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Abstract

Automatic image annotation methods based on searching for correlations require a quality training image dataset. For a target
image, its annotation is predicted based on a mutual similarity of the target image to the training images. The one of the main
problem of current methods is their low effectiveness and scalability if a relatively large-scale training dataset is used. In this
paper we describe our approach “Automatic image aNNOtation Retriever” (ANNOR) for acquiring annotations for target images,
which is based on a combination of local and global features. ANNOR is resistant to common transforms (cropping, scaling), which
traditional approaches based on global features cannot cope with. We are able to ensure the robustness and generalization needed by
complex queries and significantly eliminate irrelevant results. We identify objects directly in the target images and for each obtained
annotation we estimate the probability of its relevance. We focus on the way, how people manually annotate images (human aspects
of image perception). We have designed ANNOR to use large-scale image training datasets. We present experimental results for
three challenging (baseline) datasets. ANNOR makes an improvement as compared to the current state-of-the-art.
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1. Introduction

Automatic image annotation has been studied extensively
for several years. Many of us likely has hundreds to thousands
photos and apparently each of us has probably at least once
thought “I would like to show her the photo, but I am unable
to find it”. With the expansion and increasing popularity of
digital and mobile phone cameras, we need to search images
effectively and exactly more than ever before.

Focusing on visual query forms, many content-based im-
age retrieval methods and techniques have been proposed, but
they have several limitations. On the one hand, in query-by-
example-based methods a query image is often absent. On the
other hand, query-by-sketch approaches [1, 2] are too complex
for common users and a visual content interpretation of a user
image concept is difficult.

A text retrieval system often helps finding rapidly related
documents from a vast amount of documents containing key-
words. Image search using keywords is presently the most
widely used approach. Content based indexing of images is
more difficult than indexing of textual documents because they
do not contain units like words. Image search is based on anno-
tations and semantic tags that are associated with images. How-
ever, annotations are entered by users and their manual creation
for a large quantity of images is very time-consuming with of-
ten subjective results.

The goal of automatic image annotation is to assign a col-
lection of keywords (annotation) from a given dictionary to a

target (previously unseen) image. i.e., the input is the target
(uncaptioned) image and the output is a collection of keywords
that describes the target image in a best possible way.

Why automatic image annotation is a challenge? Auto-
matic image annotation is on the frontier of different fields such
as image analysis, machine learning and information retrieval.
In present, to create a general system for automatic image an-
notation based on object recognition is practically impossible
(it is doubtful if ever at all). The Imagenet Large Scale Visual
Recognition Challenge (ILSVRC)1 is the venue for evaluating
the current state-of-the-art for image classification and recogni-
tion.

To extract the semantics from data, general object recogni-
tion and scene understanding is required. This is an extremely
hard task. The same object can be captured from different an-
gles, distances or under different lightning conditions. The man-
ual annotation is subjective and sometimes it is difficult to de-
scribe image contents by keywords. In general, an object of the
real world with the same “name” may have different visual form
(e.g. shape, color). Good illustrative examples are methods for
face recognition. There are several approaches for face recogni-
tion, e.g. methods based on comparing templates, which require
a robust database of faces. The faces are searched based on
correlating between an input (a target face) and the templates.
Complex knowledge-based methods focus on analyzing mor-
phological features such as eyes, mouth, skin and color. They

1ILSVRC: http://image-net.org/
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are based on rules defined by the real features of human faces.
Here are some crucial questions that current automatic im-

age annotation systems have to deal with:

• Which image representation is appropriate to describe
image? The objects in images are often occluded and
appear in poor lighting and exposure.

• Which image features can be extracted to describe or
characterize the visual content? A feature is represented
by a numerical feature vector (descriptor), by which we
are able to describe a part of image content. In general,
there are three essential requirements for the descriptors,
their degree of robustness, discrimination ability and ef-
ficiency. The robustness represents invariance to the ge-
ometrical changes (e.g. viewpoint, zoom, object orien-
tation) and noise-like signal distortions. The discrimi-
nation maximizes difference among non-duplicates and
minimizes difference among duplicates. The feature ex-
traction and matching requires fast computation.

Another question is the spatial and time complexity (com-
putational cost). A huge number of features per image can be
extracted and the dimension of the feature vector is crucial as-
pect, too. There is a problem how to index, store and compare
the descriptors in real-time. Often in many cases, faster access
to information means the need for more space allocation.

In this paper we propose a method for automatic image an-
notation using relatively large-scale image “training” dataset.
We combine local and global features to ensure robustness and
generalization needed by complex queries and therefore we fo-
cus on performance and scalability. For indexing and clustering
features, we use disk-based locality sensitive hashing. To ob-
tain annotation for a given target image, our approach is based
on the way how people manually annotate images.

Compared with our previous work [3] we present completely
new process of obtaining annotation called ANNOR (Automatic
image aNNOtation Retriever). The evaluation part is also com-
pletely new. We have performed new experiments focused on
evaluation of efficiency and quality of obtaining annotation. We
have evaluated our approach on three datasets and we have
compared the results of our approach with the state-of-the-art
approaches.

This paper is structured as follows: Section 2 provides an
overview of existing methods for automatic image annotation;
Section 3 introduces our approach; Section 4 and 5 describe
in details extracting, indexing, clustering and retrieving local
features and global features, respectively. Section 6 describes in
details obtaining annotation for the target image and estimation
its relevance; Section 7 presents the evaluation results of our
approach; and Section 8 contains discussion and conclusion.

2. Previous work on automatic image annotation

2.1. State-of-the-art
Automatic image annotation methods are usually divided

into two categories, namely probabilistic modeling-based meth-
ods and classification-based methods.

Probabilistic-based methods estimate correlations or joint
probabilities between images and annotation keywords over a
training image dataset (corpus).

Mori et al. [4] proposed the Co-occurrence model to cap-
ture correlations between images and keywords. The designed
model is considered the main pioneer and consists of two stages.
First, a grid segmentation algorithm is used to uniformly divide
each image into a set of sub-images (segments) and for each
the segment, a global descriptor is calculated. Second, for the
set of segments, the probability of each keyword is estimated
by using a vector quantization of the features of the segment.
The drawback of the model is a relatively low annotation per-
formance.

Duygulu et al. [5] proposed a model of object recognition as
a machine translation. A statistical translation model was used
to translate keywords of an image to visual terms (blobs). A
vocabulary of blobs was generated by clustering image regions
segmented using the N-cut algorithm. Mapping between blobs
and keywords was learned using the Expectation-Maximization
algorithm. One of the key problems of the model is high com-
putational complexity of the Expectation-Maximization algo-
rithm and therefore it is not suitable for large-scale datasets.

Inspired by the relevance language models for text retrieval
and cross-lingual retrieval, several relevance models were pro-
posed, such as Continuous Relevance Model [6] and Cross-
Media Relevance Model [7], Dual cross-media relevance model
[8], Multimodal Latent Binary Embedding [9]. Feng et al. pro-
posed the Multiple Bernoulli Relevance Model [10] that takes
into account image context, i.e., from training images it learns
that a tiger is more often associated with grass and sky and less
often with objects, such as buildings or car. In comparison with
the translation model, it seems to be more effective for image
annotation. However, its drawback is that only images consis-
tent with the training images can be annotated with keywords
in a limited vocabulary.

Metzler et al. [11] segment training images, connecting
them and their annotations in an inference network. The in-
ference network is based on Bayesian Network. It uses non-
parametric methods to estimate probabilities within the infer-
ence network.

Yavlinsky et. al. [12] proposed a framework based on
non-parametric density estimation and the technique of kernel
smoothing. Their results are comparable with the inference net-
work [11] and CRM [8].

The task of classification-based methods is to construct im-
age classifiers for annotation keywords that are trained to sep-
arate training images with the keywords from other keywords
with some level of accuracy. After a classifier is trained, it is
able to classify a target image into a class where the keywords
in the training dataset and retrieved outputs (keywords) are used
to annotate the target image. Typical representative classifiers
are Support Vector Machine (SVM) [13, 14, 15, 16, 17], Hidden
Markov models [18], Markov Random Fields [19], Supervised
multi-class labeling [20] or the Bayes Point Machine (BPM)
[21, 22].

