
Modeling Parallel Web Browsing Behavior
for Web-based Educational Systems

Martin Labaj and Mária Bieliková
Slovak University of Technology in Bratislava, Faculty of Informatics and Information Technologies

Ilkovičova 3, 842 16 Bratislava, Slovakia
{labaj, bielik}@fiit.stuba.sk

Abstract—When learners access web-based educational
systems, they often take advantage of what current web
browsers offer: multiple tabs with different pages. Whether
they are solving an exercise or learning a whole new topic,
they can concurrently browse other relevant objects in the
educational system or even resources outside the system, on
the “wild” Web. This behavior goes unnoticed or it is only
estimated in the traditional web usage mining, where it is
supposed that the user opens only one page at a time. How-
ever, if we could record the parallel browsing behavior, we
could better understand the user’s activity, goals and im-
prove learner model employed for personalization. The
paths through resources (including spawning new tabs and
switching between them) of many learners also express
relevance between these resources and this can be leveraged
in applications such as recommendation to other learners
browsing similar learning objects. In this paper, we intro-
duce a model for parallel browsing behavior based on events
tracked with client-side scripting. We realized the proposed
model in the ALEF educational system, which we use in
several courses and evaluate learner behavior in the system.

I. INTRODUCTION

Current educational systems are often realized as web-
based systems, allowing their users (learners) to work
from a range of platforms and even remotely from their
home. The learners often take advantage of current web
browsers and open multiple resources in parallel, be it in
multiple browser tabs or multiple browser windows. In
this way, learners can open multiple objects (web pages,
learning objects) from the educational system and switch
between them. If we could record and analyze this parallel
browsing, we could better understand learners’ behavior
and leverage their activity for information personalization.

Educational systems often provide different types of
objects: new topics are introduced with video-clips,
presentation slides, or coursebook texts; user’s progress is
tracked with quizzes, questions or tasks. In this paper we
present our results on the ALEF system. ALEF stands for
Adaptive LEarning Framework [1] and it is an adaptive
educational system being used at the Slovak University of
Technology in Bratislava in several courses: Procedural
Programming, Functional and Logic Programming, and
Software Engineering.

ALEF offers several types of learning objects. Explana-
tions present basic educational content explaining a part of
topic, e.g. recursion in procedural programming. Exercises
are tasks that users can solve in the system and submit
their solutions for evaluation, e.g. “Create a program
which…“, “Draw a UML model of…”. Questions are
quizzes, where the interaction is short – user has to select

one or multiple correct answers, put answers in the correct
order, or finish a free text answer.

When a learner reads for example a math coursebook
and starts solving a mathematical problem, it is natural
that she looks up relevant formulas or theorems presented
in the current chapter. This behavior can be similar in an
educational system – when a learner starts some exercise
and needs to look up additional information, she can open
corresponding explanations or even external resources on
the Web in other tabs and switch back and forth while
constructing the solution. Similarly, when the user is
learning a new topic and she starts with an Explanation
object, she may switch to relevant exercises and questions
to practice the presented information.

Relevant exercises or explanations in these examples
can be selected manually by a teacher during course au-
thoring or even automatic methods can be applied, such as
content-based methods using similarities between learning
objects. However, knowing users’ browsing behavior
allows us to better model the user, what she reads in what
situations and the better user model alone can be used for
better information personalization for the user. For exam-
ple, in a recommendation based on the learner’s current
knowledge combined with time left for learning and her
learning goals [2], it is very important to accurately model
these goals. By recognizing known user tasks in the paral-
lel browsing, e.g. the user is opening exercises into new
tabs, which she keeps open as bookmarks until she pro-
ceeds to solve them later, we can better model user goals.

Users can also find learning objects and external
sources relevant to their current activity outside of the
relevance expressed in the domain model of the content
and outside of relations discovered by content-based
methods or created by the teacher. The relevant explana-
tions and external sources can be recommended to other
users struggling on the same exercise on which the user
opened them. Relevant exercises can be recommended to
users reading an explanation, the domain model can be
augmented with discovered relevance, etc.

