 

rules evaluation.  
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