
Hybrid collaborative recommendations: Practical 

considerations and tools to develop a recommender 

Introduction 

The diversity as a concept has been proved by the evolution to be very successful. The researches follow this 

idea in many modern approaches. The ensemble methods in the machine learning often outperform standalone 

methods. In the context of the recommender systems, similar idea is used as so-called hybrid recommenders. 

As a rule, two standard recommendation techniques became established [Balabanovic et al., 1997]: 

collaborative filtering and content-based recommendation. In a collaborative filtering a recommender relies 

on the user evaluation of the items and based on that it calculates the user and item similarity [Kim et al., 2009]. 

Such a recommender is able to find users that have a similar taste to a given user or the items that would be 

similarly rated by the other users [Balabanovic et al., 1997]. Content-based recommenders utilize content 

representation of the items (i.e., a set of attributes that characterize an item) and predict, whether a user would 

like items that are similar to those he/she preferred in the past. 

It is clear that all these techniques have their advantages and disadvantages, which researchers try to solve 

in many different ways. Luckily, characteristics of these approaches are often disjointed and thus their 

reasonable combination can result in better performing approach. 

Therefore, we adopt the following definition. Hybrid recommender systems are based on the combination 

of two or more monolithic recommendation techniques, such that the advantages of one recommender are 

utilized in order to solve the disadvantages of the other recommender [Burke et al., 2011]. Hybrid 

recommendation is sometimes referred as another recommendation technique (alongside to content-based and 

collaborative filtering) [Adomavicius et al., 2005]. 

Hybrid recommenders were introduced to increase an accuracy of existing monolithic techniques and also 

to reduce or eliminate their major drawbacks (such as the cold-start problem, sparsity, or user outliers). The 

most common technique is to employ collaborative filtering with the combination of other technique 

(e.g., content-based or knowledge-based recommender) [Burke, 2002]. However, there are also other 

combinations of techniques that are suitable depending on the studied problem and sometimes even a domain. 

Hybrid recommender systems also attracted many companies and they became employed as a part of their 

products. In the domain of news, Google developed [Liu et al., 2010] a hybrid recommender that was aimed 

to combine both user interests and trends in Google News (a combination of content-based recommendation 

and collaborative filtering). As they reported, proposed hybrid improved Click-Through-Rate by 30% (in 

comparison to the baseline collaborative approach).  

In 2006 a movie streaming company Netflix announced a competition, where the goal was to recommend 

movies such that the proposed algorithm made an improvement over 10% in comparison to the Netflix baseline 

recommender. Several solutions were proposed (such as [Koren, 2009]) and many of them were actually the 

hybrid approaches based on the collaborative filtering recommendation (including the winning ones). Netflix 

also uses hybrid recommenders nowadays [Gomez-Uribe et al., 2016], for example in the search results, where 

it combines user movie playbacks, search data and metadata. 

The recommender system domain historically connects academia with the business. As a result, plenty of 

libraries and frameworks have been proposed. These cover various programing languages and as a rule 

implement state-of-the-art approaches. To give a short overview, we present a comparison of several 

recommendations libraries and frameworks with emphasis on the hybrid recommenders.  

The typical evaluation of a recommenders starts with offline experiments. To obtain a reliable and 

comparable results, appropriate methodology and dataset is a necessity. In this chapter, we also compare 

typical datasets used for the evaluation of recommenders with metrics reported by several authors.  



The chapter systematically covers the following topics: 

 Overview of hybrid recommender techniques with emphasis on pros and cons (Section 1.2.) 

 Comparison of recommender system libraries and frameworks (Section 1.3.) 

 Practical hints for the evaluation of recommenders (Section 1.4.) 

 Comparison of datasets and reported metrics (Section 1.4.4.) 

Hybrid recommender systems - pros and cons 

Hybrid recommender systems were proposed to improve existing monolithic recommendation techniques. By 

using and combining these techniques, hybrids aim to improve recommendation performance (from several 

points of view) and thus enhance overall user experience. Correspondingly, there are problems that monolithic 

techniques suffer from and hybrid recommenders are able to solve. 

2.1   Types of combinations 

When picking a hybrid recommendation technique, we have to select, which combination will be utilized. In 

other words, which monolithic recommendation techniques will be employed and also how they will be 

combined. 

Following the Burke’s taxonomy [Burke, 2002] we distinguish between seven basic types of hybrid 

combinations: weighted, switching, mixed, feature combination, cascade, meta-level, and feature 

augmentation. We would like to emphasize that these combinations types define how two or more approaches 

are combined (no restrictions for specific recommender type).  

In weighted hybrid, the underlying recommenders calculate a score for an item and these scores are then 

combined to produce a final (single) score for the recommended item. [Hornung et al., 2010] built a weighted 

music recommender that combined collaborative recommender (for track similarity) and two content-based 

recommenders (for tag and time similarity). To enrich the final list of recommendations, they also generated 

the additional serendipitous music tracks by considering a similarity of the users. Moreover, the famous Netflix 

prize winner algorithm combined 24 monolithic predictors in order to provide final estimate. The gradient 

boosted decision trees were used to combine single models covering neighborhood, matrix factorization or 

regression models [Koren, 2009]. 

Switching hybrid specifies a condition, which determines which recommendation technique will be selected 

and used for the recommendation (depending on the situation). A switching hybrid was proposed in 

[Ghazanfar et al., 2014], where the authors utilized clustering approach to detect the gray-sheep users. These 

gray-sheep users then received recommendations generated by the separate content-based recommender. 

In mixed hybrid, each underlying recommender generates a list of recommendations that are combined to 

produce a final recommendation. In other words, both lists are presented to the user. A TV recommendation 

using mixed hybrid was proposed in [Barragans-Martínez et al., 2010], where the collaborative filtering was 

combined with the content-based recommendation. During the merging strategy, they used an average rating 

of TV shows (calculated by the recommenders). 

Feature combination uses multiple types of features that are combined to learn a single recommender 

model. For instance, the ratings of users combined with the content features of the specific 

item [Basu et al., 1998]. [Zanker et al., 2009] utilized a single collaborative filtering recommender that 

combined various features (called rating domains), such as the navigation actions, viewed items, items added 

to the shopping basket, or the user context. 

Cascade hybrid is based on the idea of refinements, where the first-level recommender generates 

recommended items. The role of the second recommender is to adjust the items returned by the first 

recommender, but here the focus is only on those items that need refinements. 

Lampropoulos [Lampropoulos et al., 2012] presented a cascade hybrid that employed a two-step solution. 

Firstly, a content-based recommender was used as a one-class classifier that identified the items suitable for a 

particular user. Then, a second-level collaborative filtering recommender assigned ratings to the items 

identified by the content-based recommender. 



In meta-level hybrid, the first recommender learns a model, which is used as an input to the second 

recommender. By analyzing the rule-based preferences from historical user interactions, a collaborative 

filtering model was learned and used as an input to the knowledge-based recommender in [Zanker, 2008]. 

Similar idea is applied for the feature augmentation hybrid, where the result (not a model) of the first 

recommender prediction is used as a feature to the second recommender. [Campos et al., 2010] created a 

hybrid recommender that used weights produced during the content-based recommendation as an input to the 

collaborative filtering recommender. 

As noted by [Burke, 2002], some combinations (e.g., switching or mixed hybrid) require an initial effort 

that must be done before we may employ the hybrid strategy. For example, in case of the switching hybrid, we 

must define the criteria to switch between the recommendation techniques beforehand. The weighted hybrid 

requires setting the weights that apply for the results of particular hybrids. 