However, the traditional view on user’s behavior in the
web usage mining is more based on the linear browsing
model. It is often assumed that when a page is visited
(loaded), the user gives it all her attention until visiting
another page, replacing the previous one. However, in the
more accurate parallel browsing view, multiple pages are
opened concurrently and the user’s attention is split be-
tween them. User modeling from server-side information
is most affected by this difference, because at the server
side, we do not have enough information to discern how
the page was opened (In a new tab or replacing the current
page?).

On the client side, we can exactly track what a user
does by augmenting the browsing software, but this is
limited only to users in a closed experiment in a lab where
the software is provided by the researchers, or to a portion
of users that are willing to install tracking extensions. The
necessity of additional software limits its use in real set-
tings and it does not provide information on all users.

We proposed a model for parallel browsing behavior
based on events observed by client-side scripting. As
such, it does not need installation of any additional soft-
ware (e.g. browser extensions). In this way, we capture
behavior of all learners in a web-based system, rather than
a limited number of them in a closed study. Users also act
more naturally than when they know that they are to be
tracked, which they do know when we require them to
install a tracking browser extension. We show how to
detect which resources are being used in parallel by a user.
The proposed model was realized in a live instance of the
ALEF framework being used by university students dur-
ing semester. We evaluate students’ parallel browsing
activities while learning in ALEF.

II. PARRALEL WEB BROWSING STUDIES

Opening multiple windows and having multiple web
pages open at the same time have been supported by web
browsers for a long time since their soon versions. After-
wards, tabbing interfaces were added, which allowed
multiple pages to be opened in the same window in a user
interface elements called tabs. First, they were supported
through browser extensions and later natively by browsers
themselves. Since the release of Internet Explorer 7 in the
2006, all widely used browsers support tabbing. Both
tabbed and multi-windowed browsing methods are very
similar, the main difference is that with multiple windows
a user switches between opened web pages via main
taskbar of the operating system (as when switching be-
tween applications) and with multiple tabs, the switches
are made via the list of tabs inside the browser.

While differences between tabbing and multi-
windowing are important from the perspective of the hu-
man-computer interaction and user interfaces, in the web
usage mining, we only need to know which resources
(pages) are being browsed and how the user travels
through them. For simplicity, we address the use of multi-
ple browser tabs and multiple browser windows as tabbing
and call both the browser windows and tabs as tabs.

Parallel browsing has been previously studied through
various methods selected for given research goals. For
example, in order to just survey how users work with web
browsers and search engines while searching for infor-
mation, a questionnaire can be used. In [3] having multi-
ple tabs open while searching was found to be common.

There are several approaches for the user behavior
tracking. Basically, we can realize user behavior tracking
either as server-side, or client-side.

In server-side tracking, server logs contain only page-
loads (target address, previous address (referrer),
timestamp) and no direct or indirect information on tab-
bing. Parallel browsing can be only estimated when using
this kind of tracking. In [4], authors introduced a model
for both linear browsing (action of following a link) and
parallel browsing (actions of opening a tab and switching
between open tabs) and subsequently used the server-side
data for modeling the user behavior. Only linear browsing

is accurately observed from server data and only an esti-
mate of possible clicktrees and paths through them can be
made for parallel browsing, giving only information on
how the users could be browsing in parallel, giving many
possibilities. Authors estimated the parallel browsing
behavior in the study to be in a large range of 4% to 85%.

In [5], a model based on stochastic process was applied
to logs of visited pages and their referrers. An improve-
ment was shown, but the model cannot distinguish be-
tween branching (opening multiple tabs from single page)
and backtracking (opening a page in the same tab, return-
ing back and opening another page).

In [6], all-kth-order (AKO) Markov model was used on
tasks that were extracted from browsing history. Tasks are
one of the user motivations for using the tabs (a task of
multitasking – assuming the use of different tabs for dif-
ferent tasks) and an enhancement of 27.5% in recommen-
dation was shown over traditional AKO model. However,
this approach does not include any other uses of multi-
tabbing, where the use of tabs is not correlated to tasks.

