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Abstract

Over the past years, many representations for time series were proposed
with the main purpose of dimensionality reduction and as a support for var-
ious algorithms in the domain of time series data processing. However, most
of the transformation algorithms are not directly applicable on streams of
data but only on static collections of the data as they are iterative in their
nature. In this work we propose a symbolic representation of time series
along with a method for transformation of time series data into the proposed
representation. As one of the basic requirements for applicable representa-
tion is the distance measure which would accurately reflect the true shape of
the data, we propose a distance measure operating on the proposed represen-
tation and lower bounding the Euclidean distance on the original data. We
evaluate properties of the proposed representation and the distance measure
on the UCR collection of datasets. As we focus on stream data processing,
we evaluate the properties and limitations of the proposed representation on
very long time series from the domain of electricity consumption monitoring,
simulating the processing of potentially unbound data stream.
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Time Series Representation, Symbolic Representation, Stream Processing,
Lower Bound

This paper is based on J. Sevcech and M. Bielikova, Symbolic Time Series Repre-
sentation for Stream Data Processing published in the proceedings of the the 1st IEEE
International Workshop on Real Time Data Stream Analytics (part of the BigDataSE-15
conference) [1].
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1. Introduction

Many different time series representations were proposed over the past
years [2]. However, only small portion of them is applicable on stream data
processing as most of the transformation procedures are iterative in their
nature or they require some sort of statistical information about the whole
dataset.

Our primary motivation is to propose a time series representation ap-
plicable in stream data processing, in domains where very long (potentially
infinite) time series are produced and where repeating shapes are occurring
in the course of the time series. The primary application we had in mind
when we proposed the representation is forecasting and anomaly detection
in data such as counting metrics running on production or consumption data
streams, where strong seasonal patterns are occurring. Our prime require-
ment for such a time series representation is incremental procedure of the
data transformation and symbolic representation of reoccurring patterns.

In our work, we are most interested in symbolic representations of equally
spaced time series as they enable the application of methods that are not di-
rectly applicable on real-valued data [3] such as Markov models, suffix trees
or many algorithms from the domain of text processing. An example of
such representation is SAX [3] – one of the most widely used time series
representations. Similarly to the majority of other representations, how-
ever, transformation into the SAX representation is iterative and cannot be
directly applicable to stream data processing as it requires statistical infor-
mation about the whole transformed dataset. Examples of other symbolic
time series representation can be found in [3, 4, 5, 6], but they all share
the same limitation, stream data cannot be directly transformed into these
representations.

The representation we propose is based on the symbolic time series rep-
resentation used in [4] for rule discovery in time series. Clusters of similar
subsequences are used as symbols in the transformation of time series into
sequences of symbols. This work was influencing many researchers for several
years, but they found its two major limitations:

• It is iterative due to the K-means algorithm used for cluster formation.
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• It has been proved that the transformation process produces meaning-
less clusters that do not reliably reflect the data they were formed from
[7].

In our work, we address both of these limitations. To be able to trans-
form potentially infinite data streams into the proposed representation, we
use an incremental greedy clustering algorithm creating new clusters every
time new sequence, sufficiently distant from all other clusters, occurs. In
previous works multiple authors used various techniques to form meaningful
subsequence clusters. Most of these methods limit the number of sequences
used in the clustering process by using motifs [8] or perceptually important
points [9]. All of these works used the K-means algorithm in cluster forma-
tion. We hypothesize, that not by limiting the number of formed clusters,
but by changing the clustering algorithm, we will be able to form meaningful
clusters.

According to the authors of another study [3] many symbolic time series
representations were proposed, but the distance measures on these represen-
tations show little correlation with the distance measures on original data.
To show our representation is not the case, we propose the distance measure
SymD that returns the minimum distance between time series in the repre-
sentation and we show it lower bounds the Euclidean distance on the original
time series. To evaluate the applicability of time series representation we use
the tightness of lower bounds (TLB) [10] as it is the current consensus in the
literature [11].

As the majority of existing time series representations focus on processing
of static collections of data and we propose our representation to be applicable
in stream data processing domain, we evaluate the properties of the proposed
representation on static collections of data as well as on very long time series
substituting the potentially infinite data streams.

The rest of the paper is organized as follows. Section 2 introduces the
symbolic time series representation. Section 3 defines the distance measure
on the proposed representation and provides the proof it lower bounds the
Euclidean distance on the original data. An experimental evaluation of prop-
erties of the proposed representation and distance measure on the number
of datasets is presented in section 4. We conclude by summarizing obtained
results and by hints on future work.
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2. The Symbolic Representation

As a base for our time series representation we use an assumption pre-
sented in [12]. The authors state that frequent patterns extracted from time
series data are more stable than the time series itself. We use this assumption
to form the main idea of our representation as to represent time series data
as a sequence of reoccurring patterns. We search for reoccurring similar sub-
sequences in the course of the whole data stream by clustering subsequences.
We transform them into sequences of symbols where every subsequence clus-
ter identifier is transformed into a symbol similarly to the representation
proposed in [4]. For the purpose of our work, we will refer the proposed
representation as to Incremental Subsequence Clustering (ISC ).

