
Estimation of Student’s Programming Expertise

Eduard Kuric
Faculty of Informatics and Information

Technologies
Slovak University of Technology

Ilkovičova 2, 842 16 Bratislava 4, Slovakia
eduard.kuric@stuba.sk

Mária Bieliková
Faculty of Informatics and Information

Technologies
Slovak University of Technology

Ilkovičova 2, 842 16 Bratislava 4, Slovakia
maria.bielikova@stuba.sk

ABSTRACT
Context: Despite the fact, that the various automated ex-
pertise metrics were proposed, we do not know which met-
rics the most reliably capture/reflect expertise. Goal: To
define metrics for estimation of developer’s expertise based
on programming tasks, to evaluate which of them most reli-
ably capture expertise, and to propose and evaluate an auto-
matic process to compare the metrics. Method: We define
three expertise metrics with respects to such characteristics
as spent time, performed activities and complexity of source
code. We evaluate Spearman’s correlation between our ex-
pertise metrics and students’ score obtained after comple-
tion of a programming course with 251 students. Results:
The best (very strong) correlation is between the metrics
based on complexity of source code and the student’s qual-
ification points. Conclusions: Very strong but not perfect
correlation is between our estimation of student’s expertise
and his/her score in the second third of the course. Ap-
proximately in the middle of the course we might be able to
predict students’ grades.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics

General Terms
Measurement, Experimentation

Keywords
expertise, software metrics, source code, interaction data,
software development, programming tasks

1. INTRODUCTION
Software metrics are of limited use unless we can be sure

about what they mean and what they imply [5]. The esti-
mation of developer’s expertise is a crucial factor for the de-
velopment time required to complete a given task. In other

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEM’14 September 18-19, 2014, Torino, Italy.
Copyright 2014 ACM 978-1-4503-2774-9/14/09 ...$15.00.

words, it has an impact on how quickly and successfully de-
velopment task is supposed to be solved. Even though that
this statement is intuitive, surprisingly enough, research has
not yet quantified the effect of developer’s expertise on de-
velopment time, i.e., it has not yet been thoroughly investi-
gated empirically. Another problem is that there are many
competing definitions of expertise. Without a clear baseline,
it is problematic to determine which expertise metrics are
the best characterization of expertise.

Estimation of expertise on a given piece of source code
(source code artifact) has an impact on productivity, i.e., a
developer that knows the functions/methods and classes to
use for a target task does not need to consult the documen-
tation nearly as much. Estimation of developer’s expertise
also allows, on the one hand, managers and team leaders
to look for specialists with desired abilities, form working
teams or compare candidates for certain positions, on the
other hand, developers can locate an expert in a particular
library or a part of a software system (the most suitable de-
veloper can be found to help on a given task - someone who
knows a software component or an application interface).

To the present, we have focused mainly on modeling de-
veloper’s expertise in a software house environment [2]. It is
based on investigation of software artifacts that the devel-
oper creates. We take into account the developer’s source
code contribution, its complexity and how the contribution
were created to a software artifact (e.g. copy/paste actions
from a web browser); the developer’s know-how persistence
about a software artifact; and technological know-how. All
on daily basis of software development.

Despite the fact that various automated expertise metrics
were proposed, we do not know which metric most reliably
captures/reflects expertise. The main obstacle for compar-
ison of expertise metrics is the lack of data with which to
compare the metrics to each other. If we want to estimate
developer’s expertise the best possible way we have to con-
sider comparable values only, to ensure the same conditions,
and to ensure the same evaluation criteria.

In this paper, we present an approach for estimation of de-
veloper’s expertise based on programming tasks. We define
several metrics in order to find out which of them most reli-
ably captures expertise. To compare and evaluate our exper-
tise metrics properly we require the following: (1) developers
solve tasks of equal size and complexity; (2) they have the
same time for solving the tasks; (3) they solve the tasks in
a uniform working environment; and (4) they use the same
development environment. The study was carried in the
academic environment with student participants. Program-

ming courses, aimed at practicing of student’s algorithmic
thinking, are often based on acquiring deeper knowledge of
methods of designing and implementing efficient algorithms.
Our approach is based on programming tasks which the stu-
dents solve during seminars of a programming course. Each
task is focused on training and acquiring skills of a concept
(e.g. priority queue, hash table, balanced 2-3-4 tree).