For the feature augmentation, the cascade and the meta-level hybrid, a dependency may cause issues, if the 

second-level recommender relies on the results of the first-level recommender (Table 1.1. summarizes the pros 

and cons of these combinations). 

Another perspective for the hybrid recommender classification was proposed by Aggarwal [Aggarwal, 

2016]. He recognizes three high-level types: 

 ensemble design – analogy to ensemble methods in machine learning. Several algorithms are combined 

into a single output (switching, weighted, cascade, feature augmentation), 

 monolithic design – refers to a recommender combining several data sources (feature combination, meta-

level), 

 mixed systems – combines both ensemble and monolithic design. 

 

This taxonomy offers a valuable (from the machine learning perspective) view which addresses the nature of 

Burke’s insight.  

Table 1.1. Pros and cons of hybrid combinations (based on [Burke, 2002]). 

Type Pros Cons 

Weighted Possible to adjust weights of 

hybrids. 

 

Can be used in datasets with 

implicit feedback. 

Value of the particular 

recommendation techniques should 

be uniform across the algorithms. 

 

All the techniques apply the 

weights to each item, which may be 

redundant. 

Switching System is more sensitive to 

strengths and weaknesses of the 

particular recommenders. 

Switching criteria must be defined. 

Mixed Suitable where it is possible to 

make a large number of 

recommendations simultaneously. 

 

Allows to recommend both popular 

and new items. 

Combination technique must be 

employed. 

 

Rules for solving conflicting 

situations must be also defined. 

Feature 

combination 

Combines features from several 

algorithms which results to 

improved similarities. 

May require feature selection 

in content-based recommender 

[Basu et al., 1998]. 

Feature 

augmentation 

Allows to improve an accuracy of a 

system without modifying it. 

A quality of second recommender 

may depend on the 

recommendations of the first 

(augmenting) recommender. 

Cascade Allows to employ second 

recommender to only relevant items 

(results of the first recommender). 

 

More efficient than weighted. 

Quality of second-level 

recommender may depend on the 

recommendations of the first-level 

recommender. 

Meta-level Learned model is a compressed 

representation of the user-item 

preferences. 

A quality of the second 

recommender may depend on the 

quality of the representation of the 

first recommender. 



2.2   Hybrids as a solution for recommendation issues 

There are several issues that standard recommendation techniques suffer from. In the worst-case scenario, it 

results in an inability to recommend any items. Most of these issues are related to how recommender systems 

work. 

We further examine the problems related to the collaborative filtering recommendations (the problems 

collaborative filtering is either suffering from or is able to help to deal with):  

 cold-start problem (a problem of a new user/item, or a new context in case of the context-aware 

recommender systems), 

 over-specialization (inability to recommend items outside-the-box), 

 sparsity (of a user-item matrix), 

 extremes (gray and black sheep), 

 lack of diversity. 

Hybrid recommenders are capable of reducing these problems by hybridization of collaborative filtering with 

the other recommendation technique. 

2.2.1   Cold-start problem 

One of the most notable problems occurs when a new user or a new item is introduced to a recommender. This 

problem is also referred as a cold-start problem. Here, the recommender fails to generate appropriate 

recommendations since it does not have enough knowledge about the user preferences. 

When a new user appears, a low number of user-item interactions causes that the recommender is unable 

to unmask user preferences. This problem is usually present in both content-based and collaborative 

recommenders. Specifically, for the collaborative recommenders, a cold-start problem occurs also when a new 

item appears. Since it is not rated by any users, it is not possible to score how appropriate would be to 

recommend such an item [Schein et al., 2002]. 

There are several domains, which suffer from the new item cold-start problem more as others. In some 

domains recommended items are relevant for only a short time period (e.g., news, discounts) and thus the value 

of the recommended item decreases exponentially over the time. 

The cold-start problem is not usually an isolated state of the system, but it is a process (its effect decay over 

the time, i.e., user activity). It is clear, that there is no specific line (e.g., an amount of user ratings) to be 

recognized as the “no cold-start”. In [Visnovsky et al., 2014], authors analyzed the influence of the amount of 

user rating to the quality of user similarity search (cluster quality). As we can see (Figure 1.1), the increasing 

number of the user ratings logarithmically improves the cluster quality. For the MovieLens dataset approx. 50 

ratings are required to obtain similar clusters as considering all the user ratings.  

 

 

Fig. 1.1. The influence of the amount of user ratings to the cluster quality (similar user search task) in MovieLens dataset [Višňovský 

et al., 2014]. 



However, a new item problem does not affect the content-based recommenders, hence the content-based 

recommender can extract item properties without any user ratings1. Therefore, the content-based 

recommenders can be used to reduce the cold-start problem of collaborative filtering [Ronen et al., 2013]. 

Moreover, several approaches aim at addressing not only important content-based features, but also important 

features selection [Cella et al., 2017]. 

Hybrid recommendation is able to solve the cold-start problem for both a new user and a new item. One 

example is a work of Schein [Schein et al., 2002], where they fit a model using content and collaborative 

information. They present a two-way aspect model and Naïve Bayes recommender that uses content features 

in order to predict the ratings for the non-rated items.  

The cold-start problem was further explored in [Braunhofer et al., 2014], where the authors applied hybrid 

recommender to solve a problem of a new context. A cold-start problem of a new context occurs when an 

existing user is exposed to a new contextual situation. They proposed a switching hybrid recommender that 

combined a demographic-based context-aware recommender and demographics-based context-aware 

recommender. 

However, as they outlined, evaluating such a hybrid recommender that was in addition extended by the 

contextual feature was a demanding task since there was a lack of large datasets suitable for this task. There 

are several datasets that can be used for this task: STS [Elahi et al., 2013], CoMoDa [Odic et al., 2013], and 

Music [Baltrunas et al., 2011]. 

2.2.2   Over-specialization 

One of the shortcomings of the content-based recommenders is that they are not able to recommend the outside-

the-box items, also referred as a problem of over-specialization [Shardanand et al., 1995]. Since the content-

based recommender relies on the content descriptions during the user preferences analysis, it is limited to find 

the similar items to only those that user previously liked.  

For example, if a user watches movie from the comedy and adventure genre, content-based recommender 

learns this information and builds a user model that is used to recommend only movies from these genres. 

Therefore, it may fail to recommend, for example horror movies even if a user would appreciate some. 

On the contrary, there are domains where it is useless to recommend similar items. If someone bought an 

expensive camera, he/she probably won’t buy another (within some reasonable time period). 

Here, the hybridization can be beneficial if we combine both collaborative filtering and content-based 

recommendation. In such a hybrid environment, collaborative recommendation can be helpful in 

recommending the items outside-the-box. Moreover, the hybridization may eliminate the trade-off between 

recommendation accuracy and diversity of recommended items [Yoshii et al., 2008]. 

On the contrary, the specific settings and domain characteristics may bring the over-specialization problem 

to the collaborative recommenders as well. As the collaborative filtering usually uses the most similar users, 

if these are highly consistent (and recommender is not designed to bring diversity), only highly specific items 

will be recommended (similarly to the content-based over-specialization problem). 

The over-specialization problem refers to recommending highly tailored items to user past preferences. 

