
Platform Independent Software Development
Monitoring: Design of an Architecture

Mária Bieliková, Ivan Polášek, Michal Barla, Jozef Tvarožek,
Eduard Kuric, Karol Rástočný

Institute of Informatics and Software Engineering, Faculty of Informatics
and Information Technologies, Slovak University of Technology

Ilkovičova 2, Bratislava, Slovakia
{name.surname}@stuba.sk

http://fiit.stuba.sk

Abstract. Many of software engineering tools and systems are focused
to monitoring source code quality and optimizing software development.
Many of them use similar source code metrics to solve different kinds
of problems. This inspired us to propose an environment for platform
independent code monitoring, which supports employment of multiple
software development monitoring tools and sharing of information among
them to reduce redundant calculations. In this paper we present design of
an architecture of the environment, whose main contribution is employ-
ing (acquiring, generating and processing) information tags - descriptive
metadata that indirectly refer source code artifacts, project documen-
tations and developers activity via document models and user models.
Information tags represent novel concept unifying traditional content
based software metrics with recently developed activity-based metrics.
We also describe prototype realization of the environment within project
PerConIK (Personalized Conveying Information and Knowledge), which
proves feasibility and usability of the proposed environment.

Keywords: Information tag, Source code, Software development, De-
veloper’s expertise, Interaction data, Software metrics

1 Introduction

Source code quality and optimization of software development process fall within
long-term problems of software engineering. Many of proposed methods that
aim to solve these problems utilize source code metrics (e.g., LLOC, CLOC) [7],
watch activities of developers and process of the development [6] and visual-
ize results in different views that simplifies identification of problematic source
code and communication with stakeholders [5]. These methods have different
strengths and weaknesses related to particular problems. Thus by combining
several methods in one environment we can achieve a more robust solution.
Even more, we can move from a separate execution of distinct methods into an
“orchestration”, where particular methods take advantage of and reuse shared
“knowledge” base about source codes, project documentations and developers.



2 Platform Independent Software Development Monitoring

Current trends of information and knowledge modelling utilize ontologies for
sharing and storing information [19]. Ontologies (either lightweight or heavy-
weight) are also often used in web information services that describe webpage
artifacts, which are in some aspects similar to software source code artifacts.
This description of webpage artifacts is provided via semantic annotations that
can refer to concepts of external ontologies [1] or they can directly contain frag-
ments of an ontology in form of bags of triples [17]. These semantic annotations
can be put directly into web pages as HTML tag attributes, practically visible
only to machines and not distracting user in any way. Such approach however
cannot be used for source codes, as they would quickly become unclear, hard to
read and understand for a programmer.

Another approach is to store metadata in external files with proper references
to described resources. This approach suffers by granularity issues – metadata
can often refer only the whole file [15], what is insufficient for source codes, or
they straightly refer line numbers of annotated source code artifacts [10] what
significantly decreases maintainability of metadata (after each source code file
modification, all references have to be updated to current line numbers).

In this paper we introduce design of an architecture of a novel environment for
code monitoring which employs information tags as descriptive metadata over
document model and user model. This way we contribute to solving a problem
of computational redundancy and increase cooperation among services and tools
for software development support.

2 Architecture Overview

The proposed environment has to be able process data created by developers
directly as well as indirectly (by observing and logging their actions) and to
provide added value in real-time. For this reason we divide processing data to
multiple partial processes that are sub-processes of two main processes – data
acquisition and added value provision.

2.1 Data Acquisition

Decomposition of data processing into multiple processes gives us a possibility
to break complex problems of processing big data to several smaller and less
complex problems that can be distributed over multiple machines and processed
in real time. This can be especially notable in the process of data acquisition,
which needs to cope with stream of events about modifications in source code,
projects documentations and learning materials and also activities of developers
and team leaders. Thus we decompose data acquisition to four horizontal layers
– data source, data, metadata and metadata processing based on granularity of
the data and to three vertical layers - tags, documents and logs about activities
based on the character of the data (see Fig. 1).

Data acquisition starts in data source – users’ working environments. Data
from working environments are collected via a set of pre-installed tools that



Platform Independent Software Development Monitoring 3

Working 

Environment

User 

Annotations
Documents Logs

Document 

Model

Information 

Tags

User

Model

Tagger

Data Source

Data

Metadata

Metadata Processing

Fig. 1. Horizontal layers of data acquisition view. All elements are independent soft-
ware systems with SOAP a REST-based interfaces that make stored objects accessible
via URI identifiers and queries.

monitor activities of developers in their integrated development environments,
web browsers and office tools and collect contextual (possibly including also bio-
metrics) information. The collected data are stored into repositories at the data
layer, from which they are processed into document models and user models. All
modifications in models are streamed as events to the tagger, a component which
processes them and creates information tags - descriptive metadata assigned to
the objects from document models and user models (we discuss “information
tags” and motivation for creating them in the section 3.3).

