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Abstract—When learners access web-based educational 
systems, they often take advantage of what current web 
browsers offer: multiple tabs with different pages. Whether 
they are solving an exercise or learning a whole new topic, 
they can concurrently browse other relevant objects in the 
educational system or even resources outside the system, on 
the “wild” Web. This behavior goes unnoticed or it is only 
estimated in the traditional web usage mining, where it is 
supposed that the user opens only one page at a time. How-
ever, if we could record the parallel browsing behavior, we 
could better understand the user’s activity, goals and im-
prove learner model employed for personalization. The 
paths through resources (including spawning new tabs and 
switching between them) of many learners also express 
relevance between these resources and this can be leveraged 
in applications such as recommendation to other learners 
browsing similar learning objects. In this paper, we intro-
duce a model for parallel browsing behavior based on events 
tracked with client-side scripting. We realized the proposed 
model in the ALEF educational system, which we use in 
several courses and evaluate learner behavior in the system. 

I. INTRODUCTION 

Current educational systems are often realized as web-
based systems, allowing their users (learners) to work 
from a range of platforms and even remotely from their 
home. The learners often take advantage of current web 
browsers and open multiple resources in parallel, be it in 
multiple browser tabs or multiple browser windows. In 
this way, learners can open multiple objects (web pages, 
learning objects) from the educational system and switch 
between them. If we could record and analyze this parallel 
browsing, we could better understand learners’ behavior 
and leverage their activity for information personalization. 

Educational systems often provide different types of 
objects: new topics are introduced with video-clips, 
presentation slides, or coursebook texts; user’s progress is 
tracked with quizzes, questions or tasks. In this paper we 
present our results on the ALEF system. ALEF stands for 
Adaptive LEarning Framework [1] and it is an adaptive 
educational system being used at the Slovak University of 
Technology in Bratislava in several courses: Procedural 
Programming, Functional and Logic Programming, and 
Software Engineering.  

ALEF offers several types of learning objects. Explana-
tions present basic educational content explaining a part of 
topic, e.g. recursion in procedural programming. Exercises 
are tasks that users can solve in the system and submit 
their solutions for evaluation, e.g. “Create a program 
which…“, “Draw a UML model of…”. Questions are 
quizzes, where the interaction is short – user has to select 

one or multiple correct answers, put answers in the correct 
order, or finish a free text answer. 

When a learner reads for example a math coursebook 
and starts solving a mathematical problem, it is natural 
that she looks up relevant formulas or theorems presented 
in the current chapter. This behavior can be similar in an 
educational system – when a learner starts some exercise 
and needs to look up additional information, she can open 
corresponding explanations or even external resources on 
the Web in other tabs and switch back and forth while 
constructing the solution. Similarly, when the user is 
learning a new topic and she starts with an Explanation 
object, she may switch to relevant exercises and questions 
to practice the presented information. 

Relevant exercises or explanations in these examples 
can be selected manually by a teacher during course au-
thoring or even automatic methods can be applied, such as 
content-based methods using similarities between learning 
objects. However, knowing users’ browsing behavior 
allows us to better model the user, what she reads in what 
situations and the better user model alone can be used for 
better information personalization for the user. For exam-
ple, in a recommendation based on the learner’s current 
knowledge combined with time left for learning and her 
learning goals [2], it is very important to accurately model 
these goals. By recognizing known user tasks in the paral-
lel browsing, e.g. the user is opening exercises into new 
tabs, which she keeps open as bookmarks until she pro-
ceeds to solve them later, we can better model user goals. 

Users can also find learning objects and external 
sources relevant to their current activity outside of the 
relevance expressed in the domain model of the content 
and outside of relations discovered by content-based 
methods or created by the teacher. The relevant explana-
tions and external sources can be recommended to other 
users struggling on the same exercise on which the user 
opened them. Relevant exercises can be recommended to 
users reading an explanation, the domain model can be 
augmented with discovered relevance, etc.  

However, the traditional view on user’s behavior in the 
web usage mining is more based on the linear browsing 
model. It is often assumed that when a page is visited 
(loaded), the user gives it all her attention until visiting 
another page, replacing the previous one. However, in the 
more accurate parallel browsing view, multiple pages are 
opened concurrently and the user’s attention is split be-
tween them. User modeling from server-side information 
is most affected by this difference, because at the server 
side, we do not have enough information to discern how 
the page was opened (In a new tab or replacing the current 
page?). 



