
Chapter 1
Effective QoS aware service composition based
on forward chaining with service space
restriction

Peter Bartalos and Mária Bieliková

Abstract Several approaches dealing with the performance of QoS aware seman-
tic web service composition have been proposed. We describe an approach which
took part at Web Services Challenge 2009. It showed good performance even if
large service repositories were processed. We discuss the main principles of the
used approach and also its further enhancement. The enhancement includes shorter
composition time, consideration of the pre-/post-conditions of services, and adapta-
tion to real conditions where changes of the service set, or the QoS attributes must
be effectively managed. Moreover, the lessons learned during the development and
the participation of the competition is discussed too.

1.1 Introduction

Automatic dynamic web service composition is showing to be an effective way
how to deal with the dynamic character of the web service, and business environ-
ment, while providing a mechanism capable to supply varying composition goals
[6]. Several research results concerning different aspect of the overall problem had
been proposed. These present promising results and also address existing problems.

Several tasks, required to perform during the service composition, are NP-hard
in general. These include for example the construction of the control-/data-flow to-
gether with the QoS optimization and evaluation of the compatibility between the
pre- and post-conditions of services. To be able to handle large service repositories,
sophisticated methods must be developed. These must provide good performance
and scale well as the number of web services in the repository rises. There are al-

Peter Bartalos · Mária Bieliková
Institute of Informatics and Software Engineering, Faculty of Informatics and Information Tech-
nologies, Slovak University of Technology in Bratislava, Ilkovičova 3, 842 16 Bratislava, Slovakia,
e-mail: {bartalos,bielik}@fiit.stuba.sk

1

2 Peter Bartalos and Mária Bieliková

ready several works presenting promising results considering effective QoS aware
service composition [1, 5, 8, 10, 13].

In this chapter, we deal with our approach for QoS aware web service composi-
tion. Our work focuses on issues related to the description of the functional aspects
of the web services, QoS optimization, reaction to the changes in the service en-
vironment, performance, and development of a composition system able to handle
continuing arrival of the composition queries.

1.2 Approach: QoS and pre-/post-condition aware web service
composition in dynamic environment

The overall web services composition process is a complex task including several
sub-processes. The general aim of service composition is to arrange multiple web
services into a composite service to supply more complex functionality. Beyond
this basic objective, there are a lot of aspects of the problem, which are showing
to be inevitable, or have the potential to make the composition much usable. These
include the consideration of the QoS, pre-/post-conditions [2, 5, 9], user preferences,
constraints and context [11, 15], user assistance [14], and transactional behavior of
service compositions [7, 12]. The main objectives of our work, presented in [2, 3, 4,
5], are related to the following issues:

• Functional aspects of web services. Proper representation of the functional as-
pects of web services is crucial for automatic web service composition. The ex-
isting approaches exploit additional meta-data depicting the semantics of the I/O
parameters to describe the service behavior. This approach is showing to be in-
sufficient. The proposed solutions are oriented to express the pre-/post-conditions
of web services. Our work deals with the pre-/post-conditions aware composition
and shows the feasibility of this approach.

• QoS optimization. Beside the functional requirements, the user is usually inter-
ested also in non-functional properties of web services. Hence, the QoS optimiza-
tion during service composition is important. We deal with a service composition
aware of the QoS and capable to find the best solution considering them.

• Changes in the service environment. The web service environment is frequently
changing in time. New services are deployed, some of them are removed. The
changes relate also to the QoS attributes, whose values might evolve in time. We
developed a composition approach capable to react to these changes and thus
providing a solution reflecting the actual situation in the service environment.

• Effectiveness. As the Web in general grows, also the set of web services which
are available in repositories is rising. We deal with the problem of performance
and scalability of the composition process considering large number of services
to be searched and composed.

• Composition system. Our aim is not only to develop a composition method, but
also to design a composition system realizing it.

1 Effective QoS aware service composition 3

• Continuing composition query arrival. In real scenarios, the composition system
must dynamically compose services based on the actual composition goal. The
composition queries may arrive from multiple users. To handle multiple queries,
our composition system stands as a querying system able to process continuing
arrival of composition queries, while reacting also to possible frequent changes
in the service environment.