2.2 Added Value Provision

Processing the acquired data to metadata in formats of models and information
tags unburdens individual methods/services from recurrent preprocessing of raw
data and redundant calculations. This does not only save computation resources,
but it also saves data traffic as they do not have to access whole raw data but
they only query for necessary metadata. Sources of queried data depend on
roles of end users – consumers of methods and services. In our environment we
differentiate two main roles of users - developers and team leaders (see Fig. 2).

Developers work directly with software project documents (e.g., source code,
documentations). The most of documents used by developers are stored in de-
veloper’ machines in needed versions or they are synchronized with documents
repositories by specialized tools (e.g., IDE, office tools). Therefore services of
the environment will do redundant processing if they load and work directly



4 Platform Independent Software Development Monitoring

Developer

Working 

Environment

User 

Annotations
Documents

Document 

Model

Information 

Tags

User

Model

Team Leader

Working 

Environment

Developer 

Oriented 

Services

Management 

Oriented 

Services

Fig. 2. Enriching users’ working environment with added value provided by the code
monitoring environment

with these documents. It is more efficient to perform calculations and processing
over document models and information tags and then send results to developers’
machines, where they can be merged back into the documents.

Management oriented services work similarly to developer oriented services.
Both work only with metadata without necessity of an access to the whole raw
data. Difference is in metadata stored in models that are processed by man-
agement oriented services. These services do not need to work with document
models. Managers do not need to read documentations or source code, they need
information about their teams (e.g., skills of developers). Therefore management
oriented services query the user model and information tags and present results
through specialized tools or web applications.

3 Vertical Layers

3.1 Documents

During software development, developers write and analyze source code, create
and study different kinds of texts (e.g., specifications, API, tutorials), or use
Q&A sites and community forums for finding/providing solutions (e.g., code
examples). It is rich information space which includes resources in a natural
language as well as a “spiderweb” of software artifacts. Whether it is a file/text
in a natural language or a programming language or it is a resource located on
the Web or in a local repository, everything is a document.

We classify documents into three classes: source code, web pages and project
documentation. Although, this classification seems to be straightforward, note
that there are also different relationships among the documents. For example, a
code snippet can be copied from a web page into local code or documentation.
The relationship information between documents (source, target) is captured in
user activity logs and stored in information tags.



Platform Independent Software Development Monitoring 5

3.2 Logs

We have developed several agents (tools) that collect and process (existing) doc-
uments and user activities. They allow us to capture, track, analyze and evaluate
different events. We focus on monitoring developers’ work in IDE, their activities
in a web browser and events of an operating system. To capture coding/working
activities we use supporting tools/plug-ins (e.g., plug-ins for Microsoft Visual
Studio IDE, Eclipse IDE and Firefox).

In an IDE we capture activities such as open/add/edit file (associated with
a solution/project), check-in, debug, copy/paste, code focus and selection, built-
in find, code refactoring, and stream of edits. In a web browser we capture
activities such as search on the Web (keywords, target URLs), find on a page,
entering URLs, manipulation with tabs, content selection, creating and using
bookmarks. For monitoring other activities we use OS Monitor. It allows us
to capture and monitor running applications, utilization of hardware resources,
biometric information (keyboard, mouse) and performed activities in office tools
(e.g., Microsoft Office Word, Microsoft Office OneNote).

Each agent collects activities, transforms them to logs and sends the logs
to the Local Logging Service (LLS). The task of LLS is to gather the logs. A
delivered log from an agent to LLS can be set so-called “flag milestone”. It means
that LLS sets up a package of the gathered logs and sends the package to the
Server Logging Service (SLS) that stores the logs into a database (see Fig. 3).

