
Hybrid collaborative recommendations: Practical

considerations and tools to develop a recommender

Introduction

The diversity as a concept has been proved by the evolution to be very successful. The researches follow this

idea in many modern approaches. The ensemble methods in the machine learning often outperform standalone

methods. In the context of the recommender systems, similar idea is used as so-called hybrid recommenders.

As a rule, two standard recommendation techniques became established [Balabanovic et al., 1997]:

collaborative filtering and content-based recommendation. In a collaborative filtering a recommender relies

on the user evaluation of the items and based on that it calculates the user and item similarity [Kim et al., 2009].

Such a recommender is able to find users that have a similar taste to a given user or the items that would be

similarly rated by the other users [Balabanovic et al., 1997]. Content-based recommenders utilize content

representation of the items (i.e., a set of attributes that characterize an item) and predict, whether a user would

like items that are similar to those he/she preferred in the past.

It is clear that all these techniques have their advantages and disadvantages, which researchers try to solve

in many different ways. Luckily, characteristics of these approaches are often disjointed and thus their

reasonable combination can result in better performing approach.

Therefore, we adopt the following definition. Hybrid recommender systems are based on the combination

of two or more monolithic recommendation techniques, such that the advantages of one recommender are

utilized in order to solve the disadvantages of the other recommender [Burke et al., 2011]. Hybrid

recommendation is sometimes referred as another recommendation technique (alongside to content-based and

collaborative filtering) [Adomavicius et al., 2005].

Hybrid recommenders were introduced to increase an accuracy of existing monolithic techniques and also

to reduce or eliminate their major drawbacks (such as the cold-start problem, sparsity, or user outliers). The

most common technique is to employ collaborative filtering with the combination of other technique

(e.g., content-based or knowledge-based recommender) [Burke, 2002]. However, there are also other

combinations of techniques that are suitable depending on the studied problem and sometimes even a domain.

Hybrid recommender systems also attracted many companies and they became employed as a part of their

products. In the domain of news, Google developed [Liu et al., 2010] a hybrid recommender that was aimed

to combine both user interests and trends in Google News (a combination of content-based recommendation

and collaborative filtering). As they reported, proposed hybrid improved Click-Through-Rate by 30% (in

comparison to the baseline collaborative approach).

In 2006 a movie streaming company Netflix announced a competition, where the goal was to recommend

movies such that the proposed algorithm made an improvement over 10% in comparison to the Netflix baseline

recommender. Several solutions were proposed (such as [Koren, 2009]) and many of them were actually the

hybrid approaches based on the collaborative filtering recommendation (including the winning ones). Netflix

also uses hybrid recommenders nowadays [Gomez-Uribe et al., 2016], for example in the search results, where

it combines user movie playbacks, search data and metadata.

The recommender system domain historically connects academia with the business. As a result, plenty of

libraries and frameworks have been proposed. These cover various programing languages and as a rule

implement state-of-the-art approaches. To give a short overview, we present a comparison of several

recommendations libraries and frameworks with emphasis on the hybrid recommenders.

The typical evaluation of a recommenders starts with offline experiments. To obtain a reliable and

comparable results, appropriate methodology and dataset is a necessity. In this chapter, we also compare

typical datasets used for the evaluation of recommenders with metrics reported by several authors.

The chapter systematically covers the following topics:

 Overview of hybrid recommender techniques with emphasis on pros and cons (Section 1.2.)

 Comparison of recommender system libraries and frameworks (Section 1.3.)

 Practical hints for the evaluation of recommenders (Section 1.4.)

 Comparison of datasets and reported metrics (Section 1.4.4.)

Hybrid recommender systems - pros and cons

Hybrid recommender systems were proposed to improve existing monolithic recommendation techniques. By

using and combining these techniques, hybrids aim to improve recommendation performance (from several

points of view) and thus enhance overall user experience. Correspondingly, there are problems that monolithic

techniques suffer from and hybrid recommenders are able to solve.

2.1 Types of combinations

When picking a hybrid recommendation technique, we have to select, which combination will be utilized. In

other words, which monolithic recommendation techniques will be employed and also how they will be

combined.

Following the Burke’s taxonomy [Burke, 2002] we distinguish between seven basic types of hybrid

combinations: weighted, switching, mixed, feature combination, cascade, meta-level, and feature

augmentation. We would like to emphasize that these combinations types define how two or more approaches

are combined (no restrictions for specific recommender type).

In weighted hybrid, the underlying recommenders calculate a score for an item and these scores are then

combined to produce a final (single) score for the recommended item. [Hornung et al., 2010] built a weighted

music recommender that combined collaborative recommender (for track similarity) and two content-based

recommenders (for tag and time similarity). To enrich the final list of recommendations, they also generated

the additional serendipitous music tracks by considering a similarity of the users. Moreover, the famous Netflix

prize winner algorithm combined 24 monolithic predictors in order to provide final estimate. The gradient

boosted decision trees were used to combine single models covering neighborhood, matrix factorization or

regression models [Koren, 2009].

Switching hybrid specifies a condition, which determines which recommendation technique will be selected

and used for the recommendation (depending on the situation). A switching hybrid was proposed in

[Ghazanfar et al., 2014], where the authors utilized clustering approach to detect the gray-sheep users. These

gray-sheep users then received recommendations generated by the separate content-based recommender.

In mixed hybrid, each underlying recommender generates a list of recommendations that are combined to

produce a final recommendation. In other words, both lists are presented to the user. A TV recommendation

using mixed hybrid was proposed in [Barragans-Martínez et al., 2010], where the collaborative filtering was

combined with the content-based recommendation. During the merging strategy, they used an average rating

of TV shows (calculated by the recommenders).

Feature combination uses multiple types of features that are combined to learn a single recommender

model. For instance, the ratings of users combined with the content features of the specific

item [Basu et al., 1998]. [Zanker et al., 2009] utilized a single collaborative filtering recommender that

combined various features (called rating domains), such as the navigation actions, viewed items, items added

to the shopping basket, or the user context.

Cascade hybrid is based on the idea of refinements, where the first-level recommender generates

recommended items. The role of the second recommender is to adjust the items returned by the first

recommender, but here the focus is only on those items that need refinements.

Lampropoulos [Lampropoulos et al., 2012] presented a cascade hybrid that employed a two-step solution.

Firstly, a content-based recommender was used as a one-class classifier that identified the items suitable for a

particular user. Then, a second-level collaborative filtering recommender assigned ratings to the items

identified by the content-based recommender.

In meta-level hybrid, the first recommender learns a model, which is used as an input to the second

recommender. By analyzing the rule-based preferences from historical user interactions, a collaborative

filtering model was learned and used as an input to the knowledge-based recommender in [Zanker, 2008].

Similar idea is applied for the feature augmentation hybrid, where the result (not a model) of the first

recommender prediction is used as a feature to the second recommender. [Campos et al., 2010] created a

hybrid recommender that used weights produced during the content-based recommendation as an input to the

collaborative filtering recommender.

As noted by [Burke, 2002], some combinations (e.g., switching or mixed hybrid) require an initial effort

that must be done before we may employ the hybrid strategy. For example, in case of the switching hybrid, we

must define the criteria to switch between the recommendation techniques beforehand. The weighted hybrid

requires setting the weights that apply for the results of particular hybrids.

For the feature augmentation, the cascade and the meta-level hybrid, a dependency may cause issues, if the

second-level recommender relies on the results of the first-level recommender (Table 1.1. summarizes the pros

and cons of these combinations).

Another perspective for the hybrid recommender classification was proposed by Aggarwal [Aggarwal,

2016]. He recognizes three high-level types:

 ensemble design – analogy to ensemble methods in machine learning. Several algorithms are combined

into a single output (switching, weighted, cascade, feature augmentation),

 monolithic design – refers to a recommender combining several data sources (feature combination, meta-

level),

 mixed systems – combines both ensemble and monolithic design.

This taxonomy offers a valuable (from the machine learning perspective) view which addresses the nature of

Burke’s insight.

Table 1.1. Pros and cons of hybrid combinations (based on [Burke, 2002]).

Type Pros Cons

Weighted Possible to adjust weights of

hybrids.

Can be used in datasets with

implicit feedback.

Value of the particular

recommendation techniques should

be uniform across the algorithms.

All the techniques apply the

weights to each item, which may be

redundant.

Switching System is more sensitive to

strengths and weaknesses of the

particular recommenders.

Switching criteria must be defined.

Mixed Suitable where it is possible to

make a large number of

recommendations simultaneously.

Allows to recommend both popular

and new items.

Combination technique must be

employed.

Rules for solving conflicting

situations must be also defined.

Feature

combination

Combines features from several

algorithms which results to

improved similarities.

May require feature selection

in content-based recommender

[Basu et al., 1998].

Feature

augmentation

Allows to improve an accuracy of a

system without modifying it.

A quality of second recommender

may depend on the

recommendations of the first

(augmenting) recommender.

Cascade Allows to employ second

recommender to only relevant items

(results of the first recommender).

More efficient than weighted.

Quality of second-level

recommender may depend on the

recommendations of the first-level

recommender.

Meta-level Learned model is a compressed

representation of the user-item

preferences.