Our composition system is built according to the requirements defined in the
rules of Web Services Challenge 2009. However, it provides more functionality than
required in the challenge. The additional requirements, which are not stated in the
challenge rules, are: consideration of the pre-/post-conditions of the web services,
processing multiple composition queries arriving independently, and reaction to the
changes in the service environment.

Based on the defined requirements, we designed software architecture of the
composition system as presented in Fig. 1.1. The system is divided into two main
subsystems. The first includes components responsible for the preprocessing (boot-
strap) phase. The second is responsible for the user querying phase.

System

initializer

WS reader

Compatibility

evaluator

Data structure

builder

Process

manager

Data structure

manager

Composition

realizer

Solution

generator

WS

interface

initialize(wsdlURLs, owlURLs, wslaURLs)

stopComposition()

startQuery(wsdlQuery, callbackURL)

User querying

subsystem

Bootstrap

subsystem

updateQoS(wsID, QoS, value)

addService(wsdlURL, owlURL, wslaURL)

removeService(wsID)

Service

updater

Fig. 1.1 Composition system architecture.

The Bootstrap subsystem is coordinated by the System initializer realizing the
preprocessing based on the web service set available at the startup time. The User
querying subsystem is managed by the Process manager coordinating the composi-
tion. Composition realizer is responsible to run the composition method. It operates
over the data structures managed by the Data structure manager. In the case of a
change in a service environment, the Process manager initializes the Service up-
dater to process the request.

4 Peter Bartalos and Mária Bieliková

1.3 Solution: Realizing QoS aware service composition

1.3.1 Basic concepts

In general, several operations required during service composition have a complex-
ity exponentially rising based on certain parameters. The main issues making our so-
lution good performing are preprocessing, effective data structures, and algorithms.
The preprocessing is crucial to quickly respond to composition queries. In our ap-
proach, we perform preprocessing before responding to composition queries, see
top of Fig. 1.2. During it, we analyze the actual service set and build effective data
structures. All the important computations, which can be done without the knowl-
edge of the composition goal, are realized during preprocessing.

The most important is that we evaluate which services are compatible and can be
chained. Based on the compatibility check a directed acyclic graph (DAG) of ser-
vices is built. Each service is represented by a node. If two services can be chained,
there is a directed edge from the ancestor to the successor service.

Preprocessing

Querying

Read service

descriptions
Build basic

data structures

Find final

services

Design control-/

data-flow
Read solution

Evaluate

compatibility
Build DAG

Find initial

services

Fig. 1.2 Overview of the composition process.

The remaining task during composition is to find the initial/final services, and the
design of the data-/control-flow, see bottom of Fig. 1.2. The initial services are those
having provided all inputs in the composition query. The final services are those di-
rectly producing the outputs defined in the composition goal. The search for the
initial, final services, and the design of the data-/control-flow can be completely re-
alized only when the goal and the provided inputs are known. However, the effective
data structures, built during preprocessing, are used here to realize them quickly.

Our composition method is based on two processes. The first selects services
which have provided all inputs and thus can be used in the composition. The second
selects services which cannot be used because they do not have provided all inputs.
The inputs are provided in the composition query, or as an output of another usable
service. The second process is not necessary to find the composition. It is used only
to faster the selection of the usable services, which is a necessary process.

1 Effective QoS aware service composition 5

To select usable services, forward chaining is performed, starting with the ini-
tial services. During it, we realize also the QoS optimization. After, the solution is
read backward, starting with the final services. The reading continues through each
input, which is not provided in the composition query, over all the services already
included in the composition. Considering QoS, we select those providers of the in-
puts which have the best aggregated value of a particular QoS attribute. We do not
deal with calculation of the overall unified quality measure of the composite service.