While server-side logs are available from all users by
default, their limited data restricts us only to estimations
of user behavior.

Client-side extensions or plug-ins are used to augment
the web browsing software. In this way, everything about
the user activity can be recorded, since the browser sees
all its opened tabs and operations with them. However,
requiring the augmentation of the browser to take place,
this approach is more suitable for studies, where the users
voluntarily install the extension or where the users are
seated to computers with software prepared by the re-
searchers (controlled experiments). In fact, this approach
has been used as a basis for several studies on tabbing.

Combined clickstream logging and diaries have been
used in [7] with 21 participants to study user work with
multiple tabs. In [8], the same approach was used with 20
participants to study revisitation in the context of the tabs.
In [9], a browser plug-in was used with 10 participants to
analyze exploratory tasks. During a search session, users
opened at most 2 additional tabs. Large logs from a plug-
in were used in [10] (60 billion pageviews from 50 million
users) and authors looked for situations where a user
opens a page and the tab identifier changes.

In client-side scripting, a JavaScript code is embedded
within a page and it can see how the user works with the
page (where she clicks) or when she leaves. This approach
collects information from every user, but the code is al-
ways running within a sandbox of the single page, in
which it was embedded. This page is present in a single
tab and as such, the tracking code sees no information
about other tabs. In a recent study [11], tracking code was
embedded in the results page of a search engine. Presence
or absence and the order of pageloads and clicks on the
results were used. For example, a pageload and two fol-
lowing clicks mean that the result must have been opened
in another tab (branching), because the source page still
existed for the second click to occur. This approach is
limited to detection of the initiation of parallel browsing
within the results (e.g. no data is available on switching
between the result pages) and there are branching situa-
tions which are not covered by this approach.

Overall, it has not been sufficiently studied how to use
the available events to reconstruct the parallel browsing
with the client-side scripting methods, thus covering natu-

ral behavior of all users in their own settings in an uncon-
trolled experiments, where they are typically not presented
with augmented software.

Several studies have shown that it is important to con-
sider, explore and exploit the parallel browsing behavior.
Parallel browsing is now more common than the linear
browsing. It may differ by current user tasks [10]. Users
can create 4 to 22 tabs per 100 navigations while using the
multiple tabs for reminding, scanning through search
results, multitasking, comparing pages, or even bookmark-
ing [7], and all these usages are relevant to the learning
path. Tracking tab usage is also important when consider-
ing traditional web usage metrics, e.g. the revisitation.

In [7], 30% of created tabs were selected multiple
times, in large contrast to traditional view based on linear
browsing where each loaded page is viewed exactly once.
A loaded page can be never viewed (a false visit in the
traditional approach), or it can be left and visited again by
switching out of its tab and back to it again (a revisit invis-
ible to traditional approach). Study in [8] reports tradition-
ally computed revisitation rate 39.3% and effective revis-
itation with tabs actually 59.6%.

III. TRACKING THE PARALLEL BROWSING BEHAVIOR

We proposed a model for parallel browsing, in which
we use events observed via client-side scripting.

A. Tracking Scheme
Commonly tracked information about opening a page

(pageload) and from which page it was navigated to (re-
ferrer) is insufficient to tell when the page was closed.
Based on the server-side data, we can only estimate that
the page in question was closed in some time after the last
click on a link in it occurred (the page had to still exist
when the user has opened a link from it). It is not known
whether a referred page was opened in a new tab or it
reused the same tab. For this, it is necessary also consider
the page unload event, which can only be tracked at the
client side.