A quality of the second

recommender may depend on the

quality of the representation of the

first recommender.

2.2 Hybrids as a solution for recommendation issues

There are several issues that standard recommendation techniques suffer from. In the worst-case scenario, it

results in an inability to recommend any items. Most of these issues are related to how recommender systems

work.

We further examine the problems related to the collaborative filtering recommendations (the problems

collaborative filtering is either suffering from or is able to help to deal with):

 cold-start problem (a problem of a new user/item, or a new context in case of the context-aware

recommender systems),

 over-specialization (inability to recommend items outside-the-box),

 sparsity (of a user-item matrix),

 extremes (gray and black sheep),

 lack of diversity.

Hybrid recommenders are capable of reducing these problems by hybridization of collaborative filtering with

the other recommendation technique.

2.2.1 Cold-start problem

One of the most notable problems occurs when a new user or a new item is introduced to a recommender. This

problem is also referred as a cold-start problem. Here, the recommender fails to generate appropriate

recommendations since it does not have enough knowledge about the user preferences.

When a new user appears, a low number of user-item interactions causes that the recommender is unable

to unmask user preferences. This problem is usually present in both content-based and collaborative

recommenders. Specifically, for the collaborative recommenders, a cold-start problem occurs also when a new

item appears. Since it is not rated by any users, it is not possible to score how appropriate would be to

recommend such an item [Schein et al., 2002].

There are several domains, which suffer from the new item cold-start problem more as others. In some

domains recommended items are relevant for only a short time period (e.g., news, discounts) and thus the value

of the recommended item decreases exponentially over the time.

The cold-start problem is not usually an isolated state of the system, but it is a process (its effect decay over

the time, i.e., user activity). It is clear, that there is no specific line (e.g., an amount of user ratings) to be

recognized as the “no cold-start”. In [Visnovsky et al., 2014], authors analyzed the influence of the amount of

user rating to the quality of user similarity search (cluster quality). As we can see (Figure 1.1), the increasing

number of the user ratings logarithmically improves the cluster quality. For the MovieLens dataset approx. 50

ratings are required to obtain similar clusters as considering all the user ratings.

Fig. 1.1. The influence of the amount of user ratings to the cluster quality (similar user search task) in MovieLens dataset [Višňovský

et al., 2014].

However, a new item problem does not affect the content-based recommenders, hence the content-based

recommender can extract item properties without any user ratings1. Therefore, the content-based

recommenders can be used to reduce the cold-start problem of collaborative filtering [Ronen et al., 2013].

Moreover, several approaches aim at addressing not only important content-based features, but also important

features selection [Cella et al., 2017].

Hybrid recommendation is able to solve the cold-start problem for both a new user and a new item. One

example is a work of Schein [Schein et al., 2002], where they fit a model using content and collaborative

information. They present a two-way aspect model and Naïve Bayes recommender that uses content features

in order to predict the ratings for the non-rated items.

The cold-start problem was further explored in [Braunhofer et al., 2014], where the authors applied hybrid

recommender to solve a problem of a new context. A cold-start problem of a new context occurs when an

existing user is exposed to a new contextual situation. They proposed a switching hybrid recommender that

combined a demographic-based context-aware recommender and demographics-based context-aware

recommender.

However, as they outlined, evaluating such a hybrid recommender that was in addition extended by the

contextual feature was a demanding task since there was a lack of large datasets suitable for this task. There

are several datasets that can be used for this task: STS [Elahi et al., 2013], CoMoDa [Odic et al., 2013], and

Music [Baltrunas et al., 2011].

2.2.2 Over-specialization

One of the shortcomings of the content-based recommenders is that they are not able to recommend the outside-

the-box items, also referred as a problem of over-specialization [Shardanand et al., 1995]. Since the content-

based recommender relies on the content descriptions during the user preferences analysis, it is limited to find

the similar items to only those that user previously liked.

For example, if a user watches movie from the comedy and adventure genre, content-based recommender

learns this information and builds a user model that is used to recommend only movies from these genres.

Therefore, it may fail to recommend, for example horror movies even if a user would appreciate some.

On the contrary, there are domains where it is useless to recommend similar items. If someone bought an

expensive camera, he/she probably won’t buy another (within some reasonable time period).

Here, the hybridization can be beneficial if we combine both collaborative filtering and content-based

recommendation. In such a hybrid environment, collaborative recommendation can be helpful in

recommending the items outside-the-box. Moreover, the hybridization may eliminate the trade-off between

recommendation accuracy and diversity of recommended items [Yoshii et al., 2008].

On the contrary, the specific settings and domain characteristics may bring the over-specialization problem

to the collaborative recommenders as well. As the collaborative filtering usually uses the most similar users,

if these are highly consistent (and recommender is not designed to bring diversity), only highly specific items

will be recommended (similarly to the content-based over-specialization problem).

The over-specialization problem refers to recommending highly tailored items to user past preferences.

This often results to the problem of diversity lack. These are, however, two separate concepts. We may lack

the diversity of recommended items without over-specialization problem (e.g., user likes adventure and

receives sci-fi recommendations).

2.2.3 Sparsity

Real-world web applications contain tremendous amount of content and users. This is unfortunately a problem

for the collaborative recommender approaches, which often use a user-item matrix (Figure 1.2). In fact, such

a matrix is extremely sparse in an average system. This is usually a result of the fact that many users interact

with only few items.

1 This assumes that content (and similarity search) can be processed and computed immediately.

Fig. 1.2. User-item interaction matrix from the MovieLens 100k dataset.

One example is the MovieLens 20M dataset [Harper et al., 2015], which contains 27 000 items (movies) and

138 000 users. An upper bound for the maximum number of ratings is therefore 3,726 * 109, however the

dataset contains only 2 * 107 ratings.

Fortunately, sparsity is yet another issue of the recommender systems that can be reduced by the hybrid

recommenders. By utilizing a hybrid model, the missing items from the matrix can be calculated, which solves

the problem of sparsity. Several hybridization types are helpful, e.g., the feature combination. By combining

several recommender sources (e.g., content and collaborative), we reduce the rating matrix sparsity. An

example hybrid recommender was proposed in [Kim et al., 2012], where the authors used a social network and

trust scores between users to reduce data sparsity.

2.2.4 Gray and black sheep

Another problem of the standard recommendation techniques is the specific users (extremes), for which a

particular approach can be not sufficient enough. Here we distinguish between two basic extremes: gray sheep

and black sheep.

Gray sheep users do not have consistent opinions and thus do not clearly fall into any of the groups of

people sharing the same opinion [Claypool et al., 1999]. This problem occurs namely in the small and medium

community of users.

Also, as noted in [Claypool et al., 1999], unlike in the cold-start problem, even by gathering more ratings

from such users, a recommender is unable to produce precise predictions. Depending on the dataset and a

number of gray sheep users [Ghazanfar et al., 2014], a presence of the gray sheep users may affect the quality

of the recommendation for the whole community.

On the other hand, black sheep users [McCrae et al., 2004] have no or few people that they correlate with.

Therefore, recommendation approaches relying on the user-to-user correlations are unable to generate any

predictions. Su et al. pointed out that although this is clearly a failure of the recommender system, non-

electronic recommenders are unable to properly recommend items to black sheep users as

well [Su et al., 2009]. Therefore, we may consider such a failure to be acceptable.

Both gray and black sheep users cannot benefit from the collaborative recommendation. This is a

consequence of the inability of the recommender to find a relationship between such a user and other users in

the community. Similarly, a demographic recommender may have the same issue, since it uses demographic

information about the users to categorize them into groups. However, here the solution of the problem is a

hybridization where a collaborative or demographic recommender can be combined with a content-based

recommendation.

[Ghazanfar et al., 2014] utilized K-means clustering to identify the gray sheep users and proposed a

switching hybrid recommender that was able to decrease the recommendation error rate by switching between

the collaborative filtering and the content-based recommender.

2.3 Drawbacks of the hybrid recommenders

One reason to employ a hybrid recommendation is to improve the performance of individual – monolithic

recommenders, such that the hybrid recommender performs better than any underlying recommender.

However, this requires that the underlying recommenders should be also well-tuned such that they are able

to recommend items with satisfying accuracy. If the underlying recommender performs poorly, a hybrid

recommender may fail in improving the accuracy and it may end up with the drop, indeed.

We need to choose which recommendation techniques we need to employ and optimize its parameters.

Moreover, these recommender techniques need to be properly evaluated. For this step, it is required to have a

good knowledge of the underlying recommendation techniques, but also, we need to understand the domain.

Here we should take into consideration the basic domain characteristics [Burke et al., 2011]: heterogeneity

(of items in the domain), degree of risk (for a user accepting a recommendation), degree of churn (whether a

recommender face a continual stream of new items), preferences (stable or unstable), interaction style (implicit

or explicit), and scrutability (whether an explanation of recommendation is required by the recommender).

Analysis of the domain allows us to choose an appropriate recommendation technique and consider the

conditions within which it would run. For instance, in the news domain, where the degree of churn is relatively

high, we need to consider the scalability of a hybrid approach.