The overall disadvantage of most classifiers is that they are
designed for small-scale image datasets, i.e. classification into
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a small numbers of classes (categories). It is still an open re-
search problem to construct large-scale learning classifiers and
therefore, these methods are usually used for annotation of spe-
cific objects, such as car brands or company logos.

For all presented methods, a high quality annotated training
image dataset (corpus) is crucial. There are some web-based
methods, which use crawled data (images, annotations) as the
training dataset such as AnnoSearch [23]. With a target photo,
an initial keyword (caption) is provided to conduct a text-based
search on a crawled web database. Then a content-based im-
age retrieval method is used to search visually similar images
and annotations are extracted from obtained descriptions. The
notable advantage is the availability of a large-scale web image
database. The main drawback is the use of only global features
for the similar image search. One related approach [24] modi-
fies the basic idea of AnnoSearch. Its main contribution is the
absence of an initial caption in the search process, but for the
entire image, only a global descriptor is still calculated.

The significant limitations of the presented “art” models are
their performance and scalability if a large image dataset (cor-
pus) is used; and/or use of only global or local features during
searching or image classification, respectively.

2.2. Image representation: global and local feature-based ap-
proaches

The commonly used feature representation is based on a
global feature set extracted from images. Global features cap-
ture the entire information of an image in a single feature vector
(e.g., color distribution, texture and shape). Their advantages
are relatively low computational complexity, compact dimen-
sions of the feature vector (descriptor) and the ability to capture
complex information. Therefore, they are often used in auto-
matic image annotation approaches.

Vailaya et al. [22] use Bayesian classifiers on the color and
edge direction histograms to classify vacation photographs into
a hierarchy of high-level classes. At first, images are classified
as indoor or outdoor. The outdoor images are then classified as
city or landscape. Finally, a subset of landscape images is fur-
ther classified into classes such as sunset, forest, and mountain.

Yavlinsky et al. [12] use non-parametric models of distri-
butions of image features. Authors present a framework for
automatic image annotation based on non-parametric density
estimation and employ global color and texture distributions.
They use the Earth Mover’s Distance (EMD) kernel which uses
global color information. Results are reported on subsets of two
photographic libraries, namely, the Corel Photo Archive and the
Getty Image Archive.

Makadia et al. [25], Babenko et al. [26] and Guillaumin
et al. [27] directly transfer annotations from training images
to test images with global image similarities using a weighted
nearest neighbor approach. For example, Makadia et al. [25]
extract global color and texture as features; calculate image
similarity as the average distance using these features; and the
keywords are obtained from the nearest neighbors with the least
distance.

Unlike global descriptors, local descriptors are calculated
over local features of an image, such as edges, corners, small

patches around points of interest. Repeatability is the most im-
portant quality for a local feature technique: even if the image
suffers geometric deformations, or if the scene is captured from
another viewpoint, the “near-duplicate” features must be found.
In other words, this means that the extracted patches, edges and
points must have suffered the same geometric transformation
than the image, in order to fall over the same objects.

The interest points are very popular local features due to
their invariance to illumination and geometric transformations.
They were initially proposed to solve problems in computer vi-
sion, such as object detection and recognition. In recent years,
they are increasingly used to solve the near-duplicate image
detection problem. However, the robustness of interest point-
based methods imposes a performance penalty. A huge number
of descriptors per image can be extracted, typically hundreds to
thousands, depending on the complexity of the image content.
Often in order to process a single query, hundreds, even thou-
sands of matches must be found and therefore, they are not usu-
ally used in content-based image retrieval approaches to search
images in large-scale image datasets.

Local feature-based approaches can be divided into block-
based and region-based approaches. The simplest way to ex-
tract block-based features is to roughly segment images into a
fixed number of sub-blocks. Visual features are then extracted
from these blocks.

Szummer and Picard [28] first segment each image into a
fixed number of blocks; color and texture features of each block
are extracted. Then, a k-NN (K-Nearest Neighbor) classifier is
designed to classify the color and texture features of each block
into indoor and outdoor categories individually. The final out-
put is based on the blocks of an image which have the highest
vote for one of the indoor and outdoor.

Serrano et al. [15] used SVMs to classify color and texture
features of 16 blocks per image into indoor and outdoor classes
individually. Zhang and Ma [16] proposed a blockfeature-based
multi-class SVM. For image annotation, each image is seg-
mented into five fixed-size blocks.

Yi and Tang [29] first divided the whole image into different
sizes of blocks and generate suitable visual words. Learning is
based on the Probabilistic Latent Semantic Analysis (PLSA)
by given a set of image blocks for each semantic concept as
training data. Finally, the classification of the images is carried
out by combining all the image blocks in every block size.

The second approach for local feature representation is to
divide the image into homogenous regions (objects) or edges
(boundaries) using segmentation algorithms.

Blei and Jordan [30] described three hierarchical probabilis-
tic mixture models for a database of annotated images, cul-
minating in Correspondence Latent Dirichlet Allocation (Corr-
LDA), a model that finds conditional relationships between la-
tent variable representations of sets of image regions and sets
of words, Authors demonstrated its use in automatic image an-
notation, automatic region annotation, and text-based image re-
trieval.

Yang et al. [31] used Multiple Instance Learning (MIL)
to learn the correspondence between image regions and words.
Tang and Lewis [32] proposed to realize automatic region-based
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image annotation through a training image feature space.
The local features are much more precise and discriminat-

ing than global features. When searching for specific objects,
this feature is welcome, but when searching complex categories
it can be an obstacle. Global feature-based approaches have low
computational cost for the feature extraction, they are more dis-
tinctive because they have the ability to capture complex and
contextual layout information, i.e., they are advantageous in
classifying simple scene categories. However, they do not cap-
ture spatial information and they are weak in characterizing the
internal content of image especially when the image has mul-
tiple complex objects. In local feature-based approaches, im-
ages are divided into regions or blocks and a set of features is
computed for each of the “segment”, which means that an im-
age is represented as a bag of features. A bag of features can
represent images at object level and provides spatial informa-
tion which makes them more precise and discriminating than
the global feature-based approaches. Local features may not
be accurate due to the usually unsupervised segmentation, and
the appearance features extracted from segments are less dis-
tinctive and even with perfect segment labels; their union does
not always match well. In addition, an image is represented
by many visual feature vectors (descriptors), resulting in high
computational cost.

2.3. Duplicate image search approaches used in automatic im-
age annotation

Automatic image annotation systems are usually based on
duplicate image search approaches. Duplicate images are close-
enough similar images to a given (target) image which are ex-
actly the same, or allow variances in scale, color, luminance
change, and a small number of pixels, or have large variances
in visual content (so-called near duplicate images).

The motivation is that visually close images (image regions)
retrieved from an image corpus possess certain semantic simi-
larity to a target image so that keywords (annotations) can be
propagated among them. In other words, for target (uncap-
tioned) images we can find their duplicates in well-annotated
and “unlimited” image corpus (visual vocabulary). Then, a tar-
get image can be annotated simply by propagating the words
(annotation) from its duplicates, i.e., we are able to extract some
words from the textual descriptions (annotations) of the image
search results, and we can use the most salient words to anno-
tate the target image.

In [33], authors use the K-Means algorithm for a near-duplicate
detection of images. A vocabulary is built using the algorithm
on local image descriptors. This is a costly step and image re-
trieval efficiency depends on a learning database. High recalls
are obtained if the vocabulary is learned on the searched cor-
pus. However, if the vocabulary is computed on a different set
of images, efficiency decreases. This is a crucial problem for
searching images in a corpus where images are regularly added
or removed (re-calculation is needed). In other words, to en-
sure the best retrieval results, it is needed to update regularly
the K-Means-based visual vocabulary, i.e., the main drawback
of K-Means-based algorithm is that it is not adapted for regu-
larly updated databases.

Lowe [34] used a non-exhaustive visiting algorithm (Best-
Bin-First) on a KD-Tree. To be more effective, randomized
KD-Tree forests were used in [35]. The problem is that there is
no guarantee that parameters (number and depth of trees) will
guarantee good performance if the number of images within the
database evolves.

3. Concept of the proposed method for automatic image an-
notation

In our approach, we combine global and local features to re-
trieve the best results. The combination is more suitable to rep-
resent complex scenes and events categories. Global and local
features have limitations describing images and none of them
appears to be powerful enough to represent the large amount
and variety of images. Global and local features provide dif-
ferent kinds of information. They have their own advantages
in classifying certain categories. However, they have several
complementary strengths and there are many situations where
the automatic image annotation should be judged based on the
combination of global and local features.