Suppose we have pages labeled ଵ, ଶ, etc. and tabs ݐଵ, ݐଶ, etc. We mark the pageload event with the address of
a page and a referrer ݎ as PL(, and the page unload (ݎ
event of a page as PU(). The parallel browsing is
modeled from occurrences of the following sequences:

1) Opening new pages
User can open a new page by typing its address into ad-

dress bar, by using bookmarks, clicking links in external
applications, etc.:

• O Opening a new page ଵ in existing empty tab ݐଵ (type-in, bookmark, etc.) → PL(ଵ, 0)
• O Opening a new page ଶ in existing tab ݐଵ with

page ଵ open → PU(ଵ), PL(ଶ, 0)

2) Opening pages by following links
User can follow a link in the Linear way (the page

opens in the same tab) or with Branching (parallel brows-
ing, the page opens in new tab):

• FL Following a link to page ଶ from page ଵ in
the same tab ݐଵ → PU(ଵ), PL(ଶ, (ଵ

• FB Following a link to page ଶ from page ଵ in
tab ݐଵ to a new tab ݐଶ → PL(ଶ, (ଵ

3) Closing the pages and tabs
Finally, the user can close a page or a tab at any time:

• C Closing a page ଵ → PU(ଵ)

• C࢚ Closing existing empty tab ݐଵ with no page → undetected

• C࢚ Closing existing tab ݐଵ with page ଵ → Cభ, ܥ௧భ

• O࢚ Opening a new empty tab ݐଵ with no page → undetected
Actions O௧ and C௧ are not observed, since no pages

(with tracking script) exist in a tab ݐଵ when these actions
occur. However, empty tabs are not important from the
point of page browsing behavior. Tabs can be also substi-
tuted with windows (or used concurrently) in the same
scheme. As we cannot record which tabs are open in
which windows, we treat a single-page window as another
tab and multiple multi-page (multi-tab) windows as just
single collection of tabs.

Fig. 1 shows an example of a parallel browsing session
with three tabs ݐଵ, ݐଶ, and ݐଷ. All proposed operations are
illustrated. Fig. 2 contains events captured for tabs ݐଵ and ݐଶ and operations with them from Fig. 1. Following a link
with branching (FB) occurs as a pageload with a referrer
to existing page that has not yet been unloaded. Following
a link in a linear manner (FL) occurs as a page unload and
a subsequent page load with the referrer of unloaded page.

If a user opens a page manually, it occurs as a pageload
with no referrer (Oଵ). If an existing tab with currently
opened page is being reused (Oଶ), page unload of this
page occurs just before it. Notice how Oଶ and FL are simi-
lar, but they are distinguished by matched/unmatched
referrer.

Figure 1. Visualization of actions from the presented model on an

example browsing session with three tabs ݐଵ to ݐଷ.

Figure 2. Events recorded for selected tabs (ݐଵ and ݐଶ) from

browsing session in Fig. 1. Corresponding user actions detected
from these events are shown on a time axis.

B. Fragmented Spent Time
In order to track the work with opened tabs (tab switch-

ing) in addition to opening and closing of the tabs, we
track fragmented spent time. Spent time is commonly
tracked as a time that the user has spent on the page [12] –
in the most basic form as a difference between two subse-
quent pageload events. We fragment the time spent and
track each bringing of the page into the focus (focus) and
each losing of it (blur) together with timestamps. These
events can be tracked from client-side scripts included
within a page. Let B() be the blur event of page and ()ܨ be the focus event of page :

• S Switching from tab ݐଵ with page ଵ to tab ݐଶ
with page ଶ → B(ଵ), F(ଶ)

However, the switching can also occur to/from outside
of the set of pages, which we can track – a user can switch
to an empty tab with no page, or foreign page without
script, or out of the browser. Since the tab switch is the
event of leaving one tab and the event of arriving to an-
other tab, such situation only disconnects the events:

1. Switching from tab ݐଵ with page ଵ to out of the
scope → B(ଵ).

2. (Untracked activity: switching between untracked
tabs, applications, etc. → undetected.)

3. Switching from out of the scope back to tab ݐଶ
with ଶ → F(ଶ).

Fig. 3 shows an example of a possible tab switching
session made on tabs ݐଵ and ݐଶ from Fig. 1. Bold line
shows user navigation between the tabs. While the user
opens/closes page ସ in tab ݐଶ, a different tab is active
 The page was opened by following a link to a new .(ଵݐ)
tab (FB) and since the user did not switch to that tab, it
must be opened “in background” (the new tab is spawned
and the page is loaded in it, e.g., by using context menu or
holding the CTRL key and clicking, but it is not activated
until the user switches to it). When the user changes cur-
rent page in the same tab, (action Oଶ or FL), B and F
events also occur, such pairs are in boxes. Note that tab
switching and tab closing actions are independent; the
user can close any tab without activating it.