The transformation of stream data to the ISC representation can be
divided into three steps:

1. Split incoming data into overlapping subsequences using running win-
dow.

2. Cluster z-normalized subsequences by their similarity.

3. Use cluster identifiers as symbols, subsequences are transformed to. In
connection with normalization coefficients, these symbols approximate
the original data.

As the processed time series may contain some levels of noise and trend,
the preprocessing step may be introduced into the transformation. To remove
the noise present in the formed subsequences and to highlight important
parts of the data, some level of smoothing can be applied before the symbol
formation as the introduction of smoothing before the symbols are created
can produce more stable alphabet of symbols. To find the correct level of
smoothing, one could use a framework such as the one presented in [13],
based on Minimum Description Length principle [14]. In the evaluation of
the proposed representation presented in this paper however, we did not use
any smoothing as we did not want to introduce any error by omitting minor
changes in the shape of the processed time series.

The ISC representation is inspired by the representation presented in [4],
with two important differences:

• we use overlapping symbols and

• we don’t use K-means algorithm in symbol formation.
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The redundancy contained in overlapping symbols could be used to im-
prove the reconstruction accuracy when transforming data back to their raw
form, and to some extent it is used in the similarity measure on the data
transformed into ISC (presented in later parts of the paper). The main mo-
tivation to introduce the overlapping symbols however, is to support one of
intended applications of the time series representation - short term time se-
ries forecasting. If time series is transformed into a symbolic representation
with overlapping symbols incrementally, in every moment at least the length
of the overlapping part of two symbols could be used to search for similar
shapes in alphabet of symbols. The last part of the processed time series
could be simply compared to early parts of symbols in the alphabet. The
later part of the most similar symbol from the alphabet can be then used
to forecast the rest of the symbol’s length. Of course, this would be just
the simplest method which could be extended by employing other similar
symbols or sequence of symbols occurring earlier in the transformed time
series.

The main difference of the proposed ISC representation to the repre-
sentation Das et al. used [4] is the clustering algorithm we use for symbol
formation. They used K-means, which is iterative in its nature and requires
the number of formed clusters to be specified in advance. As shown in [7],
this results in meaningless cluster formation as the cluster centre does not
reflect the data, cluster is formed from, but transforms into a shifted sinu-
soidal shape regardless the shape of the transformed data. We chose different
approach to symbol formation by not using K-menas clustering algorithm.

We use incremental greedy algorithm not limiting the number of clusters
but limiting the maximal distance of subsequences from the cluster centre.
The algorithm assigns subsequence into the cluster if its distance from the
cluster centre is smaller than the predefined threshold (referenced as limit
distance). The algorithm forms new cluster with the subsequence in its centre
if no cluster with the distance to the processed subsequence lower than the
maximal distance exists.

The pseudo-python code for the described clustering algorithm and the
transformation is as follows:

c l u s t e r s = [ ] # Symbol a l phabe t

# Transforms time s e r i e s in t o sequence o f ove r l app ing
# symbols o f de f i ned s i z e
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def trans form ( s e r i e s , s i z e , over lap , l i m i t d i s t ) :
symbols = [ ]
windows = sp l i t w indows ( s i z e , over lap , s e r i e s )
for window in windows :

c l u s t e r = g e t c l u s t e r (window , l i m i t d i s t )
symbols . append ( c l u s t e r . id )

return symbols

# Finds or c r ea t e s a c l u s t e r in the c l u s t e r a l phabe t .
# F i r s t c l u s t e r w i th in l im i t d i s t ance from
# the subsequence i s re turned or new one i s c rea t ed
def g e t c l u s t e r (window , l i m i t d i s t a n c e ) :

c l u s t e r = None
for c in c l u s t e r s :

i f d i s t ( c . centre , window ) < l i m i t d i s t :
c l u s t e r = c
break

i f c l u s t e r == None :
c l u s t e r = c r e a t e ( )
c l u s t e r . c en t r e = window
c l u s t e r s . append ( c l u s t e r )

return c l u s t e r

As clusters are not updated and the first subsequence used to form the
cluster is used as its representative, the cluster centres do not degrade into
a shape not representing the data used in the transformation as seen in the
Das’ representation [4, 7]. By limiting the distance of subsequences within
the cluster we are able to guarantee maximal distance the transformed time
series can drift from its original shape, which is used to guarantee the lower
bounding property of the distance measure on the ISC representation of time
series (presented later in this paper).

The proposed representation forms an alphabet of symbols (clusters)
which grows with the amount of data processed. We adopt the already men-
tioned assumption about frequent pattern stability presented by [12] and we
assume the speed of growth of the alphabet of symbols will decrease with
the amount of data processed. The experiments supporting this claim are
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presented in section 4.
The alphabet of symbols represents the main difference between the pro-

posed ISC representation and SAX. The symbols formed by SAX represent
equiprobable intervals of PAA coefficients [10] which in turn are results of an
aggregate function (mean) performed on a sliding window of a time series. In
the case of our representation, individual symbols represent repeating shapes
and the alphabet of symbols represents an alphabet of all shapes occurring in
the course of the time series. As these symbols represent frequent patterns
occurring in course of the time series, we can see the transformation as a
form of motif discovery [15] event though we are interested in all repeating
patterns of specific length.