This often results to the problem of diversity lack. These are, however, two separate concepts. We may lack 

the diversity of recommended items without over-specialization problem (e.g., user likes adventure and 

receives sci-fi recommendations). 

2.2.3   Sparsity 

Real-world web applications contain tremendous amount of content and users. This is unfortunately a problem 

for the collaborative recommender approaches, which often use a user-item matrix (Figure 1.2). In fact, such 

a matrix is extremely sparse in an average system. This is usually a result of the fact that many users interact 

with only few items. 

                                                      
1 This assumes that content (and similarity search) can be processed and computed immediately. 



 

Fig. 1.2. User-item interaction matrix from the MovieLens 100k dataset. 

One example is the MovieLens 20M dataset [Harper et al., 2015], which contains 27 000 items (movies) and 

138 000 users. An upper bound for the maximum number of ratings is therefore 3,726 * 109, however the 

dataset contains only 2 * 107 ratings.  

Fortunately, sparsity is yet another issue of the recommender systems that can be reduced by the hybrid 

recommenders. By utilizing a hybrid model, the missing items from the matrix can be calculated, which solves 

the problem of sparsity. Several hybridization types are helpful, e.g., the feature combination. By combining 

several recommender sources (e.g., content and collaborative), we reduce the rating matrix sparsity. An 

example hybrid recommender was proposed in [Kim et al., 2012], where the authors used a social network and 

trust scores between users to reduce data sparsity. 

2.2.4   Gray and black sheep 

Another problem of the standard recommendation techniques is the specific users (extremes), for which a 

particular approach can be not sufficient enough. Here we distinguish between two basic extremes: gray sheep 

and black sheep. 

Gray sheep users do not have consistent opinions and thus do not clearly fall into any of the groups of 

people sharing the same opinion [Claypool et al., 1999]. This problem occurs namely in the small and medium 

community of users. 

Also, as noted in [Claypool et al., 1999], unlike in the cold-start problem, even by gathering more ratings 

from such users, a recommender is unable to produce precise predictions. Depending on the dataset and a 

number of gray sheep users [Ghazanfar et al., 2014], a presence of the gray sheep users may affect the quality 

of the recommendation for the whole community. 

On the other hand, black sheep users [McCrae et al., 2004] have no or few people that they correlate with. 

Therefore, recommendation approaches relying on the user-to-user correlations are unable to generate any 

predictions. Su et al. pointed out that although this is clearly a failure of the recommender system, non-

electronic recommenders are unable to properly recommend items to black sheep users as 

well [Su et al., 2009]. Therefore, we may consider such a failure to be acceptable. 

Both gray and black sheep users cannot benefit from the collaborative recommendation. This is a 

consequence of the inability of the recommender to find a relationship between such a user and other users in 

the community. Similarly, a demographic recommender may have the same issue, since it uses demographic 

information about the users to categorize them into groups. However, here the solution of the problem is a 

hybridization where a collaborative or demographic recommender can be combined with a content-based 

recommendation. 



[Ghazanfar et al., 2014] utilized K-means clustering to identify the gray sheep users and proposed a 

switching hybrid recommender that was able to decrease the recommendation error rate by switching between 

the collaborative filtering and the content-based recommender. 

2.3   Drawbacks of the hybrid recommenders 

One reason to employ a hybrid recommendation is to improve the performance of individual – monolithic 

recommenders, such that the hybrid recommender performs better than any underlying recommender. 

However, this requires that the underlying recommenders should be also well-tuned such that they are able 

to recommend items with satisfying accuracy. If the underlying recommender performs poorly, a hybrid 

recommender may fail in improving the accuracy and it may end up with the drop, indeed. 

We need to choose which recommendation techniques we need to employ and optimize its parameters. 

Moreover, these recommender techniques need to be properly evaluated. For this step, it is required to have a 

good knowledge of the underlying recommendation techniques, but also, we need to understand the domain. 

Here we should take into consideration the basic domain characteristics [Burke et al., 2011]: heterogeneity 

(of items in the domain), degree of risk (for a user accepting a recommendation), degree of churn (whether a 

recommender face a continual stream of new items), preferences (stable or unstable), interaction style (implicit 

or explicit), and scrutability (whether an explanation of recommendation is required by the recommender). 

Analysis of the domain allows us to choose an appropriate recommendation technique and consider the 

conditions within which it would run. For instance, in the news domain, where the degree of churn is relatively 

high, we need to consider the scalability of a hybrid approach. 

Explanation of recommendations is a still an open research problem in monolithic recommenders 

[Herlocker et al., 2000]. In case of hybrid techniques, the problem grows even further, hence we need to 

properly present an information about the source of the recommendation. By using for instance, a weighed 

hybrid, it could become cumbersome to determine which recommender contributes the most to the result and 

even more how this should be presented to a user. 

Recently, there have been attempts to solve the issues with the explanation of a hybrid recommendation. 

For example, Bostandjiev [Bostandjiev et al., 2012] used visual interactive interface that was intended to 

explain recommendation process and elicit additional user preferences. 

This is related to another issue with the hybridization. Not only a particular recommendation technique 

may need some training phase, but also a hybrid recommender need to be trained in order to handle such 

particular recommenders. In other words, a hybrid recommender itself adds another parameter that need to be 

tuned [Campos et al., 2010]. A cross-validation may be employed in order to set parameters (weights), such 

that the combination of recommendation techniques would fit the problem the best (e.g., which recommenders 

should be picked for the switching hybrid). 

This is a case especially in a weighed hybrid, where the weights need to be estimated. Here, some heuristics 

may be applied, or these weights can be set with the machine learning. Moreover, these weights can be also 

personalized, which requires not even more time to train recommender, but also more training instances. 

Finally, a hybrid recommender usually requires an additional computation complexity (as more methods 

are used), which results in worse performance than the monolithic approaches [Cremonesi et al., 2011]. 

Practical implementation considerations 

The concept of combining several recommenders to overcome notorious shortcomings is widely accepted. 

Most of studies in the recommender systems field pointing improved results when used hybrid recommenders. 

Thanks to this “agreement”, there are plenty of libraries and frameworks implementing (or supporting) hybrid 

recommender approaches. In this section, we will briefly analyze the most important features of these (Table 

1.2).  



3.1   Mrec2 recommender system library 

Mrec is a Python recommender and evaluation library developed at Mendeley [Mendeley, 2017]. As a part of 

it, there are several algorithms implemented, which can be used either standalone or as a part of the 

recommender. The library provides an implementation for: 

 SLIM item similarity, 

 Weighted matrix factorization WRMF, 

 Weighted approximately ranked pairwise ranking loss (WARP), 

 Hybrid model which optimizes WARP based on user-item matrix and content features, 

 various evaluation metrics (such as Precision, Recall, or Mean Reciprocal Rank). 

For a fast development, a command-line interface is available. In addition, the library supports parallelization 

using IPython. The input for the hybrid recommender consists of the user-item matrix and the content features. 

A core approach for the library is the WARP algorithm, which reached promising results on the well-

established image dataset ImageNet3 – in the mean of the speed, memory usage, and the performance as 

well [Weston et al., 2010]. 

3.2   Matchbox4 recommender 

Azure machine learning is getting more and more attention in the last years. The Matchbox recommender, 

which is available as a part of this machine learning platform, is a large-scale recommender system. It includes 

both collaborative and content-based approach. These are combined based on the Bayesian probabilistic model. 