When no matching focus event is recorded after a blur
event has occurred, this means that the user have switched
out of a browser, a pop-up dialogue may be displayed, or
an untracked tab may be activated. We consider such time
“out of scope”.

C. Scope of the Tracked Behavior
As we implied above, we may not always be able to

track all pages in all tabs – branching does not occur only

Figure 3. Example of possible switching between tabs (ݐଵ and ݐଶ)

with relevant events.

within pages from a single site with our scripts included,
but also between multiple sites. The presented scheme
however applies to the entire set of tabs within a browser
when the tracking is happening inside each tab, which can
be accomplished by employing a proxy (such as one pro-
posed in [13]), which modifies server responses and
makes it possible to insert the tracking code into any page.

Without the proxy or other similar modifications, we
typically do not have our pages loaded in every tab of the
user’s browser. We can consider such tabs “empty” for
branching behavior, which also makes them “out of
scope” for tab switching. However, our pages can be visit-
ed from any arbitrary web page and such web page is now
considered an “empty tab”. Thus when we mark tracked
websites ܲ = ሼଵ, ,ଶ … ሽ and all other websites ܳ =ሼݍଵ, ,ଶݍ … ሽ, ܲ ∩ ܳ = ∅, we can consider any pageload
event PL൫, ,)൯ to be equivalent to PLݍ 0).

IV. BROWSING BEHAVIOR RECONSTRUCTION

We have presented our browsing behavior model with
observable events assigned to various user actions. How-
ever, when analyzing the browsing behavior, the events
are collected within the pages visited by a given user and
we are interested in the reverse mapping – the reconstruc-
tion of user actions between the pages.

Since each page is opened in its own sandbox and exists
from the script’s point of view only from its load to its
unload (sections bounded by “document” symbol and “X”
symbol in the Fig. 1 to 3), the events we collected on a
given page were represented as a vector of event-
timestamp pairs that occurred during a lifetime of that
page. Additional information, including timestamps, user
info, etc., was also tracked (see example). Application-
specific information was added to generic tracking. In a
web-based educational system, we add learning object ID
and course/setup ID (one learning object can be present in
multiple courses or setups).

Data Collected for a Single Page: TabInfo Record
events_vector:
[["PL",1335002774493],["B",1335002774645],
 ["F",1335002774724],["B",1335002774787],
 ["F",1335002844169],["B",1335002874645],
 ["UL",1335002881229]]

page:
"http://alef.fiit.stuba.sk/learning_objects/112"

referrer:
"http://alef.fiit.stuba.sk/learning_objects/111"

user_agent:
"Mozilla/5.0 (Windows.."

client_timestamps: (..), server_timestamps: (..)

user: 149, learning_object: 112, course: 3

These vectors were combined together by the browsing
reconstruction algorithm. Note that the algorithm treats
user actions defined for basic tracking scheme (see Sec-
tion III.A) independently from actions for switching be-
tween tabs (see Section III.B). As noted, a user can oper-
ate other tabs, i.e. close them, without first switching to
them. A conceptualized version of the algorithm is pre-
sented below.