Explanation of recommendations is a still an open research problem in monolithic recommenders

[Herlocker et al., 2000]. In case of hybrid techniques, the problem grows even further, hence we need to

properly present an information about the source of the recommendation. By using for instance, a weighed

hybrid, it could become cumbersome to determine which recommender contributes the most to the result and

even more how this should be presented to a user.

Recently, there have been attempts to solve the issues with the explanation of a hybrid recommendation.

For example, Bostandjiev [Bostandjiev et al., 2012] used visual interactive interface that was intended to

explain recommendation process and elicit additional user preferences.

This is related to another issue with the hybridization. Not only a particular recommendation technique

may need some training phase, but also a hybrid recommender need to be trained in order to handle such

particular recommenders. In other words, a hybrid recommender itself adds another parameter that need to be

tuned [Campos et al., 2010]. A cross-validation may be employed in order to set parameters (weights), such

that the combination of recommendation techniques would fit the problem the best (e.g., which recommenders

should be picked for the switching hybrid).

This is a case especially in a weighed hybrid, where the weights need to be estimated. Here, some heuristics

may be applied, or these weights can be set with the machine learning. Moreover, these weights can be also

personalized, which requires not even more time to train recommender, but also more training instances.

Finally, a hybrid recommender usually requires an additional computation complexity (as more methods

are used), which results in worse performance than the monolithic approaches [Cremonesi et al., 2011].

Practical implementation considerations

The concept of combining several recommenders to overcome notorious shortcomings is widely accepted.

Most of studies in the recommender systems field pointing improved results when used hybrid recommenders.

Thanks to this “agreement”, there are plenty of libraries and frameworks implementing (or supporting) hybrid

recommender approaches. In this section, we will briefly analyze the most important features of these (Table

1.2).

3.1 Mrec2 recommender system library

Mrec is a Python recommender and evaluation library developed at Mendeley [Mendeley, 2017]. As a part of

it, there are several algorithms implemented, which can be used either standalone or as a part of the

recommender. The library provides an implementation for:

 SLIM item similarity,

 Weighted matrix factorization WRMF,

 Weighted approximately ranked pairwise ranking loss (WARP),

 Hybrid model which optimizes WARP based on user-item matrix and content features,

 various evaluation metrics (such as Precision, Recall, or Mean Reciprocal Rank).

For a fast development, a command-line interface is available. In addition, the library supports parallelization

using IPython. The input for the hybrid recommender consists of the user-item matrix and the content features.

A core approach for the library is the WARP algorithm, which reached promising results on the well-

established image dataset ImageNet3 – in the mean of the speed, memory usage, and the performance as

well [Weston et al., 2010].

3.2 Matchbox4 recommender

Azure machine learning is getting more and more attention in the last years. The Matchbox recommender,

which is available as a part of this machine learning platform, is a large-scale recommender system. It includes

both collaborative and content-based approach. These are combined based on the Bayesian probabilistic model.

The main idea is to use the content-based approach first (when a user is relatively new to the system and

has only few ratings). Next, the smooth transition to the collaborative filtering is performed as more and more

ratings for the user are available.

Two types of content-based features are supported – item and user content features (characteristics). The

framework also supports three types of feedback [Stern et al., 2009]: (a) explicit user ratings of items, (b)

binary preferences (likes and dislikes), (c) ordinal ratings on a user-specific scale. One of the major

shortcomings is the lack of an online training (model has to be retrained periodically).

Model optimal parameters search is offered through the Tune Hyperparameter Module and Cross

Validation Module. Also, several metrics to evaluate the performance are available (e.g., MAE, RSME,

Precision, AUC).

As the experiments showed [Stern et al., 2009], the content-based features are especially important in the

cold-start phase. Together as a hybrid approach, the Matchbox reflects the state-of-the-art performance.

3.3 Surprise5 library

SciPy provides a collection of packages for scientific computation. The Surprise library is a Scikit (SciPy

toolkit) library for building and analyzing recommenders [Hug, 2017]. Although it is intended for an easy

implementation of custom recommenders, it also provides a range of popular algorithms. The core

functionality covers:

 dataset handling (MovieLens and Jester included),

 prediction algorithms – neighborhood methods (kNN), matrix factorization (SVD, SVD++, PMF, NMF),

and similarity measures (cosine, Pearson, MSD),

 evaluation support (cross-validation), parameter optimization.

The library itself does not implement any of the hybrid approaches. The ecosystem allows to create custom

recommenders, though. In this way, we are able to create a variety of recommenders on the level of a rating

prediction or rank reordering.

2 https://mendeley.github.io/mrec
3 http://www.image-net.org

4 https://msdn.microsoft.com/en-us/library/azure/dn905987.aspx

5 http://surpriselib.com

The performance of the algorithms is evaluated based on the RMSE, MAE, or FCP metrics. One of the

important characteristics is the documentation, which provides relevant information and a plethora of

examples.

Table 1.2. Comparison of libraries and frameworks supporting hybrid recommendation.

Name Language Licence
Type of

combination
Evaluation Note

Mrec Python BSD
Weighted,

Cascade
yes -

Matchbox AzureML

Microsoft

online

services

Switching yes -

Surprise Python
BSD-3

Clause
– yes

Custom hybrid

implementation is

required

LightFM Python Apache v2
Feature

combination
yes -

Librec Java GNU GPL Weighted yes -

LensKit Java
LGPL

v2.1
Weighted yes -

MyMedia

Lite
.NET

GNU GPL

v3
Weighted yes -

Easyrec Java GNU GPL – no

Custom hybrid

implementation is

required

Prediction

IO
Scala

Apache

Licence

v2.0

Multiple yes -

FluRS Python MIT – yes

Custom hybrid

implementation is

required

Seldon Python

Apache

Licence

v2.0

Cascade yes -

Recomme

nderlab
R

GNU GPL

v2
Weighted yes -

Prea Java Free BSD – yes

Custom hybrid

implementation is

required

Duine Java LGPL v3 Switching yes -

3.4 LightFM6 library

Yet another Python implementation. The name is derived from “factorization machines” and combines the

content and collaborative ideas [Kula, 2015]. The users and items are represented as the latent vectors, which

are defined by the linear combinations of embeddings of the content features (users and items).

Implemented model reflects the data available for the training. If there are no content features provided, it

acts as a pure collaborative filtering approach. When the content features are available, these are considered in

the optimization process (also useful for the cold-start problem reduction). In total, four loss functions are

implemented:

 Logistic,

 Bayesian probabilistic rating,

 Weighted approximate-rank pairwise,

 k-OS Weighted approximate-rank pairwise (kth positive example as a bias).

6 https://github.com/lyst/lightfm

A model performance evaluation is supported by the implementation of the standard metrics: Precision, Recall,

AUC, and Reciprocal rank. Moreover, LightFM allows to easily obtain the MovieLens 100k dataset7 and use

it for the fast experiments.

The LightFM is also available as a Docker container. The documentation provides several examples over

various scenarios.

3.5 Librec8

Librec is a Java library, which includes plenty (over 70) of algorithms implementations. The library consists

of several modules, which cover the whole process of recommendation (Figure 1.3.).

The library implements a weighted hybrid recommender, which uses a linear combination of HeatS and

ProbS algorithms (derived from the heat and probability spreading) [Zhou et al., 2010]. In total, six types of

recommenders are included, while each of them consists of several algorithm implementations:

 Abstract Recommender – provides a set of basic algorithms (e.g., most popular, collaborative, association

rules, global average, hybrid),

 Probabilistic Graphical Recommender (e.g., clustering, LDA, PLSA, BUCM),

 Matrix Factorization Recommender (e.g., SVD, BPR, WRMF, RBM),

 Factorization Machines Recommender (e.g., FMALS, FMSGS),

 Social Recommender (e.g., TrustMF, TrustSVD, SOREG, RSTE),

 Tensor Recommender (e.g., BPTF, PITF).

Fig. 1.3. Librec modules overview. The final algorithm is a combination of these components. A set of interfaces allows a flexible

implementation of any new algorithms8.

Several metrics for the performance evaluation are also included, e.g., AUC, nDCG, Precision, Recall, MAE,

MPE, and RMSE. Also, a FilmTrust dataset was extracted and included. The documentation provides details

for the library usage, with references to the active blogs and discussion forums.

3.6 LensKit9

Lenskit is an open-source toolkit for building and researching recommender systems, created at University of

Minnesota by the GroupLens research group [Ekstrand et al., 2011]. The toolkit was used in over 40 research

papers and is also a part of the MovieLens project.

LensKit consists of the several modules focused on the similarity calculation, recommendation, and

evaluation of the performance. Four basic algorithms are implemented:

 item-based collaborative filtering,

7 http://grouplens.org/datasets/movielens/100k/

8 https://www.librec.net

9 http://lenskit.org

 user-based collaborative filtering,

 matrix factorization (FunkSVD),

 slope-one rating prediction.

The linear weighted hybrid recommender mechanism is also provided, which allows to combine two

recommender lists.

To evaluate the performance of build algorithms, two groups of metrics are supported: prediction accuracy

metrics (e.g., RMSE, MAE, Coverage) and top-n (or ranking) metrics (e.g., MAP, MRR, Precision, Recall,

and nDCG).

Since the toolkit is supported by the one of major recommenders research group, the community is highly

active.