The selection of the usable services becomes a high computation demanding task
as the number of services, their inputs, and number of input providers rises. The
complexity of the computation is also strongly dependent on the interconnections
between the services. To speed up the process, we propose service space restriction
selecting the unusable services, i.e. a service with at least one unprovided input. The
process lies on identification of such services, for which there is at least one input
not provided by any available service, i.e. the only case when it is usable is when the
respective input is provided in the composition query. These services are identified
during preprocessing. We call them user data dependent services.

1.3.2 Data structures

In our solution, we focused on a design of such data structures, which can be built
during preprocessing and then effectively used during the querying phase. To do
this, it was necessary to analyze which calculations, required during the compo-
sition, can be realized without the knowledge of the composition goal. The most
important of them are: the processing of the semantic meta-data associated with the
web services, the evaluation of which services can be chained (i.e. which services
provide/consume inputs/outputs from the other services), and the search for services
having an input/output associated with a defined concept or its sub-/super-class. To
support these calculations, the following data structures are built:

• Service: represents a service including its attributes and reference to other Ser-
vices providing/consuming its inputs/outputs (i.e. the collection of Services rep-
resents the directed acyclic graph of services). The Service data structure is the
basic item in the other data structures.

• AllServices: a collection of all available services.
• ConceptProviders: a collection, where an element is a key-value pair of i) concept

and ii) list of services having an output associated with concept or a concept
subsuming concept.

• ConceptConsumers: a collection, where an element is a key-value pair of i) con-
cept and ii) list of services having an input associated with the concept or a
concept subsumed by the concept.

• InputDependents: the same as ConceptConsumers, but contains only user data
dependant services.

• UserDataDependents: a collection of user data dependant services.

6 Peter Bartalos and Mária Bieliková

The data structures are built to support fast execution of operations. The most im-
portant are finding service(s) with a given characteristic in a collection (e.g. having
a defined output), iteration over a collection, deciding if a given service has a de-
fined characteristic (e.g. if it is user data dependant). To support the fast finding and
decision, hash tables are used. The iteration is supported by collecting the objects in
arrays. However, this is true only if we do not deal with the dynamic changes in the
service environment. If we do, arrays are not suitable, since increasing/decreasing
its size is an expensive operation. Thus, a linked list is more appropriate.

The ConceptProviders data structure is used to quickly find the services directly
providing the outputs defined in the goal. Quickly here means in constant time for
each output. Analogically to the ConceptProviders, the ConceptConsumers is used
to find the services consuming the inputs provided in the composition query. No-
tice that during the look for the initial, or final service, it is not necessary to deal
with evaluation of the subsumption relations between concepts. The elements in the
ConceptProviders and ConceptConsumers do already consider this.

The AllServices, InputDependents, and UserDataDependents data structures are
used during the design of the control-/data-flow. During the selection of the usable
services, the directed acyclic graph is traversed, starting with the initial services. Its
creation during preprocessing showed to be crucial. The actual composition can be
seen as a selection of a subgraph. It is already not required to find services providing,
or consuming a defined input/output (i.e. the interconnections).

1.4 Lessons learned

1.4.1 Evaluation results

Our experiments were realized using data sets generated by a generator tool used
at Web services Challenge 2009. We used service sets consisting from 10 000 up to
100 000 services. For each set, the solution requires at least 50 services to compose.
The ontology consists from 30 000 to 190 000 concepts. The test sets are available at
http://semco.fiit.stuba.sk/compositiontestsets/. Our experiments were realized using a Java
implementation of our composition system on a machine with two 64-bit Quad-Core
AMD Opteron(tm) 8354 2.2Ghz processors with 64GB RAM.

Control-/data-flow design

The aim of evaluating the control-/data-flow design phase is to show the: efficiency
and scalability of our composition approach, and a dramatic improvement of the
composition time due to the service space restriction.

During experiments we tested three configurations of the composition system:

1 Effective QoS aware service composition 7

1. the service space restriction runs in parallel with selection of the usable services,
denoted as Par,

2. the selection of the usable services starts after the service space restriction fin-
ishes, denoted as Seq,

3. the service space restriction is not applied, denoted as NoUnusab.