On the client side, we can exactly track what a user 
does by augmenting the browsing software, but this is 
limited only to users in a closed experiment in a lab where 
the software is provided by the researchers, or to a portion 
of users that are willing to install tracking extensions. The 
necessity of additional software limits its use in real set-
tings and it does not provide information on all users. 

We proposed a model for parallel browsing behavior 
based on events observed by client-side scripting. As 
such, it does not need installation of any additional soft-
ware (e.g. browser extensions). In this way, we capture 
behavior of all learners in a web-based system, rather than 
a limited number of them in a closed study. Users also act 
more naturally than when they know that they are to be 
tracked, which they do know when we require them to 
install a tracking browser extension. We show how to 
detect which resources are being used in parallel by a user. 
The proposed model was realized in a live instance of the 
ALEF framework being used by university students dur-
ing semester. We evaluate students’ parallel browsing 
activities while learning in ALEF. 

II. PARRALEL WEB BROWSING STUDIES 

Opening multiple windows and having multiple web 
pages open at the same time have been supported by web 
browsers for a long time since their soon versions. After-
wards, tabbing interfaces were added, which allowed 
multiple pages to be opened in the same window in a user 
interface elements called tabs. First, they were supported 
through browser extensions and later natively by browsers 
themselves. Since the release of Internet Explorer 7 in the 
2006, all widely used browsers support tabbing. Both 
tabbed and multi-windowed browsing methods are very 
similar, the main difference is that with multiple windows 
a user switches between opened web pages via main 
taskbar of the operating system (as when switching be-
tween applications) and with multiple tabs, the switches 
are made via the list of tabs inside the browser. 

While differences between tabbing and multi-
windowing are important from the perspective of the hu-
man-computer interaction and user interfaces, in the web 
usage mining, we only need to know which resources 
(pages) are being browsed and how the user travels 
through them. For simplicity, we address the use of multi-
ple browser tabs and multiple browser windows as tabbing 
and call both the browser windows and tabs as tabs. 

Parallel browsing has been previously studied through 
various methods selected for given research goals. For 
example, in order to just survey how users work with web 
browsers and search engines while searching for infor-
mation, a questionnaire can be used. In [3] having multi-
ple tabs open while searching was found to be common. 

There are several approaches for the user behavior 
tracking. Basically, we can realize user behavior tracking 
either as server-side, or client-side. 

In server-side tracking, server logs contain only page-
loads (target address, previous address (referrer), 
timestamp) and no direct or indirect information on tab-
bing. Parallel browsing can be only estimated when using 
this kind of tracking. In [4], authors introduced a model 
for both linear browsing (action of following a link) and 
parallel browsing (actions of opening a tab and switching 
between open tabs) and subsequently used the server-side 
data for modeling the user behavior. Only linear browsing 

is accurately observed from server data and only an esti-
mate of possible clicktrees and paths through them can be 
made for parallel browsing, giving only information on 
how the users could be browsing in parallel, giving many 
possibilities. Authors estimated the parallel browsing 
behavior in the study to be in a large range of 4% to 85%. 

In [5], a model based on stochastic process was applied 
to logs of visited pages and their referrers. An improve-
ment was shown, but the model cannot distinguish be-
tween branching (opening multiple tabs from single page) 
and backtracking (opening a page in the same tab, return-
ing back and opening another page). 

In [6], all-kth-order (AKO) Markov model was used on 
tasks that were extracted from browsing history. Tasks are 
one of the user motivations for using the tabs (a task of 
multitasking – assuming the use of different tabs for dif-
ferent tasks) and an enhancement of 27.5% in recommen-
dation was shown over traditional AKO model. However, 
this approach does not include any other uses of multi-
tabbing, where the use of tabs is not correlated to tasks. 

While server-side logs are available from all users by 
default, their limited data restricts us only to estimations 
of user behavior. 