3.7 MyMediaLite10

The library was created and currently is maintained by the research group at University of Hildesheim [Gantner

et al., 2011]. Thanks to its academic background, it has been utilized in over 20 research papers. There are

several algorithms implemented in the library, while in addition, own approaches are supported as well. Two

basic scenarios are feasible – the rating prediction and the item prediction:

 Item recommenders (e.g., Random, Most popular, Incremental),

 Rating prediction (e.g., SlopeOne, BPSO, Latent-feature log linear, Matrix factorization with factor-wise

learning).

For the hyperparameter optimization, a grid search and the Nealder-Mead algorithm is used. As a part of the

library, a weighted hybrid recommendation is also provided.

Evaluation module includes the cross-validation and the online evaluation for the several standard metrics

(e.g., MAE, RMSE, AUC, nDCG, Precision). MyMediaLite also supports the real-time incremental updates

for the selected recommenders.

3.8 Easyrec11

Easyrec service is made available for the public usage by using the instance provided by the Smart Agent

Technologies of the Research Studios Austria. However, the source code is accessible and allows to run an

own instance. Easyrec also supports the third-party plugins to integrate with the popular web-based

applications (e.g., Drupal, Mediawiki) via the RESTful Web services.

Several non-personalized and personalized algorithms are already implemented within the service:

 Bought together,

 Popular,

 SlopeOne,

 Association rule miner.

The service is designed such that there is no need to implement any recommenders, which partially limits its

possibilities, though. Also, there is no evaluation support provided within the service.

3.9 PredictionIO12

PredictionIO is currently an incubating project of Apache covering the predictive engines for various machine

learning tasks. The platform consists of three parts (Figure 1.4.):

 core machine learning stack (intended for building, evaluating and deploying algorithms),

 event server (unifying the events from multiple platforms),

 a template gallery (a storage of algorithm implementations).

10 http://www.mymedialite.net

11 http://easyrec.org

12 http://predictionio.incubator.apache.org

The recommenders template gallery contains a number of implementations aiming at the specific tasks (e.g.,

in the domain of e-shops):

 Collaborative filtering – user and item based,

 Content based – products similarity,

 Association rules, Frequent pattern,

 Complimentary purchases,

 Personalized ranking,

 Hybrid recommendations.

Among the recommender templates, also a classification, regression, clustering, and NLP tasks are supported.

The hybrid idea is supported in each of these tasks, while various combining (ensemble) mechanism can be

utilized.

An evaluation of the performance is provided by the Tuning and Evaluation module, which supports the

optimal parameters search and standard evaluation metrics (e.g., Precision, Recall, Accuracy).

PredicionIO is a highly scalable platform as it bases on Apache Hadoop, HBase, Spark and ElasticSearch

(also available as Docker container). The project benefits from the extensive documentation with a plenty of

examples and highly active community of the developers.

Fig. 1.4. PredictionIO core components12.

3.10 FluRS13

Build in Python, FluRS is a small open-source project for an online item recommendation for Python. Its main

idea is to provide the “fluent”, i.e., incremental recommendation algorithms. Several algorithms are

implemented, such as:

 Incremental collaborative filtering (based on the kNN),

 Incremental Matrix factorization and Matrix factorization with BPR optimization,

 Incremental Factorization machines.

A native support for the hybrid recommenders is not provided, on the contrary several metrics for the

performance evaluation are available (e.g., MAP, MRR, Precision, Recall). As the project is relatively small

and new, the documentation is still evolving.

13 https://github.com/takuti/flurs

3.11 Seldon14

Seldon is a platform supporting machine learning tasks intended for the deploy in the production. It runs within

a Kubernetes Clusters and supports several model-building tools. Two basic endpoints are available:

 Prediction (several Python pipelines support),

 Recommendation (similar users, latent factor models, association rules, content based, collaborative,

hybrid).

Seldon is capable of the weighted and cascading combination of several algorithms and also allows to

implement an own hybridization approach. The process of generating recommendations is divided into the

offline and the real-time part (Figure 1.5.).

Fig. 1.5. Seldon recommendation components14.

The platform supports extensive monitoring and analytics via the third-party applications. Also, a paid support

for commercial projects is available.

Seldon community is highly active, which results in a rich documentation with many examples.

3.12 Recommenderlab15

Framework Recommenderlab aims at providing general research infrastructure rather than to create

recommender applications. Authors focus on optimizing the process of experiments covering efficient data

handling, easy incorporation of algorithms and evaluation [Hahsler, 2017]. Several algorithms are available

within the framework:

 Collaborative filtering – user and item based,

 Association rules,

 Most popular, Random,

 Hybrid recommenders – weighting scheme.

The framework supports standard evaluation metrics (e.g., MAE, RMSE, ROC, Precision, Recall). Similarly,

the cross-validation, bootstrap sampling serves for the model performance comparison. As a standard for the

R libraries, Recommenderlab is well documented and a variety of examples is included in the documentation.

3.13 Prea16

Toolkit Prea is focused on the collaborative filtering approaches [Lee et al., 2012]. Natively, there is no

hybridization technique available, but the support for the own recommenders is provided. Comparing to the

14 https://www.seldon.io
15 http://lyle.smu.edu/IDA/recommenderlab
16 http://prea.gatech.edu

Mahout or MyMedia, Prea also implements several Matrix factorization approaches. Moreover, many

additional algorithms are implemented:

 Random, Constant, Average,

 User and Item based, Slope-One,

 Matrix factorization – SVD, NMF, PMF.

For the evaluation of the performance, the toolkit has built-in some basic metrics (e.g., RMSE, MAE, nDCG).

Surprisingly, Precision and Recall are not supported. For the data split, a cross-validation is supported. In [Lee

et al., 2012], the authors compared the implementations of the algorithm to the MyMedia framework resulting

in the very similar values for MAE and RMSE metrics respectively.

3.14 Duine17

Duine is rather a smaller framework mainly focused on the predictive tasks for the recommendation. Its idea

is based on a concept of plugins (e.g., profile models, feedback processors). From the hybrid recommenders

perspective, the switching mechanism is utilized. Interesting feature of Duine is an Explanation API, which

helps with creating user-friendly explanations for the end-users. Several prediction techniques are

implemented:

 Average,

 User-based collaborative filtering,

 Content-based,

 Case-based reasoning.

The framework provides a variety of practical examples; however, the last update comes from 2009. Despite

this, it can be used as a solid starting point for the own implementations.

3.15 Summarization

Whether attempting to create a new recommender, or using an existing one, recommendation libraries can be

useful during the whole development process. However, it is sometimes cumbersome to choose a proper one.

Firstly, it is important to know, which task we aim to do – a rating prediction or an item recommendation

(i.e., a Top-N item recommendation). In fact, nearly every library that is capable of the rating prediction can

be used for the item recommendation task as well (items can be sorted by their predicted ratings and returned

in a Top-N list). However, some libraries are adapted to the item recommendation task and also utilize various

techniques in order to improve the order of the recommended items (e.g., learning to rank) with respect to the

ranking metrics (such as precision, or recall). One notable example is a LightFM library that uses various loss

functions that are meant to optimize the ranking of the items (e.g., Weighted approximate-rank pairwise).

In the training and evaluation phase, the dataset (about users, items, and their interactions) plays an

important role. One source is to use the existing recommendation datasets (such as MovieLens; we further

describe several available datasets later) or to use the custom ones. The main advantage of the existing datasets

is that we are able to compare our results with the research community without the need of implementing the

state-of-the-art techniques. However, when creating a recommender for the production environment, there is

also a need to evaluate the performance of the recommender on custom data. Here, we may utilize the pre-

implemented state-of-the-art recommendation methods.

Some of the libraries support data preprocessing, e.g., the normalization. For instance, (e.g., Surprise) offer

tools to handle data pre-processing, or machine learning libraries can be utilized (such as Scikit-learn18 for

Python).

Finally, an important criterion is whether we plan to deploy our recommendation technique to a production

environment. This can be usually achieved using every library listed above, however, several of them are more

suitable for this task and support the whole pipeline of the process of the recommendation: data preprocessing

17 http://www.duineframework.org
18 http://scikit-learn.org

and storage, model training and storage, evaluation, and serving recommendation. Also, there are other relevant

factors:

 Do we need to scale to many users (i.e., the process of serving recommendation need to be fast)?

 Do we need to keep the recommendation model up-to-date (i.e., method of recommendation should be

capable of a frequent model training without any significant impact on the performance)?

 Is it possible to perform an incremental model updates?

Examples of the libraries that are suitable for the production environment are PredictionIO and Seldon.

Practical evaluation considerations

There are several best practices that should be followed when evaluating a recommender system. We list some

common principles that are applicable to any technique and add those specific for the hybrid recommendation

techniques.

4.1 Defining an experiment

One of the first important things that need to be considered during the evaluation is the dataset. Here a correct

splitting criterion should be chosen. A common approach is to split the whole dataset into the training and the

test set. Usually, it is also suggested to interchange these sets and conduct several successive experiments, such

that the train and test set is always different (e.g., k-fold cross validation).

Besides the train and tests sets, also a validation set is important. Especially, in a case of hybrid

recommenders, where we need to set and test various parameters, weights, and combinations, the experiments

conducted on a validation set are a necessity. The validation set need to be different from the train and test

sets.