The main idea is to use the content-based approach first (when a user is relatively new to the system and 

has only few ratings). Next, the smooth transition to the collaborative filtering is performed as more and more 

ratings for the user are available.  

Two types of content-based features are supported – item and user content features (characteristics). The 

framework also supports three types of feedback [Stern et al., 2009]: (a) explicit user ratings of items, (b) 

binary preferences (likes and dislikes), (c) ordinal ratings on a user-specific scale. One of the major 

shortcomings is the lack of an online training (model has to be retrained periodically). 

Model optimal parameters search is offered through the Tune Hyperparameter Module and Cross 

Validation Module. Also, several metrics to evaluate the performance are available (e.g., MAE, RSME, 

Precision, AUC). 

As the experiments showed [Stern et al., 2009], the content-based features are especially important in the 

cold-start phase. Together as a hybrid approach, the Matchbox reflects the state-of-the-art performance. 

3.3   Surprise5 library 

SciPy provides a collection of packages for scientific computation. The Surprise library is a Scikit (SciPy 

toolkit) library for building and analyzing recommenders [Hug, 2017]. Although it is intended for an easy 

implementation of custom recommenders, it also provides a range of popular algorithms. The core 

functionality covers: 

 dataset handling (MovieLens and Jester included), 

 prediction algorithms – neighborhood methods (kNN), matrix factorization (SVD, SVD++, PMF, NMF), 

and similarity measures (cosine, Pearson, MSD), 

 evaluation support (cross-validation), parameter optimization. 

The library itself does not implement any of the hybrid approaches. The ecosystem allows to create custom 

recommenders, though. In this way, we are able to create a variety of recommenders on the level of a rating 

prediction or rank reordering. 

                                                      
2 https://mendeley.github.io/mrec 
3 http://www.image-net.org 

4 https://msdn.microsoft.com/en-us/library/azure/dn905987.aspx 

5 http://surpriselib.com 



The performance of the algorithms is evaluated based on the RMSE, MAE, or FCP metrics. One of the 

important characteristics is the documentation, which provides relevant information and a plethora of 

examples. 

Table 1.2. Comparison of libraries and frameworks supporting hybrid recommendation. 

Name Language Licence 
Type of 

combination 
Evaluation Note 

Mrec Python BSD 
Weighted, 

Cascade 
yes - 

Matchbox AzureML 

Microsoft 

online 

services 

Switching yes - 

Surprise Python 
BSD-3 

Clause 
– yes 

Custom hybrid 

implementation is 

required 

LightFM Python Apache v2 
Feature 

combination 
yes - 

Librec Java GNU GPL Weighted yes - 

LensKit Java 
LGPL 

v2.1 
Weighted yes - 

MyMedia

Lite 
.NET 

GNU GPL 

v3 
Weighted yes - 

Easyrec Java GNU GPL – no 

Custom hybrid 

implementation is 

required 

Prediction

IO 
Scala 

Apache 

Licence 

v2.0 

Multiple yes - 

FluRS Python MIT – yes 

Custom hybrid 

implementation is 

required 

Seldon Python 

Apache 

Licence 

v2.0 

Cascade yes - 

Recomme

nderlab 
R 

GNU GPL 

v2 
Weighted yes - 

Prea Java Free BSD – yes 

Custom hybrid 

implementation is 

required 

Duine Java LGPL v3 Switching yes - 

3.4   LightFM6 library 

Yet another Python implementation. The name is derived from “factorization machines” and combines the 

content and collaborative ideas [Kula, 2015]. The users and items are represented as the latent vectors, which 

are defined by the linear combinations of embeddings of the content features (users and items). 

Implemented model reflects the data available for the training. If there are no content features provided, it 

acts as a pure collaborative filtering approach. When the content features are available, these are considered in 

the optimization process (also useful for the cold-start problem reduction). In total, four loss functions are 

implemented: 

 Logistic, 

 Bayesian probabilistic rating, 

 Weighted approximate-rank pairwise, 

 k-OS Weighted approximate-rank pairwise (kth positive example as a bias). 

                                                      
6 https://github.com/lyst/lightfm 



A model performance evaluation is supported by the implementation of the standard metrics: Precision, Recall, 

AUC, and Reciprocal rank. Moreover, LightFM allows to easily obtain the MovieLens 100k dataset7 and use 

it for the fast experiments. 

The LightFM is also available as a Docker container. The documentation provides several examples over 

various scenarios. 

3.5   Librec8 

Librec is a Java library, which includes plenty (over 70) of algorithms implementations. The library consists 

of several modules, which cover the whole process of recommendation (Figure 1.3.). 

The library implements a weighted hybrid recommender, which uses a linear combination of HeatS and 

ProbS algorithms (derived from the heat and probability spreading) [Zhou et al., 2010]. In total, six types of 

recommenders are included, while each of them consists of several algorithm implementations: 

 Abstract Recommender – provides a set of basic algorithms (e.g., most popular, collaborative, association 

rules, global average, hybrid), 

 Probabilistic Graphical Recommender (e.g., clustering, LDA, PLSA, BUCM), 

 Matrix Factorization Recommender (e.g., SVD, BPR, WRMF, RBM), 

 Factorization Machines Recommender (e.g., FMALS, FMSGS), 

 Social Recommender (e.g., TrustMF, TrustSVD, SOREG, RSTE), 

 Tensor Recommender (e.g., BPTF, PITF). 
 

 

Fig. 1.3. Librec modules overview. The final algorithm is a combination of these components. A set of interfaces allows a flexible 

implementation of any new algorithms8. 

 

Several metrics for the performance evaluation are also included, e.g., AUC, nDCG, Precision, Recall, MAE, 

MPE, and RMSE. Also, a FilmTrust dataset was extracted and included. The documentation provides details 

for the library usage, with references to the active blogs and discussion forums. 

3.6   LensKit9 

Lenskit is an open-source toolkit for building and researching recommender systems, created at University of 

Minnesota by the GroupLens research group [Ekstrand et al., 2011]. The toolkit was used in over 40 research 

papers and is also a part of the MovieLens project. 

LensKit consists of the several modules focused on the similarity calculation, recommendation, and 

evaluation of the performance. Four basic algorithms are implemented: 

 item-based collaborative filtering, 

                                                      
7 http://grouplens.org/datasets/movielens/100k/ 

8 https://www.librec.net 

9 http://lenskit.org 



 user-based collaborative filtering, 

 matrix factorization (FunkSVD), 

 slope-one rating prediction. 

The linear weighted hybrid recommender mechanism is also provided, which allows to combine two 

recommender lists.  

To evaluate the performance of build algorithms, two groups of metrics are supported: prediction accuracy 

metrics (e.g., RMSE, MAE, Coverage) and top-n (or ranking) metrics (e.g., MAP, MRR, Precision, Recall, 

and nDCG). 

Since the toolkit is supported by the one of major recommenders research group, the community is highly 

active. 

3.7   MyMediaLite10 

The library was created and currently is maintained by the research group at University of Hildesheim [Gantner 

et al., 2011]. Thanks to its academic background, it has been utilized in over 20 research papers.  There are 

several algorithms implemented in the library, while in addition, own approaches are supported as well. Two 

basic scenarios are feasible – the rating prediction and the item prediction: 

 Item recommenders (e.g., Random, Most popular, Incremental), 

 Rating prediction (e.g., SlopeOne, BPSO, Latent-feature log linear, Matrix factorization with factor-wise 

learning). 