We use grid segmentation for extracting the global features
and efficient graph-based segmentation for extracting local fea-
tures. Compared to existing methods, we are able to ensure the
robustness (invariance to geometrical changes) and generaliza-
tion (description of homogeneous regions) needed by complex
queries. In approach method, in analogy with text documents,
the global features represent words extracted from paragraphs
of a document with the highest frequency of occurrence and
the local features represent keywords extracted from the entire
document.

We are able to identify objects directly in target images. Our
approach estimates the probability that the retrieved similar im-
ages (training images) contain the right words for a given target
image. Our estimation of annotation is based on human as-
pects of image perception. We focus on the way, how people
manually annotate images. We prioritize dominant objects and
estimate relative importance of words in the training annota-
tions. The estimated probability of words determines degree of
accuracy with which the words describe the visual content of
the target image.

Our approach (see Figure 1) consists of two main stages:

• training dataset pre-processing,

• processing of the target image (query).

Dataset pre-processing consists of image processing (A), lo-
cal and global features calculation (B) and their indexing and
clustering according to similarity (C).

Processing of the target image consists of image process-
ing (1), local and global features calculation (2), querying the
keypoint store and global features index (3). After queries are
executed, similar images (visual terms) to the target image are
retrieved as result sets (4). Subsequently, the result sets are re-
fined (5). A final stage of obtaining annotation is performed
and relevance of assigned words is estimated (6).
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Figure 1: Scheme of our approach for automatic image annotation.

In our work we are looking for a good compromise among
high precision, high recall and time needed to query an im-
age. We argue that practical annotation system should satisfy
all those aspects. Precision and recall are of course paramount,
however, efficiency is just as important. We place great empha-
sis on performance. Thus we have designed our approach to
use large-scale image training datasets. To cope with the huge
number of extracted features, we have designed disk-based lo-
cality sensitive hashing for indexing and clustering descriptors.
We have chosen locality sensitive hashing for several reasons.
First, it is not related to any learning corpus, it may be fast,
and retrieval performance does not evolve when modifying the
database while this is not true for tree-based methods. Using
a K-Means approach would require updating the visual vocab-
ulary regularly to avoid degraded performance (and to define
when to do these updates). Our approach is particularly suit-
able solution for applications where the image corpus evolves,
i.e., our solution provides a good compromise between preci-
sion and speed.

4. Local features

4.1. Local features calculation
For detection of interest points and calculation of descrip-

tors, we use Scale Invariant Feature Transform (SIFT) [34].
Despite the fact, that there are some alternative methods, such
as Speeded Up Robust Features (SURF) [36], we have chosen
SIFT, because the descriptor is considered to be one of the most
robust descriptor representations [37].

Extracted descriptors are invariant to image scaling, trans-
lation, partially invariant to illumination changes and affine for
3D projection. They are well adapted for characterizing small
details. Features are detected through local extremes in a Difference-
of-Gaussians function and described using histograms of gradi-
ents.

Each SIFT keypoint consists of a descriptor (128-dimensional
vector of floats), scale, orientation and location (Cartesian co-
ordinates x, y). Up to hundreds to thousands keypoints can be

extracted per image, which all together describe the image. The
total number of extracted keypoints depends on the complexity
of image content. For example, far fewer keypoints will be ex-
tracted from an image with a dominating clear sky than from an
image showing a colorful garden.

In the case that an image has greater horizontal/vertical res-
olution than 768 pixels, it is scaled down with maintaining as-
pect ratio. Otherwise, the image is without change.

The training/target image is divided into regions (visterms
visual terms, see Figure 2) using efficient graph-based image
segmentation algorithm [38]. The algorithm is based on defin-
ing a predicate for measuring the evidence for a boundary be-
tween two regions using a graph-based representation of the
image. Although, this algorithm makes greedy decisions, it
produces segmentations that satisfy global properties. The al-
gorithm runs in time nearly linear in the number of graph edges
and is also fast in practice. An important characteristic of the al-
gorithm is its ability to preserve detail in low-variability image
regions while ignoring detail in high-variability regions.

After creating visterms, each one is labelled by a unique
identifier (VisID). Subsequently, the SIFT keypoints are ex-
tracted from each visterm (see Figure 3) and indexed using
locality-sensitive hashing algorithm. The detected keypoints,
which are located on the edges in the visterms, are ignored
when indexing. For each image, up to 256 keypoints are ex-
tracted. We limit the number of keypoints as it has been noticed
in [39] that the recall almost does not decrease when passing
from 1,000 features per image to 256.

4.2. Indexing and clustering local features

For indexing extracted keypoints, we employ a disk-based
locality-sensitive hashing (LSH) approach which solves the prob-
lem of nearest-neighbor search in high dimensional spaces [40].
The basic idea of LSH is to hash descriptors so that similar de-
scriptors are mapped to the same buckets with high probability.

More formally, if for a query-descriptor vq, there exists an
indexed-descriptor vi such that dist(vi, vq) ≤ r, then an indexed-
descriptor v′i, such that dist(v′i , vq) ≤ (1 + ε)r, will be returned
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Figure 2: An illustration of segmentation results produced by efficient graph-
based image segmentation algorithm. The input image is divided into 10 re-
gions (visual terms).

Figure 3: An illustration of detected keypoints in the input image and in the
three examples of visual terms.

with high probability. If no indexed-descriptor lies within (1 +

ε)r of vq, then nothing will be returned with high probability.
We employ the LSH scheme [41] based on p-stable distribu-
tions as follows:

h(v)(a,b) =

⌊
a.v + b

w

⌋
(1)

Each hash function h(v)(a,b) : Rd → Z maps a d-dimensional
descriptor v onto the set of integers. The parameter a is a d-
dimensional vector with entries chosen from a p-stable distri-
bution (Gaussian distribution), b is a real number chosen uni-
formly from the range [0,w]. The optimal value for w de-
pends on the dataset and the query descriptor. In [41] it was
suggested that w = 4.0 provides good results, therefore we
chose this value. An LSH family F is a family of functions
h. Each function gi(i = 1, , L) is obtained by concatenating k
randomly chosen hash functions h ∈ F. Consequently, LSH
constructs L hash tables, each corresponding to a given func-
tion gi. Furthermore, the set of computed integers is mapped
to a single natural number (unsigned integer) for bucket identi-
fication gi(hi1 (v), ..., hik (v)) → N. The two parameters L and k
allow us to select a suitable compromise between accuracy and
running time. In our approach, we use L = 20 and k = 112,
based on performance with our experimental dataset.

For each extracted keypoint:

1. For each of the LSH table L, calculate a LSH hash (Buck-
etID) using a descriptor of the keypoint.

2. Create a keypoint identifier by concatenating VisID and
keypoint location (ImgID x y).

3. Insert the keypoint identifier into all L LSH tables accord-
ing to the calculated BucketIDs (see Table 1).

4. Insert keypoint data into a keypoint table (see Table 2).

BucketID VisID x y VisID x y ...
1 1 135 11 5 41 31 ...
2 2 56 201 5 185 39 ...

... ... ... ...

Table 1: Layout of one LSH table for indexing keypoints.

VisID ImgID Keypoint Location (x y) ...
Descr. Orient. Size . . .

1 1 135 11 ...
[A1, ..., A128] B C . . .

2 1 56 201 ...
[X1, ..., X128] Y Z . . .

... ... ... ...
... ... ... . . .

Table 2: Layout of a keypoint table.

The maximum size of each BucketID is 19 bytes. ImgID is
an identifier of the image, from which the keypoint was ex-
tracted. The keypoint location is given in Cartesian coordi-
nates (x, y). The maximum size of each keypoint identifier is
49 bytes. All keypoint data are grouped in the keypoint table
based on images, from which they were extracted. Before stor-
ing the descriptor, its elements are normalized into the interval
〈0, 255〉 of natural numbers.

After normalizing, the size of each descriptor is 128 bytes
(1024 bits). Information about images is stored in an image
dataset table (see Table 3).

ImgID File name Keywords
1 Image file 1 w1 w2 w3
2 Image file 2 w1 w2 w4 w5
... ... ...

Table 3: Layout of an image dataset table.