In the domain of recommenders, there are two basic types of experiments: online and offline. Offline

experiments are conducted using the pre-collected datasets [Ricci et al., 2015] (for details see Section 1.4.4.).

These experiments are usually performed as soon as the first prototype of the recommender is available and

are intended to well-tune the parameters and to explore recommender basic characteristics.

The offline experiments should be not interpreted as the exact measure of the recommender performance.

They provide rather the worst-case scenario estimate (as the users do not have a chance to see recommendations

and to interact with them).

In an online experiment scenario, we are able to measure how the recommender system influences user

behavior, while he/she interacts with the presented items [Ricci et al., 2015]. Clearly, the advantage is that the

experiment is conducted with the real users performing the real tasks. Usually, users are split into the groups,

where each group experience a different recommendation setup (A/B testing). There are also some drawbacks,

such as the risk that the users will be faced a non-relevant recommendation and they leave the experiment too

early. There, an online study is done after the offline experiments since the recommender is supposed to be

well-tuned and several parameters are already set.

4.2 Evaluation in hybrid recommenders

Since the hybrid recommender may consist of different underlying recommender techniques, this need to be

considered during the evaluation. This also depends on the used combination strategy. Therefore, there are

several approaches that were adopted by the researches and were used during their evaluation phase.

The most common practice is to compare the performance of the hybrid recommender (as a whole) to the

other state-of-the-art techniques. The state-of-the-art techniques can be either baseline monolithic techniques

(such as collaborative filtering) or other hybrid recommenders.

Problem with such a simple approach is that the hybrid recommender is a black-box and we do not know

how the underlying recommenders perform. Therefore, many authors also examine different setups of hybrids

with respect to the choice of underlying recommenders, used features, and parameters.

Specifically, for the cascade hybrid combination [Lampropoulos et al., 2012], it is suitable to focus on the

improvement of the second-level recommender with respect to the first-level recommender (i.e., whether a

second-level recommender is viable to improve the performance of the first-level recommender). However, as

we have discussed before, it also important to have the first-level recommender well-tuned and evaluated, as

well.

In the case of hybrids that combine results of two or more monolithic recommenders, it is more appropriate

to evaluate these monolithic approaches separately and then as a whole. For instance, different weights should

be set in order to tune the weighted recommender. We can go even further and analyze all the underlying

recommenders to compare whether their predictions are similar and how close they are to each

other [Hornung et al., 2010].

For instance, in feature combination hybrids, various feature configurations can be

investigated [Zanker et al., 2009]. Here, not only different inputs should be considered, but also a different

weighing of these inputs. Moreover, if we keen to bring a more personalized experience, a relevance scores of

the inputs can be measured for the user (of group of users) separately.

An initial motivation to create hybrid recommenders was not only to improve performance, but also to

address the issues associated with the monolithic approaches. However, here we need to focus on the data that

we analyze and also for the metrics we choose.

To verify a cold-start problem, a performance for the new user, new item, or new context need to be

investigated [Braunhofer et al., 2014]. Based on the combination strategy, several comparisons need to be

utilized for each scenario. To illustrate the cold-start problem, there should be also suitable data containing

users (or items, or contexts) with the low number of ratings. In some scenarios, these cold-start users (or items,

or contexts) may be evaluated separately. If the dataset does not contain such data, we may simulate the cold-

start problem by removing the selected number of interactions.

Similarly, for the gray and black sheep users, we first need to identify those users and measure how the

recommendation quality differs based on the approach. However, it is usually necessary to verify whether a

recommender is able to provide relevant items to non-extreme (i.e., other than gray and black sheep) users.

 [Miranda et al., 1999] investigate whether gray sheep users would benefit from using hybrid

recommendation rather than collaborative or content-based only. Evaluation procedure was conducted using

an online experiment, where these users were actually a part of the study. [Ghazanfar et al., 2014] utilized

state-of-the-art datasets and performed offline evaluation, where gray sheep users were separated from the

whole dataset and the performance of monolithic approaches was compared to the performance of the

switching hybrid.

An issue of diversity is measured as a metric itself – we can measure how diverse the resulting

recommendations are or, more precisely, how diverse their properties are. For instance, [Burke et al., 2014]

analyzed user-based diversity (how users differ within group) and tag-based diversity (how different item tags

are) and compared them between three different hybrid approaches.

4.3 Evaluation frameworks

Usually, a framework which supports prediction tasks for the recommendation also supports some kind of the

performance evaluation. There are, however, frameworks designed specifically for the evaluation of

recommender algorithms.

4.3.1 WrapRec19

WrapRec is a configuration based open-source project (under the MIT license) written in C#. Its idea is to

support a fast evaluation of the custom algorithms or the algorithms adopted from the other frameworks [Loni

and Said, 2014]. WrapRec architecture is split to three parts (Figure 1.6.).

First one is a module which brings a native support to MyMediaLite and LibFM frameworks. Moreover,

also the third-party libraries and custom build recommenders can be evaluated by extending WrapRec. The

second module is the Split, which defines the way the data are handled from the train and test evaluation

perspective. After the data is loaded through Data reader, they are stored in Data container. By extending the

19 http://babakx.github.io/WrapRec

split class, a split can be fully customized. Finally, the metrics used for the evaluation are defined in the

Evaluation context module. Multiple evaluators are supported.

The WrapRec is a part of the research project CrowdRec based on the Delft University of Technology. It

comes with an extensive documentation including several examples.

4.3.2 Rival20

Another open-source toolkit designed especially for the recommender evaluation is Rival, which is written in

Java under LGPL v2.1 license. As it is quite new toolkit, its documentation needs to be improved in the future.

Rival consists of four basic modules (important from our point of view).

The evaluation module implements several metrics and strategies for the evaluation. Error metrics include

MAE and RMSE, while Precision, Recall, nDCG and MAP as ranking metrics are included.

A recommendation module integrates algorithms from the LensKit and Apache Mahout, which provides a

complement to their evaluation tools. The split module is, as expected, responsible for the train and test data

splitting. Standard Cross validation is supported. Moreover, a random split and temporal split (considering a

timestamp of instances) is available.

Last, but not least, the example module provides examples of the toolkit usage on a real-case scenario. The

toolkit is available via the Maven repository.

Fig. 1.6. WrapRec evaluation framework architecture19.

4.4 Overview of the datasets

Since the domain of recommendation is largely connected to the industry, there are many real-world datasets

available that are being used in research papers. We summarize the available datasets suitable for the

collaborative filtering recommendation in the domains such as movies, music, or e-commerce (Table 1.3). We

opt for the datasets covered by the research papers. The descriptive characteristics are supplemented by the

comparison of the performance in the rating and ranking prediction (Table 1.4).

A majority of the listed datasets is intended to be used for the evaluation of the explicit feedback, namely

to predict the ratings of the items. However, in many scenarios, these ratings can be also used as an implicit

feedback, as well and can be utilized to evaluate the Top-N collaborative recommendations. In addition, many

selected datasets contain not only the interactions between users and items, but also the characteristics of either

the users (demography) or the items (content characteristics) that can be utilized in the hybrid collaborative

recommendation.

20 http://rival.recommenders.net

Table 1.3. Overview of available recommendation datasets.

Dataset Released Ratings Users Items Sparsity (%)

MovieLens 100k 10/2016 100K 1K 9K 98.889

MovieLens 1M 2/2003 1M 6K 4K 95.833

MovieLens 10M 1/2009 10M 72K 10K 98.611

MovieLens 20M 10/2016 20M 138K 27K 99.463

MovieLens 26M 8/2017 26M 270K 45K 99.786

DouBan 2011 16.8M 129K 59K 99.779

Flixter 9/2010 8.2M 1M 49K 99.983

Last.fm 1K 5/2010 19.1M 992 1.5M 98.716

Last.fm 360K 3/2010 17.6M 359K 294K 99.983

Yahoo Music R1 3/2004 11.5M - 98K -

Yahoo Music R2 2006 717M 1.8M 136K 99.707

Yahoo Music R3 2006 300K 15K 1K 98.000

Yahoo Music KDD Cup Track 1 2011 262M 1M 625K 99.958

The Million Playlist Dataset 1/2018 1 000 000 playlists with 5-250 of tracks

Epinions (product ratings) 10/2007 664K 50K 140K 99.990

Epinions

(trust ratings)
10/2007 487K - -

-

Amazon Product Data 2015 142M - - -

Yelp 2018 5.2M - 174K -

Book-Crossing 9/2004 1.1M 279K 271K 99.999

Jester Dataset 1 2003 4.1M 73K 100 43.836

Jester Dataset 2 2012 2.2M 79K 150 81.435

Movies has been one of the most dominant domains in collaborative filtering recommendation for many years.

Its popularity is ascribed namely to the Netflix Prize competition, however, also to a great availability of the

datasets. The MovieLens datasets21 published by the GroupLens contain movie ratings and tagging activity of

the users on the online portal MovieLens.org. Basic content information is also available, but this can be easily

extended through the mapping to the external sources – IMDB22 and TMDB23. Douban is the Chinese social

network allowing users to rate, review and recommend movies, music, and books [Ma et al., 2011]. Ma et al.

crawled the movie section of the portal and besides the ratings they obtained also 1.7M user-to-user

relationships (friends links). Similarly, user-to-user relationships are also available for the Flixster dataset

[Jamali and Ester, 2010]. From totally 1M users, the user-movie ratings are available for only 150K of them.