For the hyperparameter optimization, a grid search and the Nealder-Mead algorithm is used. As a part of the 

library, a weighted hybrid recommendation is also provided. 

Evaluation module includes the cross-validation and the online evaluation for the several standard metrics 

(e.g., MAE, RMSE, AUC, nDCG, Precision). MyMediaLite also supports the real-time incremental updates 

for the selected recommenders.  

3.8   Easyrec11 

Easyrec service is made available for the public usage by using the instance provided by the Smart Agent 

Technologies of the Research Studios Austria. However, the source code is accessible and allows to run an 

own instance. Easyrec also supports the third-party plugins to integrate with the popular web-based 

applications (e.g., Drupal, Mediawiki) via the RESTful Web services. 

Several non-personalized and personalized algorithms are already implemented within the service: 

 Bought together, 

 Popular, 

 SlopeOne, 

 Association rule miner. 

The service is designed such that there is no need to implement any recommenders, which partially limits its 

possibilities, though. Also, there is no evaluation support provided within the service.  

3.9   PredictionIO12 

PredictionIO is currently an incubating project of Apache covering the predictive engines for various machine 

learning tasks. The platform consists of three parts (Figure 1.4.): 

 core machine learning stack (intended for building, evaluating and deploying algorithms), 

 event server (unifying the events from multiple platforms), 

 a template gallery (a storage of algorithm implementations). 
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The recommenders template gallery contains a number of implementations aiming at the specific tasks (e.g., 

in the domain of e-shops): 

 Collaborative filtering – user and item based, 

 Content based – products similarity, 

 Association rules, Frequent pattern, 

 Complimentary purchases, 

 Personalized ranking, 

 Hybrid recommendations. 

Among the recommender templates, also a classification, regression, clustering, and NLP tasks are supported. 

The hybrid idea is supported in each of these tasks, while various combining (ensemble) mechanism can be 

utilized. 

An evaluation of the performance is provided by the Tuning and Evaluation module, which supports the 

optimal parameters search and standard evaluation metrics (e.g., Precision, Recall, Accuracy). 

PredicionIO is a highly scalable platform as it bases on Apache Hadoop, HBase, Spark and ElasticSearch 

(also available as Docker container). The project benefits from the extensive documentation with a plenty of 

examples and highly active community of the developers. 

 

 

Fig. 1.4. PredictionIO core components12. 

3.10   FluRS13 

Build in Python, FluRS is a small open-source project for an online item recommendation for Python. Its main 

idea is to provide the “fluent”, i.e., incremental recommendation algorithms. Several algorithms are 

implemented, such as: 

 Incremental collaborative filtering (based on the kNN), 

 Incremental Matrix factorization and Matrix factorization with BPR optimization, 

 Incremental Factorization machines. 

A native support for the hybrid recommenders is not provided, on the contrary several metrics for the 

performance evaluation are available (e.g., MAP, MRR, Precision, Recall). As the project is relatively small 

and new, the documentation is still evolving.  

                                                      
13 https://github.com/takuti/flurs 



3.11   Seldon14 

Seldon is a platform supporting machine learning tasks intended for the deploy in the production. It runs within 

a Kubernetes Clusters and supports several model-building tools. Two basic endpoints are available: 

 Prediction (several Python pipelines support), 

 Recommendation (similar users, latent factor models, association rules, content based, collaborative, 

hybrid). 

Seldon is capable of the weighted and cascading combination of several algorithms and also allows to 

implement an own hybridization approach. The process of generating recommendations is divided into the 

offline and the real-time part (Figure 1.5.). 

 

 

Fig. 1.5. Seldon recommendation components14. 

The platform supports extensive monitoring and analytics via the third-party applications. Also, a paid support 

for commercial projects is available.  

Seldon community is highly active, which results in a rich documentation with many examples. 

3.12   Recommenderlab15 

Framework Recommenderlab aims at providing general research infrastructure rather than to create 

recommender applications. Authors focus on optimizing the process of experiments covering efficient data 

handling, easy incorporation of algorithms and evaluation [Hahsler, 2017]. Several algorithms are available 

within the framework: 

 Collaborative filtering – user and item based, 

 Association rules, 

 Most popular, Random, 

 Hybrid recommenders – weighting scheme. 

The framework supports standard evaluation metrics (e.g., MAE, RMSE, ROC, Precision, Recall). Similarly, 

the cross-validation, bootstrap sampling serves for the model performance comparison. As a standard for the 

R libraries, Recommenderlab is well documented and a variety of examples is included in the documentation. 

3.13   Prea16 

Toolkit Prea is focused on the collaborative filtering approaches [Lee et al., 2012]. Natively, there is no 

hybridization technique available, but the support for the own recommenders is provided. Comparing to the 
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Mahout or MyMedia, Prea also implements several Matrix factorization approaches. Moreover, many 

additional algorithms are implemented: 

 Random, Constant, Average, 

 User and Item based, Slope-One, 

 Matrix factorization – SVD, NMF, PMF. 

For the evaluation of the performance, the toolkit has built-in some basic metrics (e.g., RMSE, MAE, nDCG). 

Surprisingly, Precision and Recall are not supported. For the data split, a cross-validation is supported. In [Lee 

et al., 2012], the authors compared the implementations of the algorithm to the MyMedia framework resulting 

in the very similar values for MAE and RMSE metrics respectively. 

3.14   Duine17 

Duine is rather a smaller framework mainly focused on the predictive tasks for the recommendation. Its idea 

is based on a concept of plugins (e.g., profile models, feedback processors). From the hybrid recommenders 

perspective, the switching mechanism is utilized. Interesting feature of Duine is an Explanation API, which 

helps with creating user-friendly explanations for the end-users. Several prediction techniques are 

implemented: 

 Average, 

 User-based collaborative filtering, 

 Content-based, 

 Case-based reasoning. 

The framework provides a variety of practical examples; however, the last update comes from 2009. Despite 

this, it can be used as a solid starting point for the own implementations. 

3.15   Summarization 

Whether attempting to create a new recommender, or using an existing one, recommendation libraries can be 

useful during the whole development process. However, it is sometimes cumbersome to choose a proper one. 

Firstly, it is important to know, which task we aim to do – a rating prediction or an item recommendation 

(i.e., a Top-N item recommendation). In fact, nearly every library that is capable of the rating prediction can 

be used for the item recommendation task as well (items can be sorted by their predicted ratings and returned 

in a Top-N list). However, some libraries are adapted to the item recommendation task and also utilize various 

techniques in order to improve the order of the recommended items (e.g., learning to rank) with respect to the 

ranking metrics (such as precision, or recall). One notable example is a LightFM library that uses various loss 

functions that are meant to optimize the ranking of the items (e.g., Weighted approximate-rank pairwise). 

In the training and evaluation phase, the dataset (about users, items, and their interactions) plays an 

important role. One source is to use the existing recommendation datasets (such as MovieLens; we further 

describe several available datasets later) or to use the custom ones. The main advantage of the existing datasets 

is that we are able to compare our results with the research community without the need of implementing the 

state-of-the-art techniques. However, when creating a recommender for the production environment, there is 

also a need to evaluate the performance of the recommender on custom data. Here, we may utilize the pre-

implemented state-of-the-art recommendation methods. 

Some of the libraries support data preprocessing, e.g., the normalization.  For instance, (e.g., Surprise) offer 

tools to handle data pre-processing, or machine learning libraries can be utilized (such as Scikit-learn18 for 

Python). 