The results are summarized in Tab. 1.1, Fig. 1.3, and Fig. 1.4. To be able to clearly
state the difference between the composition with/without service space restriction,
we provide also measurements depicting the number of crosses through two steps
of the selection of usable services process. These two steps, denoted as A and B, are
the most critical steps considering the performance (appear in the most inner loop).
For other details, see [4].

Table 1.1 Experimental results.

Services Composition time (msec) Number of code line crosses
Par Seq NoUnusab Par A Seq A NoUnusab A Par B Seq B NoUnusab B

10 000 6 7 97 991 976 30 767 552 149 5 079
20 000 11 19 336 1 728 1 611 53 686 831 263 9 249
30 000 42 49 718 3 041 3 018 72 825 539 319 12 325
40 000 29 44 932 1 144 1 136 52 368 606 204 8 438
50 000 22 49 1 022 1 674 1 661 55 542 376 248 12 023
60 000 60 94 1 454 2 613 2 581 62 142 1 361 199 11 645
70 000 82 106 2 070 1 577 1 413 76 288 751 254 12 713
80 000 76 75 2 806 2 194 2 174 76 390 602 290 11 230
90 000 173 222 2 613 3 299 3 262 50 183 471 329 11 025

100 000 121 179 3 009 2 711 2 667 75 202 895 256 14 589

Dynamic changes in the service environment

The evaluation of our approach, in the context of dynamic changes in the service
environment, focuses on the time required to add/remove services, compose ser-
vices, and reinitialize the system, which is required after each composition (note
that the QoS changes are managed in constant time). The results are presented in
Tab. 1.2 and Fig. 1.5. During the experiment, we measured the time of adding 1 000
new services into a repository and permanently removing the same services. The
added/removed services are selected randomly.

As we see, removing a service is more time demanding as adding. The compo-
sition and update times do not necessary rise as the number of services rises. This
is because they are strongly affected also by the interconnections between the ser-
vices and their QoS parameters. Based on this, the hardest test set is the set with
90 000 services. The reinitialization time is linearly dependent on the number of
all services and the number of user data dependent services. In our experiments, it
reached maximum of 53% of the composition time, 33% in average.

8 Peter Bartalos and Mária Bieliková

1 2 3 4 5 6 7 8 9 10

x 10
4

10
0

10
1

10
2

10
3

10
4

Number of services

C
om

po
si

tio
n

tim
e

(m
se

c)

parallel
serial
without

Fig. 1.3 Composition time.

1 2 3 4 5 6 7 8 9 10 11

x 10
4

5

10

15

20

25

30

35

40

45

50

Number of services

Im
pr

ov
em

en
t

composition time
A
B

Fig. 1.4 Improvements.

Table 1.2 Operation times (in msecs).

Web services Add Remove Reinitialization Composition
10 000 0.84 1.68 1.86 4.95
20 000 0.92 2.84 4.46 14.8
30 000 1.02 4.82 10.2 46.3
40 000 1.53 7.88 13.8 35.9
50 000 1.13 5.81 19.6 37.3
60 000 2.12 10.3 25.6 93.6
70 000 1.39 9.11 27.1 88.0
80 000 1.48 13.3 29.5 64.3
90 000 1.86 9.46 30.0 271.8
100 000 1.89 12.0 51.1 152.4

Continuing query arrival

The evaluation of the composition system focuses on its behavior due to continuing
query arrival, without or with the dynamic changes in the service environment. We
measured the sojourn time and the queue sizes. The sojourn time is the time between
the generation of the update, or composition request and the end of its processing.

1 Effective QoS aware service composition 9

1 2 3 4 5 6 7 8 9 10

x 10
4

10
0

10
1

10
2

Number of services

T
im

e
(m

se
c)

add
remove
reinitialization
composition

Fig. 1.5 Add/remove, reinitialization, and composition time.

We assume that the arrivals of both the update requests and composition queries
are continuous, independent, and occur according to a Poisson process. Hence, the
interarrival times follow exponential distribution. Since there is no real application,
we cannot verify these assumptions. Due to this, we present also results where the
interarrival times follow uniform distribution, to see the effect of the different dis-
tribution on the measured parameters.