Although the number of ratings is considerably lower than in the case of MovieLens or DouBan, Flixster

dataset stands out in much greater number of social interactions (26.7M).

Table 1.4. Results of the evaluation of recommendation approaches using the selected datasets.

Dataset RMSE MAE Precision Recall F-score AUC

MovieLens

100k
0.8906A 0.3526A

MovieLens 1M 0.8333B -

MovieLens

10M
0.7764C -

MovieLens

20M
0.7762C -

Flixter 1.0954D 0.046E

DouBan 0.6988D 0.082E

Last.fm 1K - 0.301F

Yahoo Music

T1
21.2634G

Yahoo Music

T1
21.879H

Yelp 1.0072I 0.7920I 0.63J 0.85J

21 https://grouplens.org/datasets/movielens/

22 https://www.imdb.com/

23 https://themoviedb.org/

Yelp 0.0152K

Epinions 0.9321L

Epinions 0.825M

Amazon

(clothing)

0.7961 /

0.7317N

Amazon

(home)

0.7155 /

0.6396N

Amazon 0.033K

Book-Crossing

(item-based)
 0.0364O 0.0732O

Book-Crossing

(user-based)
 0.0369O 0.0576O

Jester Dataset 1 4.1229P 3.1606P

A http://www.mymedialite.net I [Hu et al., 2014]

B [Lee et al., 2013] J [Tsai, 2016]

C [Strub et al., 2016] K results are reported at F-Score@5; [Chen et al., 2016]

D [Ma et al., 2011] L detailed results are reported in the paper; [Ma et al., 2008]

E [Wu et al., 2017] M [Pham et al., 2011]

F [Yang et al., 2012] N first result is a warm-start setting, second result is a cold-start

setting; [Liu et al., 2017]

G [Zheng et al., 2012] O [Ziegler et al., 2005]

H [Koenigstein et al., 2011] P [Takacs et al., 2009]

Yahoo published several recommendation datasets in the domain of music with varying amount of

information24. Yahoo Music R1 contains the rating activity of users over artists (i.e., the items are artists).

Yahoo Music R2, a much bigger dataset, contains the rating activity of users on the songs. In addition, there

are also metadata available (such as artist, album, genres), though these metadata are represented only using

the anonymous identifiers. R2 dataset was used in an evaluation of a data-parallel low-rank matrix

factorization [Schelter et al., 2013], where authors applied MapReduce technique to improve the performance

of the computations in order to better match production environment requirements. The third dataset – Yahoo

Music R3 contains a sample of ratings for the songs that were collected from the users’ interactions and from

the online survey conducted by Yahoo Research.

As a part of the KDD Cup 2011 competition25, another music ratings dataset was released that contained

10-years (1999-2009) rating activity on four types of items: tracks, albums, artists, and genres. There are also

four different versions of this dataset available varying by the amount of rating activity, where one version is

focused on the learning-to-rank problem rather than rating prediction.

Last.fm is a popular online service intended to provide music recommendations based on the music that

users listen on their devices. In 2010 there were two datasets released [Celma, 2010]: Last.fm 1K26 and Last.fm

360K27. Last.fm 1K contains full listening history of 992 users represented by the tuple user-artist-track.

Last.fm 360K provides history for 359,347 users, however, this dataset contains only information about the

playcount of the artists. Both datasets contain users’ demography (gender, age, country, sign-up date) and

MusicBrainz28 ID for artists and tracks (if available), which allows to extend the dataset for additional

metadata.

For the task of the playlist continuation prediction The Million Playlist Dataset (MPD) was published as a

part of the Recommender Systems Challenge 201829. Provided dataset contains 1 million playlists created by

the U.S. users in the online music streaming service Spotify30. When the dataset was generated, there were

several criteria for picking up the representative playlists (e.g., minimum number of artists in a playlist,

minimum number of albums in a playlist). In comparison to other datasets available in this domain, one

24 https://webscope.sandbox.yahoo.com/catalog.php?datatype=r

25 http://www.kdd.org/kdd2011/kddcup.shtml

26 http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html

27 http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-360K.html

28 https://musicbrainz.org

29 https://recsys-challenge.spotify.com/

30 https://www.spotify.com

disadvantage is the missing information about the playlist authors (i.e., user ids). Since at the time of writing

this book the challenge was just announced, there were no published papers using this dataset.

Amazon31 is one of the most famous online retailers with roughly millions of daily users. In 2015 Julian

McAuley released32 the Amazon product reviews dataset [McAuley et al., 2015], which contained the reviews

and product metadata from the May 1996 – July 2014 period. Reviews consist of numerical ratings, textual

reviews, and helpfulness votes. Product metadata include descriptions, categories, price, brand, related

products, sales rank, and visual features extracted from the product images (4096-length feature vector

extracted using the deep convolutional neural network). Reviews can be retrieved as a whole or as the subsets

distinguished by the product categories. In addition, the author provides the raw ratings (a tuple user-item-

rating-timestamp) that can be suitable for the training using some of the recommender systems libraries (e.g.,

MyMediaLite).

Epinions.com was an online service (run by eBay, now discounted) more focused on the opinions of the

users on various items (e.g., cars, books, movies, software) [Massa and Avesani, 2007]. Moreover, users were

able to “rate” other reviews and express their trust to the reviews of these users (i.e., which reviews they find

valuable and which they found offensive, inaccurate, or not valuable at all). Massa et al. crawled Epinions.com

website in order to evaluate a trust-aware collaborative filtering recommender. The dataset33 that they released

contained both the ratings of the users on the products, but also the ratings of users on other users’ reviews

(i.e., the users’ trust statements).

Another dataset containing reviews is from Yelp34, where the businesses are being reviewed. Here, the

dataset is published directly by Yelp and is updated periodically, since it is a part of an ongoing research

challenge. It contains more than 5 million reviews of 174K businesses supplemented by 200K pictures.

Moreover, there are 1.1M tips by 1.3M users available and also aggregated hourly check-ins for each business.

Besides the reviews and check-ins, there are several metadata about the businesses (such as address, average

rating, whether it is a take-out restaurant, availability of parking, business categories, …) and the users (such

as list of friends, votes given by the user, opinions received by other users, …).

In a book domain, Book-Crossing dataset35 was released, which contains implicit and explicit ratings (on a

scale 1-10) of people on books from Book-Crossing.com [Ziegler et al., 2005]. Book-Crossing36 is an online

community portal, where the users may exchange books between themselves. There are also demographic data

available (users’ location and age) and books metadata (title, author, year of publication, publisher, cover

images).

Another popular dataset among the research community is from Jester Online Recommender System37.

Dataset contains users’ ratings on jokes on a rating scale from -10 to 10 [Goldberg et al., 2001]. What is

specific for this dataset is that the number of items is very low (100 and 150), thus resulting in low sparsity of

the rating matrix.

4.5 Summarization

Generally, an evaluation of any recommender system is a systematic process where a researcher need to take

into account several aspects: experiment setup, used data, examined metrics, and desired outcomes. Especially,

if we think of hybrid recommender systems, there also other factors, such as whether we need to evaluate any

monolithic recommenders, or whether we need to evaluate various combinations of attributes in data.

Existing recommendation libraries may simplify this process by providing pre-implemented tools. There

are also libraries that are focused specifically on the recommender systems evaluations. In case of data, there

are several datasets from a couple of domains publicly available, which allows not only to easily evaluate new

31 https://www.amazon.com

32 http://jmcauley.ucsd.edu/data/amazon/

33 http://www.trustlet.org/downloaded_epinions.html

34 https://www.yelp.com/dataset

35 http://www2.informatik.uni-freiburg.de/~cziegler/BX/

36 https://www.bookcrossing.com

37 http://eigentaste.berkeley.edu/

recommendation approaches but also to be more transparent while comparing the results (of evaluation) with

the research community.

Conclusions

Recommender systems have been proved beneficial in many domains. There are several types of

recommendation techniques, such as content-based, collaborative, or demographic that are utilized with respect

to the domain, user characteristics, item characteristics, and a goal. However, many of these techniques still

suffer from various issues that have their roots namely in a lack of data or a specific user behavior.

Hybrid recommender systems were designed to combine the advantages of these techniques in order to

solve their major issues and to improve an overall recommendation performance. There are several hybrid

combinations that we may choose from and can be used as a template of how to combine two or more

recommendation techniques.

Each combination may be suitable for a different scenario and in a different domain. Moreover, we should

take into consideration their advantages and disadvantages. It is also important to note that these combinations

are not tightened to any particular recommendation techniques. In addition, researchers are not limited to basic

combinations, but there are many parameters that can be tuned (e.g., weights, switching criteria). Allowing to

tune the parameters brings a possibility to create another level of personalization.

There are several issues related to collaborative filtering that can be reduced by employing a hybrid

recommender. Most notable are the cold-start problem, over-specialization, lack of diversity, user extremes,

and sparsity. Collaborative filtering may either suffer from these problems or can be used a solution to this

problems with the combination of another technique. A major advantage of hybridization is that it enables

system to recommend items in some scenarios that collaborative filtering may fail in (such as a new item or a

user extreme).