We define three expertise metrics and we compare the
correlation between each of the metrics and the points that
the students gained in seminars and the final exam. We
model student’s expertise as a level of his/her expertise of
a concept relatively to other investigated students. In other
words, if students solve a task focused on acquiring skills
of a particular concept, then by analyzing their resultant
source code, interaction activity and by using appropriate
software metrics, we are able to estimate levels of students’
expertise of the concept. By using the particular students’
expertise estimation of concepts we can estimate a level of
student’s expertise for the whole course and compare the
values among the investigated students based on the same
evaluation criteria.

2. RELATED WORK
In this area, several approaches have been proposed. They

are usually based on interaction activities, changes, bugs or
usage of technologies.

Fritz et al. [3] use interaction data. They proposed a
Degree-of-Knowledge model (DoK) to capture source code
familiarity. It consists of a component indicating a devel-
oper’s longer-term knowledge of a source code element -
represented by a Degree-of-Authorship (DoA) and a compo-
nent indicating a developer’s shorter-term knowledge - repre-
sented by a Degree-of-Interest (DoI). DoA is determined by 3
factors: (1) first authorship, (2) the number of deliveries and
(3) the number of acceptances. DoI represents the amount
of interaction actions (e.g. edits) a developer has had with
a source code element. DoK is calculated as a linear combi-
nation of the factors contributing to DoA and DoI. The de-
veloper’s expertise rises when he/she commits changes and
diminishes when other developers make changes.

The Expertise Browser [8] and Expertise Recommender
[6] use a simple heuristic (Line 10 Rule) that the developer
who commits to a file has expertise in the file. The Expertise
Recommender estimates developer’s expertise as a binary
function, i.e., at a certain time only one developer can have
expertise in a file and it depends on who last changed it
(last one wins). An argument is that the developer who last
made a change has the source code “freshest” in mind. A
refinement of the Expertise Browser is proposed in [4], where
the authors take into account also size of the changes (i.e.
the number of lines changed in a commit). The Emergent
Expertise Locator [7] and Expertise Recommender improve
the Expertise Browser so that they consider a relationship
among changes in a file while estimating expertise.

Anvik and Murphy [1] use bug reports as the source of
information for estimation of expertise. Expert Finder [9]
allows to locate experts on Java APIs based on their usage.

Our approach differs from these works by contributing
an automatic process to compare expertise metrics based
on programming tasks, while other approaches rely on de-
veloper feedback which is expensive to gather, and poten-
tially subjective to evaluate the expertise metrics for a given
source code artifact.

3. METHODOLOGY
We argue that there are at least three key aspects in es-

timation of developer’s expertise that we have to take into
account, namely, time, activity, and complexity. In other
words, well-performing expertise metric should exhibit at
least one of the following characteristics:

• It is negatively correlated with the time taken to per-
form a task of equal size. Experts take comparatively
less time than non-experts for a task of equal size.

• It is negatively correlated with the total number of
activities (e.g. build/debug attempts, edits, selects,
switches) needed for the delivery of well-working (ac-
ceptable) solution for a given task of equal size. For
example, experts usually need/perform less build at-
tempts than non-experts during creating well-working
solution. Another example, experts usually do not per-
form considerably less edits than non-experts, but they
arguably perform them faster (in less steps), that is,
the density of navigation, edit actions is higher.

• It is also negatively correlated with the amount of ef-
fort to perform a given task of equal size. Effort can be
estimated based on such characteristics as complexity
and size. For example, source lines of code (SLOC)
can be very effective in estimating effort as a software
size metric. Programs with larger SLOC values take
more time to develop. Experts usually produce less
source lines of code than non-experts for a given task
of equal size. On the one hand, SLOC is useful basic
metric to measure size, on the other hand, it positively
correlates with complexity. Based on the facts, we can
“narrow” effort to complexity of source code expressed
by a sizing metric such as SLOC.

As we mentioned our main objective is to define proper ex-
pertise metrics for estimation of developer’s expertise based
on programming tasks and to evaluate which of them most
reliably captures expertise. We define three expertise met-
rics with respect to the characteristics highlighted above.