Finally, an important criterion is whether we plan to deploy our recommendation technique to a production 

environment. This can be usually achieved using every library listed above, however, several of them are more 

suitable for this task and support the whole pipeline of the process of the recommendation: data preprocessing 
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and storage, model training and storage, evaluation, and serving recommendation. Also, there are other relevant 

factors: 

 Do we need to scale to many users (i.e., the process of serving recommendation need to be fast)? 

 Do we need to keep the recommendation model up-to-date (i.e., method of recommendation should be 

capable of a frequent model training without any significant impact on the performance)? 

 Is it possible to perform an incremental model updates? 

Examples of the libraries that are suitable for the production environment are PredictionIO and Seldon. 

Practical evaluation considerations 

There are several best practices that should be followed when evaluating a recommender system. We list some 

common principles that are applicable to any technique and add those specific for the hybrid recommendation 

techniques. 

4.1   Defining an experiment 

One of the first important things that need to be considered during the evaluation is the dataset. Here a correct 

splitting criterion should be chosen. A common approach is to split the whole dataset into the training and the 

test set. Usually, it is also suggested to interchange these sets and conduct several successive experiments, such 

that the train and test set is always different (e.g., k-fold cross validation). 

Besides the train and tests sets, also a validation set is important. Especially, in a case of hybrid 

recommenders, where we need to set and test various parameters, weights, and combinations, the experiments 

conducted on a validation set are a necessity. The validation set need to be different from the train and test 

sets. 

In the domain of recommenders, there are two basic types of experiments: online and offline. Offline 

experiments are conducted using the pre-collected datasets [Ricci et al., 2015] (for details see Section 1.4.4.). 

These experiments are usually performed as soon as the first prototype of the recommender is available and 

are intended to well-tune the parameters and to explore recommender basic characteristics. 

The offline experiments should be not interpreted as the exact measure of the recommender performance. 

They provide rather the worst-case scenario estimate (as the users do not have a chance to see recommendations 

and to interact with them). 

In an online experiment scenario, we are able to measure how the recommender system influences user 

behavior, while he/she interacts with the presented items [Ricci et al., 2015]. Clearly, the advantage is that the 

experiment is conducted with the real users performing the real tasks. Usually, users are split into the groups, 

where each group experience a different recommendation setup (A/B testing). There are also some drawbacks, 

such as the risk that the users will be faced a non-relevant recommendation and they leave the experiment too 

early. There, an online study is done after the offline experiments since the recommender is supposed to be 

well-tuned and several parameters are already set. 

4.2   Evaluation in hybrid recommenders 

Since the hybrid recommender may consist of different underlying recommender techniques, this need to be 

considered during the evaluation. This also depends on the used combination strategy. Therefore, there are 

several approaches that were adopted by the researches and were used during their evaluation phase. 

The most common practice is to compare the performance of the hybrid recommender (as a whole) to the 

other state-of-the-art techniques. The state-of-the-art techniques can be either baseline monolithic techniques 

(such as collaborative filtering) or other hybrid recommenders. 

Problem with such a simple approach is that the hybrid recommender is a black-box and we do not know 

how the underlying recommenders perform. Therefore, many authors also examine different setups of hybrids 

with respect to the choice of underlying recommenders, used features, and parameters. 

Specifically, for the cascade hybrid combination [Lampropoulos et al., 2012], it is suitable to focus on the 

improvement of the second-level recommender with respect to the first-level recommender (i.e., whether a 



second-level recommender is viable to improve the performance of the first-level recommender). However, as 

we have discussed before, it also important to have the first-level recommender well-tuned and evaluated, as 

well. 

In the case of hybrids that combine results of two or more monolithic recommenders, it is more appropriate 

to evaluate these monolithic approaches separately and then as a whole. For instance, different weights should 

be set in order to tune the weighted recommender. We can go even further and analyze all the underlying 

recommenders to compare whether their predictions are similar and how close they are to each 

other [Hornung et al., 2010]. 

For instance, in feature combination hybrids, various feature configurations can be 

investigated [Zanker et al., 2009]. Here, not only different inputs should be considered, but also a different 

weighing of these inputs. Moreover, if we keen to bring a more personalized experience, a relevance scores of 

the inputs can be measured for the user (of group of users) separately. 

An initial motivation to create hybrid recommenders was not only to improve performance, but also to 

address the issues associated with the monolithic approaches. However, here we need to focus on the data that 

we analyze and also for the metrics we choose. 

To verify a cold-start problem, a performance for the new user, new item, or new context need to be 

investigated [Braunhofer et al., 2014]. Based on the combination strategy, several comparisons need to be 

utilized for each scenario. To illustrate the cold-start problem, there should be also suitable data containing 

users (or items, or contexts) with the low number of ratings. In some scenarios, these cold-start users (or items, 

or contexts) may be evaluated separately. If the dataset does not contain such data, we may simulate the cold-

start problem by removing the selected number of interactions.  

Similarly, for the gray and black sheep users, we first need to identify those users and measure how the 

recommendation quality differs based on the approach. However, it is usually necessary to verify whether a 

recommender is able to provide relevant items to non-extreme (i.e., other than gray and black sheep) users. 

 [Miranda et al., 1999] investigate whether gray sheep users would benefit from using hybrid 

recommendation rather than collaborative or content-based only. Evaluation procedure was conducted using 

an online experiment, where these users were actually a part of the study. [Ghazanfar et al., 2014] utilized 

state-of-the-art datasets and performed offline evaluation, where gray sheep users were separated from the 

whole dataset and the performance of monolithic approaches was compared to the performance of the 

switching hybrid. 

An issue of diversity is measured as a metric itself – we can measure how diverse the resulting 

recommendations are or, more precisely, how diverse their properties are. For instance, [Burke et al., 2014] 

analyzed user-based diversity (how users differ within group) and tag-based diversity (how different item tags 

are) and compared them between three different hybrid approaches. 

4.3   Evaluation frameworks 

Usually, a framework which supports prediction tasks for the recommendation also supports some kind of the 

performance evaluation. There are, however, frameworks designed specifically for the evaluation of 

recommender algorithms. 

4.3.1   WrapRec19 

WrapRec is a configuration based open-source project (under the MIT license) written in C#. Its idea is to 

support a fast evaluation of the custom algorithms or the algorithms adopted from the other frameworks [Loni 

and Said, 2014]. WrapRec architecture is split to three parts (Figure 1.6.). 

First one is a module which brings a native support to MyMediaLite and LibFM frameworks. Moreover, 

also the third-party libraries and custom build recommenders can be evaluated by extending WrapRec. The 

second module is the Split, which defines the way the data are handled from the train and test evaluation 

perspective. After the data is loaded through Data reader, they are stored in Data container. By extending the 
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split class, a split can be fully customized. Finally, the metrics used for the evaluation are defined in the 

Evaluation context module. Multiple evaluators are supported.  

The WrapRec is a part of the research project CrowdRec based on the Delft University of Technology. It 

comes with an extensive documentation including several examples.  

4.3.2   Rival20 

Another open-source toolkit designed especially for the recommender evaluation is Rival, which is written in 

Java under LGPL v2.1 license. As it is quite new toolkit, its documentation needs to be improved in the future. 

Rival consists of four basic modules (important from our point of view). 