Algorithm for Browsing Behavior Reconstruction
function GetBrowsingBehavior(user)
 var behavior = [];
 var global_vector = [];
 foreach info in GetUserTabInfos(user)

 foreach ev in info.events_vector
 global_vector.add(ev.name, ev.timestamp,
 info.page, info.referrer);
 end
 end

 SortByTimestamps(global_vector);
 foreach info in global_vector
 case info.event
 "PU":
 var next = FindAndRemoveNextPL(info.page);
 if next == NULL
 behavior.add("CP", info.page);
 else if next.referrer == NULL
 behavior.add("O2", info.page, next.page);
 else
 behavior.add("FL", info.page, next.page);
 end
 "PL":
 if info.referrer == NULL
 behavior.add("O1", info.page);
 else
 behavior.add("FB", info.referrer,
 info.page);
 end
 "B" :
 var active = FindAndRemoveNextFocus();
 behavior.add("S", info.page, active);
 "F" :
 behavior.add("S", OUT_SCOPE, info.page);
 end
 end

 return behavior
end

Initially, all event vectors for a given user are combined
by ordering them according to their timestamps. Next, the
algorithm processes the events sequentially, looking ahead
for subsequent matched events. FindAndRemoveNext-
PL(referrer) looks for follow-up pageload event with no
referrer or if a referrer is logged, it must match given
parameter – current page, whose PU event is being pro-
cessed. FindAndRemoveNextFocusTarget() looks for
follow-up focus event or returns out of scope flag if it is
not found within the time span or if blur event is encoun-
tered first. If the desired events are found, they are re-
moved from further processing, therefore only remaining
unmatched PL and F events are encountered later. Since
the presence or absence of follow-up events differentiates
user actions (e.g. FL and C) or out of scope operation,
these functions look ahead only within a short time span.

If the look-ahead time span is too short or too long, in
tab switching, either “ghost” out of scope operation would
be inserted, or a real out of scope operation would go
undetected. Since length of those would be comparable to
the length of look-ahead time span, they are very short and
nevertheless, the information between which pages has the
user finally travelled disregarding the inserted out of scope
operation is preserved. However, in page navigation pro-
cessing, a pageload from a different tab can be found
instead of absenting pageload in the same tab. Therefore
names consisting of generated universally unique identifi-
ers are assigned to individual tabs. Such tab name persists
between pages in the same tab unless it is changed. The
lookahead of PL and PU events is made only within events
with the same tab identifier, if the identifier is available.

V. EVALUATION

We realized the proposed parallel browsing model and
browsing behavior reconstruction within the Adaptive
LEarning Framework (ALEF) [1]. In our experiments,
ALEF was used by students both during classes and at

home to learn new topics, repeat content from lectures and
solve exercises. They were using various setups without
supervision or specific instructions for the tabbing.

For efficiency reasons, especially since a user may do
many tab switches in succession, we initialize and keep
the vector of event-timestamp pairs upon a pageload and
report it to the server together with other information on
page unload. A disadvantage is that we lose this infor-
mation when it is not possible to send the data during
unload (e.g. when the user loses internet connection, or
when some browsers do not trigger the unload event on
specific leaving methods). We found that we did not re-
ceive the tracking information in 8.1% cases of learning
object visitations (these visits were recorded in request
logs, equivalent to pageloads, but not in tab tracking logs).
This is acceptable, so we took this into consideration in
the processing algorithm and proceeded with the described
setup. Current emerging technologies such as WebSockets
can be later used to have partial input available even when
the complete vector could not be received.

Within the frame of study, 143 out of 254 active users
(students) (56.3%) were browsing pages of ALEF system
in parallel with two to eight ALEF pages opened concur-
rently. From all 80,566 navigations, 1,311 were made via
following a link to a new empty tab (branching, FB),
5,360 were made via typing in an address or following a
link from outside of the ALEF system to an empty tab and
1,628 were made by typing in an address to an existing tab
with an ALEF page. The rest was made via linear brows-
ing. Most of the branching interaction (70.8%) was per-
formed from explanations to other explanations.

While the numbers for branching actions may seem ra-
ther low to overall number of navigations, there may be
two reasons for this. First, in order to be browsing multi-
ple resources in parallel, it is enough to open a few new
tabs and then continue browsing in them in a linear way,
or even open an empty tab and visit a home page of the
ALEF and browse from there. This parallel existence of
tabs without common point of branching one from another
should be also considered in addition to the spawning of
tabs. Second, the previous generation of ALEF system
discouraged tabbed browsing because of stateful adaptive
tools embedded in learning objects. While this constraint
and discouragement was removed, we did not instruct
student explicitly to do tabbing now in order not to influ-
ence their behavior towards the parallel browsing and our
results show that despite previous discouragement they
tried and used tabs.