Time (T). Estimation of developer’s expertise of a con-
cept c, when taking into account the time needed to perform
a given task tci ∈ Tc, is calculated as follows:

ExpTc (d, Tc) =
∑

tci∈Tc

1

log2(1 + TD(d, tci))
, (1)

where TD(d, tci) returns time duration (TD) from the first
to the last (acceptable) build of the solution for tci . The less
time a developer d needs to perform a task tci the higher
his/her expertise ExpTc is.

Activity (A). Estimation of developer’s expertise of a
concept c, when taking into account the total number of
events (EA) corresponding with selected activities needed
for the delivery of the acceptable solution for a given task
tci ∈ Tc, is calculated as follows:

ExpAc (d, Tc) =
∑

tci∈Tc

MEDEA(tci)

EA(d, tci)
, (2)

MEDEA(tci) = median(∪iEA(di, tci))

For example, the higher the number of build attempts a
developer performs in solving tci the less his/her ExpAc is.

Table 1: Spearman correlation between students’ score (points or grades) and metrics.

Score \ Metrics EXPT #time EXPA #NOBA EXPC #LLOC

qualification points 0.80 0.71 0.83 0.74 0.86 0.84
exam points 0.67 0.59 0.70 0.61 0.73 0.71
total points 0.78 0.70 0.82 0.73 0.85 0.84

qualification grades 0.72 0.51 0.74 0.56 0.80 0.78
exam grades 0.56 0.51 0.56 0.40 0.60 0.55
final grades 0.69 0.50 0.72 0.54 0.77 0.74

Complexity (C). Estimation of developer’s expertise of a
concept c, when taking into account a product metric (PM)
of a delivered solution for a given task tci ∈ Tc that re-
flects complexity at least to some extent (e.g. cyclomatic
complexity), is calculated as follows:

ExpCc (d, Tc) =
∑

tci∈Tc

MEDPM (tci)

PM(d, tci)
, (3)

MEDPM (tci) = median(∪iPM(di, tci))

The more complex a developer’s solution of tci is (respective
to other developers) the less his/her ExpCc is.

Based on our particular expertise metrics we estimate de-
veloper’s expertise of the course as follows:

EXP (T |A|C)(d) =
∑
c

Exp(T |A|C)
c (d, Tc), (4)

We normalize all the calculated expertise values into the
interval [0, 1] by using the tanh normalization technique.

4. EVALUATION
Environment. We focused on estimation of students’ ex-

pertise in a course Data structures and algorithms (bachelor
study). The aim of this course is to provide students with
a general overview of principles of specifying data types.
Students should acquire deeper knowledge of approaches of
designing and methods of implementing efficient algorithms
and data structures for searching and sorting. We experi-
mented with data gathered during the course. During sem-
inars the students solve programming tasks. Each week is
focused on training and acquiring skills of a concept such as
stack, priority queue, binary tree, oriented graph, hash table,
etc. The students solve the tasks in a learning system called
Peoplia1. Students can select to solve a simpler or more
complex task focused on acquiring skills of a concept. The
number of tasks equals 20. Students get points for their
successful solutions. In autumn semester 2013/2014, 251
students enrolled in the course. When a student submits a
solution of a task to Peoplia, its correctness and efficiency
(time complexity) is evaluated. The solution is accepted if
it is correct and efficiency tests are successful. The student
has unlimited number of submissions and the solutions are
checked by a plagiarism detection system.

Concrete Metrics. In experiments, to estimate stu-
dent’s expertise based on his/her activity we chose a number
of build attempts (NOBA) that he/she performed in solv-
ing a task tci , i.e., EA(s, tci) = NOBA(s, tci) (see Eq. 2).
To estimate complexity of a solution of a task tci created
by a student s we chose Logical Lines of Code (LLOC),