For storing the huge number of extracted local descriptors,
we need a data storage that allows us to store the descriptors
not only in depth (rows) but also in breadth (columns) in real
time. Classical relational databases are unable to provide that.
There are several solutions that can cope with the problem,
e.g. BigTable, Cassandra, HyperTable. We have chosen the
database management system Cassandra2. It is a highly scal-
able, open-source, distributed and structured key-value store
with efficient disk access (access complexity of O(1)). It is a hy-
brid between column-oriented DBMS and row-oriented store.
Cassandra was especially designed to handle very large amounts
of data. Using the Cassandra store and its cluster support, each
LSH table (Column Family) can be stored on a single machine.
The designed layout of the LSH table allows us even to split
one LSH table onto multiple machines.

4.3. Querying the LSH keypoint store
For a target image, we issue queries using a parallel set of

steps:

2Apache Cassandra: http://cassandra.apache.org/
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Target Visterm Keypoint Corresponding Keypoint Corresponding Keypoint ...x y VisID x y Similarity VisID x y Similarity VisID
33 28 1 41 31 0.92 13 135 11 0.94 21 ...
... ... ... ... ... ...∑ ∑
Target Visterm Keypoint Corresponding Keypoint Corresponding Keypoint ...x y VisID x y Similarity VisID x y Similarity VisID
... 2 ... ... ... ... ... ... ...
... ... ... ... ... ...∑ ∑

Table 4: An illustration of a result set obtained via keypoints queries for a target image.

1. Divide the target image into visterms (using efficient graph-
based segmentation algorithm) and extract target keypoints
from each one.

2. For each target keypoint:
(a) calculate the L bucket identifiers (BucketIDs) for its

descriptor using the corresponding hash functions
gi,

(b) select all keypoint identifiers which are in the buck-
ets “labelled” by the BucketIDs,

(c) associate the corresponding keypoint identifiers dis-
tinctly with the target keypoint.

3. Group the returned keypoint identifiers according to VisIDs.

To maximize performance and efficiency for queries, we store
only keypoint identifiers in each bucket. Therefore, for the tar-
get image, we can quickly estimate the best candidates from the
retrieved keypoint identifiers.

After the query is executed, similar visterms (candidates)
to the target visterms are retrieved as a result set. All target
visterms have assigned a list of corresponding keypoints to their
target keypoints. In other words, each keypoint of the target
visterm is also assigned its own list of corresponding keypoints
and they are grouped into visterms (see Table 4).

Because LSH returns approximate matches, we need to check
for keypoints outside a threshold distance. All target keypoints
are normalized into the interval 〈0, 255〉 of natural numbers and
for each corresponding keypoint, its descriptor is selected ac-
cording to VistermID (see Table 2). Subsequently, each target
keypoint is compared with the corresponding keypoint using
Tanimoto Distance:

T (x1, x2) =
x1

T x2

x1
T x1 + x2

T x2 − x1
T x2

, (2)

where x1, x2 are descriptors (vectors) of the keypoints, which
are compared with each other, and xT is the transposition of the
vectors. The resulting distance has a value of 1 for identical
vectors and 0 for extremely dissimilar vectors. After comput-
ing similarities, false matches are discarded by checking that
the distance is over the threshold (experimentally set to 0.9).
Subsequently, corresponding visterms to the target visterms are
sorted in descending order according to cardinalities of their
keypoint lists, in other words, the first is the corresponding vis-
term with the largest number of similar keypoints to the target
visterm.

After this stage, the final result set of similar visterms is
created (see Table 4) and prepared for retrieving annotation.

5. Global features

5.1. Global features calculation

Our calculated local descriptors do not contain important vi-
sual information regarding color because the SIFT method op-
erates on grayscale images. Therefore, to capture complex in-
formation, we employ the Color and Edge Directivity Descrip-
tor (CEDD) [42]. Global descriptors ensure generalization, for
example, they are able to describe homogeneous regions in the
image, such as clear sky and sand, which are regions that are
usually ignored during detection of interest points. This prob-
lem is well illustrated in Figure 3, where we can see relatively
homogenous regions in which no keypoints were detected.

The CEDD belongs to the group of Compact Composite
Descriptors [43], which combine information about color and
texture in a single histogram. It was designed with regard to di-
mension, but without compromising their discriminating abil-
ity. The descriptor is partially robust against image deforma-
tion, noise and smoothing. Its size is limited to 54 bytes per
image. The important attribute is the low computational com-
plexity needed for extraction.

For the calculation of global descriptors, an image is scaled
to the 3:2 (2:3) aspect ratio using bicubic interpolation. The
original image size is changed to one of the nearest resolutions:
768×512, 384×256, 192×128 and 96×64 pixels. Thus, the im-
age is scaled up (interpolated) if a difference between the near-
est resolution and the original image resolution is less than one
quarter of the nearest resolution. The image is not changed,
if its resolution is less than 96×64 pixels. For example, if the
original image resolution is 672×504 pixels, than the image is
interpolated to the resolution 768×512 pixels.

Subsequently, the image is divided into 8×8, 4×4 or 2×2
sub-images (segments) using the grid segmentation. The num-
ber of segments depends on image resolution. For example, an
image with resolution 384×256 pixels is divided to 4×4 seg-
ments. The image resolution less than or equal to 96×64 pix-
els is canonical. After image segmentation, a global descriptor
(CEDD) is calculated for each segment.
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5.2. Indexing and clustering global features

Indexing and clustering of global features is very similar to
the introduced indexing and clustering of local features. We
use the same approach based on LSH hashing. All calculated
global descriptors consist of 144 bins. Each bin contains a 3-bit
number (0-7). Consequently, all the bins take together 54 bytes
or 432 bits, respectively. The main difference is the LSH hash
function which is now based on bit sampling. The family F of
hash functions h is defined as follows:

F = h : 0, 1d → 0, 1|h(x) = xi, i = 1, ..., d, (3)

where d is the dimension (432) of a descriptor x and xi is the
i-th element of x. A random function h from F simply selects a
random bit from the descriptor.

The LSH parameters for indexing of global features are L =

10 and k = 320 (experimentally set). The maximum size of
each BucketID is 40 bytes. The global descriptor identifier (GD
identifier) is in the form ImageID SegmentIndex (see Table 5).
As with keypoints, descriptors are stored in separated table (see
Table 6). The maximum size of each GD identifier is 23 bytes.

BucketID ImgID SegmIndex ImgID SegmIndex ...
1 1 2 1 3 ...
2 1 11 1 10 ...
... ... ... ...

Table 5: A layout of one LSH table for global features.

ImgID SegmIndex Descriptor ...

1
2 [A1, ..., A144] ...
3 [B1, ..., B144] ...
... ... ...

... ... ... ...

Table 6: A layout of a table for storing global features.

5.3. Querying the LSH global features index

The goal of this stage is to retrieve segments similar to seg-
ments of the target image similarly to querying for keypoints.
For a target image:

1. Divide the target image into segments (using grid seg-
mentation) and calculate descriptors for each one.

2. For each segment (descriptor):
(a) calculate the L bucket identifiers (BucketIDs) using

the corresponding hash functions gi,
(b) select all GD identifiers stored in the buckets “la-

belled“ by the BucketIDs,
(c) associate the corresponding GD identifiers distinctly

with the target segment.
3. Group the returned GD identifiers according to ImgIDs.

After the query is executed, similar segments (candidates) to
the target segments are retrieved as a result set (see Table 7).

All target segments have assigned a list of corresponding (sim-
ilar) segments. The similar segments are grouped according to
ImgID.

Because LSH returns approximate matches, we need to check
for segments (their descriptors) outside a threshold distance.
For each similar segment, its descriptor is selected according
to ImgID (see Table 6). Subsequently, all target segments are
compared with the corresponding (similar) segments using Tan-
imoto Distance (see Eq. 2). After computing similarities, false
matches are discarded by checking that the distance is over the
threshold (experimentally set to 0.8). Subsequently, image can-
didates to the target image are sorted in descending order ac-
cording to cardinalities of their lists of the similar segments,
in other words, the first is the image candidate with the largest
number of similar segments to the target segments.

After sorting, the final result set of similar segments is cre-
ated (see Table 7) and prepared for retrieving annotation.