Server 

Logging 

Service

Local 

Logging 

Service

IDE Plugin

Browser 

Plugin

OS Monitor

Fig. 3. Dataflow of collected logs

3.3 Information Tags

Information tag is a descriptive metadata with a semantic relation to a tagged
content. It is an extension to the common concept of a tag as a simple keyword or
phrase assigned to an artifact. Information tag adds additional value (semantics)
to the software artifact itself. For example, information tags can be product
of monitoring signals of explicit and implicit feedback generated by developers
working on source code. Information tag is defined by a triple of [11]:

– Type - defines a type and a meaning of the information tag;
– Anchoring - identifies a tagged information artifact;
– Body - represents a structured information, a structure of which corresponds

to the type of the information tag.



6 Platform Independent Software Development Monitoring

We distinguish information tags according their source: user created and ma-
chine generated information tags. User created information tags are created by
users via specialized tools integrated into their working environment (e.g., in
a form of a plug-in for IDE). They are directly readable for users. This makes
user created information tags easily understandable and usable, what gives the
environment advantage of naturally collecting users’ knowledge about tagged
objects (e.g., ratings of classes). In this manner user created information tags
generally have a clear meaning for our users (e.g., provide review feedback at-
tached to a source code). They can also be utilized to train or evaluate methods
for enhancement of software development (e.g., automatic identification of un-
reliable or risky source code).

Machine generated information tags are an analogy of user created informa-
tion tags for programme services. It is a tag which contains structured machine-
readable information which has a meaning with its interconnection with a tagged
content and/or its context (e.g., environment, history). For example, if the in-
formation tag ”Edited 23 times” is defined, its information has meaning for us
only if we look up at tagged method in a source code file, which has been edited.
This way information tags represent form of lightweight semantics, in which any
service can store and share its information related to objects (or any part of an
object) of an information space (e.g., source code fragments). As a result, infor-
mation tags decrease redundancy of data processing when some services need
common partial results and also allow employing data mining techniques.

Not all source code annotations created by a user (user annotations in Fig. 1)
can be considered as information tags, i.e. a descriptive metadata expressed in
defined structure. The diversity of machine generated and user created infor-
mation tags is in the logical level, in which user created information tags are
always metadata straightly understandable to users. In the realization of the en-
vironment (see following section) we implement common model, repository and
maintaining services for user created and machine generated information tags.

4 Case Study: Code Monitoring in Software House
Environment

To evaluate feasibility of the proposed environment we have developed its proto-
type realization within the research project PerConIK (Personalized Conveying
of Information and Knowledge). The project is focused on support of enter-
prise applications development in a software company by considering a software
system as a web of information artifacts [3]. We experiment also with the devel-
opment of students’ team projects in master study programmes in Information
Systems and Software Engineering at the slovak University of Technology in
Bratislava. Project leader is a medium size software company so that all moni-
toring is realized in accordance with defined company policies.

In this section we describe core parts of the realized environment (e.g., in-
formation tags management) and several methods/services with partial results.



Platform Independent Software Development Monitoring 7

4.1 Infrastructure and Metadata Management

Information Tags Repository. The main innovation in architecture of the
presented environment lies in employing information tags. To utilize advantages
of information tags we proposed information tags repository which respects fol-
lowing requirements [4]:

– The repository has to be scalable - it has to have good read and modify
performance despite of nontrivial number of stored information tags.

– The repository has to be able to store information tags in a freeform model
which can be easily extended with new information tag types.

– Due to semantic meaning of information tags, inference has to be supported.

To fulfill these requirements we combine advantages of RDF and document
stores. RDF has advantage in possibility of freeform data modeling and inference
possibilities but it is at the expense of time complexity in the case when whole
information has to be loaded (multiple SPARQL queries have to be processed
while each query can take several seconds [14]). On the other side, document
stores have good access to whole objects but they do not support inference [18].

Our repository is based on MongoDB1 database which stores information
tags in the object model based on Open Annotation Data Model2. We utilized
standardized Open Annotation Data Model for its prevalence in annotation sys-
tems and straight analogy between information tags and annotations (both have
a type, a body and an anchoring). We solved problem of missing support for
inference in MongoDB by proposition of MapReduce-based SPARQL query pro-
cessing algorithm [4]. We also performed several usability evaluations with our
prototype realization. Executed test cases proved that proposed information tag
repository provide enough performance for use cases of the environment and
also that proposed SPARQL query processing algorithm reached almost same
time as processing SPARQL queries as native horizontally scalable RDF storage
BigData3. Our results are in detail described in [4].

Information Tags Maintenance. Information tags are linked with problem
of their maintenance. This is especially visible in the case of information tags
anchored to source code. Source code files are continuously modified, deleted
and created. It leads to several problems of information tags maintenance:

– Generating missing information tags - newly written source code files or their
parts have to be tagged with information tags that describe new source code.