1Peoplia: http://www.peoplia.org/fiit/

i.e., PM(s, tci) = LLOC(s, tci) (see Eq. 3). The larger
a program is (LLOCs) the more complex the program is.
Although LLOC is widely accepted sizing metric, there is
a lack of standard that enforces a consistency of what and
how to count LLOC. For calculation of LLOC we adopted
the definition from the CodeCount2.
General Results. We first examine the correlation be-

tween our expertise metrics and student’s score obtained af-
ter completion of the course. We report the non-parametric
Spearman correlation. We use the asymptotic variant of
the Spearman correlation as the exact variant is sensitive to
ties. The student’s score (total points) is divided into points
earned in seminars (qualification points) and points of the
final exam (exam points). We normalize exam, qualification
and total points into the interval [0, 100]. Subsequently, we
map the normalized points as follows: [92, 100] to 1 (A),
[83, 91] to 2 (B), [74, 82] to 3 (C), [65, 73] to 4 (D), [56, 64] to
5 (E), and [0, 55] to 6 (FX), i.e., student’s qualification points
are mapped to qualification grade, his/her exam points are
mapped to exam grade and total points to final grade.

Table 1 shows the correlation between our expertise met-
rics calculated based on Eq. 4 and students’ course evalua-
tion, i.e., {EXPT , EXPA, EXPC} × {qualification points,
exam points, total points, qualification grade, exam grade,
final grade}. Note, before calculating correlation between
EXPT and qualification grades, we normalize EXPT val-
ues to grades (the same is applied in all comparisons with
grades). In Table 1 we also provide calculated correlation be-
tween basic metrics and students’ evaluation. #time is the
total time the student spent in solving all tasks (accepted
solutions), #NOBA is the total number of build attempts
the student performed in solving all tasks (accepted solu-
tions), and #LLOC is the total number of logical lines of
code containing in his/her accepted solutions.

We have mentioned that expertise should negatively cor-
relate with the time taken to perform a given task. As we
can see our metric EXPT reflects the negative correlation.
In all cases EXPT is higher in comparing with #time, i.e.,
when we “penalize” a student the correlation is higher. Sim-
ilarly it is between EXPA and #NOBA, and EXPC and
#LLOC. We can see that EXPC and qualification points
are very strongly but not perfectly correlated. We can also
see that very strong correlation is between EXPC and total
points. In comparing, EXPC provides the best results.

Student’s score prediction. An example of practical
usage of our approach is student’s score prediction. We were
interested in whether we are able to predict students’ grades
during the course. Our goal was to find out at what phase of
the course the correlation between our metrics and students’
evaluation is the highest. Therefore we divided the 20 tasks

2CodeCount: http://sunset.usc.edu/research/CODECOUNT/

Table 2: Spearman correlation between students’
score and calculated EXPT from a subset of tasks.

Score \ Tasks IT1 IT2 IT3 IT1 ∪ IT2 IT2 ∪ IT3
qualif. points 0.62 0.80 0.68 0.79 0.81
exam points 0.53 0.67 0.58 0.67 0.67
total points 0.61 0.78 0.67 0.79 0.79

qualif. grades 0.55 0.67 0.54 0.70 0.70
exam grades 0.43 0.54 0.38 0.58 0.51
final grades 0.52 0.66 0.54 0.69 0.67

Table 3: Spearman correlation between students’
score and calculated EXPA from a subset of tasks.

Score \ Tasks IT1 IT2 IT3 IT1 ∪ IT2 IT2 ∪ IT3
qualif. points 0.65 0.82 0.69 0.81 0.83
exam points 0.55 0.69 0.58 0.69 0.69
total points 0.64 0.80 0.67 0.80 0.81

qualif. grades 0.58 0.69 0.56 0.73 0.72
exam grades 0.44 0.55 0.38 0.57 0.51
final grades 0.55 0.67 0.54 0.70 0.68

into three intervals IT1 , IT2 , and IT3 . IT1 contains 7 tasks
assigned to students during the first third of the course, IT2
contains 7 tasks (the second third), and IT3 contains 6 tasks
(the last third). In Table 2 we compare EXPT divided into
the 3 intervals with students’ evaluation. Similarly, EXPA

in Table 3, EXPC in Table 4. As we can see, the metric
EXPC again wins. The result is that the very strong but
not perfect correlation is in the second third of the course.
It means that approximately in the middle of the course we
might be able to predict students’ grades.