6. Obtaining annotation and relevance estimation

Our goal is to obtain annotation (tags) for extracted visterms
and segments of the target image and to estimate probability for
each tag. The estimated probability determines degree of accu-
racy with which the tag describes the visterm or segment. The
annotation is obtained using training dataset, which contains
well annotated images.

When people (users) manually annotate images, they are
often influenced by scales of objects. They tend to focus on
dominant and central objects and the sequence of the entered
tags (keywords) may be influenced by these factors. Therefore,
we prioritize annotations, where similar objects (visterms) to
the target object (visterm) are dominant. We estimate relative
importance of the tags based on their positions in the annota-
tion. The first words are more important, because they may
describe the dominant objects, i.e., the first tags often describe
the central objects.

The training dataset is processed using methods described
in previous sections. The obtaining annotation and estimation
its relevance is performed in two steps, separately for local fea-
tures (visterms) and global features (segments).

6.1. Obtaining annotation and estimation its relevance for vis-
terms

First, from the target image IT , target visterms TV j are ex-
tracted. After extracting keypoits from each TV j, similar vis-
terms S V jk to each one are searched for.

Let T = {TV j : j = 1, ..., |TV |} be the set of all the target
visterms of IT . Let TVK j be the set of all the keypoints of TV j.

Let S TV j = {S V jk : k = 1, ..., |S V j|} bet the set of all the
similar visterms to the target visterm TV j. Let S VK jk be the set
of all the similar keypoints of S V jk to TVK j.

Each similar visterm S V jk ∈ S TV j inherits annotation from
the original image, from which was extracted.

Let AS V jk be the set of all tags of the inherited annotation
of S V jk. The probability PAS V jk , that the inherited annotation

8



Target Image Image Candidates Image Candidates ...
Target Segments

(Indexes)
Similar segments

(Indexes):Similarity ImgID
Similar segments

(Indexes):Similarity ImgID ...

1 2:0.86; 3:0.82 1 1:0.83; 2:0.94 5 ...
2 11:0.92 10:0.8 ...
... ... ... ... ... ...

Table 7: A result set obtained via target segments queries.

AS V jk of the similar visterm S V jk describes the target visterm
TV j, is estimated as follows:

PAS V jk (TV j, S V jk) =

∑
i simT (TVK j,i, S VK jk,i)

|TVK j|
∗

RAS V

|AS V jk |
,(4)

where
∑

i simT (TVK j,i, S VK jk,i) is a sum of the calculated Tan-
imoto distances (similarities) between all the keypoints of the
target visterm TV j and the corresponding keypoints of the sim-
ilar visterm S V jk (see Table 4); |AS V jk | is the cardinality of
AS V jk; |TVK j| is the cardinality of TVK j; and RA ∈ 〈0, 1〉 rep-
resents the percentage of the rectangular area which is bounded
by the keypoints of the similar visterm S V jk to the total area of
the original image.

The calculated probability PAS V jk (TV j, S V jk) is assigned to
each tag tl jk ∈ AS V jk. Subsequently, for each tag tl jk , a factor of
its relative importance is calculated as follows:

IFtl jk =
1

log2(1 + tl jk
pos)

, (5)

where tl jk
pos is the position of the tag tl jk in the inherited an-

notation of S V jk. Finally, APS V jk = {tl jk [PAS V jk (TV j, S V jk) ∗
IFtl jk ] : l = 1, ..., |AS V jk|} is the set of all the original tags of
AS V jk with the calculated probability multiplied by the corre-
sponding factor of relative importance. The probability estima-
tions are calculated for all annotations of similar visterms to the
target visterm.

Let ApTV j =
⋃

kApS V jk be the set of the tags obtained
from all S V jk for TV j with the calculated probabilities. Let
ti[pti] ∈ APTV j, where ti is a tag (term) r. Then, XrTV j =

{pti : (ti = r)[pti ]} be the set of all the probabilities of the tag
r. When comparing (ti = r), the stemming technique (natural
language processing) is applied. For example, using a stem-
ming algorithm, the words {fishing, fished, fish} are reduced to
the root word, i.e., fish. The probability of the tag r is evaluated
as follows:

Pr(XrTV j) =

∑
p∈XrTV j

p

|XrTV j|
, (6)

where
∑

p∈XrTV j
p is a sum of the probabilities and |XrTV j| is

the cardinality of XrTV j. As we illustrate in Figure 4, for the
target visterm α, at least two similar visterms α1 and α2 were
found. The visterm α has 5 target keypoints.

The visterm α1 has 5 keypoints similar to the target key-
points. The probability PAα1(α, α1), that the annotation Aα1 =

{t1, t2, t3} of α1 describes α, equals 4.6
5 ∗

0.36
3 ≈ 0.11 (see Eq. 4).

This probability is assigned to all tags ti ∈ Aα1, i.e., AP alpha1 =

Figure 4: An illustration of the similar visterms α1 (similarity=4.6, area=0.36),
α2 (similarity=3.8, area=0.3) to the target visterm α and the similar visterms
β1 (similarity=4.75, area=0.39), β2 (similarity=3.7, area=0.28) to the target
visterm β. All the similar visterms have assigned tags.

{t1[0.11], t2[0.11], t3[0.11]}. Subsequently, for each ti, the fac-
tor of its relative importance is calculated (see Eq. 4), i.e.,
t1[1], t2[0.63] and t3[0.5]. The probability of ti is multiplied
by the corresponding factor of relative importance of ti, i.e.,
APα1∗ = {t1[0.11], t2[0.07], t3[0.06]}.

In a similar way, the visterm α2 has 4 keypoints similar
to the target keypoints. The probability PAα2(α, α2), that the
annotation Aα2 = {t2, t3, t4, t5} of α2 describes α equals 3.8

5 ∗
0.3
4 ≈ 0.06. This probability is assigned to all tags t j ∈ Aα2.

For each t j, the factor of its relative importance is calculated,
i.e., t2[1], t3[0.63], t4[0.5] and t5[0.43]. The probability of t j is
multiplied by the corresponding factor of relative importance of
t j, i.e., APα2∗ = {t2[0.06], t3[0.04], t4[0.03], t5[0.03]}.

Finally, APα = {t1[0.11], t2[0.07], t3[0.06], t2[0.06], t3[0.04],
t4[0.03], t5[0.03]} is the set of the tags obtained from α1 and α2
with the calculated probabilities; and Xt2α = {0.07, 0.06} is the
set of the probabilities of t2. The tag t2 with the highest prob-
ability is selected as the top-estimated tag which describes α
with the probability Pt2(Xt2α) = 0.07+0.06

2 ≈ 0.07 (see Eq. 6).

6.2. Obtaining annotation and estimation its relevance for seg-
ments

The target image IT is divided into segments TS j using the
grid segmentation and from each one a descriptor is calculated
(see Section 5.1). Let T = {TS j : j = 1, ..., |TS |} be the set
of all the target segments of IT . After calculating descriptors,
from each target segment TS j, similar segments S S j,l to each
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one are searched for. Let IS = {IS i : i = 1, ..., |IS |} be the set of
images from which the similar segments were extracted. Then,
the similar segments are grouped according to those images.

Let S G j,IS i = {S S j,IS i,k : k = 1, ..., |S S j,IS i| be the set of the
similar segments of IS i to TS j. The similar segments S G j,IS i

inherit annotation from the original image. Let AS G j,IS i be the
set of all tags of the inherited annotation of S G j,IS i. The prob-
ability PAS G j,IS i , that the inherited annotation AS G j,IS i of the
similar segments S G j,IS i describes the target segment TS j, is
estimated as follows:

PAS G j,IS i (TS j, S G j,IS i) =

∑
k simT (TS j, S S j,IS i,k)

CS
∗

1
AS G j,IS i

,(7)

where
∑

k simT (TS j, S S j,IS i,k) is a sum of calculated Tanimoto
distances (similarities) between the target segment TS j and the
similar segments S S j,IS i,k ∈ S G j,IS i (see Table 7); CS is a con-
stant of the number of segments in which the image IS was
divided; and |AS G j,IS i| is the cardinality of AS G j,IS i.