– Repairing affected information tags - each modification in a source code file
can affect validity of information tags at two levels - validity of body and
anchoring of information tags. In addition, information tags’ bodies can be
affected by time - information that are stored in them can become obsolete.

1 http://www.mongodb.org
2 http://openannotation.org/spec/core/
3 http://www.systap.com/bigdata.htm



8 Platform Independent Software Development Monitoring

– Removing invalid information tags - unrepairable information tags or infor-
mation tags those targets are missing (have been deleted) have to be deleted
from the information tags repository.

The first step of information tags maintenance is repairing invalidated infor-
mation tag anchoring. This has to be done because we have to be able locate right
source code artifacts where information tags have to be anchored before provid-
ing necessary maintenance of affected information tags. To solve this problem
we do not employ any special process or service. We made a decision to design a
robust location descriptor suitable for source code with algorithms for its build-
ing and interpreting [12]. It give us possibility to recalculate positions in real
time (during editing code) without necessity to load previous versions of code.

Remaining maintenance tasks are provided by tagger. Tagger is a rule-based
service which collects streams of events about modifications in user and docu-
ment models and in case of fulfillment of a rule’s condition it performs actions
described in the rule. The tagger’s core is based on linked stream data process-
ing [9]. We employ C-SPARQL engine [2], which processes RDF graphs of events
from models updating services. Employment of linked stream data [16] increases
inference possibilities over events and decreases memory complexity of rule ex-
ecution (incremental events processing). In addition tagger uses inferred results
of fulfilled C-SPARQL query-based conditions in simple rules’ actions.

Presentation of Tags. Information tags are primarily designed for services,
but some of them can have direct added value for developers too. E.g., a service,
which watches developers’ activity, can automatically assign information tags
with authorship to source code artifacts. Such information tags can be important
for a developer that has to refactor older source code.

In addition some information tags and especially user generated information
tags could not be maintained automatically. In these cases developers have to
manually maintain invalidated information tags. For these reasons we imple-
mented the plug-in for Microsoft Visual Studio 2012 for visualizing information
tags (see Fig 4). Small graphic symbols (on the left side) pointed to concrete
tags in the source code: green triangles for single tags and two halftriangles with
connector for the pair tags in relation. On the right-hand side of the editor we
can display the labels with the content of the tag: authors of the particular
source code (after the keyword by), users of the source code (after the keyword
used by), ranking (green stars are positive ranking and red stars are negative),
topics, patterns or antipatterns. On the bottom of the editor we built filters and
also we can activate infotip on the information tag label which completes whole
information (here in the figure for example only the number of commits, the
author of the tag (generated tag by the tagger), creation time, etc.).

4.2 Infrastructure Usage Possibilities

The information tags allow us to design and develop wide range of methods/services
focused, e.g., to automatically evaluate developers’ expertise, to discover a de-



Platform Independent Software Development Monitoring 9

Fig. 4. Visualization of information tags in Microsoft Visual Studio 2012

gree of developers’ productivity and effectiveness, to reveal developers’ practices
and habits or to establish quality of created code.

Modeling Developer’s Karma. One possible employment of proposed infras-
tructure for software development monitoring is to model developer’s expertise
(karma). It is valuable in real (internal) environment of a software company, but
also in academic environment. Determining a developer’s expertise [13] in a soft-
ware company allows for example managers and team leaders to look for special-
ists with desired abilities, form working teams or compare candidates for certain
positions. In academic environment, automatic establishment of students’ exper-
tise allows a teacher to evaluate students’ knowledge and know-how. Based on
it, e.g., the teacher can adapt and modify his teaching practices. On the contrary
of a software company, where software is created by professionals, in academic
environment, students learn how to design and develop software. Therefore, the
establishment of developer’s expertise requires different approaches.

One possible scenario we work on is to establish automatically developer’s
karma based on monitoring his working activities during coding in IDE, ana-
lyzing and evaluating the (resultant) code he creates and commits to a local
repository. To establish the overall developer’s karma for a software project we
investigate information tags on software artifacts (components), which the de-
veloper creates. We take into account developer’s “karma elements” as:

– degree of authorship – the developer’s code contributions and the way how
the contributions were created to a component;



10 Platform Independent Software Development Monitoring

– authorship duration and stability – the developer’s know-how persistency
about a component;

– technological know-how – the level of how the developer knows the used
technologies (libraries), i.e., broadly/effectively, this includes also estimating
quality of developed source code;

– degree of productiveness - a degree of difference between the real generated
and finally used code lines in a component;

– component importance - a degree of importance of a component in the soft-
ware project.