5. CONCLUSIONS
The estimation of developers’ expertise is a valuable asset

for a software company. We introduced an approach for es-
timation of student’s expertise based on programming tasks
in an academic environment. Although, we performed the
evaluation of our expertise metrics in laboratory conditions
we think that the presented hypothesis are also valid in a
software house environment. We realize that there are much
more aspects that affect developers in a software house envi-
ronment. We should also take into account such aspects as
forgetting, development styles, etc. We also suspect that the
effect will be more strongly felt on larger tasks. Despite all
the facts, we believe that the investigated characteristics are
also valid in a software house due to their“intuitiveness”, i.e.,
the relationship (individually) between time, activity, com-
plexity and estimation of expertise is in negative correlation.
However, the best way to measure developer’s expertise on
a source code artifact is still up for discussion.

We shown that the presented metrics are well applicable
independently, however, an issue is how to combine them so
that we can be sure about what they mean and what they
imply. Therefore, we focus on different aspects of evaluation.
Our work is a part of a research project called PerConIK3

(Personalized Conveying of Information and Knowledge).
We focus on support of applications development by view-
ing a software system as a web of information artifacts. Our
aim is to devise the right metrics to evaluate software arti-

3PerConIK: http://perconik.fiit.stuba.sk/

Table 4: Spearman correlation between students’
score and calculated EXPC from a subset of tasks.

Score \ Tasks IT1 IT2 IT3 IT1 ∪ IT2 IT2 ∪ IT3
qualif. points 0.63 0.85 0.73 0.84 0.86
exam points 0.55 0.68 0.64 0.70 0.71
total points 0.63 0.82 0.73 0.82 0.84

qualif. grades 0.51 0.79 0.63 0.79 0.80
exam grades 0.43 0.54 0.45 0.60 0.58
final grades 0.51 0.73 0.61 0.75 0.76

facts and to identify particular problems and recommending
corrective actions. We developed several agents that collect
and process documentations, source code repositories, de-
velopers’ activities, etc. [2]. We create within the project
a dataset of developers’ implicit/explicit feedback based on
monitoring behavior of developers (e.g. searching relevant
information on the Web, writing/correcting source code in
an IDE, peer review) and defining explicit feedback from the
developers for the purpose of estimating expertise.

Acknowledgement. This work was partially supported
by grant No. VG1/0675/11 and it is the partial result
of the Research and Development Operational Programme
project “University Science Park of STU Bratislava”, ITMS
26240220084, co-funded by the European Regional Develop-
ment Fund.

6. REFERENCES
[1] J. Anvik and G. C. Murphy. Determining

implementation expertise from bug reports. In Proc. of
the 4th Int. Workshop on Mining Softw. Repositories,
pages 2–. IEEE CS, 2007.

[2] M. Bieliková et al. Platform independent software
development monitoring: Design of an architecture. In
Proc. of the 40th Int. Conf. on Current Trends in
Theory and Practice of Computer Science - Vol. 8327,
pages 126–137. Springer LNCS, 2014.

[3] T. Fritz et al. A degree-of-knowledge model to capture
source code familiarity. In Proc. of the 32nd Int. Conf.
on Softw. Eng. - Vol. 1, pages 385–394. ACM, 2010.

[4] T. Girba et al. How developers drive software evolution.
In Proc. of the 8th Int. Workshop on Principles of
Softw. Evolution, pages 113–122. IEEE CS, 2005.

[5] B. Kitchenham. Never mind the metrics what about
the numbers. In Proc. of the BCS-FACS Workshop on
Formal Aspects of Measurement, pages 28–37.
Springer-Verlag, 1992.

[6] D. W. McDonald and M. S. Ackerman. Expertise
recommender: a flexible recommendation system and
architecture. In Proc. of the Conf. on Comp. Supported
Cooperative Work, pages 231–240. ACM, 2000.

[7] S. Minto and G. C. Murphy. Recommending emergent
teams. In Proc. of the 4th Int. Workshop on Mining
Softw. Repositories, pages 5–. IEEE CS, 2007.

[8] A. Mockus and J. D. Herbsleb. Expertise browser: a
quantitative approach to identifying expertise. In Proc.
of the 24th Int. Conf. on Softw. Eng., pages 503–512.
ACM, 2002.

[9] A. Vivacqua and H. Lieberman. Agents to assist in
finding help. In Proc of the SIGCHI Conf. on Human
Factors in Comp. Systems, pages 65–72. ACM, 2000.