The calculated probability PAS G j,IS i (TS j, S G j,IS i) is assigned
to each tag tl j,IS i ∈ AS G j,IS i. Subsequently, for each tag tl j,IS i , a
factor of its relative importance is calculated (see Eq. 5). Fi-
nally, APS G j,IS i = {tl j,IS i [PAS G j,IS i (TS j, S G j,IS i) ∗ IFtl j,IS i ] : l =

1, ..., |AS G j,IS i|} is the set of all the original tags of AS G j,IS i

with the calculated probability multiplied by the corresponding
factor of relative importance. The probability estimations are
calculated for all annotations of AS G j,IS to the target segment.

Let APTS j =
⋃

IS i APS G j,IS i be the set of the tags obtained
from all S G j,IS i for TS j with the calculated probabilities.Let
ti[pti ] ∈ APTS j, where ti is a tag (term) r. Then, YrTS j = {pti :
(ti = r)[pti ]} be the set of all the probabilities of the tag r. When
comparing (ti = r), the stemming technique (natural language
processing) is applied. The probability of the tag r is evaluated
as follows:

Pr(YrTS j) =

∑
p∈YrTS j

p

|YrTS j|
, (8)

where
∑

p∈YrTS j
p is a sum of the probabilities and |YrTS j|

is the cardinality of YrTS j. As we illustrate in Figure 5, for the
target segment T [2, 1], at least four similar segments {J1[2, 1];
J1[2, 2]; J2[2, 1]; J2[2, 2]}, were found. The set of the similar
segments of J1 to T is S GT,J1 = {J1[2, 1]; J1[2, 2]} and the
probability PAS GT,J1 (T, S GT,J1), that the annotation AS GT,J1 =

{t6, t7, t8} of J1 describes T , equals (0.86+0.91)
4 ∗ 1

3 = 0.1475 (see
Eq. 7). This probability is assigned to all tags ti ∈ AS GT,J1.
For each ti, the factor of its relative importance is calculated
(see Eq. 5), i.e., t6[1], t7[0.63] and t8[0.5]. The probability of
ti is multiplied by the factor of relative importance of ti, i.e.,
APS GT,J1

∗ = {t6[0.15],t7[0.09],t8[0.08]}.
Subsequently, the set of the similar segments of J2 to T is

S GT,J2 ={J2[2, 1];J2[2, 2]} and the probability PAS GT,J2 (T, S GT,J2),
that the annotation AS GT,J2={t7, t8} of J2 describes T , equals
(0.82+0.84)

4 ∗ 1
2 ≈ 0.21. This probability is assigned to all tags

t j ∈ AS GT,J1. For each t j, the factor of its relative impor-
tance is calculated, i.e., t7[1] and t8[0.63]. The probability of
t j is multiplied by the factor of relative importance of t j, i.e.,
APS GT,J2

∗ ={t7[0.21],t8[0.13]}.

Figure 5: An illustration of the similar segments I1[1, 1] (similarity=0.93),
I1[1, 2] (similarity=0.81), I2[1, 2] (similarity=0.83) to the target segment
T [1, 1]; the similar segment I2[1, 1] (similarity=0.91) to the target seg-
ment T [1, 2]; and the similar segments J1[2, 1] (similarity=0.86), J1[2, 2]
(similarity=0.91), J2[2, 1] (similarity=0.82), J2[2, 2] (similarity=0.84) to the
target segments T [2, 1], T [2, 2]. All the similar segments have assigned tags.

Finally, APT={t6[0.15],t7[0.09],t8[0.08],t7[0.21],t8[0.13]} is
the set of the tags obtained from J1 and J2 with the calculated
probabilities; and Yt7T ={0.09,0.21} is the set of the probabili-
ties of t7. The tag (t7) with the highest probability is selected
as the top-estimated tag which describe T with the probability
Pt7(Yt7T ) =

(0.09+0.21)
2 ≈ 0.15 (see Eq. 8).

6.3. Assigning annotation to the whole target image
For the target image, we obtain two sets of words (tags)

with estimated probabilities, i.e., to each word a probability is
assigned with which the word describes a part of the image (or
the whole image). We sum the probabilities of the same words
and we calculate its arithmetic mean. Subsequently we need to
select the top n words. There is a problem, how to determine the
number of the selected words, i.e., how to establish a threshold.

The number of selected words can depend on level of ho-
mogeneity of the target image. In other words, the number of
selected words should reflect the number of extracted visterms
from the target image. However, there are some problems, such
as very heterogeneous images and several words may describe
the same visterm (e.g. words describing properties such as
color, shape).

Consider the case, where an image with colorful flower is
automatically divided into many regions (visterms) due to its
complexity of visual structure. If the automatic annotation con-
tains fewer words than the number of the extracted visterms,
we could select all of the words and consider that the anno-
tation is not complete for some visterms (objects of interest).
However, some words of the annotation may be incorrectly pre-
dicted. If the annotation contains more words than the number
of visterms, we could automatically select the number of words
equal to the number of visterms. However, several visterms
may represent the same object due to preservation of high de-
tails during the image segmentation; on the contrary, the small
number of visterms may be due to ignoring high details during
the image segmentation; some words may describe properties;
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and some words may be incorrectly predicted. Therefore, even
if the words are sorted according to probabilities, there may
occur a situation that some correct words will be excluded, or
vice-versa, incorrect words will be selected.

Therefore, for each word wΛ
i of the obtained annotation Λ,

we compute so-called co-occurrence rank ρwi
Λ which reflects

whether the word wΛ
i occurs together with other words of Λ in

training annotations and how often. The training annotations
consist of word-lists, where each one is associated with a train-
ing image (for more information about the training dataset, see
the next section Evaluation). Based on the word-lists, we create
so-called term-by-term (co-occurrence) matrix.

First, a vocabulary V is created. It consists of distinct words
wi selected from the word-lists. Second, a co-occurrence matrix
C is constructed, where rows and columns correspond to the
words wi of the vocabulary V , i.e., the matrix is squared (m×m).
Finally, for each wi ∈ V , words w j occurred with wi in the word-
lists are searched for.

Let Cm×m be an m-by-m matrix, where 1 ≤ i, j ≤ |V | and |V |
is the cardinality of V , then each element [ai, j] of Cm×m repre-
sents the number of occurrences of the word i with the word j
in the word-lists. Once the co-occurrence matrix is constructed,
for each wΛ

i ∈ Λ, ρwi
Λ is calculated as follows:

ρwi
Λ =

|Λ|

|Wi,J |
∗
∑
j∈Wi,J

ai, j, (9)

where |Λ| is the number of the words of Λ, Wi,J is the set of all
the words wC

j such, that [ai, j] j∈Λ , 0, |Wi,J | is the cardinality of
Wi,J , and ai, j is the number of the occurrence of wΛ

i with wC
j .

Subsequently, all the calculated ρwi
Λ are normalized into the

interval 〈0, 1〉. The final probability of wΛ
i is calculated as the

product of its original probability and the co-occurrence rank
ρwi

Λ . After calculating the final probabilities, all the words of Λ

with the zero probability are discarded.

7. Evaluation

The annotation problem can be understood as the problem
of retrieving an image from the test set using words from the test
vocabulary. To evaluate annotation performance, we retrieve
images using the test keywords. Subsequently, we compare the
automatic obtained keywords with the ground-truth (manual)
annotations provided along with the test images.

To evaluate the annotation performance, we use the preci-
sion and recall metrics. Let A be the number of images auto-
matically annotated with a given word, B the number of images
correctly annotated with that word. C is the number of images
having that word in the manual annotation. Then precision is
defined as follows:

P =
B
A
, (10)

and recall is defined as follows:

R =
B
C

(11)

We report mean precision (P) and mean recall (R), as well as
the number of total keywords recalled (N+), the number of key-
words with non-zero recall value).

We argue that practical annotation system that address the
applications discussed above should satisfy the following re-
quirements:

• High recall. All images in the image database that con-
tain subimages (visterms) that are present in the query
image should be found, even if the visterms only occupy
a small portion of the query image.

• High precision. If the image database and the query im-
age do not have visterms in common, then they should
not be matched.

• Efficiency. The time needed to query an image should be
small, enabling the system to scale to large databases.

Our aim is to evaluate how well our approach satisfies these
requirements compared with the state-of-the-art approaches.

Our experiments use a 2.8GHz Intel R© Core
TM

i7 machine
with 12GB of memory running Windows 7. The presented
methods are implemented in C++.