We established these particular developer’s karma elements (metrics) based
on our observation of developers’ activities (logs). The overall developer’s karma
is calculated as a linear combination of these karma elements. Each karma ele-
ment is calculated based on information tags generated while the developer works
on source code or by off-line analyses of source code (those indicating quality of
code developed by the developer). By applying the metrics we are able to observe
and evaluate different indicators. For example, we can sight the developer who
often copies and pastes source code from an external source (Web). Contribu-
tions of such developer can be relative to the software project, moreover, it can
reveal a reason of his frequent mistakes or low productivity in comparison with
other developers.

Search in Source Code Based on Reputation Ranking. Code search en-
gines help developers to find and reuse software components. To support search-
driven development it is not sufficient to implement a “mere” full text search
over a base of code, human factors have to be taken into account as well. Repu-
tation ranking can be a plausible way to rank code results using social factors.
Trustability of code (developer’s/author’s reputability) is a big issue for reusing
code (software components). When a developer reuses code from an external
source he has to trust the work of external developers that are unknown to him.
It can be supported by using an externalized model of each developer’s expertise
of a particular code (software component).

In search-driven development we apply our model and approach for automatic
establishing developer’s karma. It allows developers to rank code results not only
based on relevance but also authors’ reputation of the results. We exploited our
know-how in implementing a search engine which in addition to relevance of
code (software component) establishes its importance [8].

5 Conclusions and Future Work

We have introduced an approach to code monitoring in software projects based
on information tags as descriptive metadata that provide a unifying element for
reasoning on source code and developer activities represented by document and
user models.



Platform Independent Software Development Monitoring 11

Information tags provide a basis for reasoning useful information to devel-
opers and managers similarly as metadata do for the applications on the Web.
Examples are identification of bad practices, evaluation of source code quality
based on an estimation of the current user state followed his activity, recommen-
dation of good programming practices and tricks/ snippets used by colleagues.
They also serve as an input for reasoning on properties of software artifacts such
as similarity with code smells, estimation of developer skill and proficiency [3].
Information tags are stored in the information tags repository which is designed
with great emphasis on scalability and the ability to store information tags in
a freeform model which can be easily extended with new information tag types.
Information tags are linked with a problem of their maintenance. We have in-
troduced solutions for repairing and removing invalid information tags.

Our approach allows to design and develop wide range of methods/services,
e.g. automatic evaluation of developers’ expertise or establishment of quality
of created code. Although, in this paper we present an approach for modeling
developer’s karma, in our research we also use and apply the proposed approach
in modeling developer’s emotion and investigation of the influence of the detected
emotion on the quality of created code and recommendation of software artifacts
to a developer during working in IDE.

In future work, our primary goal is to finish the implementation of our core
services and to perform their final evaluation. Next we plan to deploy the imple-
mented prototype in a software company and at the University in the subject
called “Team project” where students develop relatively large software systems.
We also plan to propose and realize additional supporting services, e.g., a ser-
vice for establishment of code quality based on context - i.e. developer‘s position
(work, home) or weather. Our final aim is to improve development efficiency and
software quality during its evolution.

Acknowledgments. This contribution/publication is the partial result of the
Research & Development Operational Programme for the project Research of
methods for acquisition, analysis and personalized conveying of information and
knowledge, ITMS 26240220039, co-funded by the ERDF.

References

1. Araujo, S., Houben, G.J., Schwabe, D.: Linkator: Enriching web pages by automat-
ically adding dereferenceable semantic annotations. In: Benatallah, B., Casati, F.,
Kappel, G., Rossi, G. (eds.) ICWE 2010, LNCS, vol. 6189, pp. 355–369. Springer-
Verlag, Berlin, Heidelberg (2010)

2. Barbieri, D.F., Braga, D., Ceri, S., Grossniklaus, M.: An execution environment
for c-sparql queries. In: Proc. of the 13th Int. Conf. on Extending Database Tech.
pp. 441–452. ACM, New York (2010)

3. Bieliková, M., Návrat, P., Chudá, D., Polášek, I., Barla, M., Tvarožek, J., Tvarožek,
M.: Webification of software development: General outline and the case of enter-
prise application development. In: Proc. of 3rd World Conf. on Inf. Tech. (WCIT-
2012). pp. 1157–1162. WCIT’12, University of Barcelon, Barcelona (2013)