Fig. 1.6 presents the dependency between the mean interarrival time and the so-
journ time, for data sets with 20 000 up to 100 000 services. Note that the sojourn
time and the mean queue size are linearly dependent. As we see, there is a significant
difference between the results when different distributions are used. In the exponen-
tial case, the standard deviation of the results is higher. Moreover, it presents rising
tendency as the complexity of the data set and the sojourn time rises. The system
tends to be in a stable state if the mean interarrival time is more than a double of the
composition time.

0 50 100 150 200 250 300
10

1

10
2

10
3

10
4

Mean interarrival time (msec)

M
ea

n
so

jo
ur

n
tim

e
(m

se
c)

20 000
40 000
80 000
100 000

0 50 100 150 200 250 300
10

1

10
2

10
3

10
4

Mean interarrival time (msec)

Fig. 1.6 Sojourn time: uniform distribution at left, exponential distribution at right.

Fig. 1.7 presents the effect of the dynamic changes in the service environment.
We had been simulating arrival of requests to add a new, or permanently remove a

10 Peter Bartalos and Mária Bieliková

0 20 40 60 80 100
10

1

10
2

10
3

10
4

Composition query mean interarrival time (msec)

M
ea

n
so

jo
ur

n
tim

e
(m

se
c)

1 000
100
10

0 20 40 60 80 100
10

0

10
1

10
2

10
3

Composition query mean interarrival time (msec)

M
ea

n
qu

eu
e

si
ze

Fig. 1.7 Effect of dynamic changes in the service environment.

service, with various interarrival times, with exponential distribution. We used the
test set with 20 000 services.

The experiments show that the sojourn time is not significantly enlarged, even if
the update requests are frequent. We had dramatically decreased the interarrival time
of the update requests, from 1 000 to 10 msecs. Even in this case, we observed only
a little delay in the composition. The mean composition query queue size remained
low and the stability of the system was not upset.

1.4.2 Important observations

The issues affecting the effectiveness of the composition system can be divided into
two categories: technical and conceptual solution. The technical issues include the
chosen technologies and the way how they are used. Our experience is that these
cannot be neglected. The performance of the system is significantly affected by
the chose of the programming language and platform, relational database, external
libraries, and other technical issues. On the other side, the performance characteris-
tics of the standard technologies are usually known and a skilled developer should
be able to choose the right technology and use it in an effective manner. Hence,
however it can be a time and knowledge demanding task, the proper technical solu-
tion can be designed straightforwardly. This is not true for the conceptual solution
whose bases are the proper methods and algorithms. These must be designed specif-
ically for the web service composition problem. The most important issues, which
had been shown to be important in our composition system, are: data structures,
preprocessing, state space restriction, and parallel execution.

Data structures and preprocessing

The proper selection of the built-in data structures, or those available in external
libraries, is important if the performance is an issue. Beside this, if we build our

1 Effective QoS aware service composition 11

own data structure, it is crucial to know which operations, performed over it, can
become a potential performance bottle-neck. In this context it is very important to
realize what can be done before we actually respond to composition queries. We
believe that preprocessing is necessary to make the actual composition fast and do
not waste time by realizing calculations which could be done already before.

A preliminary version of our composition system used relational databases to
store some data and perform certain operations over them. During the composition,
the relational database was queried to find relevant services (for example services
consuming/requiring some data). Since the mentioned version of our composition
system considers also the pre-/post-conditions of the services, the search for these
services is a quite complex task. It requires evaluating logical implication between
two formulae. The relational database showed to be a useful tool to realize this task.
The declarative approach helped to relatively easily develop a method evaluating if
a post-condition of some service implicates the pre-condition of another one (i.e. if
they can be chained). Although the approach was convenient and feasible to realize
the required task, the performance was poor when more complex logical formulae
were processed. Due to this, we left the idea of using relational databases during
service composition. Our new approach is based on encoding of the formulae and is
realized purely programmatically [5].