7.1. Datasets

7.1.1. Corel5K dataset
The Corel5K corpus [5] consists of 5, 000 images from 50

Corel Stock Photo CDs and each CD includes 100 images with
the same theme. It includes a variety of subjects, ranging from
urban to nature scenes and from artificial objects to animals.
It is divided into two sets: a training set of 4, 500 images and
a test set of 500 images. Each image is associated with 1 −
5 keywords (an average of 3.5 keywords per image). Overall
there are 260 keywords that appear in both the train and the
test set. All images have the resolution of 384 × 256 pixels
(landscape) or 256 × 384 pixels (portrait).

7.1.2. Corel5K-Visterms dataset
As we have mentioned in Section 1, some approaches to

obtain an annotation to the target image are based on searching
correlations between the target image and labelled templates
(training visterms). We have constructed a dataset of visterms
from the original Corel5K dataset3. Our aim is to compare the
annotation performance of our approach (ANNOR) on the orig-
inal Corel5K dataset with ANNOR’s annotation performance
on the Corel5k-Visterms dataset.

For the construction of Corel5k-Visterms dataset we im-
plemented a web application called ANNOR (ANNOtation in-
stRument4, see Figure 6). It allows manual creating labelled
visterms (from the training Corel5K images). For our experi-
ment, we asked 30 users to create the labelled visterms from the
original training Corel5K set using ANNOR. For a user, there
was randomly selected an image (1) with keywords (2), which

3Corel5K-Visterms dataset: http://annor.laude.sk/dataset
4ANNOR: http://annor.laude.sk
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Figure 6: The user interface of ANNOR for creating labelled visterms. (1) a selected image, (2) descriptive words associated with the image, (3) tools for creating
bounding boxes for the keywords.

Figure 7: Examples of labelled visterms obtained using
ANNOR(ANNOtationinstRument).

describe its visual content. Using tools (3) such as irregular
polygon, rectangle, move, remove, copy, paste, the user created
bounding boxes (polygons) for each word separately. For ex-
ample, for the word water, bounding polygons around all areas
with the water were created. For each word, the tool provides
a new instance of an active drawing area. Thus, for each word,
the user has available a clear area to create the polygons. When
switching between keywords, the created content is preserved.
After saving, labelled visterms are obtained using created poly-
gons (see Figure 6). This resulted in a dictionary containing
19, 739 polygons (visterms).

7.1.3. IAPR-TC12 dataset
The IAPR-TC12 dataset5 is a collection of 19,805 images of

natural scenes that include different sports, landscapes, people,
cities, animals and so on. The images in IAPR-TC12 are asso-
ciated with free-typing text captions. It was initially published
for cross-lingual retrieval. We use the same resulting annotation
as in [25]. It is divided into two sets: a training set of 17, 825
images and a test set of 1, 980 images. Overall there are 291

5IAPR-TC12 dataset: http://imageclef.org/photodata

keywords (an average of 4.7 keywords per image) that appear
in both the train and the test set.

7.1.4. ESP dataset
The ESP dataset6 consists of a set of 21,844 images col-

lected in ESP game7. ESP game is an online game where two
players assign labels to the same image without communicat-
ing. They gain points by agreeing on labels describing the tar-
get image. As an image is shown to more teams, it has a list
of so called taboo words, that is, words that cannot be entered
as possible labels. In other words, once an image has been la-
belled enough times with the same word, that word becomes
taboo. This dataset contains a wide variety of images such as
logos, drawings, and personal photos. It is divided into two sets:
a training set of 19, 659 images and a test set of 2, 185 images.
Overall there are 269 keywords that appear in both the train and
the test set. Each image is associated with up to 15 keywords
(an average of 4.6 keywords per image).

7.2. Annotation performance

The results of experiments on the Corel5k dataset are sum-
marized in Table 8. The table provides an overview of anno-
tation performance in terms of P, R, and N+ between our ap-
proach (ANNOR) and a selection of work. The table shows
the published results of the current state-of-the-art methods that
approach the annotation problem from different perspectives,
using different image representations: CRM [6], InfNet [11],
NPDE [12], MBRM [10], SML [20], JEC [25], and TagProb

6ESP dataset: http://hunch.net/ jl/
7ESP game: http://www.cs.cmu.edu/ biglou/
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Test image

Automatic
annotation

iguana (1.00)
marine (0.94)
lizard (0.91)
rocks (0.82)
water (0.61)

kauai (1.00)
sand (0.94)
tree (0.91)

people (0.80)
hawaii (0.72)

formula (1.00)
tracks (1.00)
cars (1.00)
wall (0.89)
arch (0.77)

foals (1.0)
horses (0.94)
field (0.91)

meadow (0.82)
mare (0.81)

Human
annotation

iguana, lizard,
marine, rocks kauai, people cars, formula,

tracks, wall
foals, horses, field,

fence, mare

Table 10: Examples of automatic annotation (the best five keywords with probabilities) compared with the human annotation.

Corel5K-Original Corel5K-Visterms
Method P R N+ P R N+

CRM [6] 16 19 107

-

IfNet [11] 17 24 112
NPDE [12] 18 21 114
MBRM [10] 24 25 122
SML [20] 23 29 137
JEC [25] 27 32 139
TagProp [27] 33 42 160
ANNOR-L 19 27 68 23 30 74
ANNOR-G 22 29 129 27 33 143
ANNOR-LG 31 38 154 37 48 172

Table 8: An overview of annotation performance in terms of P, R, and N+

between our approach (ANNOR) and a selection of earlier work on the Corel5K
dataset. ANNOR-L is our approach using local features only. ANNOR-G is
our approach using global features only. ANNOR-LG is our approach using
both local and global features. We also show results concerning the annotation
performance of ANNOR on the Corel5K-Visterms dataset.

IAPR-TC12 ESP
Method P R N+ P R N+

MBRM [10] 24 23 223 18 19 209
JEC [25] 28 29 250 22 25 224
TagProp [27] 46 35 266 39 27 239
ANNOR-L 22 19 98 19 21 86
ANNOR-G 38 31 242 36 29 231
ANNOR-LG 48 39 272 39 28 241

Table 9: An overview of annotation performance in terms of P, R, and N+

between our approach (ANNOR) and a selection of earlier work on the IAPR-
TC12 and ESP datasets. ANNOR-L is our approach using local features only.
ANNOR-G is our approach using global features only. ANNOR-LG is our
approach using both local and global features.

[27]. ANNOR-L is our approach using local features only.
ANNOR-G is our approach using global features only. ANNOR-
LG is our approach using both local and global features. Table
9 shows the results of experiments on the IAPR-TC12 and ESP
datasets. We compare ANNOR with MBRM [10], JEC [25],
and TagProp [27]. The results of experiments on the Corel5k
dataset are summarized in Table 8. The table provides an overview
of annotation performance in terms of P, R, and N+ between our

approach (ANNOR) and a selection of work. The table shows
the published results of the current state-of-the-art methods that
approach the annotation problem from different perspectives,
using different image representations: CRM [6], InfNet [11],
NPDE [12], MBRM [10], SML [20], JEC [25], and TagProb
[27]. ANNOR-L is our approach using local features only.
ANNOR-G is our approach using global features only. ANNOR-
LG is our approach using both local and global features. Table
9 shows the results of experiments on the IAPR-TC12 and ESP
datasets. We compare ANNOR with MBRM [10], JEC [25],
and TagProp [27].

As we can see ANNOR-LG outperforms the state-of-the-
art methods on both IAPR-TC12 and ESP datasets. In the case
of Corel5K-Original dataset, only TagProp slightly outperforms
ANNOR-LG.

We can also see that our combination of the local and global
features is very important (ANNOR-LG outperforms both ANNOR-
L and ANNOR-G). As we have mentioned in Section 1 local
features are suitable for search of specific objects while global
features capture complex information. It ensures robustness
and generalization, i.e., based on the combination ANNOR-LG
is resistant to common transforms and it is able to describe rel-
atively homogeneous regions. The result is that the annotation
performance is higher.

The bottom rows of Table 9 contain the comparison of the
ANNOR’s annotation performance on the Corel5K-Original dataset
with the ANNOR’s annotation performance on the Corel5K-
Visterms dataset. As we can see ANNOR’s performance is bet-
ter on the Corel5K-Visterms dataset. It has two main reasons.
First, each manually created visterm has assigned clear label,
therefore, the process of obtaining annotation is more accurate.
Second, comparing similar visterms based on its visual content
is also more accurate due to the “consistency” of the content.