Client-side extensions or plug-ins are used to augment 
the web browsing software. In this way, everything about 
the user activity can be recorded, since the browser sees 
all its opened tabs and operations with them. However, 
requiring the augmentation of the browser to take place, 
this approach is more suitable for studies, where the users 
voluntarily install the extension or where the users are 
seated to computers with software prepared by the re-
searchers (controlled experiments). In fact, this approach 
has been used as a basis for several studies on tabbing. 

Combined clickstream logging and diaries have been 
used in [7] with 21 participants to study user work with 
multiple tabs. In [8], the same approach was used with 20 
participants to study revisitation in the context of the tabs. 
In [9], a browser plug-in was used with 10 participants to 
analyze exploratory tasks. During a search session, users 
opened at most 2 additional tabs. Large logs from a plug-
in were used in [10] (60 billion pageviews from 50 million 
users) and authors looked for situations where a user 
opens a page and the tab identifier changes. 

In client-side scripting, a JavaScript code is embedded 
within a page and it can see how the user works with the 
page (where she clicks) or when she leaves. This approach 
collects information from every user, but the code is al-
ways running within a sandbox of the single page, in 
which it was embedded. This page is present in a single 
tab and as such, the tracking code sees no information 
about other tabs. In a recent study [11], tracking code was 
embedded in the results page of a search engine. Presence 
or absence and the order of pageloads and clicks on the 
results were used. For example, a pageload and two fol-
lowing clicks mean that the result must have been opened 
in another tab (branching), because the source page still 
existed for the second click to occur. This approach is 
limited to detection of the initiation of parallel browsing 
within the results (e.g. no data is available on switching 
between the result pages) and there are branching situa-
tions which are not covered by this approach. 

Overall, it has not been sufficiently studied how to use 
the available events to reconstruct the parallel browsing 
with the client-side scripting methods, thus covering natu-



ral behavior of all users in their own settings in an uncon-
trolled experiments, where they are typically not presented 
with augmented software. 

Several studies have shown that it is important to con-
sider, explore and exploit the parallel browsing behavior. 
Parallel browsing is now more common than the linear 
browsing. It may differ by current user tasks [10]. Users 
can create 4 to 22 tabs per 100 navigations while using the 
multiple tabs for reminding, scanning through search 
results, multitasking, comparing pages, or even bookmark-
ing [7], and all these usages are relevant to the learning 
path. Tracking tab usage is also important when consider-
ing traditional web usage metrics, e.g. the revisitation. 

In [7], 30% of created tabs were selected multiple 
times, in large contrast to traditional view based on linear 
browsing where each loaded page is viewed exactly once. 
A loaded page can be never viewed (a false visit in the 
traditional approach), or it can be left and visited again by 
switching out of its tab and back to it again (a revisit invis-
ible to traditional approach). Study in [8] reports tradition-
ally computed revisitation rate 39.3% and effective revis-
itation with tabs actually 59.6%. 

III. TRACKING THE PARALLEL BROWSING BEHAVIOR 

We proposed a model for parallel browsing, in which 
we use events observed via client-side scripting. 

A. Tracking Scheme 
Commonly tracked information about opening a page 

(pageload) and from which page it was navigated to (re-
ferrer) is insufficient to tell when the page was closed. 
Based on the server-side data, we can only estimate that 
the page in question was closed in some time after the last 
click on a link in it occurred (the page had to still exist 
when the user has opened a link from it). It is not known 
whether a referred page was opened in a new tab or it 
reused the same tab. For this, it is necessary also consider 
the page unload event, which can only be tracked at the 
client side. 

Suppose we have pages labeled ଵ, ଶ, etc. and tabs ݐଵ, ݐଶ, etc. We mark the pageload event with the address of 
a page  and a referrer ݎ as PL(,  and the page unload (ݎ
event of a page  as PU(). The parallel browsing is 
modeled from occurrences of the following sequences: 

1) Opening new pages 
User can open a new page by typing its address into ad-

dress bar, by using bookmarks, clicking links in external 
applications, etc.: 

• O Opening a new page ଵ in existing empty tab ݐଵ (type-in, bookmark, etc.) → PL(ଵ, 0) 
• O Opening a new page ଶ in existing tab ݐଵ with 

page ଵ open → PU(ଵ), PL(ଶ, 0) 

2) Opening pages by following links 
User can follow a link in the Linear way (the page 

opens in the same tab) or with Branching (parallel brows-
ing, the page opens in new tab): 