Hybrid recommenders have become a part of many frameworks and libraries in the domain of

recommendation. These libraries are also available in various programming languages (such as R, Python,

Java, Scala) and support different hybrid combinations. Moreover, many of these libraries are also extendable

(e.g., Surprise, Easyrec, FluRS), which allows researchers to easily create their own combinations and yield

more valuable research results. They also consist of many other algorithms that are related to the

recommendation, such as similarity measures, plenty of matrix factorization approaches, or prediction

algorithms.

In most cases, the libraries also provide tools to evaluate performance of the recommendation and measure

some basic and also advanced metrics. For this purpose, several state-of-the-art datasets were created and are

publicly available as well.

Evaluation of hybrid recommenders inherits many specifics of basic recommendation techniques. Firstly,

it is important to pick a suitable dataset and split the data into train and test sets. While designing an experiment,

we may opt into online or offline evaluation. Choice of the evaluation metrics should be performed with the

respect to the recommendation task.

There are also specifics that are related to the evaluation of the hybrid recommenders. Here we should not

only evaluate hybrid recommender as a whole, but also consider evaluating particular underlying

recommenders, as well as their parameters. Moreover, if a hybrid recommender was designed to solve the

recommendation issues, it is necessary to investigate whether (and how) the hybrid was able to tackle them.

There are also some evaluation frameworks that were designed specifically for this purpose: WrapRec and

Rival. Both of them allow to use existing libraries and algorithms. They also offer evaluation measures that

are related to the recommendation tasks. Moreover, they are open-source, which allows researchers to do a

further development.

Besides all the advantages of the hybrid recommenders, the hybridization may bring up some issues.

Hybrids suffer from the problem of the scalability since the training phase may require additional time cost.

Another related issue is that we need more data in order to well-tune parameters of hybrid combinations, which

is not needed in monolithic approaches.

Yet there are still some unexplored hybrid combinations that were not studied and verified in current

literature. Also, many state-of-the-art approaches are only compared to monolithic techniques, with missing

comparison of hybrids between each other. There are also many domains, where the hybrid recommenders

were not applied yet.

References

Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recommender systems: a survey of the state-of-the-art and

possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734-749

Aggarwal, C. C. (2016). Recommender Systems: The Textbook. Cham: Springer. ISBN: 978-3-319-29657-9

Balabanovic, M. and Shoham, Y. (1997). Fab: Content-based, collaborative recommendation. Commun. ACM, 40(3), 66-72

Baltrunas, L., Kaminskas, M., Ludwig, B., Moling, O., Ricci, F., Aydin, A., Luke, K.-H., and Schwaiger, R. (2011). InCarMusic:

Context-Aware Music Recommendations in a Car, pp. 89-100. Springer Berlin Heidelberg, Berlin, Heidelberg.

Barragans-Martinez, A. B., Costa-Montenegro, E., Burguillo, J. C., Rey-Lopez, M., Mikic-Fonte, F. A., and Peleteiro, A. (2010). A

hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value

decomposition. Information Sciences, 180(22), pp. 4290-4311.

Basu, C., Hirsh, H., and Cohen, W. (1998). Recommendation as classification: Using social and content-based information in

recommendation. In Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications

of Artificial Intelligence, AAAI ’98/IAAI ’98, pp. 714-720, Menlo Park, CA, USA. American Association for Artificial

Intelligence.

Braunhofer, M., Codina, V., and Ricci, F. (2014). Switching hybrid for cold-starting context-aware recommender systems. In

Proceedings of the 8th ACM Conference on Recommender Systems, RecSys ’14, pp. 349-352, New York, NY, USA. ACM.

Bostandjiev, S., O’Donovan, J., and Hollerer, T. (2012). Tasteweights: A visual interactive hybrid recommender system. In Proceedings

of the Sixth ACM Conference on Recommender Systems, RecSys ’12, pp. 35-42, New York, NY, USA. ACM

Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 12(4), pp.

331-370.

Burke, R. and Ramezani, M. (2011). Matching Recommendation Technologies and Domains, pp. 367-386. Springer US, Boston, MA.

Burke, R., Vahedian, F., and Mobasher, B. (2014). Hybrid Recommendation in Heterogeneous Networks, pages 49-60. Springer

International Publishing, Cham.

Celma, O. (2010). Music Recommendation, pp. 43–85. Springer Berlin Heidelberg, Berlin, Heidelberg.

Chen, X., Qin, Z., Zhang, Y., and Xu, T. (2016). Learning to rank features for recommendation over multiple categories. In Proceedings

of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’16, pp. 305–

314, New York, NY, USA. ACM.

Cremonesi, P., Turrin, R., and Airoldi, F. (2011). Hybrid algorithms for recommending new items. In Proceedings of the 2nd

International Workshop on Information Heterogeneity and Fusion in Recommender Systems, HetRec ’11, pp. 33-40, New York,

NY, USA. ACM.

de Campos, L. M., Fernandez-Luna, J. M., Huete, J. F., and Rueda-Morales, M. A. (2010). Combining content-based and collaborative

recommendations: A hybrid approach based on bayesian networks. International Journal of Approximate Reasoning, 51(7): pp.

785-799.

Cella, L., Cereda, S., Quadrana, M., and Cremonesi, P. (2017) Deriving Item Features Relevance from Past User Interactions.

Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization, ACM, pp. 275-279.

Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., and Sartin, M. (1999). Combing content-based and collaborative

filters in an online newspaper.

Ekstrand, M., D., Ludwig, M., Konstan, J., A., and Riedl, J., T. (2011). Rethinking the recommender research ecosystem:

reproducibility, openness, and LensKit. In Proceedings of the fifth ACM conference on Recommender systems (RecSys '11).

ACM, New York, NY, USA, pp. 133-140.

Ekstrand, M. and Riedl, J. (2012). When recommenders fail: Predicting recommender failure for algorithm selection and combination.

In Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys ’12, pp. 233-236, New York, NY, USA. ACM.

Elahi, M., Braunhofer, M., Ricci, F., and Tkalcic, M. (2013). Personality-based active learning for collaborative filtering

recommender systems. In Proceeding of the XIIIth International Conference on AI*IA 2013: Advances in Artificial

Intelligence - Volume 8249, pp. 360-371, New York, NY, USA. Springer-Verlag New York, Inc

Gantner, Z., Rendle, S., Freudenthaler, Ch. and Schmidt-Thieme, L. (2011). MyMediaLite: a free recommender system library. In

Proceedings of the fifth ACM conference on Recommender systems (RecSys '11). ACM, New York, NY, USA, pp. 305-308.

Ghazanfar, M. A. and Prugel-Bennett, A. (2014). Leveraging clustering approaches to solve the gray-sheep users problem in

recommender systems. Expert Syst. Appl., 41(7), pp. 3261-3275.

Goldberg, K., Roeder, T., Gupta, D., and Perkins, C. (2001). Eigen-taste: A constant time collaborative filtering algorithm. Information

Retrieval, 4(2):133–151.

Gomez-Uribe, C. A. and Hunt, N. (2015). The Netflix Recommender System: Algorithms, Business Value, and Innovation. ACM

Trans. Manage. Inf. Syst., 6(4), pp. 13:1-13:19.

Guo, G., Zhang, J., and Yorke-Smith, N. (2016). A novel evidence-based bayesian similarity measure for recommender systems. ACM

Trans. Web, 10(2), pp. 8:1–8:30.

Hahsler, M. (2017). recommenderlab: A Framework for Developing and Testing Recommendation Algorithms. Technical report.

Harper, F. M. and Konstan, J. A. (2015). The movielens datasets: History and context. ACM Trans. Interact. Intell. Syst., 5(4), pp.

19:1-19:19.

Herlocker, J. L., Konstan, J. A., and Riedl, J. (2000). Explaining collaborative filtering recommendations. In Proceedings of the 2000

ACM Conference on Computer Supported Cooperative Work, CSCW ’00, pp. 241-250, New York, NY, USA. ACM

Hornung, T., Ziegler, C.-N., Franz, S., Przyjaciel-Zablocki, M., Schatzle, A., and Lausen, G. (2013). Evaluating hybrid music

recommender systems. In Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI)

and Intelligent Agent Technologies (IAT) - Volume 01, WI-IAT ’13, pp. 57-64, Washington, DC, USA. IEEE Computer Society

Hu, L., Sun, A., and Liu, Y. (2014). Your neighbors affect your ratings: On geographical neighborhood influence to rating prediction.

In Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR

’14, pp. 345–354, New York, NY, USA. ACM.

Hug, N. (2017). Surprise, a Python library for recommender systems. http://surpriselib.com

Jamali, M. and Ester, M. (2010). A matrix factorization technique with trust propagation for recommendation in social networks. In

Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10, pp. 135–142, New York, NY, USA. ACM.

Kim, J. K., Jang, M. K., Kim, H. K., and Cho, Y. H. (2009). A hybrid recommendation procedure for new items using preference

boundary. In Proceedings of the 11th International Conference on Electronic Commerce, ICEC ’09, pp. 289-295, New York,

NY, USA. ACM.