The transformation uses three parameters: symbol length (size of the
running window), step between two consecutive windows (typically equal to
a fraction of symbol length), maximal distance of cluster centre and a subse-
quence in the cluster. Every symbol in the alphabet of symbols is represented
by z-normalized subsequence forming the centre of the cluster and the cluster
identifier. The transformed time series is formed by a sequence of triplets:
cluster identifier, mean and standard deviation of the original subsequence
as illustrated on Figure 1. Using these attributes in connection with the
alphabet of symbols, we are able to approximately reconstruct the original
time series.

Figure 1: Sliding window (of length w) splits the time series into overlapping symbols. A
sequence of symbol identifiers and normalization coefficients is used to represent the time
series.

The reconstruction of the raw form of the time series from ISC represen-
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tation is composed of three steps (the last step is not necessary if no overlap
between symbols was used during the transformation process):

1. For every cluster identifier in transformed sequence of symbols, find
associated cluster.

2. Use mean and standard deviation of the symbol to denormalize z-
normalized cluster centre and use it to replace the symbol.

3. If overlap was used during the transformation and thus multiple data
points (from multiple consecutive overlapping symbols) are to be posi-
tioned in place of one original data point, use their mean value instead.

As individual symbols are represented by z-normalized subsequences used
as centres of clusters of similar sequences, the time series reconstruction is not
exact, but small amount of error is introduced (the amount depends on the
limit distance of subsequences associated to a cluster). By averaging over-
lapping parts of symbols some of the variability introduced by approximative
representation is decreased.

As the transformation process produces ever increasing number of sym-
bols, one could argue, that when processing unbound streams of data, the
symbol alphabet could become too big to be usable. Due to the ever growing
alphabet of symbols the computational complexity of the transformation is
not constant as the time necessary to search for closest cluster in the alphabet
of symbols grows with logarithm of its size. This is the biggest obstacle in
application of the transformation on unbounded streams of data. To make
the transformation applicable in thorough time restrictions of incremental
stream data processing, we would need to limit the growth of the alphabet.
We see the solution in the assumption that the most recent and most fre-
quent parts of the time series are most important and should be represented
with greater accuracy than the rest of the time series [16]. This leads us
to the idea of alphabet symbol management using various amnesic functions
[17], where old, unused symbols could be forgotten [18], merged or replaced
by a supplement. If the same principle would be applied to most recent and
frequent symbols, this could be used to increase the reconstruction accuracy
of the representation and to reduce the size of symbol alphabet.

3. Lower Bounding Similarity Measure

Having defined the symbolic time series representation, we now define the
similarity measure on the transformed data and we prove it lower bounds
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the Euclidean distance on the original data. As the distance measure for
the ISC representation we adapt the representation introduced in [3] where
the authors proposed an adaptation of Euclidean distance called MINDIST.
MINDIST uses table of distances between individual symbols in the SAX
representation of the data to calculate the overall distance. In this repre-
sentation, the distance table depends solely on the number of symbols used
in the transformation process. As the ISC representation does not use sta-
ble alphabet of symbols and the distance between symbols depends on the
shape of the data they are formed from, we have to calculate the distance
table from the symbol alphabet. We define the symbolic distance measure
(SymD) as an adaptation of MINDIST distance measure that returns the
minimum distance between time series in the ISC representation.

The proposed distance measure builds on the most common time series
distance measure - Euclidean distance. Eq. (1) shows the formula for Eu-
clidean distance of two time series, Q and C of the length n.

ED(Q,C) =

√√√√ n∑
i=1

(qi − ci)2 (1)

We show the lower bounding property of SymD by introducing an auxil-
iary distance measure as transition from Euclidean distance to the presented
SymD distance measure. Among these distance measures we demonstrate
the lower bounding property and transitively we extend the proof to the pro-
posed SymD distance measure on the ISC representation (Eq. (2)). The
auxiliary distance measure we introduce (for the explanation sake named
OverED) is described in the following paragraphs.

SymD(Q̂, Ĉ) ≤ OverED(Q,C) ≤ ED(Q,C) (2)

In Eq. (2), Q and C refers to two compared time series in their raw rep-

resentation. Q and C refer to time series split into overlapping subsequences
of length w and shift s. Q̂ and Ĉ refers to time series in ISC representation.

The distance measure OverED refers to the adapted Euclidean distance,
where we split the time series into overlapping subsequences of equal length
w and shift s between two consecutive subsequences. The distance between
two subsequences is calculated using Euclidean distance.

An illustration of time series transformed to overlapping subsequences is
presented on Figure 2.
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Figure 2: Example of sequence split into overlapping subsequences.

Figure 2 shows a sequence of values in a time series abcdefghijklmno
where every symbol refers to a different value. OverED operates on the time
series split into overlapping subsequences of length w and shift s. We choose
in our example w = 5 and s = 2 and we split the sequence.

As we can see from the example, some values are represented repeatedly
in the transformed data (eg. c, d, e ...) and some are represented only once
or with different frequencies (eg. a, b, n and o). The contribution of the
time series value to the overlapping representation depends on its position
in the processed time series. None of these values however is repeated more
than dw

s
e times. We define the OverED as sum of squared distances between

subsequences (similarly to Euclidean distance) divided by the maximal num-
ber of occurrences of individual values in the transformed representation. Eq.
(3) shows the definition of OverED where qi and ci are i-th subsequences of

time series Q and C, n is the total length of time series, w is the subsequence
length, s is the shift between two subsequences and dn−w

s
e is the total number

of symbols in the transformed representation.