12 Platform Independent Software Development Monitoring

4. Bieliková, M., Rástočný, K.: Lightweight semantics over web information systems
content employing knowledge tags. In: Castano, S., Vassiliadis, P., Lakshmanan,
L., Lee, M. (eds.) ER 2012, LNCS, vol. 7518, pp. 327–336. Springer-Verlag, Berlin,
Heidelberg (2012)

5. Bohnet, J., Döllner, J.: Monitoring code quality and development activity by soft-
ware maps. In: Proc. of the 2nd Workshop on Managing Technical Debt. pp. 9–16.
ACM, New York (2011)

6. Fritz, T., Murphy, G.C., Hill, E.: Does a programmer’s activity indicate knowledge
of code? In: Proc. of the the 6th Joint Meeting of the European Soft. Eng. Conf. and
the ACM SIGSOFT Symposium on The Foundations of Soft. Eng. pp. 341–350.
ACM, New York (2007)

7. Kothapalli, C., Ganesh, S.G., Singh, H.K., Radhika, D.V., Rajaram, T., Ravikanth,
K., Gupta, S., Rao, K.: Continual monitoring of code quality. In: Proc. of the 4th
India Software Eng. Conf. pp. 175–184. ACM, New York (2011)

8. Kuric, E., Bieliková, M.: Search in source code based on identifying popular frag-
ments. In: Emde Boas, P., Groen, F., Italiano, G., Nawrocki, J., Sack, H. (eds.)
SOFSEM 2013, LNCS, vol. 7741, pp. 408–419. Springer-Verlag, Berlin, Heidelberg
(2013)

9. Le-Phuoc, D., Xavier Parreira, J., Hauswirth, M.: Linked stream data process-
ing. In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web. Semantic Technologies
for Advanced Query Answering, LNCS, vol. 7487, pp. 245–289. Springer-Verlag,
Berlin, Heidelberg (2012)

10. Priest, R., Plimmer, B.: Rca: experiences with an ide annotation tool. In: Proc. of
the 7th ACM SIGCHI New Zealand Chapter’s Int. Conf. on HCI: Design Centered
HCI. pp. 53–60. ACM, New York (2006)

11. Rástočný, K., Bieliková, M.: Maintenance of human and machine metadata over
the web content. In: Grossniklaus, M., Wimmer, M. (eds.) ICWE 2012, LNCS, vol.
7703, pp. 216–220. Springer-Verlag, Berlin, Heidelberg (2012)

12. Rástočný, K., Bieliková, M.: Metadata anchoring for source code: Robust loca-
tion descriptor definition, building and interpreting. In: Decker, H., Lhotska, L.,
Link, S. (eds.) DEXA 2013, LNCS, vol. 8056, pp. 372–379. Springer-Verlag, Berlin,
Heidelberg (2013)

13. Robbes, R., Röthlisberger, D.: Using developer interaction data to compare exper-
tise metrics. In: Proc. of the 10th Working Conf. on Mining Soft. Repositories. pp.
297–300. IEEE Press, Piscataway (2013)

14. Rohloff, K., Dean, M., Emmons, I., Ryder, D., Sumner, J.: An evaluation of triple-
store technologies for large data stores. In: Meersman, R., Tari, Z., Herrero, P.
(eds.) OTM 2007, LNCS, vol. 4806, pp. 1105–1114. Springer-Verlag, Berlin, Hei-
delberg (2007)

15. Schandl, B., King, R.: The semdav project: metadata management for unstructured
content. In: Proc. of the 1st Int. Workshop on Contextualized Attention Metadata:
Collecting, Managing and Exploiting of Rich Usage Inf. pp. 27–32. ACM, New York
(2006)

16. Sequeda, J.F., Corcho, O.: Linked stream data: A position paper. In: Proc. of the
2nd Int. Workshop on Sem. Sensor Net., SSN 09. CEUR-WS, Washington (2009)

17. Tallis, M.: Semantic word processing for content authors. In: Proc. of the 2nd Int.
Conf. on Knowledge Capture. Sanibel (2003)

18. Tiwari, S.: Professional NoSQL. John Wiley & Sons, Inc., Indianapolis (2011)
19. Woitsch, R., Hrgovcic, V.: Modeling knowledge: an open models approach. In:

Proc. of the 11th Int. Conf. on Knowledge Management and Knowledge Tech. pp.
20:1–20:8. ACM, New York (2011)