Kim, S.-C., Park, C.-S., and Kim, S. K. (2012). A Hybrid Recommendation System Using Trust Scores in a Social Network, pp. 107–

112. Springer Netherlands, Dordrecht.

Koenigstein, N., Dror, G., and Koren, Y. (2011). Yahoo! music recommendations: Modeling music ratings with temporal dynamics

and item taxonomy. In Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys ’11, pp. 165–172, New

York, NY, USA. ACM.

Koren, Y. (2009). The bellkor solution to the netflix grand prize.

Kula, M. (2015). Metadata Embeddings for User and Item Cold-start Recommendations. In Proceedings of the Workshop on New

Trends in Content-Based Recommender Systems. Ceur-WS, pp. 14-21.

Lampropoulos, A. S., Sotiropoulos, D. N., and Tsihrintzis, G. A. (2012). Evaluation of a cascade hybrid recommendation as a

combination of one-class classification and collaborative filtering. In 2012 IEEE 24th International Conference on Tools with

Artificial Intelligence, volume 1, pp. 674-681

Lee, J., Kim, S., Lebanon, G., and Singer, Y. (2013). Local low-rank matrix approximation. In Dasgupta, S. and McAllester, D., editors,

Proceedings of the 30th International Conference on Machine Learning, volume 28 of Proceedings of Machine Learning

Research, pp. 82–90, Atlanta, Georgia, USA.

Lee, J., Sun, M., and Lebanon, G. (2012). PREA: personalized recommendation algorithms toolkit. J. Mach. Learn. Res. 13, 1

(September 2012), pp. 2699-2703.

Liu, J., Dolan, P., and Pedersen, E. R. (2010). Personalized news recommendation based on click behavior. In Proceedings of the 15th

International Conference on Intelligent User Interfaces, IUI ’10, pp. 31-40, New York, NY, USA. ACM.

Liu, Q., Wu, S., and Wang, L. (2017). Deepstyle: Learning user preferences for visual recommendation. In Proceedings of the 40th

International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’17, pp. 841–844, New

York, NY, USA. ACM.

Loni, B., and Said, A. (2014). WrapRec: an easy extension of recommender system libraries. In Proceedings of the 8th ACM

Conference on Recommender systems (RecSys '14). ACM, New York, NY, USA, pp. 377-378.

Ma, H., Zhou, D., Liu, C., Lyu, M. R., and King, I. (2011). Recommender systems with social regularization. In Proceedings of the

Fourth ACM International Conference on Web Search and Data Mining, WSDM ’11, pp. 287–296, New York, NY, USA. ACM.

Ma, H., Yang, H., Lyu, M. R., and King, I. (2008). Sorec: Social recommendation using probabilistic matrix factorization. In

Proceedings of the 17th ACM Conference on Information and Knowledge Management, CIKM ’08, pp. 931–940, New York,

NY, USA. ACM.

Massa, P. and Avesani, P. (2007). Trust-aware recommender systems. In Proceedings of the 2007 ACM Conference on Recommender

Systems, RecSys’07, pp. 17–24, New York, NY, USA. ACM.

McAuley, J., Targett, C., Shi, Q., and van den Hengel, A. (2015). Image-based recommendations on styles and substitutes. In

Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR

’15, pp. 43–52, New York, NY, USA. ACM.

McCrae, J., Piatek, A., and Langley, A. (2004). Collaborative filtering.

Miranda, T., Claypool, M., Gokhale, A., Mir, T., Murnikov, P., Netes, D., & Sartin, M. (1999). Combining content-based and

collaborative filters in an online newspaper. In Proceedings of ACM SIGIR Workshop on Recommender Systems.

Mendeley. (2017). Mrec library documentation. http://mendeley.github.io/mrec

Odic, A., Tkalcic, M., Tasic, J. F., and Kosir, A. (2013). Predicting and detecting the relevant contextual information in a movie-

recommender system. Interact-ing with Computers, 25(1), pp. 74-90.

Pham, M. C., Cao, Y., Klamma, R., and Jarke, M. (2011). A clustering approach for collaborative filtering recommendation using

social network analysis. 17(4):583–604.

Ricci, F., Rokach, L., and Shapira, B. (2015). Recommender Systems Handbook. Springer US, New York, NY, USA, 2nd edition

Ronen, R., Koenigstein, N., Ziklik, E., and Nice, N. (2013). Selecting content-based features for collaborative filtering recommenders.

In Proceedings of the 7th ACM Conference on Recommender Systems, RecSys ’13, pp. 407-410, New York, NY, USA. ACM.

Said A., and Bellogín, A. (2014). Comparative recommender system evaluation: benchmarking recommendation frameworks. In

Proceedings of the 8th ACM Conference on Recommender systems (RecSys '14). ACM, New York, NY, USA, pp. 129-136.

Schein, A. I., Popescul, A., Ungar, L. H., and Pennock, D. M. (2002). Methods and metrics for cold-start recommendations. In

Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,

SIGIR ’02, pp. 253-260, New York, NY, USA. ACM

Schelter, S., Boden, C., Schenck, M., Alexandrov, A., and Markl, V. (2013). Distributed matrix factorization with mapreduce using a

series of broadcast-joins. In Proceedings of the 7th ACM Conference on Recommender Systems, RecSys ’13, pp. 281–284, New

York, NY, USA. ACM.

Shardanand, U. and Maes, P. (1995). Social information filtering: Algorithms for automating “word of mouth”. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, CHI’95, pp. 210-217, New York, NY, USA. ACM

Press/Addison-Wesley Pub. Co.

Stern, D., H., Herbrich, R. and Graepel, T. (2009). Matchbox: Large Scale Online Bayesian Recommendations. In Proceedings of the

18th international conference on World wide web (WWW '09). ACM, New York, NY, USA, pp. 111-120.

Strub, F., Gaudel, R., and Mary, J. (2016). Hybrid recommender system based on autoencoders. In Proceedings of the 1st Workshop

on Deep Learning for Recommender Systems, DLRS 2016, pp. 11–16, New York, NY, USA. ACM.

Su, X. and Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Advances in Artificial Intelligence, 2009, pp.

4:2–4:2.

Takacs, G., Pilaszy, I., Nemeth, B., and Tikk, D. (2009). Scalable collaborative filtering approaches for large recommender systems.

J. Mach. Learn. Res., 10:623–656.

Tsai, C.-H. (2016). A fuzzy-based personalized recommender system for local businesses. In Proceedings of the 27th ACM Conference

on Hypertext and Social Media, HT ’16, pp. 297–302, New York, NY, USA. ACM.

Višnovský, J., Kaššák, O., Kompan, M. and Bieliková, M. (2014) The Cold Start: Minimal User's Rating Activity Estimation. In 1st

Workshop on Recommender Systems for Television and online Video (RecSysTV) in conjunction with 8th ACM Conference

on Recommender Systems, Foster City, USA, p. 4.

Weston, J., Bengio, S., and Usunier, N. (2010). Large scale image annotation: learning to rank with joint word-image embeddings.

Mach. Learn. 81, 1, pp. 21-35.

Wu, Q., Liu, S., and Miao, C. (2017). Modeling uncertainty driven curiosity for social recommendation. In Proceedings of the

International Conference on Web Intelligence, WI ’17, pp. 790–798, New York, NY, USA. ACM.

Yang, D., Chen, T., Zhang, W., Lu, Q., and Yu, Y. (2012). Local implicit feedback mining for music recommendation. In Proceedings

of the Sixth ACM Conference on Recommender Systems, RecSys ’12, pp. 91–98, New York, NY, USA. ACM.

Yoshii, K., Goto, M., Komatani, K., Ogata, T., and Okuno, H. G. (2008). An efficient hybrid music recommender system using an

incrementally trainable probabilistic generative model. IEEE Transactions on Audio, Speech, and Language Processing, 16(2),

pp. 435-447.

Zanker, M. (2008). A collaborative constraint-based meta-level recommender. In Proceedings of the 2008 ACM Conference on

Recommender Systems, RecSys’08, pp. 139-146, New York, NY, USA. ACM.

Zanker, M. and Jessenitschnig, M. (2009). Collaborative feature-combination recommender exploiting explicit and implicit user

feedback. In 2009 IEEE Conference on Commerce and Enterprise Computing, pp. 49-56.

Zheng, Z., Chen, T., Liu, N., Yang, Q., and Yu, Y. (2012). Rating prediction with informative ensemble of multi-resolution dynamic

models. In Dror, G., Koren, Y., and Weimer, M., editors, Proceedings of KDD Cup 2011, volume 18 of Proceedings of Machine

Learning Research, pp. 75–97. PMLR.

Zhou, T., Kuscsik, Z., Liu, J., Medo, M., Wakeling, J., and Zhang, Y. (2010). Solving the apparent diversity-accuracy dilemma of

recommender systems. Proceedings of the National Academy of Sciences, 107, 4511--4515.

Ziegler, C.-N., McNee, S. M., Konstan, J. A., and Lausen, G. (2005). Improving recommendation lists through topic diversification. In

Proceedings of the 14th International Conference on World Wide Web, WWW ’05, pp. 22–32, New York, NY, USA. ACM.