Considering the tab switching, only 3 out of 254 active
users never switched a tab containing an ALEF page.
215 users (84.6%) were switching intensively (occurrenc-
es of more than 5 tab switches on a page). The distribution
of tab switch actions was: 50,266 switches from an out of
scope operation to an ALEF page, 49,283 switches from
an ALEF page to out of scope operation, 9,413 switches
from an ALEF page to the same page (e.g. pop-up alerts),
and 2,783 switches from an ALEF page to another ALEF
page. Note that some switching from an ALEF page to
another ALEF page may be “disconnected” by out of
scope operation as noted before, but it can be easily joined
in further processing.

Similar to branching actions, switches were most com-
monly performed from an explanation to another one
(32.2%), however from questions and exercises, users
mostly switched to explanations for help. Question-to-

explanation was 83.3% of switches from questions, exer-
cise-to-explanation was 55.8% of switches from exercises.
Given the number of students and high numbers of availa-
ble learning objects, such switches were too distributed
among objects in order to pair questions or exercises to
explanations with enough confidence. However, consider-
ing learning object pairs with most switches between
them, we were able identify new relations not explicitly
represented in the domain model. E.g., in the Software en-
gineering course, such pairs were explanations for: Se-
quence Diagram and Communication Diagram, Sequence
Diagram and State Machine Diagram, and Data Flow
Diagram and Use Case Diagram. These diagrams are often
compared in the real world. Another example pair of
learning objects is from Prolog course, consisting of an
exercise for finding the longest sublist in any depth and an
exercise for finding the maximum depth within a list.

Performed study demonstrated viability of our proposed
model of parallel browsing. It allows browsing behavior
reconstruction in real time and its realization by client-side
scripts embedded in the web page allows detailed tracking
without the need of extending the browser, which would
cover only a partial group of users, nor maintaining differ-
ent extensions for several different browsers.

VI. CONCLUSIONS AND FURTHER WORK
Employing our proposed model for parallel browsing

behavior allows monitoring the user behavior more accu-
rately as considering the tabbing brings new patterns im-
portant for understanding the user behavior. We realized
our model based on events tracked by client-side scripts
embedded in a web page. At the expense of looking for
combinations of events rather than tracking the tabbing
explicitly via a web browser extension, it is tracked unob-
trusively regardless of user's environment and software
setup, making parallel browsing data ready to be easily
used as a general input for a recommender system or other
information personalization applications.

Our experiments with parallel browsing behavior sug-
gests that the tabbing behavior is common within a tech-
nology enhanced learning system, even under unfavorable
conditions of users being discouraged from parallel
browsing in the past. It can be expected that within previ-
ously unrestricted system, or when encouraged, the paral-
lel browsing could be even more widespread. Qualitative
observation of the users both in recorded logs and person-
ally during their work in seminars has shown that they
very often use multiple tabs to prepare multiple explana-
tions by opening them in tabs and then working through
them, or they use explanations in other tabs as a help
when working on exercises or questions.

Existing recommendation where the parallel browsing
is in most cases completely ignored can be combined with
the real browsing behavior in order to improve recom-
mendations. New previously unexplored information
sources can be also researched on real user behavior. E.g.,
having multiple web pages open in parallel and switching
between them demonstrates various paths through them
(the current recommender task of finding novel paths
through resources in educational domain). By spawning
new tabs and keeping the existing ones open concurrently,
users show relations between the pages.

In the educational domain we can discover and track
various behavioral patterns, which allow better knowledge
estimation and consequently more accurate recommenda-

tion of learning objects. Tracking the behavior allows for
discovering relationships between learning objects and
domain terms, which describe these learning objects. For
example, if a learner opens several tabs with explanations
from a tab with an exercise and closes some of them while
keeping others open and switching to them several times,
we can assume that those learning objects explain topics
(domain terms in light semantics) related to that exercise.