Restricting the service space

One of the most important conceptual solutions in our composition system is the
application of the service space restriction. It removes services which cannot be
used in the composition, because they have not provided all inputs. The reduced
service space is much easier to traverse and thus we can find the services required
in the composition much faster.

We had been experimenting with different configurations of the composition sys-
tem (as introduced in section 1.4.1). The best results, considering the composition
time, are achieved with the Par configuration. In this case the selection of the usable
services runs in parallel with the service space restriction. The Ser configuration
performs slightly slower. According to NoUnusab configuration, both Par and Ser
perform faster in more than one order of magnitude. The results considering the Par
configuration show that even with the hardest test set, the composition time is below
200 msecs, which can be still considered as acceptable from the user point of view.

Fig. 1.3 shows the significant difference between the cases when service space
restriction is applied, and if not. The measurements of how much times did the
execution of the select usable services process cross those steps which appear in
the most inner loops (denoted as A and B) clarifies the reason of the improvement,
see Tab. 1.1. The decrease of the crosses, when service space restriction is applied,
explains the improvement of the composition time. The Par configuration presents
an improvement from 15 to 46 times in terms of composition time and adequate
improvement in terms of the number of crossing steps A, B, see Fig. 1.4.

12 Peter Bartalos and Mária Bieliková

Parallel execution

The difference in performance between the Par and Seq configurations is minor
(in contrast to the situation when no service space restriction is applied). During
our experiments the Seq configuration performed in average 27 percent slower than
the Par configuration. The differences between the composition times showed high
deviation, from which we can conclude that the difference is significantly affected
by the service set (e.g. the interconnections between the services based on their
inputs/outputs). The experiments showed that, to achieve good results, it is not nec-
essary to realize full service space restriction (remove all unusable services). The
full service space restriction is realized during the Seq configuration. In this case,
the selection of the usable services executes the fastest. However, since it must wait
until the restriction is done, the overall composition time is not the lowest.

In the Par configuration, the selection of the usable services runs in parallel with
service space restriction. The composition finishes when the usable services are
selected. It is not necessary to wait until the service space restriction finishes too
(since it is not a necessary process). This causes that the Par configuration performs
better than Seq also on single-core computers. On multi-core computers, the benefits
of parallel execution are even more significant.

Despite the fact that, the selection of the usable services and the service space re-
striction operate over the same data structure (the directed acyclic graph of services
and the services themselves), no synchronization is required. In our implementa-
tion, due to the guaranteed atomicity of the access and assignment of the program
variables, no conflicts can occur. The variable, to which both processes perform as-
signments, is the variable holding the information about the usability of the service.
In any case, for a particular service, a value to this variable is assigned only once
and only by one of the processes (it is once set as usable or unusable). Hence, the
overall composition process does not suffer from synchronization overhead.

As we mentioned earlier, to realize the composition, we use forward chaining
selecting the usable services. Note that in general, the solution for a particular com-
position goal does not require using all the usable services. This means that it is not
necessary to find all the usable services. The selection of them can stop if the actual
usable service set provides a solution for a composition goal and it is the optimal one
considering the QoS. Hence, we can stop the selection of the usable services earlier
and thus potentially save execution time. However, in this case, there is an addi-
tional overhead in the process because of the check if we already found a solution.
Our experiments with the service sets, generated by the WS-Challenge generator
tool, showed that it is not useful to perform a check and stop the selection of the
usable services earlier. The reason is that, to find a solution, it was required to select
almost all the usable services. We believe that this is only a special case of the data
sets generated by the WS-Challenge generator tool. We expect that, in real scenarios
with real services, it would be better to check whether we already have a solution
for a composition goal and stop the selection of the usable services in this case and
thus save execution time.

1 Effective QoS aware service composition 13

In the context of improving the performance of our composition system, we have
been experimenting with executing the service space restriction in multiple, paral-
lel threads. If the composition system operates on a computer with more than two
threads, this could potentially lead to faster composition. It is important that in this
case, the synchronization is already an issue. Conflicts may occur if multiple threads
try to access the same object at the same time. Hence, the threads must be synchro-
nized during those steps, when they may potentially manipulate the same object.