In Table 10, there are shown some illustrative examples of
the automatic annotation obtained by our approach compared
with the human (manual) annotation (Corel5K corpus). As
we can see, in the images 1 and 4, there are some keywords
wrongly predicted. In the image 1, there is the keyword wa-
ter wrongly predicted and in the image 4, there is the keyword
meadow wrongly predicted. However, in both cases the key-
words are not completely wrong, because their meaning is rel-
atively close to their visual content. As we have mentioned in
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Corel5K-Original Corel5K-Visterms IAPR-TC12 ESP
#test set 500 500 1,980 2,185

#training set 4500 4500 17,825 19,659
#local features 903,056 990,250 3,814,550 4,855,773

#global features 72,002 19,805 285,200 314,544
image/annotation (ms) 1,750 1,140 2,950 3,430

Table 11: Statistics of the image datasets: #test set - a number of images in the test set, #training set - a number of images in the training set, #local features - a
number of local features extracted from the training images, #global features - a number of global features extracted from training images, image/annotation (ms) -
average time needed to obtain an annotation for the target image from the test set.

Figure 8: Comparison of our method and K-Means algorithm for range-
neighbors search on the IAPR-TC12 dataset.

Section 1, the manual annotation task is subjective and there-
fore our aim is to propose a method that can find the best deal
between annotating “nothing” and “everything”. In Table 11
we summarize statistics of the image datasets.

7.3. Evaluation as a nearest neighbors method

To evaluate our LSH-based method we can consider the
method as a filtering algorithm. In general, for a given target
feature, we retrieve a subset of features that are potential neigh-
bors, i.e., for a feature q, we retrieve all the database features xi

such that d(q, xi) < R (see Sections 4.3 and 5.3).
We evaluate our approach with respect to these two criteria:

(1) the size of the retrieved subset of features and (2) the num-
ber of true neighbors found in this subset. The first criterion we
evaluate as a ratio of the size of the retrieved subset and the total
number of features in the database (Ratio Filter). For example,
a ratio Filter of 0.01 means that only 1% of all features in the
database is returned and thus the corresponding method can be
at best 100 times faster than a linear search. The second crite-
rion is measured as a classical recall. We compare our method
with K-Means algorithm on the IAPR-TC12 dataset. Results
are shown in Figure 8. We can see that our method outperforms
K-Means.

7.4. Evaluation as an image retrieval method

The approach we use to evaluate our method is to retrieve
images that are synthetic deformations of a set of images. The
goal is to detect near-duplicates, i.e., if a given (target) image is
a modification of a database image. We have established a list

Original image Changed intensity

Gaussian blur Cropped image

Table 12: Examples of transformations.

of transformations that our image retrieval mechanism should
handle. The 11 transformations we use are changing contrast,
colorizing, cropping, rotating, scaling, applying emboss filter,
sharpness filter, median filter, and Gaussian blur, changing satu-
ration, and intensity (see examples in Table 12). Our test frame-
work is to pick 100 random images from the image datasets
Corel5K and IAPR-TC12 (individually) and to apply the defor-
mations to these images. The 100 original images will be used
as queries. For each one, the method should only return the
11 deformations of the query image. The other images in the
image datasets are so called “perturbators”. The aim is to eval-
uate the robustness of our approach (invariance to geometrical
changes). We compare our method with K-Means algorithm
which uses kmeans clustering of the extracted features, learned
on the image datasets.

The results are shown in Table 13 (Corel5K) and Table 14
(IAPR-TC12) respectively. The conclusions of this experiment
are as follows. Our method outperforms K-means in recall
and time. As we have mentioned, the main drawback of K-
Means-based approach is that it is not adapted for regularly up-
dated databases. If the database is created incrementally, one
has to update the visterms frequently to guarantee optimal per-
formance. This is not required by our approach. However,
KMeans-based approaches are much more memory effective.
Our approach requires several times more memory than the K-
Means method. For example, ANNOR requires approximately
110 MiB for 1,000 images while the K-Means-based method
requires approximately 9 MiB for 1,000 images. The reason is
that features are indexed multiple times by LSH (it depends on
the L parameter).
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Method Recall Time (ms)
ANNOR-LG k=320,l=10 0.939 623

K-Means
k = 4000 0.895 2180
k = 8000 0.914 2485
k = 16000 0.935 2803

Table 13: Image retrieval: ANNOR-LG compared with K-Means on the
Corel5K dataset.

Method Recall Time (ms)
ANNOR-LG k=320,l=10 0.952 1433

K-Means
k = 4000 0.875 7420
k = 8000 0.884 8150
k = 16000 0.922 8930

Table 14: Image retrieval: ANNOR-LG compared with K-Means on the IAPR-
TC12 dataset.

8. Discussion and conclusion

In our approach, we combine global and local features. The
local features are very successful for problems involving re-
trieval of target objects (objects of interest). They exhibit very
good robustness to moderate scaling, brightness changes and
“in-plane” rotation. The global features capture the entire in-
formation of an image (e.g. texture, color). Both have advan-
tages and drawbacks, the local features are much more precise
than global features and their discrimination ability is relatively
high. When looking for a target object, this ability is welcome,
however, when looking for a general category (e.g. find all yel-
low Ferrari), it may cause restrictions. A method for automatic
image annotation should be able to ensure both the require-
ments, namely, robustness and generalization and it was one
of our goals. Because we use a combination of local and global
features, our approach is resistant to common transforms. Tra-
ditional approaches based on global features cannot cope with.

A potential drawback of using local features is that we need
to store and index a huge number of extracted features and there
is a need to query hundreds to thousands of features which
could be slow. This “side-effect” often causes performance is-
sues (e.g. approaches based on k Nearest Neighbors search)
and it limits using large-scale image (training) datasets. For this
problem, we employed efficient solution through locality sensi-
tive hashing which is based on the idea that similar objects are
stored to the same bucket. We have also adopted the distributed
database management system Cassandra that was specially de-
signed for storing the huge number of data. For efficient access
to extracted data, we have designed data layouts for using with
LSH. On the one hand, our solution provides a good compro-
mise between precision and speed; it allows random access to
stored data (in sub-linear time); and index is generated dynam-
ically. On the other hand, KMeans-based algorithms (either flat
or hierarchical) much more memory effective compared with
LSH.

The important part of automatic image annotation is obtain-
ing an annotation for the target image and estimation probabil-
ities of particular words in the annotation. In this process, we
have focused on the way, how people manually annotate im-

ages. When people form an annotation, they may be influenced
by scales of objects, they focus primarily on dominant, signif-
icant (glaring) and central objects. The sequence of the words
is influenced by these factors. Therefore, we prioritize anno-
tations of training images, where similar objects (visterms) to
the target object (visterm) are dominant. It is more likely that
a word of an annotation describes the target object. For the
words, we estimate their relative importance based on their po-
sitions in the annotation, i.e., their importance decreases expo-
nentially. The first words are more important, because they may
describe the dominant objects. Finally, for the obtained words,
we estimate, whether these words occur together in the training
annotations and how often. Based on this, we discard “isolated”
(incorrectly predicted) words. The result is, that each word of
the obtained annotation has assigned a probability of its rele-
vance and they are sorted based on their relative importance.

As we have mentioned, combining of local and global fea-
tures is able to ensure robustness and generalization needed by
complex queries. However, we observed in the evaluation that
the process of obtaining annotations using local features pre-
dicts often noisy results. Even if the used SIFT method is very
successful for recognizing rigid (specific) objects, its perfor-
mance on more general object classes is not satisfactory. For
example, the word sky obtained the high precision but the recall
is very low. On the contrary, words such as ocean, desert have
the high recall but the low precision. It means that, these words
can be easily predict but with the very low accuracy.

Thus, in a more general object database, extraction of global
information is more important than the local information, be-
cause the global features capture more important information
of images (e.g. color, texture) than the local features.

In the process of obtaining annotations using global fea-
tures, we observed that some words such as sun, sunset, sky
have high precision and high recall. It means that the words can
be easily predicted with a high probability that it is a true an-
notation. Such visterms are more easily recognizable because
of their relative homogeneity (characteristic color and texture)
than other visterms (flowers, tiger).

The correct recognition of invariant objects depends on a
quality of the used training dataset. In a more specific object
database, the combination of the local and global features can
better show its potential.
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