OverED(Q,C) =

√√√√∑dn−w
s
e

i=1 ED(qi, ci)2

dw
s
e

(3)

An alternative notation for the OverED distance measure is based on the
number of occurrences of individual time series values in the overlapping
representation. To measure the contribution of individual values to the re-
sulting representation, we can split the time series into three parts:

• Start - with increasing contribution of values to the overlapping repre-
sentation.
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• Centre - with constant contribution of different values to the represen-
tation.

• End - with decreasing contribution of different values.

The distance measure on such representation has to adjust to the variable
contribution of values to the representation. We can define the contribution
for each part of the time series to the overall distance measure separately as:

Start(Q,C) =

dw
s
e∑

i=1

min(s,w−s(i−1))∑
j=1

i(qis+j−1 − cis+j−1)
2 (4)

End(Q,C) =

dw
s
e∑

i=1

min(s,w−s(i−1))∑
j=1

i(qn−is+j − cn−is+j)
2 (5)

Centre(Q,C) = dw
s
e
n−w−1∑
i=w+1

(qi − ci)
2 (6)

In Eq. (4), Eq. (5) and Eq. (6), qi and ci to i-th values of time series Q and
C. Since every qi and ci from Q and C respectively is not repeated in the
representation more than dw

s
e times, we can divide the sum of distances of

three parts of the time series by dw
s
e and the resulting distance will be never

greater than ED(Q,C) thus it satisfies the lower bounding property.

OverED(Q,C) =

√
Start(Q,C) + Centre(Q,C) + End(Q,C)

dw
s
e

≤ ED(Q,C)

(7)
The last step of the proof is to show that clustering of similar subsequences
using Euclidean distance into clusters, defined by its centre and maximal dis-
tance of the subsequence from the centre, lower bounds the OverED distance
measure. The sole difference between SymD and OverED is, that the SymD
does not compute the distance using the raw time series subsequences, but
rather centres of cluster every subsequence is attached to. To calculate the
distance of time series in ISC representation, we have to substitute the dis-
tance of overlapping subsequences by the distance of clusters centres. How-
ever, the substitution by these clusters introduces some error as they are only
approximate representations of the original overlapping subsequence. To use
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the cluster centres instead of the original subsequences we have to define the
relation of Euclidean distance of the individual subsequences and the Eu-
clidean distance of cluster centres. For the purpose of this proof ã and b̃ refer
to the cluster centres time series a and b respectively are associated to. The
cluster diameter or maximal distance between cluster centre and time series
associated to this cluster is denoted r. We start the proof using the equality
of Euclidean distance of cluster centres to itself in Eq. (8).

ED(ã, b̃) = ED(ã, b̃) (8)

Using triangular inequality (Eq. (9)) of ED twice on the right side of Eq.
(8), we obtain Eq. (10)

ED(a, b) ≤ ED(a, c) + ED(c, b) (9)

ED(ã, b̃) ≤ ED(a, ã) + ED(a, b) + ED(b, b̃) (10)

As ED(a, ã) ≤ r and ED(b, b̃) ≤ r we can transform the Eq. (10) to:

ED(ã, b̃)− 2r ≤ ED(a, b) (11)

The geometrical illustration of this proof is on Figure 3.

Figure 3: Geometrical illustration of the relation between distance and distance of cluster
centres.

By applying the Eq. (11) on OverED distance measure from Eq. (3), we
show that:√√√√∑dn−w

s
e

i=1 ED(q̂i, ĉi)2

dw
s
e

− 2rdn− w

s
e ≤

√√√√∑dn−w
s
e

i=1 ED(q̂i, ĉi)2

dw
s
e

(12)
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And thus:

SymD(Q̂, Ĉ) =

√√√√∑dn−w
s
e

i=1 ED(q̂i, ĉi)2

dw
s
e

− 2rdn− w

s
e ≤ OverED(Q,C)

(13)
where n is the total number of values in the time series, q̂i and ĉi refers to
i-th symbol time series Q̂ and Ĉ in ISC representation, r is the radius of
the clusters forming the symbols, w is the length of the symbol and s is
the shift between two symbols. Using the Eq. (13), we prove SymD lower
bounds OverED and thus we complete the proof of Eq. (2). We show that
the proposed distance measure SymD operating on time series transformed
into ISC representation lower bounds the Euclidean distance on raw form of
the time series.

As seen from Eq. (13), sum of distances of symbols is divided by the
maximal number, a single time series value can be applied in formation of
multiple symbols due to symbol overlapping (dw

s
e). This is equivalent to

averaging of overlapping values introduced from consecutive symbols. As
every symbol is only approximative representation of the original data (one
time series subsequence is used as representative for a whole cluster of similar
time series subsequences), by averaging overlapping values, the similarity
measure reduces the impact of possible outlier values on the resulting distance
estimation and thus increases the measure’s noise reduction capacity. Similar
approach can be used to reduce noise when reconstructing the transformed
time series into its raw form.