During our experiments, we tried to run the selection of usable service in 2 up
to 6 threads, on a computer with 8 cores. The results showed that the synchroniza-
tion overhead is too high. Comparing with the situation when the usable services
selection runs in one thread, i.e. no synchronization was required, the results with
multiple threads were worse.

1.4.3 Conclusions for future work

The automation of the service composition is crucial to be able to supply varying
composition goals. Several problems must be addressed and solved to achieve fully
automatic service composition. In the last years, the research of service composition
automation tended to be focused on the issues related to the QoS, performance,
and semantic matching problem. There is a tremendous amount of work concerning
these. On the other side, there are plenty of problems without interest.

The performance in the context of service composition aware of the QoS showed
to be a challenging task. Even though, there already are approaches showing promis-
ing results. Several papers showed that it is possible to realize a service composition
even if the number of services considered during the composition rises to thou-
sands, ten-thousands, or even some hundred-thousands. To make an imagination
about the number of currently available web services, we made an overview of some
public repositories. The number of services which can be found in these reposito-
ries varies from some thousands up to some ten thousands. The largest one, called
Seekda (http://webservices.seekda.com/), included in August 2010 about 28 000 service
descriptions, as claimed by the repository provider. Based on this, we believe that
the performance of the current solutions is sufficient to handle the real situation.

The research regarding QoS aware service composition is noticeably farther as
for example the research dealing with the pre-/post-conditions. We suppose that
the research attention in future should move to other problems than the efficiency
of QoS aware composition. Since there is still no practical application of service
composition, we should analyze what are the real scenarios where it could be applied
and which problems have to be solved before this can be achieved.

More attention should be given to those issues which are not related to the actual
arrangement of services into a composite one. The whole life-cycle of web services,
and their composition should be covered. More interest is required to the design
of web services. The design decisions significantly affect the further possibility to
compose the developed services. Semantic annotation of web services is also a sub-

14 Peter Bartalos and Mária Bieliková

ject of further research. Methodologies and tool should be developed to support this
process. Finally, it should be analyzed if the description focusing on the I/O and
pre-/post-conditions is sufficient.

1.5 Summary

In this chapter we presented a QoS and pre-/post-condition aware web service com-
position system able to handle changes in the service repository and continuing
arrival of the composition queries. The composition system showed to be effective
and scalable. We have presented experimental results showing good performance
even if the number of services, which have to be considered during the composition,
rises to 100 000 services. Even during the hardest test set, the system was able to
perform the composition below 200 msecs.

The main sources of the effectiveness of our solution are: effective data structures
built during preprocessing and service space restriction. We have analyzed what cal-
culations are required to be performed during service composition and which ones
of them do not rely on the knowledge of any composition query. These calculations
should be realized as preprocessing. Moreover, we have precisely designed data
structures which supply fast operations performed during the composition.

One of the most important issues of our approach is a service space restriction.
Its aim is to speed up the composition process by restricting the number of services
which must be considered when looking for a solution. Our experiments showed
that the restriction is very beneficial. It improved the composition time in more than
one order of magnitude.

Another important issue of our approach is the parallel execution of processes
realizing the composition. Our composition approach is based on two processes, the
selection of the usable services and the service space restriction. These can run in
parallel without additional synchronization overhead. The parallel execution showed
to be useful on single-core and also multi-core computers. We have been experi-
menting also with running the selection of the usable services in multiple threads.
This approach did not show usefulness, since in this case the synchronization is
required and the caused overhead leads to slower execution.

Our approach showed to be effective and scalable even in large-scale situations.
We believe that our and also other composition systems proved to be effective
enough to be able to operate over the amount of services which are available nowa-
days. Moreover, they show good scalability, thus, even if we expect that the number
of services will raise, the performance will not be a problem.