• FL Following a link to page ଶ from page ଵ in 
the same tab ݐଵ → PU(ଵ), PL(ଶ,   (ଵ

• FB Following a link to page ଶ from page ଵ in 
tab ݐଵ to a new tab ݐଶ → PL(ଶ,  (ଵ

3) Closing the pages and tabs 
Finally, the user can close a page or a tab at any time: 

• C Closing a page ଵ → PU(ଵ) 

• C࢚ Closing existing empty tab ݐଵ with no page  → undetected 

• C࢚ Closing existing tab ݐଵ with page ଵ  → Cభ, ܥ௧భ 

• O࢚ Opening a new empty tab ݐଵ with no page  → undetected 
Actions O௧ and C௧ are not observed, since no pages 

(with tracking script) exist in a tab ݐଵ when these actions 
occur. However, empty tabs are not important from the 
point of page browsing behavior. Tabs can be also substi-
tuted with windows (or used concurrently) in the same 
scheme. As we cannot record which tabs are open in 
which windows, we treat a single-page window as another 
tab and multiple multi-page (multi-tab) windows as just 
single collection of tabs. 

Fig. 1 shows an example of a parallel browsing session 
with three tabs ݐଵ, ݐଶ, and ݐଷ. All proposed operations are 
illustrated. Fig. 2 contains events captured for tabs ݐଵ and ݐଶ and operations with them from Fig. 1. Following a link 
with branching (FB) occurs as a pageload with a referrer 
to existing page that has not yet been unloaded. Following 
a link in a linear manner (FL) occurs as a page unload and 
a subsequent page load with the referrer of unloaded page. 

If a user opens a page manually, it occurs as a pageload 
with no referrer (Oଵ). If an existing tab with currently 
opened page is being reused (Oଶ), page unload of this 
page occurs just before it. Notice how Oଶ and FL are simi-
lar, but they are distinguished by matched/unmatched 
referrer. 

 
Figure 1.  Visualization of actions from the presented model on an 

example browsing session with three tabs ݐଵ to ݐଷ. 

 
Figure 2.  Events recorded for selected tabs (ݐଵ and ݐଶ) from 

browsing session in Fig. 1. Corresponding user actions detected 
from these events are shown on a time axis. 



B. Fragmented Spent Time 
In order to track the work with opened tabs (tab switch-

ing) in addition to opening and closing of the tabs, we 
track fragmented spent time. Spent time is commonly 
tracked as a time that the user has spent on the page [12] – 
in the most basic form as a difference between two subse-
quent pageload events. We fragment the time spent and 
track each bringing of the page into the focus (focus) and 
each losing of it (blur) together with timestamps. These 
events can be tracked from client-side scripts included 
within a page. Let B() be the blur event of page  and ()ܨ be the focus event of page : 

• S Switching from tab ݐଵ with page ଵ to tab ݐଶ 
with page ଶ → B(ଵ), F(ଶ) 

However, the switching can also occur to/from outside 
of the set of pages, which we can track – a user can switch 
to an empty tab with no page, or foreign page without 
script, or out of the browser. Since the tab switch is the 
event of leaving one tab and the event of arriving to an-
other tab, such situation only disconnects the events: 

1. Switching from tab ݐଵ with page ଵ to out of the 
scope → B(ଵ). 

2.  (Untracked activity: switching between untracked 
tabs, applications, etc. → undetected.) 

3. Switching from out of the scope back to tab ݐଶ 
with ଶ → F(ଶ). 

Fig. 3 shows an example of a possible tab switching 
session made on tabs ݐଵ and ݐଶ from Fig. 1. Bold line 
shows user navigation between the tabs. While the user 
opens/closes page ସ in tab ݐଶ, a different tab is active 
 The page was opened by following a link to a new .(ଵݐ)
tab (FB) and since the user did not switch to that tab, it 
must be opened “in background” (the new tab is spawned 
and the page is loaded in it, e.g., by using context menu or 
holding the CTRL key and clicking, but it is not activated 
until the user switches to it). When the user changes cur-
rent page in the same tab, (action Oଶ or FL), B and F 
events also occur, such pairs are in boxes. Note that tab 
switching and tab closing actions are independent; the 
user can close any tab without activating it. 