4. Evaluation

We use two different types of datasets to evaluate properties of the pro-
posed representation. We use the well known UCR datasets collection [19] to
evaluate the tightness of lower bound of the ISC representation as one of the
most widely used metrics for evaluation of time series representations [11].
We use the UCR datasets also for evaluation of stability of symbol alphabet
formed during the transformation and the size of alphabet as it determines
the memory requirements of the representation and its applicability in stream
data processing. We use these datasets also for evaluation of applicability of
the proposed representation on time series classification.

As UCR datasets are composed of rather short time series, we use an elec-
tricity consumption dataset [20] from Belgian electricity transmission opera-
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tor to evaluate the properties of the representation when processing very long
time series data. We use this dataset to compare the dimensionality reduc-
tion capacity of the ISC representation while preserving the reconstruction
accuracy.

4.1. Representation properties on short time series

Since the transformation into the ISC representation requires three pa-
rameters to be set, in the following figures we provide several examples of the
relationship between these attributes, tightness of lower bound and symbol
alphabet size. Figure 4, Figure 5 and Figure 6 display the data obtained by
processing the Symbols dataset from the UCR [19] repository. Similar results
were obtained for other datasets from the repository, but they are omitted
due the limited length of this paper.

Figure 4: The relationship between alphabet size and number of data processed with
different settings of maximal distances of subsequence to the centre of associated cluster.
Data for UCR [19] dataset Symbols.

Figure 4 shows the relationship between the amount of data processed
and the size of the symbol alphabet. The figure displays the evolution of al-
phabet size with increasing portion of the dataset processed and for different
settings of the limit distance used in cluster formation. We can see that the
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speed of formation of new symbols decreases with the amount of processed
data in accordance with our assumption about stability of frequent patterns
introduced in the section 2. Similar results are visible also when processing
very long time series such as electricity consumption data from the following
section (Figure 14). The differences in the total alphabet size for distinct
limit distance settings (Figure 4) indicate the increasing number of clusters
formed when size of the cluster is small. The relation between the size of
alphabet formed after transformation of the whole dataset and the size of
cluster created during the transformation is displayed on Figure 5. One can
see that the relation is not linear, but with the increasing size of the clusters
the decrease in the total number of symbols slows down.

Figure 5: The relationship between the final alphabet and size of created clusters. Data
for UCR [19] dataset Symbols.

With the increasing size of the clusters, more similar subsequences are
associated with the same cluster centre. This should result in decreased ac-
curacy of reconstruction of the representation to the original time series data.
The accuracy of reconstruction is reflected in the tightness of lower bound
metric as it indicates the ratio between the similarity of two transformed
time series calculated using the SymD distance measure and the distance
calculated using Euclidean distance on the original time series. The relation
between tightness of lower bound and cluster size is presented on Figure 6.
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Figure 6: The relationship between the tightness of lower bound and size of created clus-
ters. Data for UCR [19] datasets Symbols.

Figure 7: Tightness of lower bound for different datasets from the UCR repository [19]
and different sizes of formed clusters.

To evaluate the tightness of lower bound we performed an experiment
where we took a sample of 200 time series from the Symbols dataset and we
calculated the average tightness of lower bound for every pair of these time
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series. We performed the experiment for different sizes of formed clusters.
The results are presented in Figure 6. The relationship between the tightness
of lower bound and cluster size is almost linear with small variability caused
by the size of the used sample. These results indicate there is a trade-off
between the size of the created symbol alphabet and the tightness of lower
bound obtained by the ISC representation and associated SymD distance
measure. When one will choose the settings for the transformation he/she
has to decide on the basis of the application at hand.

The relation between the tightness of lower bound and limit distance used
in cluster formation for other datasets from the UCR repository [19] is dis-
played on Figure 7. The graph shows the TLB increases with the decreasing
size of the clusters for every used dataset. The value of the maximal obtained
tightness for used settings, however, is variable between datasets. For some
datasets the limit distance has to be smaller to obtain the same TLB.

To compare the proposed representation to other time series representa-
tions such as SAX, PAA or DFT, we can use the results presented in [11].
This comparison however, provides only limited informative value as these
representations use different parameters and majority of them is iterative in
their nature in contrast to the proposed representation. The authors of this
study evaluated various time series representations with different transforma-
tion settings on EEG dataset from the UCR repository [19]. The obtained
tightness of lower bound varied from 0.258 to 0.782. The results for ISC rep-
resentation in combination with SymD distance measure varied from 0.268
to 0.601 with different settings of the transformation. The proposed rep-
resentation thus obtained comparable results with possible improvements if
smaller limit distance was used in the transformation process.

To evaluate the clustering meaningfulness we had to adapt the formula
used in [7]. The clustering meaningfulness is a measure defined on two dis-
tinct datasets as a fraction of mean minimal cluster centre distances within
dataset, over mean minimal cluster centre distances between datasets [7]:

meaningfulness(X̂, Ŷ ) =
within set X̂ distance

between set X̂ and Ŷ distance
(14)

The original definition of within set X̂ distance presented in [7] calcu-
lates the mean minimal distance of cluster centres formed by multiple runs of
K-means algorithm on the dataset. Since our clustering algorithm does not
use random initialization, the minimal distance of clusters formed by multiple
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executions of the algorithm would be zero. We simplify the meaningfulness
formula to be equal to the mean minimal distance between sets.