The evaluation module implements several metrics and strategies for the evaluation. Error metrics include 

MAE and RMSE, while Precision, Recall, nDCG and MAP as ranking metrics are included. 

A recommendation module integrates algorithms from the LensKit and Apache Mahout, which provides a 

complement to their evaluation tools. The split module is, as expected, responsible for the train and test data 

splitting. Standard Cross validation is supported. Moreover, a random split and temporal split (considering a 

timestamp of instances) is available.  

Last, but not least, the example module provides examples of the toolkit usage on a real-case scenario. The 

toolkit is available via the Maven repository. 

 

 

Fig. 1.6. WrapRec evaluation framework architecture19. 

4.4   Overview of the datasets 

Since the domain of recommendation is largely connected to the industry, there are many real-world datasets 

available that are being used in research papers. We summarize the available datasets suitable for the 

collaborative filtering recommendation in the domains such as movies, music, or e-commerce (Table 1.3). We 

opt for the datasets covered by the research papers. The descriptive characteristics are supplemented by the 

comparison of the performance in the rating and ranking prediction (Table 1.4). 

A majority of the listed datasets is intended to be used for the evaluation of the explicit feedback, namely 

to predict the ratings of the items. However, in many scenarios, these ratings can be also used as an implicit 

feedback, as well and can be utilized to evaluate the Top-N collaborative recommendations. In addition, many 

selected datasets contain not only the interactions between users and items, but also the characteristics of either 

the users (demography) or the items (content characteristics) that can be utilized in the hybrid collaborative 

recommendation. 
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Table 1.3. Overview of available recommendation datasets. 

Dataset Released Ratings Users Items Sparsity (%) 

MovieLens 100k 10/2016 100K 1K 9K 98.889 

MovieLens 1M 2/2003 1M 6K 4K 95.833 

MovieLens 10M 1/2009 10M 72K 10K 98.611 

MovieLens 20M 10/2016 20M 138K 27K 99.463 

MovieLens 26M 8/2017 26M 270K 45K 99.786 

DouBan 2011 16.8M 129K 59K 99.779 

Flixter 9/2010 8.2M 1M 49K 99.983 

Last.fm 1K 5/2010 19.1M 992 1.5M 98.716 

Last.fm 360K 3/2010 17.6M 359K 294K 99.983 

Yahoo Music R1 3/2004 11.5M - 98K - 

Yahoo Music R2 2006 717M 1.8M 136K 99.707 

Yahoo Music R3 2006 300K 15K 1K 98.000 

Yahoo Music KDD Cup Track 1 2011 262M 1M 625K 99.958 

The Million Playlist Dataset 1/2018 1 000 000 playlists with 5-250 of tracks 

Epinions (product ratings) 10/2007 664K 50K 140K 99.990 

Epinions 

(trust ratings) 
10/2007 487K - - 

- 

Amazon Product Data  2015 142M - - - 

Yelp 2018 5.2M - 174K - 

Book-Crossing 9/2004 1.1M 279K 271K 99.999 

Jester Dataset 1 2003 4.1M 73K 100 43.836 

Jester Dataset 2 2012 2.2M 79K 150 81.435 

Movies has been one of the most dominant domains in collaborative filtering recommendation for many years. 

Its popularity is ascribed namely to the Netflix Prize competition, however, also to a great availability of the 

datasets. The MovieLens datasets21 published by the GroupLens contain movie ratings and tagging activity of 

the users on the online portal MovieLens.org. Basic content information is also available, but this can be easily 

extended through the mapping to the external sources – IMDB22 and TMDB23. Douban is the Chinese social 

network allowing users to rate, review and recommend movies, music, and books [Ma et al., 2011]. Ma et al. 

crawled the movie section of the portal and besides the ratings they obtained also 1.7M user-to-user 

relationships (friends links). Similarly, user-to-user relationships are also available for the Flixster dataset 

[Jamali and Ester, 2010].  From totally 1M users, the user-movie ratings are available for only 150K of them. 

Although the number of ratings is considerably lower than in the case of MovieLens or DouBan, Flixster 

dataset stands out in much greater number of social interactions (26.7M). 

Table 1.4. Results of the evaluation of recommendation approaches using the selected datasets. 

Dataset RMSE MAE Precision Recall F-score AUC 

MovieLens 

100k 
0.8906A  0.3526A    

MovieLens 1M 0.8333B  -    

MovieLens 

10M 
0.7764C  -    

MovieLens 

20M 
0.7762C  -    

Flixter 1.0954D  0.046E    

DouBan 0.6988D  0.082E    

Last.fm 1K -   0.301F   

Yahoo Music 

T1 
21.2634G      

Yahoo Music 

T1 
21.879H      

Yelp 1.0072I 0.7920I   0.63J 0.85J 
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Yelp     0.0152K  

Epinions  0.9321L     

Epinions  0.825M     

Amazon 

(clothing) 
     

0.7961 / 

0.7317N 

Amazon 

(home) 
     

0.7155 / 

0.6396N 

Amazon     0.033K  

Book-Crossing 

(item-based) 
  0.0364O 0.0732O   

Book-Crossing 

(user-based) 
  0.0369O 0.0576O   

Jester Dataset 1 4.1229P 3.1606P     
 

A http://www.mymedialite.net I [Hu et al., 2014] 

B [Lee et al., 2013] J [Tsai, 2016] 

C [Strub et al., 2016] K results are reported at F-Score@5; [Chen et al., 2016] 

D [Ma et al., 2011] L detailed results are reported in the paper; [Ma et al., 2008] 

E [Wu et al., 2017] M [Pham et al., 2011] 

F [Yang et al., 2012] N first result is a warm-start setting, second result is a cold-start 

setting; [Liu et al., 2017] 

G [Zheng et al., 2012] O [Ziegler et al., 2005] 

H [Koenigstein et al., 2011] P [Takacs et al., 2009] 
 

 

Yahoo published several recommendation datasets in the domain of music with varying amount of 

information24. Yahoo Music R1 contains the rating activity of users over artists (i.e., the items are artists). 

Yahoo Music R2, a much bigger dataset, contains the rating activity of users on the songs. In addition, there 

are also metadata available (such as artist, album, genres), though these metadata are represented only using 

the anonymous identifiers. R2 dataset was used in an evaluation of a data-parallel low-rank matrix 

factorization [Schelter et al., 2013], where authors applied MapReduce technique to improve the performance 

of the computations in order to better match production environment requirements. The third dataset – Yahoo 

Music R3 contains a sample of ratings for the songs that were collected from the users’ interactions and from 

the online survey conducted by Yahoo Research. 

As a part of the KDD Cup 2011 competition25, another music ratings dataset was released that contained 

10-years (1999-2009) rating activity on four types of items: tracks, albums, artists, and genres. There are also 

four different versions of this dataset available varying by the amount of rating activity, where one version is 

focused on the learning-to-rank problem rather than rating prediction. 

Last.fm is a popular online service intended to provide music recommendations based on the music that 

users listen on their devices. In 2010 there were two datasets released [Celma, 2010]: Last.fm 1K26 and Last.fm 

360K27. Last.fm 1K contains full listening history of 992 users represented by the tuple user-artist-track. 

Last.fm 360K provides history for 359,347 users, however, this dataset contains only information about the 

playcount of the artists. Both datasets contain users’ demography (gender, age, country, sign-up date) and 

MusicBrainz28 ID for artists and tracks (if available), which allows to extend the dataset for additional 

metadata. 