When no matching focus event is recorded after a blur 
event has occurred, this means that the user have switched 
out of a browser, a pop-up dialogue may be displayed, or 
an untracked tab may be activated. We consider such time 
“out of scope”. 

C. Scope of the Tracked Behavior 
As we implied above, we may not always be able to 

track all pages in all tabs – branching does not occur only  
 

 
Figure 3.  Example of possible switching between tabs (ݐଵ and ݐଶ) 

with relevant events. 

within pages from a single site with our scripts included, 
but also between multiple sites. The presented scheme 
however applies to the entire set of tabs within a browser 
when the tracking is happening inside each tab, which can 
be accomplished by employing a proxy (such as one pro-
posed in [13]), which modifies server responses and 
makes it possible to insert the tracking code into any page. 

Without the proxy or other similar modifications, we 
typically do not have our pages loaded in every tab of the 
user’s browser. We can consider such tabs “empty” for 
branching behavior, which also makes them “out of 
scope” for tab switching. However, our pages can be visit-
ed from any arbitrary web page and such web page is now 
considered an “empty tab”. Thus when we mark tracked 
websites ܲ = ሼଵ, ,ଶ … ሽ and all other websites ܳ =ሼݍଵ, ,ଶݍ … ሽ, ܲ ∩ ܳ = ∅, we can consider any pageload 
event PL൫, ,)൯ to be equivalent to PLݍ 0). 

IV. BROWSING BEHAVIOR RECONSTRUCTION 

We have presented our browsing behavior model with 
observable events assigned to various user actions. How-
ever, when analyzing the browsing behavior, the events 
are collected within the pages visited by a given user and 
we are interested in the reverse mapping – the reconstruc-
tion of user actions between the pages. 

Since each page is opened in its own sandbox and exists 
from the script’s point of view only from its load to its 
unload (sections bounded by “document” symbol and “X” 
symbol in the Fig. 1 to 3), the events we collected on a 
given page were represented as a vector of event-
timestamp pairs that occurred during a lifetime of that 
page. Additional information, including timestamps, user 
info, etc., was also tracked (see example). Application-
specific information was added to generic tracking. In a 
web-based educational system, we add learning object ID 
and course/setup ID (one learning object can be present in 
multiple courses or setups). 

 

Data Collected for a Single Page: TabInfo Record 
events_vector:  
[["PL",1335002774493],["B",1335002774645], 
 ["F",1335002774724],["B",1335002774787], 
 ["F",1335002844169],["B",1335002874645], 
 ["UL",1335002881229]] 

page:  
"http://alef.fiit.stuba.sk/learning_objects/112" 

referrer:  
"http://alef.fiit.stuba.sk/learning_objects/111" 

user_agent: 
"Mozilla/5.0 (Windows.." 

client_timestamps: (..), server_timestamps: (..) 

user: 149, learning_object: 112, course: 3 
 

These vectors were combined together by the browsing 
reconstruction algorithm. Note that the algorithm treats 
user actions defined for basic tracking scheme (see Sec-
tion III.A) independently from actions for switching be-
tween tabs (see Section III.B). As noted, a user can oper-
ate other tabs, i.e. close them, without first switching to 
them. A conceptualized version of the algorithm is pre-
sented below. 

 

Algorithm for Browsing Behavior Reconstruction 
function GetBrowsingBehavior(user) 
 var behavior = []; 
 var global_vector = []; 
 foreach info in GetUserTabInfos(user) 



   foreach ev in info.events_vector 
     global_vector.add(ev.name, ev.timestamp, 
                    info.page, info.referrer); 
   end 
 end 
 
 SortByTimestamps(global_vector); 
 foreach info in global_vector 
   case info.event 
   "PU": 
     var next = FindAndRemoveNextPL(info.page); 
     if next == NULL 
      behavior.add("CP", info.page); 
     else if next.referrer == NULL 
      behavior.add("O2", info.page, next.page); 
     else 
      behavior.add("FL", info.page, next.page); 
     end 
   "PL": 
     if info.referrer == NULL 
      behavior.add("O1", info.page); 
     else 
      behavior.add("FB", info.referrer,  
                     info.page); 
     end 
   "B" : 
     var active = FindAndRemoveNextFocus(); 
     behavior.add("S", info.page, active); 
   "F" : 
     behavior.add("S", OUT_SCOPE, info.page); 
   end 
 end 
 
 return behavior 
end 

 