To evaluate the meaningfulness of subsequence clusters formed during the
transformation of time series into the ISC representation we performed an
experiment on several datasets from the UCR repository [19]. We clustered
pairs of datasets and compared mean distance of formed clusters for different
settings of cluster formation. We used whole time series to form the clusters
and fractions of the time series as symbols in the ISC representation. As
the lengths of the formed symbols we used 1/2, 1/4 and 1/8 of the sequence
length. As for other transformation settings, the step between symbols was
set for one half of the symbol size (not in the case of whole clustering, where
the step was not used) and the limit distance between cluster centre and
associated subsequences was set to 0.2. The results for several pairs of the
datasets are displayed on Figure 8.

Figure 8: The meaningfulness evaluation for multiple dataset combinations and different
settings of symbol lengths used for the transformation. Diagrams show mean shortest
distance between clusters of two datasets when whole sequences were clustered and when
ISC transformation was used with symbol sizes of 1/2, 1/4 and 1/8 of time series length.

One can see the mean distance between datasets decreases when the size
of the symbol is decreasing for every examined combination of datasets. The
change in distance approximately follows the size of the time series fraction
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used as symbol. This is caused by the space of similar sequences filling up
when the length of clustered subsequences is decreasing and when the radius
of clusters is fixed. This results in more formed clusters, closer together.
When we shrink the size of symbols even more, the normalized symbols are
reduced into a small alphabet of basic shapes as seen on Figure 9. The
decrease in mean minimal cluster centre distance is not caused by the ran-
domness of formed clusters, but by the shrinking subsequence space as the
centres are formed from the original time series shapes.

Figure 9: The alphabet size when different symbol length are used. Logarithmic scale
used on both axes.

The most often used approach to evaluate various similarity measures and
data representations is classification. We performed an experiment on the
proposed representation using experimental setup described in [11] to eval-
uate applicability of the proposed ISC representation and SymD distance
measure on the task of time series classification. Authors in [11] used 1-NN
classifier and multiple similarity measures on UCR collection of datasets to
compare their properties on various types of datasets. The results showed
big difference between various datasets when comparing similarity measures
on ISC transformed dataset to Euclidean distance on raw form of the time
series. The proposed ISC representation in connection with the SymD dis-
tance measure showed promising results, producing smaller error ratio than
Euclidean distance on most of the datasets. The Figure 10 shows results
comparing the SymD distance on ISC representation and Euclidean distance
on raw form of data.

The Figure 10 displays the error rates of both methods when classifying
multiple datasets from the collection. The data point is shifted from the
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Figure 10: Figure displays the classification error on various datasets of the UCR collection.
Each data point represents classification error rates of both compared methods. The
diagonal line represents equivalence of compared methods. The less points is on one
method’s side, the better it performed.

diagonal line to the method’s side, which produced higher error rate. The
less points is displayed on method’s side, the better it performed. As seen
from the figure, the SymD distance using ISC transformed data outperformed
the Euclidean distance on most datasets. In total, the combination of SymD
distance measure and ISC transformation obtained smaller classification error
on 24 from 33 processed datasets. The improvement ratio however greatly
varied as the representation is more suitable for some datasets and produce
rather high error rates on another. In general, proposed symbolic time series
representation and associated similarity measure provided promising results.

4.2. Evaluation on long time series

Using the UCR dataset, we evaluated the properties of the ISC repre-
sentation on a variety of time series data with diverse characteristics. In the
next step, we will focus on very long time series where strong seasonality is
present, possibly with multiple levels of seasonality (daily, weekly, monthly,
...), while multiple repeating patterns can be present in the data. Various
production/consumption data are example of such datasets, where the mea-
sured value greatly depends on the time of the day and the day of the week.
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This type of very long time series routinely contains various types of con-
cept drifts and with many repeating patterns it poses great challenges for
tasks such as prediction [21] or anomaly detection. We used the electricity
consumption data published by Belgian electricity transmission systems op-
erator [20]. We used the data from years 2005 to 2015, representing real time
grid load sampled in 15 minutes intervals. In total, the data was composed of
374 496 data points. An example of one week portion of the data is displayed
on Figure 11. Strong seasonal pattern is present in the data. The days of
the workweek greatly differs from the days of the weekend and even patterns
present in different days varies.

Figure 11: An example of one week portion of Belgian electricity consumption data.

In evaluation of the ISC representation properties on very long, seasonal
time series, we focus on its dimensionality reduction ability when whole sea-
sonal patterns are represented by symbols and on comparison of the recon-
struction error and dimensionality reduction ability with the most often used
time series representation - Piecewise Aggregate Approximation (PAA).

When transforming time series data into the ISC representation, the
transformed data size is composed of two parts: the sequence of symbol
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identifiers and the symbol alphabet. We hypothesize, that when the symbol
length is set equal to the length of the seasonal pattern, similar patterns
can be replaced by symbols from the alphabet of shapes and the size of the
alphabet necessary to represent the whole dataset will be much smaller than
if other symbol sizes were used in data transformation process. To evalu-
ate this hypothesis, we performed an experiment, where we transformed the
electricity consumption dataset into ISC representation using various symbol
lengths. No overlap was used in this experiment and limit distance was set
to 3.0. Results of this experiment are displayed on Figure 12.