We believe that the web services composition research should move its focus
from performance to other important issues. The existing approaches to automatic
service composition base on semantic meta-data. It is known that the idea of seman-
tic web services and the Semantic Web in general is not practically applied. There is
a lack of methodologies and tools supporting the creation, processing, and manage-
ment of semantic metadata. Our future work is to move our focus from performance

1 Effective QoS aware service composition 15

issues and deal with other aspect of the service composition, which are important to
achieve practical applicability.

Acknowledgment. This work was supported by the Scientific Grant Agency of SR,
grant No. VG1/0508/09 and it is a partial result of the Research & Development Op-
erational Program for the project Support of Center of Excellence for Smart Tech-
nologies, Systems and Services II, ITMS 26240120029, co-funded by ERDF. We
would like to thank to the organizers of the WS-Challenge 2009 to provide a great
forum progressing the research of web services composition.

References

1. Alrifai, M., Risse, T., Dolog, P., Nejdl, W.: A scalable approach for qos-based web service
selection. In: Service-Oriented Computing Workshops, pp. 190–199. Springer-Verlag (2009)

2. Bartalos, P., Bieliková, M.: Fast and scalable semantic web service composition approach
considering complex pre/postconditions. In: Proc. of the 2009 IEEE Congress on Services,
Int. Workshop on Web Service Composition and Adaptation, pp. 414–421. IEEE CS (2009)

3. Bartalos, P., Bieliková, M.: Semantic web service composition framework based on parallel
processing. In: Int. Conf. on E-Commerce Technology 2009, pp. 495–498. IEEE CS (2009)

4. Bartalos, P., Bieliková, M.: Effective qos aware web service composition in dynamic environ-
ment. In: Int. Conf. on Information Systems Development 2010. Springer (Accepted) (2010)

5. Bartalos, P., Bieliková, M.: Qos aware semantic web service composition approach consider-
ing pre/postconditions. In: Int. Conf. on Web Services 2010, pp. 345–352. IEEE CS (2010)

6. Dustdar, S., Schreiner, W.: A survey on web services composition. IJWGS 1(1), 1–30 (2005)
7. Haddad, J.E., Manouvrier, M., Rukoz, M.: Tqos: Transactional and qos-aware selection al-

gorithm for automatic web service composition. IEEE Transactions on Services Computing
99(PrePrints), 73–85 (2010)

8. Jiang, W., Zhang, C., Huang, Z., Chen, M., Hu, S., Liu, Z.: Qsynth: A tool for qos-aware
automatic service composition. In: Int. Conf. on Web Services 2010, pp. 42–49. IEEE CS
(2010)

9. Kona, S., Bansal, A., Blake, M.B., Gupta, G.: Generalized semantics-based service composi-
tion. In: ICWS ’08: Proc. of the 2008 IEEE Int. Conf. on Web Services, pp. 219–227. IEEE
CS (2008)

10. Lécué, F., Mehandjiev, N.: Towards scalability of quality driven semantic web service compo-
sition. In: Int. Conf. on Web Services 2009, pp. 469–476. IEEE CS (2009)

11. Mrissa, M., Ghedira, C., Benslimane, D., Maamar, Z., Rosenberg, F., Dustdar, S.: A context-
based mediation approach to compose semantic web services. ACM Trans. Internet Techn.
8(1) (2007)

12. Papazoglou, M.P.: Web services and business transactions. WWW’03 6(1), 49–91 (2003)
13. Rosenberg, F., Muller, M.B., Leitner, P., Michlmayr, A., Bouguettaya, A., Dustdar, S.: Meta-

heuristic optimization of large-scale qos-aware service compositions. IEEE International Con-
ference on Services Computing pp. 97–104 (2010)

14. Rozinajova, V., Kasan, M., Navrat, P.: Towards more effective support of service composition:
Utilizing ai-planning, semantics and user’s assistance. Int. Conf. on Next Generation Web
Services Practices pp. 50–55 (2009)

15. Yu, H.Q., Reiff-Marganiec, S.: A backwards composition context based service selection ap-
proach for service composition. In: Int. Conf. on Services Computing 2009, pp. 419–426.
IEEE CS (2009)