Initially, all event vectors for a given user are combined 
by ordering them according to their timestamps. Next, the 
algorithm processes the events sequentially, looking ahead 
for subsequent matched events. FindAndRemoveNext-
PL(referrer) looks for follow-up pageload event with no 
referrer or if a referrer is logged, it must match given 
parameter – current page, whose PU event is being pro-
cessed. FindAndRemoveNextFocusTarget() looks for 
follow-up focus event or returns out of scope flag if it is 
not found within the time span or if blur event is encoun-
tered first. If the desired events are found, they are re-
moved from further processing, therefore only remaining 
unmatched PL and F events are encountered later. Since 
the presence or absence of follow-up events differentiates 
user actions (e.g. FL and C) or out of scope operation, 
these functions look ahead only within a short time span. 

If the look-ahead time span is too short or too long, in 
tab switching, either “ghost” out of scope operation would 
be inserted, or a real out of scope operation would go 
undetected. Since length of those would be comparable to 
the length of look-ahead time span, they are very short and 
nevertheless, the information between which pages has the 
user finally travelled disregarding the inserted out of scope 
operation is preserved. However, in page navigation pro-
cessing, a pageload from a different tab can be found 
instead of absenting pageload in the same tab. Therefore 
names consisting of generated universally unique identifi-
ers are assigned to individual tabs. Such tab name persists 
between pages in the same tab unless it is changed. The 
lookahead of PL and PU events is made only within events 
with the same tab identifier, if the identifier is available. 

V. EVALUATION 

We realized the proposed parallel browsing model and 
browsing behavior reconstruction within the Adaptive 
LEarning Framework (ALEF) [1]. In our experiments, 
ALEF was used by students both during classes and at 

home to learn new topics, repeat content from lectures and 
solve exercises. They were using various setups without 
supervision or specific instructions for the tabbing. 

For efficiency reasons, especially since a user may do 
many tab switches in succession, we initialize and keep 
the vector of event-timestamp pairs upon a pageload and 
report it to the server together with other information on 
page unload. A disadvantage is that we lose this infor-
mation when it is not possible to send the data during 
unload (e.g. when the user loses internet connection, or 
when some browsers do not trigger the unload event on 
specific leaving methods). We found that we did not re-
ceive the tracking information in 8.1% cases of learning 
object visitations (these visits were recorded in request 
logs, equivalent to pageloads, but not in tab tracking logs). 
This is acceptable, so we took this into consideration in 
the processing algorithm and proceeded with the described 
setup. Current emerging technologies such as WebSockets 
can be later used to have partial input available even when 
the complete vector could not be received. 

Within the frame of study, 143 out of 254 active users 
(students) (56.3%) were browsing pages of ALEF system 
in parallel with two to eight ALEF pages opened concur-
rently. From all 80,566 navigations, 1,311 were made via 
following a link to a new empty tab (branching, FB), 
5,360 were made via typing in an address or following a 
link from outside of the ALEF system to an empty tab and 
1,628 were made by typing in an address to an existing tab 
with an ALEF page. The rest was made via linear brows-
ing. Most of the branching interaction (70.8%) was per-
formed from explanations to other explanations. 

While the numbers for branching actions may seem ra-
ther low to overall number of navigations, there may be 
two reasons for this. First, in order to be browsing multi-
ple resources in parallel, it is enough to open a few new 
tabs and then continue browsing in them in a linear way, 
or even open an empty tab and visit a home page of the 
ALEF and browse from there. This parallel existence of 
tabs without common point of branching one from another 
should be also considered in addition to the spawning of 
tabs. Second, the previous generation of ALEF system 
discouraged tabbed browsing because of stateful adaptive 
tools embedded in learning objects. While this constraint 
and discouragement was removed, we did not instruct 
student explicitly to do tabbing now in order not to influ-
ence their behavior towards the parallel browsing and our 
results show that despite previous discouragement they 
tried and used tabs. 