Figure 12: Size of symbol alphabet necessary to represent the long seasonal time series
when various symbol lengths are used. The grey vertical dashed line indicates the actual
size of seasonal pattern.

The Figure 12 shows very small number of symbols necessary to represent
the whole time series when small symbols are used. This is consistent with
the findings from the previous section as short symbols represent few basic
shapes of the time series and the space of possible shapes is rather small.
As the size of symbols grows, the number of symbols also grows. For some
symbol lengths, we can see a sudden (very narrow) drop in the size of the
alphabet necessary to represent the data. These symbol lengths indicate
some kind of repeating pattern present in the data. The biggest drop showed
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on the figure is present on the symbol size equal to the number of data points
necessary to represent one day worth of data. Other drops in the number of
symbols in the alphabet are present on places, where symbol size represent
fractions or multiples of the most important pattern lengths present in the
data. This figure illustrates the dimensionality reduction ability enabled by
replacing repeating shapes by symbols and at the same time it shows the
necessity to correctly choose the size of symbols used when transforming the
dataset as by missing by a single point can cause big difference especially for
data with very strong seasonal patterns.

The next step in evaluation of the ISC representation on long time series
data is comparison of its reconstruction error and dimensionality reduction
ability with (PAA). We chose the PAA as the most frequently used time
series representation (other than the raw form of the data). Since the two
compared representations require different parameters to be set, we set these
parameters empirically, in a way to obtain approximately the same recon-
struction error for both representations. As the reconstruction error metric,
we use Root Mean Square Error (RMSE ) calculated between the original
time series and the transformed time series reconstructed back to its orig-
inal form. In the experiment we set the PAA coefficient to be equal to 7
(seven consecutive values will be averaged). The symbol size of ISC rep-
resentation was set equal to the number of points in one day of data - 96.
The step between two symbols is also equal to 96, meaning the symbols are
not overlapping and no data point is skipped. We selected the limit dis-
tance parameter of the transformation into the ISC representation in a way
to achieve approximately the same reconstruction error when reconstructing
the ISC transformed data into its original form and when transforming data
from the PAA representation. Experimentally, we set the limit distance of a
cluster to 2.4. Normalization coefficients for every symbol created using ISC
were calculated from previous one week worth of data to eliminate seasonal
effects on coarser granularity (monthly and yearly seasonality). The RMSE
metric for both compared representations computed repeatedly for increasing
portions of the transformed time series (one week increments were used) is
presented on Figure 13.

By fixing the reconstruction error for both compared time series repre-
sentations, we were ale to evaluate the dimensionality reduction ability of
both representations in equivalent conditions. On the Figure 14, we present
the evolution of the transformed data size for ever increasing portions of the
dataset transformed.
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Figure 13: The evolution of reconstruction error for different portions of the data trans-
formed.

Figure 14: The comparison of the size of transformed data into PAA and ISC representa-
tions.
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As expected, the size of the data transformed into PAA changes linearly
with the amount of processed data (dashed line). The size of the ISC rep-
resentation, however, is composed of two parts: the alphabet size (dash-dot
line) and the size of the sequence of symbol representatives (dotted line).
The sum of these components is displayed as full line. The size of the al-
phabet grows much faster than the size of PAA transformed data at the
beginning, but it slows down as the transformation continues. We already
saw this in the previous section, when we transformed the data from the
UCR datasets. As a result, when half the dataset was processed, the overall
size of ISC transformed data and PAA transformed data aligned and ISC
produced even slightly smaller data representation. If the shape of the ISC
transformed data would continue in the same manner as until this point, the
ISC would produce smaller representation and we could say the ISC repre-
sentation produces smaller time series representation on very long time series
compared to PAA. However, from this point on, the symbol alphabet pro-
duced by ISC resumed in its rapid growth. This could be in conflict with
our initial assumption about frequent pattern stability in comparison to the
stability of the whole time series. We see two possible causes for this effect:

1. The older symbols are slowly worsening in accurate representation of
the original data as the data drifts.

2. The patterns in the course of the time series change suddenly and thus
new symbols have to be formed.

We believe both of these cases are present, but the second one is much
more powerful in this dataset. To show the effect of the changing patterns in
the number of formed symbols, we analyse the number of frequently occurring
symbols (Figure 15) and the number of first occurrences of symbols in the
course of the time series (Figure 16).

The Figure 15 displays the distribution of symbols by their frequency. On
the left side are the most frequent symbols and on the right side the rarest
ones. We divided the symbols into three groups:

• Frequent symbols covering 50% of all transformed data.

• Rare symbols occurring only once.

• Common symbols representing the rest of the dataset.
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Figure 15: The distribution of symbols by their frequency.

One can see the symbol distribution follows the power law: very few
symbols covers most of the dataset and almost half of the symbols occur
only once.

In the Figure 15 these groups are separated by vertical dashed lines.
To evaluate the number of symbols created in the course of the electrical
energy consumption data, we split the time series into sequences of fixed size
(one half of a year) and for every sequence we counted the number symbols
occurring for the first time in the course of the entire dataset. The Figure
16 displays counts of first occurrences of symbols from different groups and
sum of all first occurrences.