For the task of the playlist continuation prediction The Million Playlist Dataset (MPD) was published as a 

part of the Recommender Systems Challenge 201829. Provided dataset contains 1 million playlists created by 

the U.S. users in the online music streaming service Spotify30. When the dataset was generated, there were 

several criteria for picking up the representative playlists (e.g., minimum number of artists in a playlist, 

minimum number of albums in a playlist). In comparison to other datasets available in this domain, one 
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disadvantage is the missing information about the playlist authors (i.e., user ids). Since at the time of writing 

this book the challenge was just announced, there were no published papers using this dataset. 

Amazon31 is one of the most famous online retailers with roughly millions of daily users. In 2015 Julian 

McAuley released32 the Amazon product reviews dataset [McAuley et al., 2015], which contained the reviews 

and product metadata from the May 1996 – July 2014 period. Reviews consist of numerical ratings, textual 

reviews, and helpfulness votes. Product metadata include descriptions, categories, price, brand, related 

products, sales rank, and visual features extracted from the product images (4096-length feature vector 

extracted using the deep convolutional neural network). Reviews can be retrieved as a whole or as the subsets 

distinguished by the product categories. In addition, the author provides the raw ratings (a tuple user-item-

rating-timestamp) that can be suitable for the training using some of the recommender systems libraries (e.g., 

MyMediaLite). 

Epinions.com was an online service (run by eBay, now discounted) more focused on the opinions of the 

users on various items (e.g., cars, books, movies, software) [Massa and Avesani, 2007]. Moreover, users were 

able to “rate” other reviews and express their trust to the reviews of these users (i.e., which reviews they find 

valuable and which they found offensive, inaccurate, or not valuable at all). Massa et al. crawled Epinions.com 

website in order to evaluate a trust-aware collaborative filtering recommender. The dataset33 that they released 

contained both the ratings of the users on the products, but also the ratings of users on other users’ reviews 

(i.e., the users’ trust statements). 

Another dataset containing reviews is from Yelp34, where the businesses are being reviewed. Here, the 

dataset is published directly by Yelp and is updated periodically, since it is a part of an ongoing research 

challenge. It contains more than 5 million reviews of 174K businesses supplemented by 200K pictures. 

Moreover, there are 1.1M tips by 1.3M users available and also aggregated hourly check-ins for each business. 

Besides the reviews and check-ins, there are several metadata about the businesses (such as address, average 

rating, whether it is a take-out restaurant, availability of parking, business categories, …) and the users (such 

as list of friends, votes given by the user, opinions received by other users, …). 

In a book domain, Book-Crossing dataset35 was released, which contains implicit and explicit ratings (on a 

scale 1-10) of people on books from Book-Crossing.com [Ziegler et al., 2005]. Book-Crossing36 is an online 

community portal, where the users may exchange books between themselves. There are also demographic data 

available (users’ location and age) and books metadata (title, author, year of publication, publisher, cover 

images). 

Another popular dataset among the research community is from Jester Online Recommender System37. 

Dataset contains users’ ratings on jokes on a rating scale from -10 to 10 [Goldberg et al., 2001]. What is 

specific for this dataset is that the number of items is very low (100 and 150), thus resulting in low sparsity of 

the rating matrix. 

4.5   Summarization 

Generally, an evaluation of any recommender system is a systematic process where a researcher need to take 

into account several aspects: experiment setup, used data, examined metrics, and desired outcomes. Especially, 

if we think of hybrid recommender systems, there also other factors, such as whether we need to evaluate any 

monolithic recommenders, or whether we need to evaluate various combinations of attributes in data. 

Existing recommendation libraries may simplify this process by providing pre-implemented tools. There 

are also libraries that are focused specifically on the recommender systems evaluations. In case of data, there 

are several datasets from a couple of domains publicly available, which allows not only to easily evaluate new 
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recommendation approaches but also to be more transparent while comparing the results (of evaluation) with 

the research community. 

Conclusions 

Recommender systems have been proved beneficial in many domains. There are several types of 

recommendation techniques, such as content-based, collaborative, or demographic that are utilized with respect 

to the domain, user characteristics, item characteristics, and a goal. However, many of these techniques still 

suffer from various issues that have their roots namely in a lack of data or a specific user behavior. 

Hybrid recommender systems were designed to combine the advantages of these techniques in order to 

solve their major issues and to improve an overall recommendation performance. There are several hybrid 

combinations that we may choose from and can be used as a template of how to combine two or more 

recommendation techniques. 

Each combination may be suitable for a different scenario and in a different domain. Moreover, we should 

take into consideration their advantages and disadvantages. It is also important to note that these combinations 

are not tightened to any particular recommendation techniques. In addition, researchers are not limited to basic 

combinations, but there are many parameters that can be tuned (e.g., weights, switching criteria). Allowing to 

tune the parameters brings a possibility to create another level of personalization. 

There are several issues related to collaborative filtering that can be reduced by employing a hybrid 

recommender. Most notable are the cold-start problem, over-specialization, lack of diversity, user extremes, 

and sparsity. Collaborative filtering may either suffer from these problems or can be used a solution to this 

problems with the combination of another technique. A major advantage of hybridization is that it enables 

system to recommend items in some scenarios that collaborative filtering may fail in (such as a new item or a 

user extreme). 

Hybrid recommenders have become a part of many frameworks and libraries in the domain of 

recommendation. These libraries are also available in various programming languages (such as R, Python, 

Java, Scala) and support different hybrid combinations. Moreover, many of these libraries are also extendable 

(e.g., Surprise, Easyrec, FluRS), which allows researchers to easily create their own combinations and yield 

more valuable research results. They also consist of many other algorithms that are related to the 

recommendation, such as similarity measures, plenty of matrix factorization approaches, or prediction 

algorithms. 

In most cases, the libraries also provide tools to evaluate performance of the recommendation and measure 

some basic and also advanced metrics. For this purpose, several state-of-the-art datasets were created and are 

publicly available as well. 

Evaluation of hybrid recommenders inherits many specifics of basic recommendation techniques. Firstly, 

it is important to pick a suitable dataset and split the data into train and test sets. While designing an experiment, 

we may opt into online or offline evaluation. Choice of the evaluation metrics should be performed with the 

respect to the recommendation task. 

There are also specifics that are related to the evaluation of the hybrid recommenders. Here we should not 

only evaluate hybrid recommender as a whole, but also consider evaluating particular underlying 

recommenders, as well as their parameters. Moreover, if a hybrid recommender was designed to solve the 

recommendation issues, it is necessary to investigate whether (and how) the hybrid was able to tackle them. 

There are also some evaluation frameworks that were designed specifically for this purpose: WrapRec and 

Rival. Both of them allow to use existing libraries and algorithms. They also offer evaluation measures that 

are related to the recommendation tasks. Moreover, they are open-source, which allows researchers to do a 

further development. 

Besides all the advantages of the hybrid recommenders, the hybridization may bring up some issues. 

Hybrids suffer from the problem of the scalability since the training phase may require additional time cost. 

Another related issue is that we need more data in order to well-tune parameters of hybrid combinations, which 

is not needed in monolithic approaches. 

Yet there are still some unexplored hybrid combinations that were not studied and verified in current 

literature. Also, many state-of-the-art approaches are only compared to monolithic techniques, with missing 



comparison of hybrids between each other. There are also many domains, where the hybrid recommenders 

were not applied yet. 
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