Considering the tab switching, only 3 out of 254 active 
users never switched a tab containing an ALEF page. 
215 users (84.6%) were switching intensively (occurrenc-
es of more than 5 tab switches on a page). The distribution 
of tab switch actions was: 50,266 switches from an out of 
scope operation to an ALEF page, 49,283 switches from 
an ALEF page to out of scope operation, 9,413 switches 
from an ALEF page to the same page (e.g. pop-up alerts), 
and 2,783 switches from an ALEF page to another ALEF 
page. Note that some switching from an ALEF page to 
another ALEF page may be “disconnected” by out of 
scope operation as noted before, but it can be easily joined 
in further processing. 

Similar to branching actions, switches were most com-
monly performed from an explanation to another one 
(32.2%), however from questions and exercises, users 
mostly switched to explanations for help. Question-to-



explanation was 83.3% of switches from questions, exer-
cise-to-explanation was 55.8% of switches from exercises. 
Given the number of students and high numbers of availa-
ble learning objects, such switches were too distributed 
among objects in order to pair questions or exercises to 
explanations with enough confidence. However, consider-
ing learning object pairs with most switches between 
them, we were able identify new relations not explicitly 
represented in the domain model. E.g., in the Software en-
gineering course, such pairs were explanations for: Se-
quence Diagram and Communication Diagram, Sequence 
Diagram and State Machine Diagram, and Data Flow 
Diagram and Use Case Diagram. These diagrams are often 
compared in the real world. Another example pair of 
learning objects is from Prolog course, consisting of an 
exercise for finding the longest sublist in any depth and an 
exercise for finding the maximum depth within a list. 

Performed study demonstrated viability of our proposed 
model of parallel browsing. It allows browsing behavior 
reconstruction in real time and its realization by client-side 
scripts embedded in the web page allows detailed tracking 
without the need of extending the browser, which would 
cover only a partial group of users, nor maintaining differ-
ent extensions for several different browsers. 

VI. CONCLUSIONS AND FURTHER WORK 
Employing our proposed model for parallel browsing 

behavior allows monitoring the user behavior more accu-
rately as considering the tabbing brings new patterns im-
portant for understanding the user behavior. We realized 
our model based on events tracked by client-side scripts 
embedded in a web page. At the expense of looking for 
combinations of events rather than tracking the tabbing 
explicitly via a web browser extension, it is tracked unob-
trusively regardless of user's environment and software 
setup, making parallel browsing data ready to be easily 
used as a general input for a recommender system or other 
information personalization applications. 

Our experiments with parallel browsing behavior sug-
gests that the tabbing behavior is common within a tech-
nology enhanced learning system, even under unfavorable 
conditions of users being discouraged from parallel 
browsing in the past. It can be expected that within previ-
ously unrestricted system, or when encouraged, the paral-
lel browsing could be even more widespread. Qualitative 
observation of the users both in recorded logs and person-
ally during their work in seminars has shown that they 
very often use multiple tabs to prepare multiple explana-
tions by opening them in tabs and then working through 
them, or they use explanations in other tabs as a help 
when working on exercises or questions. 

Existing recommendation where the parallel browsing 
is in most cases completely ignored can be combined with 
the real browsing behavior in order to improve recom-
mendations. New previously unexplored information 
sources can be also researched on real user behavior. E.g., 
having multiple web pages open in parallel and switching 
between them demonstrates various paths through them 
(the current recommender task of finding novel paths 
through resources in educational domain). By spawning 
new tabs and keeping the existing ones open concurrently, 
users show relations between the pages. 

In the educational domain we can discover and track 
various behavioral patterns, which allow better knowledge 
estimation and consequently more accurate recommenda-

tion of learning objects. Tracking the behavior allows for 
discovering relationships between learning objects and 
domain terms, which describe these learning objects. For 
example, if a learner opens several tabs with explanations 
from a tab with an exercise and closes some of them while 
keeping others open and switching to them several times, 
we can assume that those learning objects explain topics 
(domain terms in light semantics) related to that exercise. 

By combining our browsing model with a comprehen-
sive model of monitoring (e.g. through a proxy [14]) to 
cover the entire browsing session, the recommender sys-
tem can even take into account how users combine multi-
ple heterogeneous web sources. Novel resources outside 
of an educational system, but related to the current learn-
ing object, can be selected and recommended by consider-
ing how users switched from such page of the educational 
system to the external pages. 
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