As we can see, the biggest number of new symbols, from all groups, is
formed in the opening part of the time series and continues much slower
throughout the course of the time series. After the first half of the dataset is
processed, a sudden increase in the number of formed symbols appears. This
supports the previous observations and suggests some sudden change in the
data in the second half of the dataset.

To explain the sudden increase in the number of formed symbols, we
performed another experiment. We hypothesize that if this sudden increase
in the number of formed symbols was caused by the deterioration of the

26



Figure 16: The number of first occurrences of symbols per fixed period of time.

alphabet, we would need much smaller number of symbols to represent the
time series if we would transform only the second part of the time series.

We calculated the number of unique symbols present in fixed size windows
of the time series when the whole time series was transformed into ISC repre-
sentation and when only the second half of the dataset was transformed. The
results are displayed on Figure 17 and Figure 18 respectively. In accordance
with previous results, the Figure 17 shows increase in the number of different
symbols used in the fixed time span near the end of the processed dataset.
This suggests, that the data become more variable. The Figure 18 however,
show almost the same number of used unique symbols as the second half of
the Figure 17. The number of used symbols is much more stable as in the
case of the whole dataset transformed, but the number of symbols used in
half-year periods is the same as in the case of the whole dataset transformed.
This means, that the symbols from early parts of the dataset are no longer
used in the transformation and thus in later parts of the dataset are present
completely different patterns as in the early parts. This suggests, that the
cause of the sudden increase of the number of formed symbols is the change
in the data itself and not the degradation of the ability of older symbols to
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represent the data.

Figure 17: The average number of symbols used in a fixed period of time.

This poses a limitation of the proposed transformation as the alphabet is
growing even though old symbols are no longer used. We see two opportuni-
ties in decreasing the size of created alphabet:

• To remove rare symbols occurring only once or very few times in the
course of the whole dataset. This would result in dramatic reduction
of the alphabet size as they represent almost half of all symbols in the
alphabet.

• If we assume, we are not equally interested in all the data as authors
in multiple previous works did [22, 17], we could remove old, no longer
used symbols, which would provide us with another opportunity for
alphabet size reduction and even with a possibility to preserve constant
alphabet size.

These alphabet management approaches could help in alphabet size re-
duction for the prize of increased reconstruction error for some parts of the
dataset. Depending on the application, this sacrifice may be acceptable.
However, we leave the symbol alphabet management for the future work as
it exceeds the scope of this paper.
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Figure 18: The average number of symbols for the second half of the dataset.

5. Conclusions and Future Work

We proposed a symbolic representation of time series (ISC ) using clusters
of similar subsequences as symbols. The clusters are formed using incremen-
tal, greedy algorithm which differs the representation from the representation
used in [4] and makes it applicable on stream data processing. The major
difference of the proposed representation to the SAX representation is the
meaning of individual symbols as they represent repeating shapes in the
course of the time series.

The similarity metric on the proposed representation (SymD) is intro-
duced along with the proof that it lower bounds the Euclidean distance.
Experiments on datasets from the UCR collection[19] show that the clus-
tering algorithm we used in symbol formation decreases the mean minimal
cluster centre distance but it is caused by the shrinking space and not the
randomness or meaninglessness of formed sequences as they are formed from
the basic shapes of the original time series. The evaluation of tightness of
lower bound of the proposed representation and similarity metric combina-
tion showed that it is comparable with other time series representations. The
potential user has to make a trade-off between the accuracy of the representa-
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tion and the size of the alphabet of symbols created during the transformation
by choosing the settings for size of formed clusters.

The representation allows dimensionality reduction while preserving the
reconstruction error comparable to PAA. As the growth of symbol alphabet
size slows down with the amount of processed data, the improvement to rep-
resentations such as PAA widens when very long time series are processed.
One of the limitations of the ISC representation though, is the ever grow-
ing database of symbols when processing very long time series. This would
require management of old, unused symbols. Forgetting of unused symbols,
merging of infrequent and splitting of frequent symbols could lead to man-
ageable size of symbol alphabet when processing infinite streams of data,
smaller size of transformed data and smaller reconstruction error. We leave
this however as a possible extension of the representation for the future work.

Another obstacle in application of the ISC representation are three pa-
rameters required to be set before the transformation process starts: symbol
length, between symbol step and cluster radius. However, two of those at-
tributes can be learned from the data or application at hand as symbol length
depends solely on periodicity of processed data and the between symbol step
depends on the intended application. This leaves only the cluster radius
to be determined experimentally depending on the required reconstruction
accuracy and required level of dimensionality reduction.

The representation is applicable in domains where symbols of stable
length are repeating over time and where we process large amounts of data.
These are for example various domains where counting metrics on produc-
tion or consumption data streams are evaluated. We use the representation
for short term prediction of electricity consumption, anomaly detection and
application monitoring. We see applications of the proposed representation
in monitoring applications for example in the domain of network attack de-
tection, where great number of various metrics is running continuously on
diverse attributes of the network. In the future work, we will focus on man-
agement of ever growing alphabet of symbols during data stream processing,
on processing of multiple parallel time series and on comparison of properties
of the proposed representation with frequently used methods in tasks such
as classification or forecasting.
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