By combining our browsing model with a comprehen-
sive model of monitoring (e.g. through a proxy [14]) to
cover the entire browsing session, the recommender sys-
tem can even take into account how users combine multi-
ple heterogeneous web sources. Novel resources outside
of an educational system, but related to the current learn-
ing object, can be selected and recommended by consider-
ing how users switched from such page of the educational
system to the external pages.

ACKNOWLEDGMENT

This work was partially supported by grants VG1/
0675/11, VG1/0971/11 and APVV-0233-10.

REFERENCES
[1] M. Šimko, „Automated Acquisition of Domain Model for Adap-

tive Collaborative Web-Based Learning,” in IST Bulletin of the
ACM Slovakia, vol. 4, no. 2, pp. 1–9.

[2] P. Michlík and M. Bieliková, “Exercises Recommending for
Limited Time Learning,” Procedia Computer Science, vol. 1, no.
2, pp. 2821–2828, Jan. 2010.

[3] A. Aula, N. Jhaveri, and M. Käki, Information search and re-
access strategies of experienced web users. New York, New York,
USA: ACM Press, 2005, pp. 583–592.

[4] M. Viermetz, C. Stolz, V. Gedov, and M. Skubacz, “Relevance
and Impact of Tabbed Browsing Behavior on Web Usage Min-
ing,” in 2006 IEEE/WIC/ACM Int. Conf. on Web Intelligence -
WI’06, 2006, pp. 262–269.

[5] F. Chierichetti, R. Kumar, and A. Tomkins, “Stochastic Models
for Tabbed Browsing,” in Proceedings of the 19th int. conf. on
World wide web - WWW ’10, 2010, pp. 241–250.

[6] G. Bonnin, A. Brun, and A. Boyer, “Towards Tabbing Aware
Recommendations,” in Proceedings of the First International
Conference on Intelligent Interactive Technologies and Multime-
dia - IITM ’10, 2010, pp. 316–323.

[7] P. Dubroy and R. Balakrishnan, “A Study of Tabbed Browsing
Among Mozilla Firefox Users,” in Proc. of the 28th int. conf. on
Human factors in comp. systems - CHI ’10, 2010, pp. 673–682.

[8] H. Zhang and S. Zhao, “Measuring Web Page Revisitation in
Tabbed Browsing,” in Proc. of the 2011 annual conf. on Human
factors in computing systems - CHI ’11, 2011, pp. 1831–1834.

[9] G. Singer, U. Norbisrath, E. Vainikko, H. Kikkas, and D. Lewan-
dowski, “Search-logger analyzing exploratory search tasks,” in
Proc. of the 2011 ACM Symposium on Applied Computing -
SAC’11, 2011, pp. 751–756.

[10] J. Huang and R. W. White, “Parallel browsing behavior on the
web,” in Proc. of the 21st ACM conf. on Hypertext and hyperme-
dia - HT’10, 2010, pp. 13–17.

[11] J. Huang, T. Lin, and R. W. White, “No Search Result Left Be-
hind: Branching Behavior with Browser Tabs,” in Proc. of the 5th
ACM int. conf. on Web search and data mining - WSDM’12, 2012,
pp. 203–212.

[12] P. Hofgesang, “Methodology for Preprocessing and Evaluating the
Time Spent on Web Pages,” in 2006 IEEE/WIC/ACM Int. Conf. on
Web Intelligence - WI’06, 2006, no. 1994, pp. 218–225.

[13] M. Barla and M. Bieliková, “Ordinary Web Pages as a Source for
Metadata Acquisition for Open Corpus User Modeling,” in IADIS
Int. Conf. WWW/Internet 2010, 2010, pp. 227–233.

[14] T. Kramár, M. Barla, and M. Bieliková, “PeWeProxy: A Platform
for Ubiquitous Personalization of the ‘Wild’ Web,” in Adjunct
Proc. of the 19th Int. Conf. on User Modeling, Adaption, and Per-
sonalization - UMAP’11, 2011, pp. 7–9.

